[1] | 1 | SUBROUTINE init_3d_model |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[732] | 21 | ! ------------------ |
---|
[1341] | 22 | ! |
---|
[1354] | 23 | ! |
---|
[1054] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_3d_model.f90 1354 2014-04-08 15:22:57Z witha $ |
---|
| 27 | ! |
---|
[1354] | 28 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 29 | ! REAL constants provided with KIND-attribute |
---|
| 30 | ! |
---|
[1341] | 31 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 32 | ! REAL constants defined as wp-kind |
---|
| 33 | ! |
---|
[1323] | 34 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 35 | ! REAL constants defined as wp-kind |
---|
| 36 | ! module interfaces removed |
---|
| 37 | ! |
---|
[1321] | 38 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
| 39 | ! ONLY-attribute added to USE-statements, |
---|
| 40 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 41 | ! kinds are defined in new module kinds, |
---|
| 42 | ! revision history before 2012 removed, |
---|
| 43 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 44 | ! all variable declaration statements |
---|
| 45 | ! |
---|
[1317] | 46 | ! 1316 2014-03-17 07:44:59Z heinze |
---|
| 47 | ! Bugfix: allocation of w_subs |
---|
| 48 | ! |
---|
[1300] | 49 | ! 1299 2014-03-06 13:15:21Z heinze |
---|
| 50 | ! Allocate w_subs due to extension of large scale subsidence in combination |
---|
| 51 | ! with large scale forcing data (LSF_DATA) |
---|
| 52 | ! |
---|
[1242] | 53 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 54 | ! Overwrite initial profiles in case of nudging |
---|
| 55 | ! Inititialize shf and qsws in case of large_scale_forcing |
---|
| 56 | ! |
---|
[1222] | 57 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 58 | ! +rflags_s_inner in copyin statement, use copyin for most arrays instead of |
---|
| 59 | ! copy |
---|
| 60 | ! |
---|
[1213] | 61 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
| 62 | ! array tri is allocated and included in data copy statement |
---|
| 63 | ! |
---|
[1196] | 64 | ! 1195 2013-07-01 12:27:57Z heinze |
---|
| 65 | ! Bugfix: move allocation of ref_state to parin.f90 and read_var_list.f90 |
---|
| 66 | ! |
---|
[1182] | 67 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 68 | ! allocate and set ref_state to be used in buoyancy terms |
---|
| 69 | ! |
---|
[1172] | 70 | ! 1171 2013-05-30 11:27:45Z raasch |
---|
| 71 | ! diss array is allocated with full size if accelerator boards are used |
---|
| 72 | ! |
---|
[1160] | 73 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
| 74 | ! -bc_lr_dirneu, bc_lr_neudir, bc_ns_dirneu, bc_ns_neudir |
---|
| 75 | ! |
---|
[1154] | 76 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 77 | ! diss array is allocated with dummy elements even if it is not needed |
---|
[1171] | 78 | ! (required by PGI 13.4 / CUDA 5.0) |
---|
[1154] | 79 | ! |
---|
[1116] | 80 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 81 | ! unused variables removed |
---|
| 82 | ! |
---|
[1114] | 83 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 84 | ! openACC directive modified |
---|
| 85 | ! |
---|
[1112] | 86 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 87 | ! openACC directives added for pres |
---|
| 88 | ! array diss allocated only if required |
---|
| 89 | ! |
---|
[1093] | 90 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 91 | ! unused variables removed |
---|
| 92 | ! |
---|
[1066] | 93 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 94 | ! allocation of diss (dissipation rate) in case of turbulence = .TRUE. added |
---|
| 95 | ! |
---|
[1054] | 96 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 97 | ! allocation and initialisation of necessary data arrays for the two-moment |
---|
| 98 | ! cloud physics scheme the two new prognostic equations (nr, qr): |
---|
| 99 | ! +dr, lambda_r, mu_r, sed_*, xr, *s, *sws, *swst, *, *_p, t*_m, *_1, *_2, *_3, |
---|
| 100 | ! +tend_*, prr |
---|
[979] | 101 | ! |
---|
[1037] | 102 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 103 | ! code put under GPL (PALM 3.9) |
---|
| 104 | ! |
---|
[1033] | 105 | ! 1032 2012-10-21 13:03:21Z letzel |
---|
| 106 | ! save memory by not allocating pt_2 in case of neutral = .T. |
---|
| 107 | ! |
---|
[1026] | 108 | ! 1025 2012-10-07 16:04:41Z letzel |
---|
| 109 | ! bugfix: swap indices of mask for ghost boundaries |
---|
| 110 | ! |
---|
[1017] | 111 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 112 | ! mask is set to zero for ghost boundaries |
---|
| 113 | ! |
---|
[1011] | 114 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 115 | ! cpp switch __nopointer added for pointer free version |
---|
| 116 | ! |
---|
[1004] | 117 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 118 | ! nxra,nyna, nzta replaced ny nxr, nyn, nzt |
---|
| 119 | ! |
---|
[1002] | 120 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 121 | ! all actions concerning leapfrog scheme removed |
---|
| 122 | ! |
---|
[997] | 123 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 124 | ! little reformatting |
---|
| 125 | ! |
---|
[979] | 126 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 127 | ! outflow damping layer removed |
---|
| 128 | ! roughness length for scalar quantites z0h added |
---|
| 129 | ! damping zone for the potential temperatur in case of non-cyclic lateral |
---|
| 130 | ! boundaries added |
---|
| 131 | ! initialization of ptdf_x, ptdf_y |
---|
| 132 | ! initialization of c_u_m, c_u_m_l, c_v_m, c_v_m_l, c_w_m, c_w_m_l |
---|
[708] | 133 | ! |
---|
[850] | 134 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 135 | ! init_particles renamed lpm_init |
---|
| 136 | ! |
---|
[826] | 137 | ! 825 2012-02-19 03:03:44Z raasch |
---|
| 138 | ! wang_collision_kernel renamed wang_kernel |
---|
| 139 | ! |
---|
[1] | 140 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 141 | ! Initial revision |
---|
| 142 | ! |
---|
| 143 | ! |
---|
| 144 | ! Description: |
---|
| 145 | ! ------------ |
---|
| 146 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 147 | ! a) pre-run the 1D model |
---|
| 148 | ! or |
---|
| 149 | ! b) pre-set constant linear profiles |
---|
| 150 | ! or |
---|
| 151 | ! c) read values of a previous run |
---|
| 152 | !------------------------------------------------------------------------------! |
---|
| 153 | |
---|
[667] | 154 | USE advec_ws |
---|
[1320] | 155 | |
---|
[1] | 156 | USE arrays_3d |
---|
[1320] | 157 | |
---|
| 158 | USE cloud_parameters, & |
---|
| 159 | ONLY: nc_const, precipitation_amount, precipitation_rate, prr |
---|
| 160 | |
---|
| 161 | USE constants, & |
---|
| 162 | ONLY: pi |
---|
| 163 | |
---|
[1] | 164 | USE control_parameters |
---|
[1320] | 165 | |
---|
| 166 | USE grid_variables, & |
---|
| 167 | ONLY: dx, dy |
---|
| 168 | |
---|
[1] | 169 | USE indices |
---|
[1320] | 170 | |
---|
| 171 | USE kinds |
---|
| 172 | |
---|
[1241] | 173 | USE ls_forcing_mod |
---|
[1320] | 174 | |
---|
| 175 | USE model_1d, & |
---|
| 176 | ONLY: e1d, kh1d, km1d, l1d, rif1d, u1d, us1d, usws1d, v1d, vsws1d |
---|
| 177 | |
---|
[51] | 178 | USE netcdf_control |
---|
[1320] | 179 | |
---|
| 180 | USE particle_attributes, & |
---|
| 181 | ONLY: particle_advection, use_sgs_for_particles, wang_kernel |
---|
| 182 | |
---|
[1] | 183 | USE pegrid |
---|
[1320] | 184 | |
---|
| 185 | USE random_function_mod |
---|
| 186 | |
---|
| 187 | USE statistics, & |
---|
| 188 | ONLY: hom, hom_sum, pr_palm, rmask, spectrum_x, spectrum_y, & |
---|
| 189 | statistic_regions, sums, sums_divnew_l, sums_divold_l, sums_l, & |
---|
| 190 | sums_l_l, sums_up_fraction_l, sums_wsts_bc_l, ts_value, & |
---|
| 191 | weight_pres, weight_substep |
---|
| 192 | |
---|
| 193 | USE transpose_indices |
---|
[1] | 194 | |
---|
| 195 | IMPLICIT NONE |
---|
| 196 | |
---|
[1320] | 197 | INTEGER(iwp) :: i !: |
---|
| 198 | INTEGER(iwp) :: ind_array(1) !: |
---|
| 199 | INTEGER(iwp) :: j !: |
---|
| 200 | INTEGER(iwp) :: k !: |
---|
| 201 | INTEGER(iwp) :: sr !: |
---|
[1] | 202 | |
---|
[1320] | 203 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ngp_2dh_l !: |
---|
[1] | 204 | |
---|
[1320] | 205 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l !: |
---|
| 206 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_s_inner_l !: |
---|
[1] | 207 | |
---|
[1320] | 208 | REAL(wp), DIMENSION(1:2) :: volume_flow_area_l !: |
---|
| 209 | REAL(wp), DIMENSION(1:2) :: volume_flow_initial_l !: |
---|
[1] | 210 | |
---|
[1320] | 211 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l !: |
---|
| 212 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_tmp !: |
---|
[1] | 213 | |
---|
[485] | 214 | |
---|
[1] | 215 | ! |
---|
| 216 | !-- Allocate arrays |
---|
| 217 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 218 | ngp_3d(0:statistic_regions), & |
---|
| 219 | ngp_3d_inner(0:statistic_regions), & |
---|
| 220 | ngp_3d_inner_l(0:statistic_regions), & |
---|
[485] | 221 | ngp_3d_inner_tmp(0:statistic_regions), & |
---|
[1] | 222 | sums_divnew_l(0:statistic_regions), & |
---|
| 223 | sums_divold_l(0:statistic_regions) ) |
---|
[1195] | 224 | ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt) ) |
---|
[143] | 225 | ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
[1] | 226 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
[132] | 227 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 228 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
[996] | 229 | rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & |
---|
[87] | 230 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
| 231 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
[1] | 232 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 233 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
[48] | 234 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
[394] | 235 | ts_value(dots_max,0:statistic_regions) ) |
