[1] | 1 | SUBROUTINE init_3d_model |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[732] | 21 | ! ------------------ |
---|
[1319] | 22 | ! |
---|
[1323] | 23 | ! |
---|
[1054] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_3d_model.f90 1323 2014-03-20 17:09:54Z raasch $ |
---|
| 27 | ! |
---|
[1323] | 28 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 29 | ! REAL constants defined as wp-kind |
---|
| 30 | ! module interfaces removed |
---|
| 31 | ! |
---|
[1321] | 32 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
| 33 | ! ONLY-attribute added to USE-statements, |
---|
| 34 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 35 | ! kinds are defined in new module kinds, |
---|
| 36 | ! revision history before 2012 removed, |
---|
| 37 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 38 | ! all variable declaration statements |
---|
| 39 | ! |
---|
[1317] | 40 | ! 1316 2014-03-17 07:44:59Z heinze |
---|
| 41 | ! Bugfix: allocation of w_subs |
---|
| 42 | ! |
---|
[1300] | 43 | ! 1299 2014-03-06 13:15:21Z heinze |
---|
| 44 | ! Allocate w_subs due to extension of large scale subsidence in combination |
---|
| 45 | ! with large scale forcing data (LSF_DATA) |
---|
| 46 | ! |
---|
[1242] | 47 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 48 | ! Overwrite initial profiles in case of nudging |
---|
| 49 | ! Inititialize shf and qsws in case of large_scale_forcing |
---|
| 50 | ! |
---|
[1222] | 51 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 52 | ! +rflags_s_inner in copyin statement, use copyin for most arrays instead of |
---|
| 53 | ! copy |
---|
| 54 | ! |
---|
[1213] | 55 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
| 56 | ! array tri is allocated and included in data copy statement |
---|
| 57 | ! |
---|
[1196] | 58 | ! 1195 2013-07-01 12:27:57Z heinze |
---|
| 59 | ! Bugfix: move allocation of ref_state to parin.f90 and read_var_list.f90 |
---|
| 60 | ! |
---|
[1182] | 61 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 62 | ! allocate and set ref_state to be used in buoyancy terms |
---|
| 63 | ! |
---|
[1172] | 64 | ! 1171 2013-05-30 11:27:45Z raasch |
---|
| 65 | ! diss array is allocated with full size if accelerator boards are used |
---|
| 66 | ! |
---|
[1160] | 67 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
| 68 | ! -bc_lr_dirneu, bc_lr_neudir, bc_ns_dirneu, bc_ns_neudir |
---|
| 69 | ! |
---|
[1154] | 70 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 71 | ! diss array is allocated with dummy elements even if it is not needed |
---|
[1171] | 72 | ! (required by PGI 13.4 / CUDA 5.0) |
---|
[1154] | 73 | ! |
---|
[1116] | 74 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 75 | ! unused variables removed |
---|
| 76 | ! |
---|
[1114] | 77 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 78 | ! openACC directive modified |
---|
| 79 | ! |
---|
[1112] | 80 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 81 | ! openACC directives added for pres |
---|
| 82 | ! array diss allocated only if required |
---|
| 83 | ! |
---|
[1093] | 84 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 85 | ! unused variables removed |
---|
| 86 | ! |
---|
[1066] | 87 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 88 | ! allocation of diss (dissipation rate) in case of turbulence = .TRUE. added |
---|
| 89 | ! |
---|
[1054] | 90 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 91 | ! allocation and initialisation of necessary data arrays for the two-moment |
---|
| 92 | ! cloud physics scheme the two new prognostic equations (nr, qr): |
---|
| 93 | ! +dr, lambda_r, mu_r, sed_*, xr, *s, *sws, *swst, *, *_p, t*_m, *_1, *_2, *_3, |
---|
| 94 | ! +tend_*, prr |
---|
[979] | 95 | ! |
---|
[1037] | 96 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 97 | ! code put under GPL (PALM 3.9) |
---|
| 98 | ! |
---|
[1033] | 99 | ! 1032 2012-10-21 13:03:21Z letzel |
---|