---|
[978] | 236 | ALLOCATE( ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng) ) |
---|
[1] | 237 | |
---|
[1001] | 238 | ALLOCATE( rif(nysg:nyng,nxlg:nxrg), shf(nysg:nyng,nxlg:nxrg), & |
---|
| 239 | ts(nysg:nyng,nxlg:nxrg), tswst(nysg:nyng,nxlg:nxrg), & |
---|
| 240 | us(nysg:nyng,nxlg:nxrg), usws(nysg:nyng,nxlg:nxrg), & |
---|
| 241 | uswst(nysg:nyng,nxlg:nxrg), vsws(nysg:nyng,nxlg:nxrg), & |
---|
| 242 | vswst(nysg:nyng,nxlg:nxrg), z0(nysg:nyng,nxlg:nxrg), & |
---|
[978] | 243 | z0h(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 244 | |
---|
[1010] | 245 | ALLOCATE( d(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
| 246 | kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 247 | km(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 248 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 249 | tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 250 | |
---|
| 251 | #if defined( __nopointer ) |
---|
| 252 | ALLOCATE( e(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 253 | e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 254 | pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 255 | pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 256 | u(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 257 | u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 258 | v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 259 | v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 260 | w(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 261 | w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 262 | te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 263 | tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 264 | tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 265 | tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 266 | tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 267 | #else |
---|
| 268 | ALLOCATE( e_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 269 | e_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 270 | e_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 271 | pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 272 | pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 273 | u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 274 | u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 275 | u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 276 | v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 277 | v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 278 | v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 279 | w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 280 | w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 281 | w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1032] | 282 | IF ( .NOT. neutral ) THEN |
---|
| 283 | ALLOCATE( pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 284 | ENDIF |
---|
[1010] | 285 | #endif |
---|
| 286 | |
---|
[673] | 287 | ! |
---|
[707] | 288 | !-- Following array is required for perturbation pressure within the iterative |
---|
| 289 | !-- pressure solvers. For the multistep schemes (Runge-Kutta), array p holds |
---|
| 290 | !-- the weighted average of the substeps and cannot be used in the Poisson |
---|
| 291 | !-- solver. |
---|
| 292 | IF ( psolver == 'sor' ) THEN |
---|
| 293 | ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 294 | ELSEIF ( psolver == 'multigrid' ) THEN |
---|
| 295 | ! |
---|
| 296 | !-- For performance reasons, multigrid is using one ghost layer only |
---|
| 297 | ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[673] | 298 | ENDIF |
---|
[1] | 299 | |
---|
[1111] | 300 | ! |
---|
| 301 | !-- Array for storing constant coeffficients of the tridiagonal solver |
---|
| 302 | IF ( psolver == 'poisfft' ) THEN |
---|
[1212] | 303 | ALLOCATE( tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) ) |
---|
[1111] | 304 | ALLOCATE( tric(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) ) |
---|
| 305 | ENDIF |
---|
| 306 | |
---|
[75] | 307 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 308 | ! |
---|
[75] | 309 | !-- 2D-humidity/scalar arrays |
---|
[1001] | 310 | ALLOCATE ( qs(nysg:nyng,nxlg:nxrg), & |
---|
| 311 | qsws(nysg:nyng,nxlg:nxrg), & |
---|
| 312 | qswst(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 313 | |
---|
| 314 | ! |
---|
[75] | 315 | !-- 3D-humidity/scalar arrays |
---|
[1010] | 316 | #if defined( __nopointer ) |
---|
| 317 | ALLOCATE( q(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 318 | q_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 319 | tq_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 320 | #else |
---|
[667] | 321 | ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 322 | q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 323 | q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 324 | #endif |
---|
[1] | 325 | |
---|
| 326 | ! |
---|
[75] | 327 | !-- 3D-arrays needed for humidity only |
---|
| 328 | IF ( humidity ) THEN |
---|
[1010] | 329 | #if defined( __nopointer ) |
---|
| 330 | ALLOCATE( vpt(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 331 | #else |
---|
[667] | 332 | ALLOCATE( vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 333 | #endif |
---|
[1] | 334 | |
---|
| 335 | IF ( cloud_physics ) THEN |
---|
[1053] | 336 | |
---|
[1] | 337 | ! |
---|
| 338 | !-- Liquid water content |
---|
[1010] | 339 | #if defined( __nopointer ) |
---|
| 340 | ALLOCATE ( ql(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 341 | #else |
---|
[667] | 342 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 343 | #endif |
---|
[72] | 344 | ! |
---|
| 345 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
[667] | 346 | ALLOCATE( precipitation_amount(nysg:nyng,nxlg:nxrg), & |
---|
| 347 | precipitation_rate(nysg:nyng,nxlg:nxrg) ) |
---|
[1053] | 348 | |
---|
| 349 | IF ( icloud_scheme == 0 ) THEN |
---|
| 350 | ! |
---|
[1115] | 351 | !-- 1D-arrays |
---|
| 352 | ALLOCATE ( nc_1d(nzb:nzt+1), pt_1d(nzb:nzt+1), & |
---|
| 353 | q_1d(nzb:nzt+1), qc_1d(nzb:nzt+1) ) |
---|
[1053] | 354 | ! |
---|
[1115] | 355 | !-- 3D-cloud water content |
---|
[1053] | 356 | #if defined( __nopointer ) |
---|
[1115] | 357 | ALLOCATE( qc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1053] | 358 | #else |
---|
[1115] | 359 | ALLOCATE( qc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1053] | 360 | #endif |
---|
| 361 | ! |
---|
| 362 | !-- 3D-tendency arrays |
---|
[1115] | 363 | ALLOCATE( tend_pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 364 | tend_q(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 365 | |
---|
| 366 | IF ( precipitation ) THEN |
---|
[1053] | 367 | ! |
---|
[1115] | 368 | !-- 1D-arrays |
---|
| 369 | ALLOCATE ( nr_1d(nzb:nzt+1), qr_1d(nzb:nzt+1) ) |
---|
| 370 | ! |
---|
| 371 | ! |
---|
| 372 | !-- 3D-tendency arrays |
---|
| 373 | ALLOCATE( tend_nr(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 374 | tend_qr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 375 | ! |
---|
| 376 | !-- 2D-rain water content and rain drop concentration arrays |
---|
| 377 | ALLOCATE ( qrs(nysg:nyng,nxlg:nxrg), & |
---|
| 378 | qrsws(nysg:nyng,nxlg:nxrg), & |
---|
| 379 | qrswst(nysg:nyng,nxlg:nxrg), & |
---|
| 380 | nrs(nysg:nyng,nxlg:nxrg), & |
---|
| 381 | nrsws(nysg:nyng,nxlg:nxrg), & |
---|
| 382 | nrswst(nysg:nyng,nxlg:nxrg) ) |
---|
| 383 | ! |
---|
| 384 | !-- 3D-rain water content, rain drop concentration arrays |
---|
| 385 | #if defined( __nopointer ) |
---|
| 386 | ALLOCATE( nr(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 387 | nr_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 388 | qr(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 389 | qr_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 390 | tnr_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 391 | tqr_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 392 | #else |
---|
| 393 | ALLOCATE( nr_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 394 | nr_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 395 | nr_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 396 | qr_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 397 | qr_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 398 | qr_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 399 | #endif |
---|
| 400 | ! |
---|
| 401 | !-- 3d-precipitation rate |
---|
[1053] | 402 | ALLOCATE( prr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 403 | ENDIF |
---|
| 404 | |
---|
| 405 | ENDIF |
---|
[1] | 406 | ENDIF |
---|
| 407 | |
---|
| 408 | IF ( cloud_droplets ) THEN |
---|
| 409 | ! |
---|
[1010] | 410 | !-- Liquid water content, change in liquid water content |
---|
| 411 | #if defined( __nopointer ) |
---|
| 412 | ALLOCATE ( ql(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 413 | ql_c(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 414 | #else |
---|
[667] | 415 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[1010] | 416 | ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 417 | #endif |
---|
| 418 | ! |
---|
| 419 | !-- Real volume of particles (with weighting), volume of particles |
---|
| 420 | ALLOCATE ( ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 421 | ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 422 | ENDIF |
---|
| 423 | |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
| 426 | ENDIF |
---|
| 427 | |
---|
[94] | 428 | IF ( ocean ) THEN |
---|
[1001] | 429 | ALLOCATE( saswsb(nysg:nyng,nxlg:nxrg), & |
---|
| 430 | saswst(nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 431 | #if defined( __nopointer ) |
---|
| 432 | ALLOCATE( prho(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 433 | rho(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 434 | sa(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 435 | sa_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 436 | tsa_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 437 | #else |
---|
[667] | 438 | ALLOCATE( prho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 439 | rho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 440 | sa_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 441 | sa_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 442 | sa_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[388] | 443 | prho => prho_1 |
---|
| 444 | rho => rho_1 ! routines calc_mean_profile and diffusion_e require |
---|
| 445 | ! density to be apointer |
---|
[1010] | 446 | #endif |
---|
[108] | 447 | IF ( humidity_remote ) THEN |
---|
[667] | 448 | ALLOCATE( qswst_remote(nysg:nyng,nxlg:nxrg)) |
---|
[1340] | 449 | qswst_remote = 0.0_wp |
---|
[108] | 450 | ENDIF |
---|
[94] | 451 | ENDIF |
---|
| 452 | |
---|
[1] | 453 | ! |
---|
| 454 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 455 | !-- particle velocities |
---|
[1171] | 456 | IF ( use_sgs_for_particles .OR. wang_kernel .OR. turbulence .OR. & |
---|
| 457 | num_acc_per_node > 0 ) THEN |
---|
[1153] | 458 | ALLOCATE( diss(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 459 | ENDIF |
---|
| 460 | |
---|
[1340] | 461 | IF ( dt_dosp /= 9999999.9_wp ) THEN |
---|
[1] | 462 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 463 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
[1340] | 464 | spectrum_x = 0.0_wp |
---|
| 465 | spectrum_y = 0.0_wp |
---|
[1] | 466 | ENDIF |
---|
| 467 | |
---|
| 468 | ! |
---|
[1299] | 469 | !-- 1D-array for large scale subsidence velocity |
---|
[1316] | 470 | ALLOCATE ( w_subs(nzb:nzt+1) ) |
---|
[1340] | 471 | w_subs = 0.0_wp |
---|
[1299] | 472 | |
---|
[1316] | 473 | |
---|
[1299] | 474 | ! |
---|
[138] | 475 | !-- 3D-arrays for the leaf area density and the canopy drag coefficient |
---|
| 476 | IF ( plant_canopy ) THEN |
---|
[667] | 477 | ALLOCATE ( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 478 | lad_u(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 479 | lad_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 480 | lad_w(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 481 | cdc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 482 | |
---|
| 483 | IF ( passive_scalar ) THEN |
---|
[996] | 484 | ALLOCATE ( sls(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 485 | sec(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 486 | ENDIF |
---|
| 487 | |
---|
[1340] | 488 | IF ( cthf /= 0.0_wp ) THEN |
---|
[996] | 489 | ALLOCATE ( lai(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 490 | canopy_heat_flux(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 491 | ENDIF |
---|
| 492 | |
---|
[138] | 493 | ENDIF |
---|
| 494 | |
---|
| 495 | ! |
---|
[51] | 496 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
| 497 | IF ( topography /= 'flat' ) THEN |
---|
[667] | 498 | ALLOCATE( rif_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg,1:4) ) |
---|
[1340] | 499 | rif_wall = 0.0_wp |
---|
[51] | 500 | ENDIF |
---|
| 501 | |
---|
| 502 | ! |
---|
[106] | 503 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 504 | !-- are needed for radiation boundary conditions |
---|
[73] | 505 | IF ( outflow_l ) THEN |
---|
[667] | 506 | ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & |
---|
| 507 | v_m_l(nzb:nzt+1,nysg:nyng,0:1), & |
---|
| 508 | w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) |
---|
[73] | 509 | ENDIF |
---|
| 510 | IF ( outflow_r ) THEN |
---|
[667] | 511 | ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 512 | v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 513 | w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) |
---|
[73] | 514 | ENDIF |
---|
[106] | 515 | IF ( outflow_l .OR. outflow_r ) THEN |
---|
[667] | 516 | ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), & |
---|
| 517 | c_w(nzb:nzt+1,nysg:nyng) ) |
---|
[106] | 518 | ENDIF |
---|
[73] | 519 | IF ( outflow_s ) THEN |
---|
[667] | 520 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & |
---|
| 521 | v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & |
---|
| 522 | w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) |
---|
[73] | 523 | ENDIF |
---|
| 524 | IF ( outflow_n ) THEN |
---|
[667] | 525 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 526 | v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 527 | w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) |
---|
[73] | 528 | ENDIF |
---|
[106] | 529 | IF ( outflow_s .OR. outflow_n ) THEN |
---|
[667] | 530 | ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), & |
---|
| 531 | c_w(nzb:nzt+1,nxlg:nxrg) ) |
---|
[106] | 532 | ENDIF |
---|
[996] | 533 | IF ( outflow_l .OR. outflow_r .OR. outflow_s .OR. outflow_n ) THEN |
---|
[978] | 534 | ALLOCATE( c_u_m_l(nzb:nzt+1), c_v_m_l(nzb:nzt+1), c_w_m_l(nzb:nzt+1) ) |
---|
| 535 | ALLOCATE( c_u_m(nzb:nzt+1), c_v_m(nzb:nzt+1), c_w_m(nzb:nzt+1) ) |
---|
| 536 | ENDIF |
---|
[73] | 537 | |
---|
[978] | 538 | |
---|
[1010] | 539 | #if ! defined( __nopointer ) |
---|
[73] | 540 | ! |
---|
[1] | 541 | !-- Initial assignment of the pointers |
---|
[1001] | 542 | e => e_1; e_p => e_2; te_m => e_3 |
---|
[1032] | 543 | IF ( .NOT. neutral ) THEN |
---|
| 544 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3 |
---|
| 545 | ELSE |
---|
| 546 | pt => pt_1; pt_p => pt_1; tpt_m => pt_3 |
---|
| 547 | ENDIF |
---|
[1001] | 548 | u => u_1; u_p => u_2; tu_m => u_3 |
---|
| 549 | v => v_1; v_p => v_2; tv_m => v_3 |
---|
| 550 | w => w_1; w_p => w_2; tw_m => w_3 |
---|
[1] | 551 | |
---|
[1001] | 552 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 553 | q => q_1; q_p => q_2; tq_m => q_3 |
---|
[1053] | 554 | IF ( humidity ) THEN |
---|
| 555 | vpt => vpt_1 |
---|
| 556 | IF ( cloud_physics ) THEN |
---|
| 557 | ql => ql_1 |
---|
| 558 | IF ( icloud_scheme == 0 ) THEN |
---|
[1115] | 559 | qc => qc_1 |
---|
| 560 | IF ( precipitation ) THEN |
---|
| 561 | qr => qr_1; qr_p => qr_2; tqr_m => qr_3 |
---|
| 562 | nr => nr_1; nr_p => nr_2; tnr_m => nr_3 |
---|
| 563 | ENDIF |
---|
[1053] | 564 | ENDIF |
---|
| 565 | ENDIF |
---|
| 566 | ENDIF |
---|
[1001] | 567 | IF ( cloud_droplets ) THEN |
---|
| 568 | ql => ql_1 |
---|
| 569 | ql_c => ql_2 |
---|
[1] | 570 | ENDIF |
---|
[1001] | 571 | ENDIF |
---|
[1] | 572 | |
---|
[1001] | 573 | IF ( ocean ) THEN |
---|
| 574 | sa => sa_1; sa_p => sa_2; tsa_m => sa_3 |
---|
| 575 | ENDIF |
---|
[1010] | 576 | #endif |
---|
[1] | 577 | |
---|
| 578 | ! |
---|
[709] | 579 | !-- Allocate arrays containing the RK coefficient for calculation of |
---|
| 580 | !-- perturbation pressure and turbulent fluxes. At this point values are |
---|
| 581 | !-- set for pressure calculation during initialization (where no timestep |
---|
| 582 | !-- is done). Further below the values needed within the timestep scheme |
---|
| 583 | !-- will be set. |
---|
| 584 | ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & |
---|
[673] | 585 | weight_pres(1:intermediate_timestep_count_max) ) |
---|
[1340] | 586 | weight_substep = 1.0_wp |
---|
| 587 | weight_pres = 1.0_wp |
---|
[709] | 588 | intermediate_timestep_count = 1 ! needed when simulated_time = 0.0 |
---|
[673] | 589 | |
---|
| 590 | ! |
---|
[1] | 591 | !-- Initialize model variables |
---|
[147] | 592 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[328] | 593 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[1] | 594 | ! |
---|
| 595 | !-- First model run of a possible job queue. |
---|
| 596 | !-- Initial profiles of the variables must be computes. |
---|
| 597 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 598 | ! |
---|
| 599 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 600 | !-- start 1D model |
---|
| 601 | CALL init_1d_model |
---|
| 602 | ! |
---|
| 603 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
[667] | 604 | DO i = nxlg, nxrg |
---|
| 605 | DO j = nysg, nyng |
---|
[1] | 606 | e(:,j,i) = e1d |
---|
| 607 | kh(:,j,i) = kh1d |
---|
| 608 | km(:,j,i) = km1d |
---|
| 609 | pt(:,j,i) = pt_init |
---|
| 610 | u(:,j,i) = u1d |
---|
| 611 | v(:,j,i) = v1d |
---|
| 612 | ENDDO |
---|
| 613 | ENDDO |
---|
| 614 | |
---|
[75] | 615 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 616 | DO i = nxlg, nxrg |
---|
| 617 | DO j = nysg, nyng |
---|
[1] | 618 | q(:,j,i) = q_init |
---|
| 619 | ENDDO |
---|
| 620 | ENDDO |
---|
[1353] | 621 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
[1115] | 622 | precipitation ) THEN |
---|
[1053] | 623 | DO i = nxlg, nxrg |
---|
| 624 | DO j = nysg, nyng |
---|
[1340] | 625 | qr(:,j,i) = 0.0_wp |
---|
| 626 | nr(:,j,i) = 0.0_wp |
---|
[1053] | 627 | ENDDO |
---|
| 628 | ENDDO |
---|
[1115] | 629 | ! |
---|
| 630 | !-- Initialze nc_1d with default value |
---|
| 631 | nc_1d(:) = nc_const |
---|
| 632 | |
---|
[1053] | 633 | ENDIF |
---|
[1] | 634 | ENDIF |
---|
| 635 | |
---|
| 636 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 637 | DO i = nxlg, nxrg |
---|
| 638 | DO j = nysg, nyng |
---|
[1] | 639 | e(:,j,i) = e1d |
---|
| 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | ! |
---|
| 643 | !-- Store initial profiles for output purposes etc. |
---|
| 644 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 645 | |
---|
| 646 | IF ( prandtl_layer ) THEN |
---|
| 647 | rif = rif1d(nzb+1) |
---|
[1340] | 648 | ts = 0.0_wp ! could actually be computed more accurately in the |
---|
| 649 | ! 1D model. Update when opportunity arises. |
---|
[1] | 650 | us = us1d |
---|
| 651 | usws = usws1d |
---|
| 652 | vsws = vsws1d |
---|
| 653 | ELSE |
---|
[1340] | 654 | ts = 0.0_wp ! must be set, because used in |
---|
| 655 | rif = 0.0_wp ! flowste |
---|
| 656 | us = 0.0_wp |
---|
| 657 | usws = 0.0_wp |
---|
| 658 | vsws = 0.0_wp |
---|
[1] | 659 | ENDIF |
---|
| 660 | |
---|
| 661 | ELSE |
---|
[1340] | 662 | e = 0.0_wp ! must be set, because used in |
---|
| 663 | rif = 0.0_wp ! flowste |