| 100 | ! save memory by not allocating pt_2 in case of neutral = .T. |
---|
| 101 | ! |
---|
[1026] | 102 | ! 1025 2012-10-07 16:04:41Z letzel |
---|
| 103 | ! bugfix: swap indices of mask for ghost boundaries |
---|
| 104 | ! |
---|
[1017] | 105 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 106 | ! mask is set to zero for ghost boundaries |
---|
| 107 | ! |
---|
[1011] | 108 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 109 | ! cpp switch __nopointer added for pointer free version |
---|
| 110 | ! |
---|
[1004] | 111 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 112 | ! nxra,nyna, nzta replaced ny nxr, nyn, nzt |
---|
| 113 | ! |
---|
[1002] | 114 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 115 | ! all actions concerning leapfrog scheme removed |
---|
| 116 | ! |
---|
[997] | 117 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 118 | ! little reformatting |
---|
| 119 | ! |
---|
[979] | 120 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 121 | ! outflow damping layer removed |
---|
| 122 | ! roughness length for scalar quantites z0h added |
---|
| 123 | ! damping zone for the potential temperatur in case of non-cyclic lateral |
---|
| 124 | ! boundaries added |
---|
| 125 | ! initialization of ptdf_x, ptdf_y |
---|
| 126 | ! initialization of c_u_m, c_u_m_l, c_v_m, c_v_m_l, c_w_m, c_w_m_l |
---|
[708] | 127 | ! |
---|
[850] | 128 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 129 | ! init_particles renamed lpm_init |
---|
| 130 | ! |
---|
[826] | 131 | ! 825 2012-02-19 03:03:44Z raasch |
---|
| 132 | ! wang_collision_kernel renamed wang_kernel |
---|
| 133 | ! |
---|
[1] | 134 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 135 | ! Initial revision |
---|
| 136 | ! |
---|
| 137 | ! |
---|
| 138 | ! Description: |
---|
| 139 | ! ------------ |
---|
| 140 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 141 | ! a) pre-run the 1D model |
---|
| 142 | ! or |
---|
| 143 | ! b) pre-set constant linear profiles |
---|
| 144 | ! or |
---|
| 145 | ! c) read values of a previous run |
---|
| 146 | !------------------------------------------------------------------------------! |
---|
| 147 | |
---|
[667] | 148 | USE advec_ws |
---|
[1320] | 149 | |
---|
[1] | 150 | USE arrays_3d |
---|
[1320] | 151 | |
---|
| 152 | USE cloud_parameters, & |
---|
| 153 | ONLY: nc_const, precipitation_amount, precipitation_rate, prr |
---|
| 154 | |
---|
| 155 | USE constants, & |
---|
| 156 | ONLY: pi |
---|
| 157 | |
---|
[1] | 158 | USE control_parameters |
---|
[1320] | 159 | |
---|
| 160 | USE grid_variables, & |
---|
| 161 | ONLY: dx, dy |
---|
| 162 | |
---|
[1] | 163 | USE indices |
---|
[1320] | 164 | |
---|
| 165 | USE kinds |
---|
| 166 | |
---|
[1241] | 167 | USE ls_forcing_mod |
---|
[1320] | 168 | |
---|
| 169 | USE model_1d, & |
---|
| 170 | ONLY: e1d, kh1d, km1d, l1d, rif1d, u1d, us1d, usws1d, v1d, vsws1d |
---|
| 171 | |
---|
[51] | 172 | USE netcdf_control |
---|
[1320] | 173 | |
---|
| 174 | USE particle_attributes, & |
---|
| 175 | ONLY: particle_advection, use_sgs_for_particles, wang_kernel |
---|
| 176 | |
---|
[1] | 177 | USE pegrid |
---|
[1320] | 178 | |
---|
| 179 | USE random_function_mod |
---|
| 180 | |
---|
| 181 | USE statistics, & |
---|
| 182 | ONLY: hom, hom_sum, pr_palm, rmask, spectrum_x, spectrum_y, & |
---|
| 183 | statistic_regions, sums, sums_divnew_l, sums_divold_l, sums_l, & |
---|
| 184 | sums_l_l, sums_up_fraction_l, sums_wsts_bc_l, ts_value, & |
---|
| 185 | weight_pres, weight_substep |
---|
| 186 | |
---|
| 187 | USE transpose_indices |
---|
[1] | 188 | |
---|
| 189 | IMPLICIT NONE |
---|
| 190 | |
---|
[1320] | 191 | INTEGER(iwp) :: i !: |
---|
| 192 | INTEGER(iwp) :: ind_array(1) !: |
---|
| 193 | INTEGER(iwp) :: j !: |
---|
| 194 | INTEGER(iwp) :: k !: |
---|
| 195 | INTEGER(iwp) :: sr !: |
---|
[1] | 196 | |
---|
[1320] | 197 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ngp_2dh_l !: |