---|
| 664 | ts = 0.0_wp |
---|
| 665 | us = 0.0_wp |
---|
| 666 | usws = 0.0_wp |
---|
| 667 | vsws = 0.0_wp |
---|
[1] | 668 | ENDIF |
---|
[102] | 669 | uswst = top_momentumflux_u |
---|
| 670 | vswst = top_momentumflux_v |
---|
[1] | 671 | |
---|
| 672 | ! |
---|
| 673 | !-- In every case qs = 0.0 (see also pt) |
---|
| 674 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 675 | !-- Update when opportunity arises! |
---|
[1053] | 676 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1340] | 677 | qs = 0.0_wp |
---|
[1353] | 678 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
[1115] | 679 | precipitation ) THEN |
---|
[1340] | 680 | qrs = 0.0_wp |
---|
| 681 | nrs = 0.0_wp |
---|
[1053] | 682 | ENDIF |
---|
| 683 | ENDIF |
---|
[1] | 684 | |
---|
| 685 | ! |
---|
| 686 | !-- inside buildings set velocities back to zero |
---|
| 687 | IF ( topography /= 'flat' ) THEN |
---|
| 688 | DO i = nxl-1, nxr+1 |
---|
| 689 | DO j = nys-1, nyn+1 |
---|
[1340] | 690 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
| 691 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
[1] | 692 | ENDDO |
---|
| 693 | ENDDO |
---|
[667] | 694 | |
---|
[1] | 695 | ! |
---|
| 696 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 697 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 698 | !-- below the topography; need to correct later |
---|
| 699 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 700 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 701 | !-- the topography. |
---|
[667] | 702 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 703 | ! |
---|
[1] | 704 | !-- Neumann condition |
---|
| 705 | DO i = nxl-1, nxr+1 |
---|
| 706 | DO j = nys-1, nyn+1 |
---|
| 707 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 708 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 709 | ENDDO |
---|
| 710 | ENDDO |
---|
| 711 | |
---|
| 712 | ENDIF |
---|
| 713 | |
---|
| 714 | ENDIF |
---|
| 715 | |
---|
| 716 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 717 | THEN |
---|
[1241] | 718 | |
---|
[1] | 719 | ! |
---|
[1241] | 720 | !-- Overwrite initial profiles in case of nudging |
---|
| 721 | IF ( nudging ) THEN |
---|
| 722 | pt_init = ptnudge(:,1) |
---|
| 723 | u_init = unudge(:,1) |
---|
| 724 | v_init = vnudge(:,1) |
---|
| 725 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 726 | q_init = qnudge(:,1) |
---|
| 727 | ENDIF |
---|
| 728 | |
---|
| 729 | WRITE( message_string, * ) 'Initial profiles of u, v and ', & |
---|
| 730 | 'scalars from NUDGING_DATA are used.' |
---|
| 731 | CALL message( 'init_3d_model', 'PA0370', 0, 0, 0, 6, 0 ) |
---|
| 732 | ENDIF |
---|
| 733 | |
---|
| 734 | ! |
---|
[1] | 735 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 736 | !-- temperature profile with constant gradient) |
---|
[667] | 737 | DO i = nxlg, nxrg |
---|
| 738 | DO j = nysg, nyng |
---|
[1] | 739 | pt(:,j,i) = pt_init |
---|
| 740 | u(:,j,i) = u_init |
---|
| 741 | v(:,j,i) = v_init |
---|
| 742 | ENDDO |
---|
| 743 | ENDDO |
---|
[75] | 744 | |
---|
[1] | 745 | ! |
---|
[292] | 746 | !-- Set initial horizontal velocities at the lowest computational grid |
---|
| 747 | !-- levels to zero in order to avoid too small time steps caused by the |
---|
| 748 | !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs |
---|
| 749 | !-- in the limiting formula!). The original values are stored to be later |
---|
| 750 | !-- used for volume flow control. |
---|
[667] | 751 | DO i = nxlg, nxrg |
---|
| 752 | DO j = nysg, nyng |
---|
[1340] | 753 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0_wp |
---|
| 754 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0_wp |
---|
[1] | 755 | ENDDO |
---|
| 756 | ENDDO |
---|
| 757 | |
---|
[75] | 758 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 759 | DO i = nxlg, nxrg |
---|
| 760 | DO j = nysg, nyng |
---|
[1] | 761 | q(:,j,i) = q_init |
---|
| 762 | ENDDO |
---|
| 763 | ENDDO |
---|
[1115] | 764 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 765 | ! |
---|
| 766 | !-- Initialze nc_1d with default value |
---|
| 767 | nc_1d(:) = nc_const |
---|
| 768 | |
---|
| 769 | IF ( precipitation ) THEN |
---|
| 770 | DO i = nxlg, nxrg |
---|
| 771 | DO j = nysg, nyng |
---|
[1340] | 772 | qr(:,j,i) = 0.0_wp |
---|
| 773 | nr(:,j,i) = 0.0_wp |
---|
[1115] | 774 | ENDDO |
---|
[1053] | 775 | ENDDO |
---|
[1115] | 776 | ENDIF |
---|
| 777 | |
---|
[1053] | 778 | ENDIF |
---|
[1] | 779 | ENDIF |
---|
| 780 | |
---|
[94] | 781 | IF ( ocean ) THEN |
---|
[667] | 782 | DO i = nxlg, nxrg |
---|
| 783 | DO j = nysg, nyng |
---|
[94] | 784 | sa(:,j,i) = sa_init |
---|
| 785 | ENDDO |
---|
| 786 | ENDDO |
---|
| 787 | ENDIF |
---|
[1] | 788 | |
---|
| 789 | IF ( constant_diffusion ) THEN |
---|
| 790 | km = km_constant |
---|
| 791 | kh = km / prandtl_number |
---|
[1340] | 792 | e = 0.0_wp |
---|
| 793 | ELSEIF ( e_init > 0.0_wp ) THEN |
---|
[108] | 794 | DO k = nzb+1, nzt |
---|
[1340] | 795 | km(k,:,:) = 0.1_wp * l_grid(k) * SQRT( e_init ) |
---|
[108] | 796 | ENDDO |
---|
| 797 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 798 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
| 799 | kh = km / prandtl_number |
---|
| 800 | e = e_init |
---|
[1] | 801 | ELSE |
---|
[108] | 802 | IF ( .NOT. ocean ) THEN |
---|
[1340] | 803 | kh = 0.01_wp ! there must exist an initial diffusion, because |
---|
| 804 | km = 0.01_wp ! otherwise no TKE would be produced by the |
---|
[108] | 805 | ! production terms, as long as not yet |
---|
| 806 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 807 | ELSE |
---|
[1340] | 808 | kh = 0.00001_wp |
---|
| 809 | km = 0.00001_wp |
---|
[108] | 810 | ENDIF |
---|
[1340] | 811 | e = 0.0_wp |
---|
[1] | 812 | ENDIF |
---|
[1340] | 813 | rif = 0.0_wp |
---|
| 814 | ts = 0.0_wp |
---|
| 815 | us = 0.0_wp |
---|
| 816 | usws = 0.0_wp |
---|
[102] | 817 | uswst = top_momentumflux_u |
---|
[1340] | 818 | vsws = 0.0_wp |
---|
[102] | 819 | vswst = top_momentumflux_v |
---|
[1340] | 820 | IF ( humidity .OR. passive_scalar ) qs = 0.0_wp |
---|
[1] | 821 | |
---|
| 822 | ! |
---|
| 823 | !-- Compute initial temperature field and other constants used in case |
---|
| 824 | !-- of a sloping surface |
---|
| 825 | IF ( sloping_surface ) CALL init_slope |
---|
| 826 | |
---|
[46] | 827 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
| 828 | THEN |
---|
| 829 | ! |
---|
| 830 | !-- Initialization will completely be done by the user |
---|
| 831 | CALL user_init_3d_model |
---|
| 832 | |
---|
[1] | 833 | ENDIF |
---|
[667] | 834 | ! |
---|
| 835 | !-- Bottom boundary |
---|
| 836 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
[1340] | 837 | u(nzb,:,:) = 0.0_wp |
---|
| 838 | v(nzb,:,:) = 0.0_wp |
---|
[667] | 839 | ENDIF |
---|
[1] | 840 | |
---|
| 841 | ! |
---|
[151] | 842 | !-- Apply channel flow boundary condition |
---|
[132] | 843 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
[1340] | 844 | u(nzt+1,:,:) = 0.0_wp |
---|
| 845 | v(nzt+1,:,:) = 0.0_wp |
---|
[132] | 846 | ENDIF |
---|
| 847 | |
---|
| 848 | ! |
---|
[1] | 849 | !-- Calculate virtual potential temperature |
---|
[1340] | 850 | IF ( humidity ) vpt = pt * ( 1.0_wp + 0.61_wp * q ) |
---|
[1] | 851 | |
---|
| 852 | ! |
---|
| 853 | !-- Store initial profiles for output purposes etc. |
---|
| 854 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 855 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[667] | 856 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN |
---|
[1340] | 857 | hom(nzb,1,5,:) = 0.0_wp |
---|
| 858 | hom(nzb,1,6,:) = 0.0_wp |
---|
[1] | 859 | ENDIF |
---|
| 860 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 861 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 862 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 863 | |
---|
[97] | 864 | IF ( ocean ) THEN |
---|
| 865 | ! |
---|
| 866 | !-- Store initial salinity profile |
---|
| 867 | hom(:,1,26,:) = SPREAD( sa(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 868 | ENDIF |
---|
[1] | 869 | |
---|
[75] | 870 | IF ( humidity ) THEN |
---|
[1] | 871 | ! |
---|
| 872 | !-- Store initial profile of total water content, virtual potential |
---|
| 873 | !-- temperature |
---|
| 874 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 875 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 876 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 877 | ! |
---|
| 878 | !-- Store initial profile of specific humidity and potential |
---|
| 879 | !-- temperature |
---|
| 880 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 881 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 882 | ENDIF |
---|
| 883 | ENDIF |
---|
| 884 | |
---|
| 885 | IF ( passive_scalar ) THEN |
---|
| 886 | ! |
---|
| 887 | !-- Store initial scalar profile |
---|
| 888 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 889 | ENDIF |
---|
| 890 | |
---|
| 891 | ! |
---|
[19] | 892 | !-- Initialize fluxes at bottom surface |
---|
[1] | 893 | IF ( use_surface_fluxes ) THEN |
---|
| 894 | |
---|
| 895 | IF ( constant_heatflux ) THEN |
---|
| 896 | ! |
---|
| 897 | !-- Heat flux is prescribed |
---|
| 898 | IF ( random_heatflux ) THEN |
---|
| 899 | CALL disturb_heatflux |
---|
| 900 | ELSE |
---|
| 901 | shf = surface_heatflux |
---|
| 902 | ! |
---|
[1241] | 903 | !-- Initialize shf with data from external file LSF_DATA |
---|
| 904 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 905 | CALL ls_forcing_surf ( simulated_time ) |
---|
| 906 | ENDIF |
---|
| 907 | |
---|
| 908 | ! |
---|
[1] | 909 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 910 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
[667] | 911 | DO i = nxlg, nxrg |
---|
| 912 | DO j = nysg, nyng |
---|
[1] | 913 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 914 | shf(j,i) = wall_heatflux(0) |
---|
| 915 | ENDIF |
---|
| 916 | ENDDO |
---|
| 917 | ENDDO |
---|
| 918 | ENDIF |
---|
| 919 | ENDIF |
---|
| 920 | ENDIF |
---|
| 921 | |
---|
| 922 | ! |
---|
| 923 | !-- Determine the near-surface water flux |
---|
[75] | 924 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1115] | 925 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 926 | precipitation ) THEN |
---|
[1340] | 927 | qrsws = 0.0_wp |
---|
| 928 | nrsws = 0.0_wp |
---|
[1053] | 929 | ENDIF |
---|
[1] | 930 | IF ( constant_waterflux ) THEN |
---|
| 931 | qsws = surface_waterflux |
---|
[407] | 932 | ! |
---|
| 933 | !-- Over topography surface_waterflux is replaced by |
---|
| 934 | !-- wall_humidityflux(0) |
---|
| 935 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 936 | wall_qflux = wall_humidityflux |
---|
[667] | 937 | DO i = nxlg, nxrg |
---|
| 938 | DO j = nysg, nyng |
---|
[407] | 939 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 940 | qsws(j,i) = wall_qflux(0) |
---|
| 941 | ENDIF |
---|
| 942 | ENDDO |
---|
| 943 | ENDDO |
---|
| 944 | ENDIF |
---|
[1] | 945 | ENDIF |
---|
| 946 | ENDIF |
---|
| 947 | |
---|
| 948 | ENDIF |
---|
| 949 | |
---|
| 950 | ! |
---|
[19] | 951 | !-- Initialize fluxes at top surface |
---|
[94] | 952 | !-- Currently, only the heatflux and salinity flux can be prescribed. |
---|
| 953 | !-- The latent flux is zero in this case! |
---|
[19] | 954 | IF ( use_top_fluxes ) THEN |
---|
| 955 | |
---|
| 956 | IF ( constant_top_heatflux ) THEN |
---|
| 957 | ! |
---|
| 958 | !-- Heat flux is prescribed |
---|
| 959 | tswst = top_heatflux |
---|
| 960 | |
---|
[1053] | 961 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1340] | 962 | qswst = 0.0_wp |
---|
[1115] | 963 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 964 | precipitation ) THEN |
---|
[1340] | 965 | nrswst = 0.0_wp |
---|
| 966 | qrswst = 0.0_wp |
---|
[1053] | 967 | ENDIF |
---|
| 968 | ENDIF |
---|
[94] | 969 | |
---|
| 970 | IF ( ocean ) THEN |
---|
[95] | 971 | saswsb = bottom_salinityflux |
---|
[94] | 972 | saswst = top_salinityflux |
---|
| 973 | ENDIF |
---|
[102] | 974 | ENDIF |
---|
[19] | 975 | |
---|
[102] | 976 | ! |
---|
| 977 | !-- Initialization in case of a coupled model run |
---|
| 978 | IF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
[1340] | 979 | tswst = 0.0_wp |
---|
[102] | 980 | ENDIF |
---|
| 981 | |
---|
[19] | 982 | ENDIF |
---|
| 983 | |
---|
| 984 | ! |
---|
[1] | 985 | !-- Initialize Prandtl layer quantities |
---|
| 986 | IF ( prandtl_layer ) THEN |
---|
| 987 | |
---|
| 988 | z0 = roughness_length |
---|
[978] | 989 | z0h = z0h_factor * z0 |
---|
[1] | 990 | |
---|
| 991 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 992 | ! |
---|
| 993 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 994 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 995 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 996 | !-- to be zero before the first time step. It approaches its correct |
---|
| 997 | !-- value in the course of the first few time steps. |
---|
[1340] | 998 | shf = 0.0_wp |
---|
[1] | 999 | ENDIF |
---|
| 1000 | |
---|
[75] | 1001 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1340] | 1002 | IF ( .NOT. constant_waterflux ) qsws = 0.0_wp |
---|
[1115] | 1003 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1004 | precipitation ) THEN |
---|
[1340] | 1005 | qrsws = 0.0_wp |
---|
| 1006 | nrsws = 0.0_wp |
---|
[1053] | 1007 | ENDIF |
---|
[1] | 1008 | ENDIF |
---|
| 1009 | |
---|
| 1010 | ENDIF |
---|
| 1011 | |
---|
[1179] | 1012 | ! |
---|
| 1013 | !-- Set the reference state to be used in the buoyancy terms (for ocean runs |
---|
| 1014 | !-- the reference state will be set (overwritten) in init_ocean) |
---|
| 1015 | IF ( use_single_reference_value ) THEN |
---|
| 1016 | IF ( .NOT. humidity ) THEN |
---|
| 1017 | ref_state(:) = pt_reference |
---|
| 1018 | ELSE |
---|
| 1019 | ref_state(:) = vpt_reference |
---|
| 1020 | ENDIF |
---|
| 1021 | ELSE |
---|
| 1022 | IF ( .NOT. humidity ) THEN |
---|
| 1023 | ref_state(:) = pt_init(:) |
---|
| 1024 | ELSE |
---|
| 1025 | ref_state(:) = vpt(:,nys,nxl) |
---|
| 1026 | ENDIF |
---|
| 1027 | ENDIF |
---|
[152] | 1028 | |
---|
| 1029 | ! |
---|
[707] | 1030 | !-- For the moment, vertical velocity is zero |
---|
[1340] | 1031 | w = 0.0_wp |
---|
[1] | 1032 | |
---|
| 1033 | ! |
---|
| 1034 | !-- Initialize array sums (must be defined in first call of pres) |
---|
[1340] | 1035 | sums = 0.0_wp |
---|
[1] | 1036 | |
---|
| 1037 | ! |
---|
[707] | 1038 | !-- In case of iterative solvers, p must get an initial value |
---|
[1340] | 1039 | IF ( psolver == 'multigrid' .OR. psolver == 'sor' ) p = 0.0_wp |
---|
[707] | 1040 | |
---|
| 1041 | ! |
---|
[72] | 1042 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
| 1043 | !-- are zero at beginning of the simulation |
---|
| 1044 | IF ( cloud_physics ) THEN |
---|
[1340] | 1045 | ql = 0.0_wp |
---|
| 1046 | IF ( precipitation ) precipitation_amount = 0.0_wp |
---|
[1115] | 1047 | IF ( icloud_scheme == 0 ) THEN |
---|
[1340] | 1048 | qc = 0.0_wp |
---|
[1115] | 1049 | nc_1d = nc_const |
---|
| 1050 | ENDIF |
---|
[72] | 1051 | ENDIF |
---|
[673] | 1052 | ! |
---|
[1] | 1053 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 1054 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 1055 | CALL init_rankine |
---|
| 1056 | ENDIF |
---|
| 1057 | |
---|
| 1058 | ! |
---|
| 1059 | !-- Impose temperature anomaly (advection test only) |
---|
| 1060 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 1061 | CALL init_pt_anomaly |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- If required, change the surface temperature at the start of the 3D run |
---|
[1340] | 1066 | IF ( pt_surface_initial_change /= 0.0_wp ) THEN |
---|
[1] | 1067 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 1068 | ENDIF |
---|
| 1069 | |
---|
| 1070 | ! |
---|
| 1071 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 1072 | !-- run |
---|
[75] | 1073 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
[1340] | 1074 | q_surface_initial_change /= 0.0_wp ) THEN |
---|
[1] | 1075 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 1076 | ENDIF |
---|
| 1077 | ! |
---|
| 1078 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 1079 | CALL random_function_ini |
---|
| 1080 | |
---|
| 1081 | ! |
---|
| 1082 | !-- Initialize old and new time levels. |
---|
[1340] | 1083 | te_m = 0.0_wp; tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp |
---|
[1] | 1084 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 1085 | |
---|
[75] | 1086 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1340] | 1087 | tq_m = 0.0_wp |
---|
[1] | 1088 | q_p = q |
---|
[1115] | 1089 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1090 | precipitation ) THEN |
---|
[1340] | 1091 | tqr_m = 0.0_wp |
---|
[1053] | 1092 | qr_p = qr |
---|
[1340] | 1093 | tnr_m = 0.0_wp |
---|
[1053] | 1094 | nr_p = nr |
---|
| 1095 | ENDIF |
---|
[1] | 1096 | ENDIF |
---|
| 1097 | |
---|
[94] | 1098 | IF ( ocean ) THEN |
---|
[1340] | 1099 | tsa_m = 0.0_wp |
---|
[94] | 1100 | sa_p = sa |
---|
| 1101 | ENDIF |
---|
[667] | 1102 | |
---|
[94] | 1103 | |
---|
[147] | 1104 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
[667] | 1105 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
[1] | 1106 | THEN |
---|
| 1107 | ! |
---|
[767] | 1108 | !-- When reading data for cyclic fill of 3D prerun data files, read |
---|
| 1109 | !-- some of the global variables from the restart file which are required |
---|
| 1110 | !-- for initializing the inflow |
---|
[328] | 1111 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
[559] | 1112 | |
---|
[759] | 1113 | DO i = 0, io_blocks-1 |
---|
| 1114 | IF ( i == io_group ) THEN |
---|
| 1115 | CALL read_parts_of_var_list |
---|
| 1116 | CALL close_file( 13 ) |
---|
| 1117 | ENDIF |
---|
| 1118 | #if defined( __parallel ) |
---|
| 1119 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1120 | #endif |
---|
| 1121 | ENDDO |
---|
[328] | 1122 | |
---|
[767] | 1123 | ENDIF |
---|
| 1124 | |
---|
[151] | 1125 | ! |
---|
[767] | 1126 | !-- Read binary data from restart file |
---|
| 1127 | DO i = 0, io_blocks-1 |
---|
| 1128 | IF ( i == io_group ) THEN |
---|
| 1129 | CALL read_3d_binary |
---|
| 1130 | ENDIF |
---|
| 1131 | #if defined( __parallel ) |
---|
| 1132 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1133 | #endif |
---|
| 1134 | ENDDO |
---|
| 1135 | |
---|
[328] | 1136 | ! |
---|
[767] | 1137 | !-- Initialization of the turbulence recycling method |
---|
| 1138 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
| 1139 | turbulent_inflow ) THEN |
---|
| 1140 | ! |
---|
| 1141 | !-- First store the profiles to be used at the inflow. |
---|
| 1142 | !-- These profiles are the (temporally) and horizontally averaged vertical |
---|
| 1143 | !-- profiles from the prerun. Alternatively, prescribed profiles |
---|
| 1144 | !-- for u,v-components can be used. |
---|
| 1145 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,5) ) |
---|
[151] | 1146 | |
---|
[767] | 1147 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1148 | mean_inflow_profiles(:,1) = u_init ! u |
---|
| 1149 | mean_inflow_profiles(:,2) = v_init ! v |
---|
| 1150 | ELSE |
---|
[328] | 1151 | mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u |
---|
| 1152 | mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v |
---|
[767] | 1153 | ENDIF |
---|
| 1154 | mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt |
---|
| 1155 | mean_inflow_profiles(:,5) = hom_sum(:,8,0) ! e |
---|
[151] | 1156 | |
---|
| 1157 | ! |
---|
[767] | 1158 | !-- If necessary, adjust the horizontal flow field to the prescribed |
---|
| 1159 | !-- profiles |
---|
| 1160 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1161 | DO i = nxlg, nxrg |
---|
[667] | 1162 | DO j = nysg, nyng |
---|
[328] | 1163 | DO k = nzb, nzt+1 |
---|
[767] | 1164 | u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) |