---|
[1] | 198 | |
---|
[1320] | 199 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l !: |
---|
| 200 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_s_inner_l !: |
---|
[1] | 201 | |
---|
[1320] | 202 | REAL(wp), DIMENSION(1:2) :: volume_flow_area_l !: |
---|
| 203 | REAL(wp), DIMENSION(1:2) :: volume_flow_initial_l !: |
---|
[1] | 204 | |
---|
[1320] | 205 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l !: |
---|
| 206 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_tmp !: |
---|
[1] | 207 | |
---|
[485] | 208 | |
---|
[1] | 209 | ! |
---|
| 210 | !-- Allocate arrays |
---|
| 211 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 212 | ngp_3d(0:statistic_regions), & |
---|
| 213 | ngp_3d_inner(0:statistic_regions), & |
---|
| 214 | ngp_3d_inner_l(0:statistic_regions), & |
---|
[485] | 215 | ngp_3d_inner_tmp(0:statistic_regions), & |
---|
[1] | 216 | sums_divnew_l(0:statistic_regions), & |
---|
| 217 | sums_divold_l(0:statistic_regions) ) |
---|
[1195] | 218 | ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt) ) |
---|
[143] | 219 | ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
[1] | 220 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
[132] | 221 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 222 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
[996] | 223 | rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & |
---|
[87] | 224 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
| 225 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
[1] | 226 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 227 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
[48] | 228 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
[394] | 229 | ts_value(dots_max,0:statistic_regions) ) |
---|
[978] | 230 | ALLOCATE( ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng) ) |
---|
[1] | 231 | |
---|
[1001] | 232 | ALLOCATE( rif(nysg:nyng,nxlg:nxrg), shf(nysg:nyng,nxlg:nxrg), & |
---|
| 233 | ts(nysg:nyng,nxlg:nxrg), tswst(nysg:nyng,nxlg:nxrg), & |
---|
| 234 | us(nysg:nyng,nxlg:nxrg), usws(nysg:nyng,nxlg:nxrg), & |
---|
| 235 | uswst(nysg:nyng,nxlg:nxrg), vsws(nysg:nyng,nxlg:nxrg), & |
---|
| 236 | vswst(nysg:nyng,nxlg:nxrg), z0(nysg:nyng,nxlg:nxrg), & |
---|
[978] | 237 | z0h(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 238 | |
---|
[1010] | 239 | ALLOCATE( d(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
| 240 | kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 241 | km(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 242 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 243 | tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 244 | |
---|
| 245 | #if defined( __nopointer ) |
---|
| 246 | ALLOCATE( e(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 247 | e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 248 | pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 249 | pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 250 | u(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 251 | u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 252 | v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 253 | v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 254 | w(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 255 | w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 256 | te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 257 | tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 258 | tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 259 | tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 260 | tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 261 | #else |
---|