---|
| 1165 | v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) |
---|
[328] | 1166 | ENDDO |
---|
[151] | 1167 | ENDDO |
---|
[767] | 1168 | ENDDO |
---|
| 1169 | ENDIF |
---|
[151] | 1170 | |
---|
| 1171 | ! |
---|
[767] | 1172 | !-- Use these mean profiles at the inflow (provided that Dirichlet |
---|
| 1173 | !-- conditions are used) |
---|
| 1174 | IF ( inflow_l ) THEN |
---|
| 1175 | DO j = nysg, nyng |
---|
| 1176 | DO k = nzb, nzt+1 |
---|
| 1177 | u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) |
---|
| 1178 | v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) |
---|
[1340] | 1179 | w(k,j,nxlg:-1) = 0.0_wp |
---|
[767] | 1180 | pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) |
---|
| 1181 | e(k,j,nxlg:-1) = mean_inflow_profiles(k,5) |
---|
| 1182 | ENDDO |
---|
| 1183 | ENDDO |
---|
| 1184 | ENDIF |
---|
| 1185 | |
---|
[151] | 1186 | ! |
---|
[767] | 1187 | !-- Calculate the damping factors to be used at the inflow. For a |
---|
| 1188 | !-- turbulent inflow the turbulent fluctuations have to be limited |
---|
| 1189 | !-- vertically because otherwise the turbulent inflow layer will grow |
---|
| 1190 | !-- in time. |
---|
[1340] | 1191 | IF ( inflow_damping_height == 9999999.9_wp ) THEN |
---|
[767] | 1192 | ! |
---|
| 1193 | !-- Default: use the inversion height calculated by the prerun; if |
---|
| 1194 | !-- this is zero, inflow_damping_height must be explicitly |
---|
| 1195 | !-- specified. |
---|
[1340] | 1196 | IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0_wp ) THEN |
---|
[767] | 1197 | inflow_damping_height = hom_sum(nzb+6,pr_palm,0) |
---|
| 1198 | ELSE |
---|
| 1199 | WRITE( message_string, * ) 'inflow_damping_height must be ',& |
---|
| 1200 | 'explicitly specified because&the inversion height ', & |
---|
| 1201 | 'calculated by the prerun is zero.' |
---|
| 1202 | CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) |
---|
[292] | 1203 | ENDIF |
---|
[151] | 1204 | |
---|
[767] | 1205 | ENDIF |
---|
| 1206 | |
---|
[1340] | 1207 | IF ( inflow_damping_width == 9999999.9_wp ) THEN |
---|
[151] | 1208 | ! |
---|
[767] | 1209 | !-- Default for the transition range: one tenth of the undamped |
---|
| 1210 | !-- layer |
---|
[1340] | 1211 | inflow_damping_width = 0.1_wp * inflow_damping_height |
---|
[151] | 1212 | |
---|
[767] | 1213 | ENDIF |
---|
[151] | 1214 | |
---|
[767] | 1215 | ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) |
---|
[151] | 1216 | |
---|
[767] | 1217 | DO k = nzb, nzt+1 |
---|
[151] | 1218 | |
---|
[767] | 1219 | IF ( zu(k) <= inflow_damping_height ) THEN |
---|
[1340] | 1220 | inflow_damping_factor(k) = 1.0_wp |
---|
[996] | 1221 | ELSEIF ( zu(k) <= ( inflow_damping_height + inflow_damping_width ) ) THEN |
---|
[1340] | 1222 | inflow_damping_factor(k) = 1.0_wp - & |
---|
[996] | 1223 | ( zu(k) - inflow_damping_height ) / & |
---|
| 1224 | inflow_damping_width |
---|
[767] | 1225 | ELSE |
---|
[1340] | 1226 | inflow_damping_factor(k) = 0.0_wp |
---|
[767] | 1227 | ENDIF |
---|
[151] | 1228 | |
---|
[767] | 1229 | ENDDO |
---|
[151] | 1230 | |
---|
[147] | 1231 | ENDIF |
---|
| 1232 | |
---|
[152] | 1233 | ! |
---|
[359] | 1234 | !-- Inside buildings set velocities and TKE back to zero |
---|
| 1235 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
| 1236 | topography /= 'flat' ) THEN |
---|
| 1237 | ! |
---|
| 1238 | !-- Inside buildings set velocities and TKE back to zero. |
---|
| 1239 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, |
---|
| 1240 | !-- maybe revise later. |
---|
[1001] | 1241 | DO i = nxlg, nxrg |
---|
| 1242 | DO j = nysg, nyng |
---|
[1340] | 1243 | u (nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
| 1244 | v (nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
| 1245 | w (nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
| 1246 | e (nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
| 1247 | tu_m(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
| 1248 | tv_m(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
| 1249 | tw_m(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
| 1250 | te_m(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
| 1251 | tpt_m(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
[359] | 1252 | ENDDO |
---|
[1001] | 1253 | ENDDO |
---|
[359] | 1254 | |
---|
| 1255 | ENDIF |
---|
| 1256 | |
---|
| 1257 | ! |
---|
[1] | 1258 | !-- Calculate initial temperature field and other constants used in case |
---|
| 1259 | !-- of a sloping surface |
---|
| 1260 | IF ( sloping_surface ) CALL init_slope |
---|
| 1261 | |
---|
| 1262 | ! |
---|
| 1263 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 1264 | !-- including ghost points) |
---|
| 1265 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[1053] | 1266 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1267 | q_p = q |
---|
[1115] | 1268 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1269 | precipitation ) THEN |
---|
[1053] | 1270 | qr_p = qr |
---|
| 1271 | nr_p = nr |
---|
| 1272 | ENDIF |
---|
| 1273 | ENDIF |
---|
[94] | 1274 | IF ( ocean ) sa_p = sa |
---|
[1] | 1275 | |
---|
[181] | 1276 | ! |
---|
| 1277 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
| 1278 | !-- have to be predefined here because they are used (but multiplied with 0) |
---|
| 1279 | !-- there before they are set. |
---|
[1340] | 1280 | te_m = 0.0_wp; tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp |
---|
[1053] | 1281 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1340] | 1282 | tq_m = 0.0_wp |
---|
[1115] | 1283 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1284 | precipitation ) THEN |
---|
[1340] | 1285 | tqr_m = 0.0_wp |
---|
| 1286 | tnr_m = 0.0_wp |
---|
[1053] | 1287 | ENDIF |
---|
| 1288 | ENDIF |
---|
[1340] | 1289 | IF ( ocean ) tsa_m = 0.0_wp |
---|
[181] | 1290 | |
---|
[1] | 1291 | ELSE |
---|
| 1292 | ! |
---|
| 1293 | !-- Actually this part of the programm should not be reached |
---|
[254] | 1294 | message_string = 'unknown initializing problem' |
---|
| 1295 | CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) |
---|
[1] | 1296 | ENDIF |
---|
| 1297 | |
---|
[151] | 1298 | |
---|
| 1299 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1] | 1300 | ! |
---|
[151] | 1301 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
| 1302 | IF ( outflow_l ) THEN |
---|
| 1303 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1304 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1305 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1306 | ENDIF |
---|
| 1307 | IF ( outflow_r ) THEN |
---|
| 1308 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1309 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1310 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1311 | ENDIF |
---|
| 1312 | IF ( outflow_s ) THEN |
---|
| 1313 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 1314 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 1315 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 1316 | ENDIF |
---|
| 1317 | IF ( outflow_n ) THEN |
---|
| 1318 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1319 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1320 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1321 | ENDIF |
---|
[667] | 1322 | |
---|
[151] | 1323 | ENDIF |
---|
[680] | 1324 | |
---|
[667] | 1325 | ! |
---|
| 1326 | !-- Calculate the initial volume flow at the right and north boundary |
---|
[709] | 1327 | IF ( conserve_volume_flow ) THEN |
---|
[151] | 1328 | |
---|
[767] | 1329 | IF ( use_prescribed_profile_data ) THEN |
---|
[667] | 1330 | |
---|
[1340] | 1331 | volume_flow_initial_l = 0.0_wp |
---|
| 1332 | volume_flow_area_l = 0.0_wp |
---|
[732] | 1333 | |
---|
[667] | 1334 | IF ( nxr == nx ) THEN |
---|
| 1335 | DO j = nys, nyn |
---|
[709] | 1336 | DO k = nzb_2d(j,nx)+1, nzt |
---|
[667] | 1337 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[767] | 1338 | u_init(k) * dzw(k) |
---|
| 1339 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1340 | ENDDO |
---|
| 1341 | ENDDO |
---|
| 1342 | ENDIF |
---|
| 1343 | |
---|
| 1344 | IF ( nyn == ny ) THEN |
---|
| 1345 | DO i = nxl, nxr |
---|
| 1346 | DO k = nzb_2d(ny,i)+1, nzt |
---|
| 1347 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1348 | v_init(k) * dzw(k) |
---|
| 1349 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | ENDIF |
---|
| 1353 | |
---|
| 1354 | #if defined( __parallel ) |
---|
| 1355 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1356 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1357 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1358 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1359 | |
---|
| 1360 | #else |
---|
| 1361 | volume_flow_initial = volume_flow_initial_l |
---|
| 1362 | volume_flow_area = volume_flow_area_l |
---|
| 1363 | #endif |
---|
| 1364 | |
---|
| 1365 | ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1366 | |
---|
[1340] | 1367 | volume_flow_initial_l = 0.0_wp |
---|
| 1368 | volume_flow_area_l = 0.0_wp |
---|
[767] | 1369 | |
---|
| 1370 | IF ( nxr == nx ) THEN |
---|
| 1371 | DO j = nys, nyn |
---|
| 1372 | DO k = nzb_2d(j,nx)+1, nzt |
---|
| 1373 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[667] | 1374 | hom_sum(k,1,0) * dzw(k) |
---|
| 1375 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1376 | ENDDO |
---|
| 1377 | ENDDO |
---|
| 1378 | ENDIF |
---|
| 1379 | |
---|
| 1380 | IF ( nyn == ny ) THEN |
---|
| 1381 | DO i = nxl, nxr |
---|
[709] | 1382 | DO k = nzb_2d(ny,i)+1, nzt |
---|
[667] | 1383 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
[709] | 1384 | hom_sum(k,2,0) * dzw(k) |
---|
[667] | 1385 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1386 | ENDDO |
---|
| 1387 | ENDDO |
---|
| 1388 | ENDIF |
---|
| 1389 | |
---|
[732] | 1390 | #if defined( __parallel ) |
---|