| 262 | ALLOCATE( e_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 263 | e_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 264 | e_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 265 | pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 266 | pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 267 | u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 268 | u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 269 | u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 270 | v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 271 | v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 272 | v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 273 | w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 274 | w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 275 | w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1032] | 276 | IF ( .NOT. neutral ) THEN |
---|
| 277 | ALLOCATE( pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 278 | ENDIF |
---|
[1010] | 279 | #endif |
---|
| 280 | |
---|
[673] | 281 | ! |
---|
[707] | 282 | !-- Following array is required for perturbation pressure within the iterative |
---|
| 283 | !-- pressure solvers. For the multistep schemes (Runge-Kutta), array p holds |
---|
| 284 | !-- the weighted average of the substeps and cannot be used in the Poisson |
---|
| 285 | !-- solver. |
---|
| 286 | IF ( psolver == 'sor' ) THEN |
---|
| 287 | ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 288 | ELSEIF ( psolver == 'multigrid' ) THEN |
---|
| 289 | ! |
---|
| 290 | !-- For performance reasons, multigrid is using one ghost layer only |
---|
| 291 | ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[673] | 292 | ENDIF |
---|
[1] | 293 | |
---|
[1111] | 294 | ! |
---|
| 295 | !-- Array for storing constant coeffficients of the tridiagonal solver |
---|
| 296 | IF ( psolver == 'poisfft' ) THEN |
---|
[1212] | 297 | ALLOCATE( tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) ) |
---|
[1111] | 298 | ALLOCATE( tric(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) ) |
---|
| 299 | ENDIF |
---|
| 300 | |
---|
[75] | 301 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 302 | ! |
---|
[75] | 303 | !-- 2D-humidity/scalar arrays |
---|
[1001] | 304 | ALLOCATE ( qs(nysg:nyng,nxlg:nxrg), & |
---|
| 305 | qsws(nysg:nyng,nxlg:nxrg), & |
---|
| 306 | qswst(nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 307 | |
---|
| 308 | ! |
---|
[75] | 309 | !-- 3D-humidity/scalar arrays |
---|
[1010] | 310 | #if defined( __nopointer ) |
---|
| 311 | ALLOCATE( q(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 312 | q_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 313 | tq_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 314 | #else |
---|
[667] | 315 | ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 316 | q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 317 | q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 318 | #endif |
---|
[1] | 319 | |
---|
| 320 | ! |
---|
[75] | 321 | !-- 3D-arrays needed for humidity only |
---|
| 322 | IF ( humidity ) THEN |
---|
[1010] | 323 | #if defined( __nopointer ) |
---|
| 324 | ALLOCATE( vpt(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 325 | #else |
---|
[667] | 326 | ALLOCATE( vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 327 | #endif |
---|
[1] | 328 | |
---|
| 329 | IF ( cloud_physics ) THEN |
---|
[1053] | 330 | |
---|
[1] | 331 | ! |
---|
| 332 | !-- Liquid water content |
---|
[1010] | 333 | #if defined( __nopointer ) |
---|
| 334 | ALLOCATE ( ql(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 335 | #else |
---|
[667] | 336 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 337 | #endif |
---|
[72] | 338 | ! |
---|
| 339 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
[667] | 340 | ALLOCATE( precipitation_amount(nysg:nyng,nxlg:nxrg), & |
---|
| 341 | precipitation_rate(nysg:nyng,nxlg:nxrg) ) |
---|
[1053] | 342 | |
---|
| 343 | IF ( icloud_scheme == 0 ) THEN |
---|
| 344 | ! |
---|
[1115] | 345 | !-- 1D-arrays |
---|
| 346 | ALLOCATE ( nc_1d(nzb:nzt+1), pt_1d(nzb:nzt+1), & |
---|
| 347 | q_1d(nzb:nzt+1), qc_1d(nzb:nzt+1) ) |
---|
[1053] | 348 | ! |
---|
[1115] | 349 | !-- 3D-cloud water content |
---|
[1053] | 350 | #if defined( __nopointer ) |
---|
[1115] | 351 | ALLOCATE( qc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1053] | 352 | #else |
---|
[1115] | 353 | ALLOCATE( qc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1053] | 354 | #endif |
---|
| 355 | ! |
---|
| 356 | !-- 3D-tendency arrays |
---|
[1115] | 357 | ALLOCATE( tend_pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 358 | tend_q(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 359 | |
---|
| 360 | IF ( precipitation ) THEN |
---|
[1053] | 361 | ! |
---|
[1115] | 362 | !-- 1D-arrays |
---|
| 363 | ALLOCATE ( nr_1d(nzb:nzt+1), qr_1d(nzb:nzt+1) ) |
---|
| 364 | ! |
---|
| 365 | ! |
---|
| 366 | !-- 3D-tendency arrays |
---|
| 367 | ALLOCATE( tend_nr(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 368 | tend_qr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 369 | ! |
---|
| 370 | !-- 2D-rain water content and rain drop concentration arrays |
---|
| 371 | ALLOCATE ( qrs(nysg:nyng,nxlg:nxrg), & |
---|
| 372 | qrsws(nysg:nyng,nxlg:nxrg), & |
---|
| 373 | qrswst(nysg:nyng,nxlg:nxrg), & |
---|
| 374 | nrs(nysg:nyng,nxlg:nxrg), & |
---|
| 375 | nrsws(nysg:nyng,nxlg:nxrg), & |
---|
| 376 | nrswst(nysg:nyng,nxlg:nxrg) ) |
---|
| 377 | ! |
---|
| 378 | !-- 3D-rain water content, rain drop concentration arrays |
---|
| 379 | #if defined( __nopointer ) |
---|
| 380 | ALLOCATE( nr(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 381 | nr_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 382 | qr(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 383 | qr_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 384 | tnr_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 385 | tqr_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 386 | #else |
---|
| 387 | ALLOCATE( nr_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 388 | nr_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 389 | nr_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 390 | qr_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 391 | qr_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 392 | qr_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 393 | #endif |
---|
| 394 | ! |
---|
| 395 | !-- 3d-precipitation rate |
---|
[1053] | 396 | ALLOCATE( prr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 397 | ENDIF |
---|
| 398 | |
---|
| 399 | ENDIF |
---|
[1] | 400 | ENDIF |
---|
| 401 | |
---|
| 402 | IF ( cloud_droplets ) THEN |
---|
| 403 | ! |
---|
[1010] | 404 | !-- Liquid water content, change in liquid water content |
---|
| 405 | #if defined( __nopointer ) |
---|
| 406 | ALLOCATE ( ql(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 407 | ql_c(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 408 | #else |
---|
[667] | 409 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[1010] | 410 | ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 411 | #endif |
---|
| 412 | ! |
---|
| 413 | !-- Real volume of particles (with weighting), volume of particles |
---|
| 414 | ALLOCATE ( ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 415 | ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 416 | ENDIF |
---|
| 417 | |
---|
| 418 | ENDIF |
---|
| 419 | |
---|
| 420 | ENDIF |
---|
| 421 | |
---|
[94] | 422 | IF ( ocean ) THEN |
---|
[1001] | 423 | ALLOCATE( saswsb(nysg:nyng,nxlg:nxrg), & |
---|
| 424 | saswst(nysg:nyng,nxlg:nxrg) ) |
---|
[1010] | 425 | #if defined( __nopointer ) |
---|
| 426 | ALLOCATE( prho(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 427 | rho(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 428 | sa(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 429 | sa_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 430 | tsa_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 431 | #else |
---|