| 1391 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1392 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1393 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1394 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1395 | |
---|
| 1396 | #else |
---|
| 1397 | volume_flow_initial = volume_flow_initial_l |
---|
| 1398 | volume_flow_area = volume_flow_area_l |
---|
| 1399 | #endif |
---|
| 1400 | |
---|
[667] | 1401 | ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1402 | |
---|
[1340] | 1403 | volume_flow_initial_l = 0.0_wp |
---|
| 1404 | volume_flow_area_l = 0.0_wp |
---|
[732] | 1405 | |
---|
[667] | 1406 | IF ( nxr == nx ) THEN |
---|
| 1407 | DO j = nys, nyn |
---|
[709] | 1408 | DO k = nzb_2d(j,nx)+1, nzt |
---|
[667] | 1409 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[709] | 1410 | u(k,j,nx) * dzw(k) |
---|
[667] | 1411 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1412 | ENDDO |
---|
| 1413 | ENDDO |
---|
| 1414 | ENDIF |
---|
| 1415 | |
---|
| 1416 | IF ( nyn == ny ) THEN |
---|
| 1417 | DO i = nxl, nxr |
---|
[709] | 1418 | DO k = nzb_2d(ny,i)+1, nzt |
---|
[667] | 1419 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1420 | v(k,ny,i) * dzw(k) |
---|
| 1421 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1422 | ENDDO |
---|
| 1423 | ENDDO |
---|
| 1424 | ENDIF |
---|
| 1425 | |
---|
| 1426 | #if defined( __parallel ) |
---|
[732] | 1427 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1428 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1429 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1430 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[667] | 1431 | |
---|
| 1432 | #else |
---|
[732] | 1433 | volume_flow_initial = volume_flow_initial_l |
---|
| 1434 | volume_flow_area = volume_flow_area_l |
---|
[667] | 1435 | #endif |
---|
| 1436 | |
---|
[732] | 1437 | ENDIF |
---|
| 1438 | |
---|
[151] | 1439 | ! |
---|
[709] | 1440 | !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated |
---|
| 1441 | !-- from u|v_bulk instead |
---|
[680] | 1442 | IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN |
---|
| 1443 | volume_flow_initial(1) = u_bulk * volume_flow_area(1) |
---|
| 1444 | volume_flow_initial(2) = v_bulk * volume_flow_area(2) |
---|
| 1445 | ENDIF |
---|
[667] | 1446 | |
---|
[680] | 1447 | ENDIF |
---|
| 1448 | |
---|
[787] | 1449 | ! |
---|
| 1450 | !-- Initialize quantities for special advections schemes |
---|
| 1451 | CALL init_advec |
---|
[680] | 1452 | |
---|
[667] | 1453 | ! |
---|
[680] | 1454 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 1455 | !-- remove the divergences from the velocity field at the initial stage |
---|
| 1456 | IF ( create_disturbances .AND. & |
---|
| 1457 | TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
| 1458 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
| 1459 | |
---|
| 1460 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
| 1461 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
| 1462 | n_sor = nsor_ini |
---|
[1221] | 1463 | !$acc data copyin( d, ddzu, ddzw, nzb_s_inner, nzb_u_inner ) & |
---|
| 1464 | !$acc copyin( nzb_v_inner, nzb_w_inner, p, rflags_s_inner, tend ) & |
---|
| 1465 | !$acc copyin( weight_pres, weight_substep ) & |
---|
| 1466 | !$acc copy( tri, tric, u, v, w ) |
---|
[680] | 1467 | CALL pres |
---|
[1111] | 1468 | !$acc end data |
---|
[680] | 1469 | n_sor = nsor |
---|
| 1470 | ENDIF |
---|
| 1471 | |
---|
| 1472 | ! |
---|
[138] | 1473 | !-- Initialization of the leaf area density |
---|
[709] | 1474 | IF ( plant_canopy ) THEN |
---|
[138] | 1475 | |
---|
| 1476 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1477 | |
---|
| 1478 | CASE( 'block' ) |
---|
| 1479 | |
---|
[667] | 1480 | DO i = nxlg, nxrg |
---|
| 1481 | DO j = nysg, nyng |
---|
[138] | 1482 | lad_s(:,j,i) = lad(:) |
---|
| 1483 | cdc(:,j,i) = drag_coefficient |
---|
[709] | 1484 | IF ( passive_scalar ) THEN |
---|
[153] | 1485 | sls(:,j,i) = leaf_surface_concentration |
---|
| 1486 | sec(:,j,i) = scalar_exchange_coefficient |
---|
| 1487 | ENDIF |
---|
[138] | 1488 | ENDDO |
---|
| 1489 | ENDDO |
---|
| 1490 | |
---|
| 1491 | CASE DEFAULT |
---|
| 1492 | |
---|
| 1493 | ! |
---|
| 1494 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1495 | !-- canopy mode contains a wrong character string or if the |
---|
| 1496 | !-- user has coded a special case in the user interface. |
---|
| 1497 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1498 | !-- which of these two conditions applies. |
---|
| 1499 | CALL user_init_plant_canopy |
---|
| 1500 | |
---|
| 1501 | END SELECT |
---|
| 1502 | |
---|
[667] | 1503 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1504 | CALL exchange_horiz( cdc, nbgp ) |
---|
[138] | 1505 | |
---|
[709] | 1506 | IF ( passive_scalar ) THEN |
---|
[667] | 1507 | CALL exchange_horiz( sls, nbgp ) |
---|
| 1508 | CALL exchange_horiz( sec, nbgp ) |
---|
[153] | 1509 | ENDIF |
---|
| 1510 | |
---|
| 1511 | ! |
---|
| 1512 | !-- Sharp boundaries of the plant canopy in horizontal directions |
---|
| 1513 | !-- In vertical direction the interpolation is retained, as the leaf |
---|
| 1514 | !-- area density is initialised by prescribing a vertical profile |
---|
| 1515 | !-- consisting of piecewise linear segments. The upper boundary |
---|
| 1516 | !-- of the plant canopy is now defined by lad_w(pch_index,:,:) = 0.0. |
---|
| 1517 | |
---|
[138] | 1518 | DO i = nxl, nxr |
---|
| 1519 | DO j = nys, nyn |
---|
| 1520 | DO k = nzb, nzt+1 |
---|
[1340] | 1521 | IF ( lad_s(k,j,i) > 0.0_wp ) THEN |
---|
[153] | 1522 | lad_u(k,j,i) = lad_s(k,j,i) |
---|
| 1523 | lad_u(k,j,i+1) = lad_s(k,j,i) |
---|
| 1524 | lad_v(k,j,i) = lad_s(k,j,i) |
---|
| 1525 | lad_v(k,j+1,i) = lad_s(k,j,i) |
---|
| 1526 | ENDIF |
---|
[138] | 1527 | ENDDO |
---|
| 1528 | DO k = nzb, nzt |
---|
[1340] | 1529 | lad_w(k,j,i) = 0.5_wp * ( lad_s(k+1,j,i) + lad_s(k,j,i) ) |
---|
[138] | 1530 | ENDDO |
---|
| 1531 | ENDDO |
---|
| 1532 | ENDDO |
---|
| 1533 | |
---|
[1340] | 1534 | lad_w(pch_index,:,:) = 0.0_wp |
---|
[153] | 1535 | lad_w(nzt+1,:,:) = lad_w(nzt,:,:) |
---|
[138] | 1536 | |
---|
[667] | 1537 | CALL exchange_horiz( lad_u, nbgp ) |
---|
| 1538 | CALL exchange_horiz( lad_v, nbgp ) |
---|
| 1539 | CALL exchange_horiz( lad_w, nbgp ) |
---|
[153] | 1540 | |
---|
| 1541 | ! |
---|
| 1542 | !-- Initialisation of the canopy heat source distribution |
---|
[1340] | 1543 | IF ( cthf /= 0.0_wp ) THEN |
---|
[153] | 1544 | ! |
---|
| 1545 | !-- Piecewise evaluation of the leaf area index by |
---|
| 1546 | !-- integration of the leaf area density |
---|
[1340] | 1547 | lai(:,:,:) = 0.0_wp |
---|
[667] | 1548 | DO i = nxlg, nxrg |
---|
| 1549 | DO j = nysg, nyng |
---|
[153] | 1550 | DO k = pch_index-1, 0, -1 |
---|
| 1551 | lai(k,j,i) = lai(k+1,j,i) + & |
---|
[1340] | 1552 | ( 0.5_wp * ( lad_w(k+1,j,i) + & |
---|
[153] | 1553 | lad_s(k+1,j,i) ) * & |
---|
| 1554 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
[1340] | 1555 | ( 0.5_wp * ( lad_w(k,j,i) + & |
---|
[153] | 1556 | lad_s(k+1,j,i) ) * & |
---|
| 1557 | ( zu(k+1) - zw(k) ) ) |
---|
| 1558 | ENDDO |
---|
| 1559 | ENDDO |
---|
| 1560 | ENDDO |
---|
| 1561 | |
---|
| 1562 | ! |
---|
| 1563 | !-- Evaluation of the upward kinematic vertical heat flux within the |
---|
| 1564 | !-- canopy |
---|
[667] | 1565 | DO i = nxlg, nxrg |
---|
| 1566 | DO j = nysg, nyng |
---|
[153] | 1567 | DO k = 0, pch_index |
---|
| 1568 | canopy_heat_flux(k,j,i) = cthf * & |
---|
[1340] | 1569 | exp( -0.6_wp * lai(k,j,i) ) |
---|
[153] | 1570 | ENDDO |
---|
| 1571 | ENDDO |
---|
| 1572 | ENDDO |
---|
| 1573 | |
---|
| 1574 | ! |
---|
| 1575 | !-- The near surface heat flux is derived from the heat flux |
---|
| 1576 | !-- distribution within the canopy |
---|
| 1577 | shf(:,:) = canopy_heat_flux(0,:,:) |
---|
| 1578 | |
---|
| 1579 | ENDIF |
---|
| 1580 | |
---|
[138] | 1581 | ENDIF |
---|
| 1582 | |
---|
| 1583 | ! |
---|
[1] | 1584 | !-- If required, initialize dvrp-software |
---|
[1340] | 1585 | IF ( dt_dvrp /= 9999999.9_wp ) CALL init_dvrp |
---|
[1] | 1586 | |
---|
[96] | 1587 | IF ( ocean ) THEN |
---|
[1] | 1588 | ! |
---|
[96] | 1589 | !-- Initialize quantities needed for the ocean model |
---|
| 1590 | CALL init_ocean |
---|
[388] | 1591 | |
---|
[96] | 1592 | ELSE |
---|
| 1593 | ! |
---|
| 1594 | !-- Initialize quantities for handling cloud physics |
---|
[849] | 1595 | !-- This routine must be called before lpm_init, because |
---|
[96] | 1596 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
[849] | 1597 | !-- lpm_init) is not defined. |
---|
[96] | 1598 | CALL init_cloud_physics |
---|
| 1599 | ENDIF |
---|
[1] | 1600 | |
---|
| 1601 | ! |
---|
| 1602 | !-- If required, initialize particles |
---|
[849] | 1603 | IF ( particle_advection ) CALL lpm_init |
---|
[1] | 1604 | |
---|
| 1605 | ! |
---|
[673] | 1606 | !-- Initialize the ws-scheme. |
---|
| 1607 | IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init |
---|
[1] | 1608 | |
---|
| 1609 | ! |
---|
[709] | 1610 | !-- Setting weighting factors for calculation of perturbation pressure |
---|
| 1611 | !-- and turbulent quantities from the RK substeps |
---|
| 1612 | IF ( TRIM(timestep_scheme) == 'runge-kutta-3' ) THEN ! for RK3-method |
---|
| 1613 | |
---|
[1322] | 1614 | weight_substep(1) = 1._wp/6._wp |
---|
| 1615 | weight_substep(2) = 3._wp/10._wp |
---|
| 1616 | weight_substep(3) = 8._wp/15._wp |
---|
[709] | 1617 | |
---|
[1322] | 1618 | weight_pres(1) = 1._wp/3._wp |
---|
| 1619 | weight_pres(2) = 5._wp/12._wp |
---|
| 1620 | weight_pres(3) = 1._wp/4._wp |
---|
[709] | 1621 | |
---|
| 1622 | ELSEIF ( TRIM(timestep_scheme) == 'runge-kutta-2' ) THEN ! for RK2-method |
---|
| 1623 | |
---|
[1322] | 1624 | weight_substep(1) = 1._wp/2._wp |
---|
| 1625 | weight_substep(2) = 1._wp/2._wp |
---|
[673] | 1626 | |
---|
[1322] | 1627 | weight_pres(1) = 1._wp/2._wp |
---|
| 1628 | weight_pres(2) = 1._wp/2._wp |
---|
[709] | 1629 | |
---|
[1001] | 1630 | ELSE ! for Euler-method |
---|
[709] | 1631 | |
---|
[1340] | 1632 | weight_substep(1) = 1.0_wp |
---|
| 1633 | weight_pres(1) = 1.0_wp |
---|
[709] | 1634 | |
---|
[673] | 1635 | ENDIF |
---|
| 1636 | |
---|
| 1637 | ! |
---|
[1] | 1638 | !-- Initialize Rayleigh damping factors |
---|
[1340] | 1639 | rdf = 0.0_wp |
---|
| 1640 | rdf_sc = 0.0_wp |
---|
| 1641 | IF ( rayleigh_damping_factor /= 0.0_wp ) THEN |
---|
[108] | 1642 | IF ( .NOT. ocean ) THEN |
---|
| 1643 | DO k = nzb+1, nzt |
---|
| 1644 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 1645 | rdf(k) = rayleigh_damping_factor * & |
---|
[1340] | 1646 | ( SIN( pi * 0.5_wp * ( zu(k) - rayleigh_damping_height ) & |
---|
| 1647 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
[1] | 1648 | )**2 |
---|
[108] | 1649 | ENDIF |
---|
| 1650 | ENDDO |
---|
| 1651 | ELSE |
---|
| 1652 | DO k = nzt, nzb+1, -1 |
---|
| 1653 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
| 1654 | rdf(k) = rayleigh_damping_factor * & |
---|
[1340] | 1655 | ( SIN( pi * 0.5_wp * ( rayleigh_damping_height - zu(k) ) & |
---|
| 1656 | / ( rayleigh_damping_height - zu(nzb+1)))& |
---|
[108] | 1657 | )**2 |
---|
| 1658 | ENDIF |
---|
| 1659 | ENDDO |
---|
| 1660 | ENDIF |
---|
[1] | 1661 | ENDIF |
---|
[785] | 1662 | IF ( scalar_rayleigh_damping ) rdf_sc = rdf |
---|
[1] | 1663 | |
---|
| 1664 | ! |
---|
[240] | 1665 | !-- Initialize the starting level and the vertical smoothing factor used for |
---|
| 1666 | !-- the external pressure gradient |
---|
[1340] | 1667 | dp_smooth_factor = 1.0_wp |
---|
[240] | 1668 | IF ( dp_external ) THEN |
---|
| 1669 | ! |
---|
| 1670 | !-- Set the starting level dp_level_ind_b only if it has not been set before |
---|
| 1671 | !-- (e.g. in init_grid). |
---|
| 1672 | IF ( dp_level_ind_b == 0 ) THEN |
---|
| 1673 | ind_array = MINLOC( ABS( dp_level_b - zu ) ) |
---|
| 1674 | dp_level_ind_b = ind_array(1) - 1 + nzb |
---|
| 1675 | ! MINLOC uses lower array bound 1 |
---|
| 1676 | ENDIF |
---|
| 1677 | IF ( dp_smooth ) THEN |
---|
[1340] | 1678 | dp_smooth_factor(:dp_level_ind_b) = 0.0_wp |
---|
[240] | 1679 | DO k = dp_level_ind_b+1, nzt |
---|
[1340] | 1680 | dp_smooth_factor(k) = 0.5_wp * ( 1.0_wp + SIN( pi * & |
---|
| 1681 | ( REAL( k - dp_level_ind_b, KIND=wp ) / & |
---|
| 1682 | REAL( nzt - dp_level_ind_b, KIND=wp ) - 0.5_wp ) ) ) |
---|
[240] | 1683 | ENDDO |
---|
| 1684 | ENDIF |
---|
| 1685 | ENDIF |
---|
| 1686 | |
---|
| 1687 | ! |
---|
[978] | 1688 | !-- Initialize damping zone for the potential temperature in case of |
---|
| 1689 | !-- non-cyclic lateral boundaries. The damping zone has the maximum value |
---|
| 1690 | !-- at the inflow boundary and decreases to zero at pt_damping_width. |
---|
[1340] | 1691 | ptdf_x = 0.0_wp |
---|
| 1692 | ptdf_y = 0.0_wp |
---|
[1159] | 1693 | IF ( bc_lr_dirrad ) THEN |
---|
[996] | 1694 | DO i = nxl, nxr |
---|
[978] | 1695 | IF ( ( i * dx ) < pt_damping_width ) THEN |
---|
[1340] | 1696 | ptdf_x(i) = pt_damping_factor * ( SIN( pi * 0.5_wp * & |
---|
| 1697 | REAL( pt_damping_width - i * dx, KIND=wp ) / ( & |
---|
| 1698 | REAL( pt_damping_width, KIND=wp ) ) ) )**2 |
---|
[73] | 1699 | ENDIF |
---|
| 1700 | ENDDO |
---|
[1159] | 1701 | ELSEIF ( bc_lr_raddir ) THEN |
---|
[996] | 1702 | DO i = nxl, nxr |
---|
[978] | 1703 | IF ( ( i * dx ) > ( nx * dx - pt_damping_width ) ) THEN |
---|
[1322] | 1704 | ptdf_x(i) = pt_damping_factor * & |
---|
[1340] | 1705 | SIN( pi * 0.5_wp * & |
---|
| 1706 | ( ( i - nx ) * dx + pt_damping_width ) / & |
---|
| 1707 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[73] | 1708 | ENDIF |
---|
[978] | 1709 | ENDDO |
---|
[1159] | 1710 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[996] | 1711 | DO j = nys, nyn |
---|
[978] | 1712 | IF ( ( j * dy ) > ( ny * dy - pt_damping_width ) ) THEN |
---|
[1322] | 1713 | ptdf_y(j) = pt_damping_factor * & |
---|
[1340] | 1714 | SIN( pi * 0.5_wp * & |
---|
| 1715 | ( ( j - ny ) * dy + pt_damping_width ) / & |
---|
| 1716 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 1717 | ENDIF |
---|
[978] | 1718 | ENDDO |
---|
[1159] | 1719 | ELSEIF ( bc_ns_raddir ) THEN |
---|
[996] | 1720 | DO j = nys, nyn |
---|
[978] | 1721 | IF ( ( j * dy ) < pt_damping_width ) THEN |
---|
[1322] | 1722 | ptdf_y(j) = pt_damping_factor * & |
---|
[1340] | 1723 | SIN( pi * 0.5_wp * & |
---|
| 1724 | ( pt_damping_width - j * dy ) / & |
---|
| 1725 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 1726 | ENDIF |
---|
[73] | 1727 | ENDDO |
---|
[1] | 1728 | ENDIF |
---|
| 1729 | |
---|
| 1730 | ! |
---|
[709] | 1731 | !-- Initialize local summation arrays for routine flow_statistics. |
---|
| 1732 | !-- This is necessary because they may not yet have been initialized when they |
---|
| 1733 | !-- are called from flow_statistics (or - depending on the chosen model run - |
---|
| 1734 | !-- are never initialized) |
---|
[1340] | 1735 | sums_divnew_l = 0.0_wp |
---|
| 1736 | sums_divold_l = 0.0_wp |
---|
| 1737 | sums_l_l = 0.0_wp |
---|
| 1738 | sums_up_fraction_l = 0.0_wp |
---|
| 1739 | sums_wsts_bc_l = 0.0_wp |
---|
[1] | 1740 | |
---|
| 1741 | ! |
---|
| 1742 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
[1015] | 1743 | !-- Ghost points are excluded because counting values at the ghost boundaries |
---|
| 1744 | !-- would bias the statistics |
---|
[1340] | 1745 | rmask = 1.0_wp |
---|
| 1746 | rmask(:,nxlg:nxl-1,:) = 0.0_wp; rmask(:,nxr+1:nxrg,:) = 0.0_wp |
---|
| 1747 | rmask(nysg:nys-1,:,:) = 0.0_wp; rmask(nyn+1:nyng,:,:) = 0.0_wp |
---|
[1] | 1748 | |
---|
| 1749 | ! |
---|
[51] | 1750 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
[709] | 1751 | !-- of allowed timeseries is exceeded |
---|
[1] | 1752 | CALL user_init |
---|
| 1753 | |
---|
[51] | 1754 | IF ( dots_num > dots_max ) THEN |
---|
[254] | 1755 | WRITE( message_string, * ) 'number of time series quantities exceeds', & |
---|
[274] | 1756 | ' its maximum of dots_max = ', dots_max, & |
---|
[254] | 1757 | ' &Please increase dots_max in modules.f90.' |
---|
| 1758 | CALL message( 'init_3d_model', 'PA0194', 1, 2, 0, 6, 0 ) |
---|
[51] | 1759 | ENDIF |
---|
| 1760 | |
---|
[1] | 1761 | ! |
---|
| 1762 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 1763 | !-- after call of user_init! |
---|
| 1764 | CALL close_file( 13 ) |
---|
| 1765 | |
---|
| 1766 | ! |
---|
| 1767 | !-- Compute total sum of active mask grid points |
---|
| 1768 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 1769 | !-- total domain |
---|
| 1770 | !-- ngp_3d: number of grid points of the total domain |
---|
[132] | 1771 | ngp_2dh_outer_l = 0 |
---|
| 1772 | ngp_2dh_outer = 0 |
---|
| 1773 | ngp_2dh_s_inner_l = 0 |
---|
| 1774 | ngp_2dh_s_inner = 0 |
---|
| 1775 | ngp_2dh_l = 0 |
---|
| 1776 | ngp_2dh = 0 |
---|
[1340] | 1777 | ngp_3d_inner_l = 0.0_wp |
---|
[132] | 1778 | ngp_3d_inner = 0 |
---|
| 1779 | ngp_3d = 0 |
---|
| 1780 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
[1] | 1781 | |
---|
| 1782 | DO sr = 0, statistic_regions |
---|
| 1783 | DO i = nxl, nxr |
---|
| 1784 | DO j = nys, nyn |
---|
[1340] | 1785 | IF ( rmask(j,i,sr) == 1.0_wp ) THEN |
---|
[1] | 1786 | ! |
---|
| 1787 | !-- All xy-grid points |
---|
| 1788 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1789 | ! |
---|
| 1790 | !-- xy-grid points above topography |
---|
| 1791 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 1792 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 1793 | ENDDO |
---|
[132] | 1794 | DO k = nzb_s_inner(j,i), nz + 1 |
---|
| 1795 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + 1 |
---|
| 1796 | ENDDO |
---|
[1] | 1797 | ! |
---|
| 1798 | !-- All grid points of the total domain above topography |
---|
| 1799 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 1800 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 1801 | ENDIF |
---|
| 1802 | ENDDO |
---|
| 1803 | ENDDO |
---|
| 1804 | ENDDO |
---|
| 1805 | |
---|
| 1806 | sr = statistic_regions + 1 |
---|
| 1807 | #if defined( __parallel ) |
---|
[622] | 1808 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1809 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
[1] | 1810 | comm2d, ierr ) |
---|
[622] | 1811 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1812 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
[1] | 1813 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1814 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1815 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & |
---|
[132] | 1816 | (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1817 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1818 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, & |
---|
[1] | 1819 | MPI_SUM, comm2d, ierr ) |
---|
[485] | 1820 | ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1821 | #else |
---|
[132] | 1822 | ngp_2dh = ngp_2dh_l |
---|
| 1823 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1824 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
[485] | 1825 | ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1826 | #endif |
---|
| 1827 | |
---|
[560] | 1828 | ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & |
---|
| 1829 | INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1830 | |
---|
| 1831 | ! |
---|
| 1832 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1833 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1834 | !-- the respective subdomain lie below the surface topography |
---|
[667] | 1835 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
[631] | 1836 | ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), & |
---|
| 1837 | ngp_3d_inner(:) ) |
---|
[667] | 1838 | ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) |
---|
[1] | 1839 | |
---|
[485] | 1840 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l, ngp_3d_inner_tmp ) |
---|
[1] | 1841 | |
---|
| 1842 | |
---|
| 1843 | END SUBROUTINE init_3d_model |
---|