[667] | 432 | ALLOCATE( prho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 433 | rho_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 434 | sa_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 435 | sa_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 436 | sa_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[388] | 437 | prho => prho_1 |
---|
| 438 | rho => rho_1 ! routines calc_mean_profile and diffusion_e require |
---|
| 439 | ! density to be apointer |
---|
[1010] | 440 | #endif |
---|
[108] | 441 | IF ( humidity_remote ) THEN |
---|
[667] | 442 | ALLOCATE( qswst_remote(nysg:nyng,nxlg:nxrg)) |
---|
[108] | 443 | qswst_remote = 0.0 |
---|
| 444 | ENDIF |
---|
[94] | 445 | ENDIF |
---|
| 446 | |
---|
[1] | 447 | ! |
---|
| 448 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 449 | !-- particle velocities |
---|
[1171] | 450 | IF ( use_sgs_for_particles .OR. wang_kernel .OR. turbulence .OR. & |
---|
| 451 | num_acc_per_node > 0 ) THEN |
---|
[1153] | 452 | ALLOCATE( diss(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 453 | ENDIF |
---|
| 454 | |
---|
| 455 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 456 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 457 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
[146] | 458 | spectrum_x = 0.0 |
---|
| 459 | spectrum_y = 0.0 |
---|
[1] | 460 | ENDIF |
---|
| 461 | |
---|
| 462 | ! |
---|
[1299] | 463 | !-- 1D-array for large scale subsidence velocity |
---|
[1316] | 464 | ALLOCATE ( w_subs(nzb:nzt+1) ) |
---|
| 465 | w_subs = 0.0 |
---|
[1299] | 466 | |
---|
[1316] | 467 | |
---|
[1299] | 468 | ! |
---|
[138] | 469 | !-- 3D-arrays for the leaf area density and the canopy drag coefficient |
---|
| 470 | IF ( plant_canopy ) THEN |
---|
[667] | 471 | ALLOCATE ( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 472 | lad_u(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 473 | lad_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 474 | lad_w(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 475 | cdc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 476 | |
---|
| 477 | IF ( passive_scalar ) THEN |
---|
[996] | 478 | ALLOCATE ( sls(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 479 | sec(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 480 | ENDIF |
---|
| 481 | |
---|
| 482 | IF ( cthf /= 0.0 ) THEN |
---|
[996] | 483 | ALLOCATE ( lai(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 484 | canopy_heat_flux(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[153] | 485 | ENDIF |
---|
| 486 | |
---|
[138] | 487 | ENDIF |
---|
| 488 | |
---|
| 489 | ! |
---|
[51] | 490 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
| 491 | IF ( topography /= 'flat' ) THEN |
---|
[667] | 492 | ALLOCATE( rif_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg,1:4) ) |
---|
[51] | 493 | rif_wall = 0.0 |
---|
| 494 | ENDIF |
---|
| 495 | |
---|
| 496 | ! |
---|
[106] | 497 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 498 | !-- are needed for radiation boundary conditions |
---|
[73] | 499 | IF ( outflow_l ) THEN |
---|
[667] | 500 | ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & |
---|
| 501 | v_m_l(nzb:nzt+1,nysg:nyng,0:1), & |
---|
| 502 | w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) |
---|
[73] | 503 | ENDIF |
---|
| 504 | IF ( outflow_r ) THEN |
---|
[667] | 505 | ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 506 | v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 507 | w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) |
---|
[73] | 508 | ENDIF |
---|
[106] | 509 | IF ( outflow_l .OR. outflow_r ) THEN |
---|
[667] | 510 | ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), & |
---|
| 511 | c_w(nzb:nzt+1,nysg:nyng) ) |
---|
[106] | 512 | ENDIF |
---|
[73] | 513 | IF ( outflow_s ) THEN |
---|
[667] | 514 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & |
---|
| 515 | v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & |
---|
| 516 | w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) |
---|
[73] | 517 | ENDIF |
---|
| 518 | IF ( outflow_n ) THEN |
---|
[667] | 519 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 520 | v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 521 | w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) |
---|
[73] | 522 | ENDIF |
---|
[106] | 523 | IF ( outflow_s .OR. outflow_n ) THEN |
---|
[667] | 524 | ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), & |
---|
| 525 | c_w(nzb:nzt+1,nxlg:nxrg) ) |
---|
[106] | 526 | ENDIF |
---|
[996] | 527 | IF ( outflow_l .OR. outflow_r .OR. outflow_s .OR. outflow_n ) THEN |
---|
[978] | 528 | ALLOCATE( c_u_m_l(nzb:nzt+1), c_v_m_l(nzb:nzt+1), c_w_m_l(nzb:nzt+1) ) |
---|
| 529 | ALLOCATE( c_u_m(nzb:nzt+1), c_v_m(nzb:nzt+1), c_w_m(nzb:nzt+1) ) |
---|
| 530 | ENDIF |
---|
[73] | 531 | |
---|
[978] | 532 | |
---|
[1010] | 533 | #if ! defined( __nopointer ) |
---|
[73] | 534 | ! |
---|
[1] | 535 | !-- Initial assignment of the pointers |
---|
[1001] | 536 | e => e_1; e_p => e_2; te_m => e_3 |
---|
[1032] | 537 | IF ( .NOT. neutral ) THEN |
---|
| 538 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3 |
---|
| 539 | ELSE |
---|
| 540 | pt => pt_1; pt_p => pt_1; tpt_m => pt_3 |
---|
| 541 | ENDIF |
---|
[1001] | 542 | u => u_1; u_p => u_2; tu_m => u_3 |
---|
| 543 | v => v_1; v_p => v_2; tv_m => v_3 |
---|
| 544 | w => w_1; w_p => w_2; tw_m => w_3 |
---|
[1] | 545 | |
---|
[1001] | 546 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 547 | q => q_1; q_p => q_2; tq_m => q_3 |
---|
[1053] | 548 | IF ( humidity ) THEN |
---|
| 549 | vpt => vpt_1 |
---|
| 550 | IF ( cloud_physics ) THEN |
---|
| 551 | ql => ql_1 |
---|
| 552 | IF ( icloud_scheme == 0 ) THEN |
---|
[1115] | 553 | qc => qc_1 |
---|
| 554 | IF ( precipitation ) THEN |
---|
| 555 | qr => qr_1; qr_p => qr_2; tqr_m => qr_3 |
---|
| 556 | nr => nr_1; nr_p => nr_2; tnr_m => nr_3 |
---|
| 557 | ENDIF |
---|
[1053] | 558 | ENDIF |
---|
| 559 | ENDIF |
---|
| 560 | ENDIF |
---|
[1001] | 561 | IF ( cloud_droplets ) THEN |
---|
| 562 | ql => ql_1 |
---|
| 563 | ql_c => ql_2 |
---|
[1] | 564 | ENDIF |
---|
[1001] | 565 | ENDIF |
---|
[1] | 566 | |
---|
[1001] | 567 | IF ( ocean ) THEN |
---|
| 568 | sa => sa_1; sa_p => sa_2; tsa_m => sa_3 |
---|
| 569 | ENDIF |
---|
[1010] | 570 | #endif |
---|
[1] | 571 | |
---|
| 572 | ! |
---|
[709] | 573 | !-- Allocate arrays containing the RK coefficient for calculation of |
---|
| 574 | !-- perturbation pressure and turbulent fluxes. At this point values are |
---|
| 575 | !-- set for pressure calculation during initialization (where no timestep |
---|
| 576 | !-- is done). Further below the values needed within the timestep scheme |
---|
| 577 | !-- will be set. |
---|
| 578 | ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & |
---|
[673] | 579 | weight_pres(1:intermediate_timestep_count_max) ) |
---|
[709] | 580 | weight_substep = 1.0 |
---|
| 581 | weight_pres = 1.0 |
---|
| 582 | intermediate_timestep_count = 1 ! needed when simulated_time = 0.0 |
---|
[673] | 583 | |
---|
| 584 | ! |
---|
[1] | 585 | !-- Initialize model variables |
---|
[147] | 586 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[328] | 587 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[1] | 588 | ! |
---|
| 589 | !-- First model run of a possible job queue. |
---|
| 590 | !-- Initial profiles of the variables must be computes. |
---|
| 591 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 592 | ! |
---|
| 593 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 594 | !-- start 1D model |
---|
| 595 | CALL init_1d_model |
---|
| 596 | ! |
---|
| 597 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
[667] | 598 | DO i = nxlg, nxrg |
---|
| 599 | DO j = nysg, nyng |
---|
[1] | 600 | e(:,j,i) = e1d |
---|
| 601 | kh(:,j,i) = kh1d |
---|
| 602 | km(:,j,i) = km1d |
---|
| 603 | pt(:,j,i) = pt_init |
---|
| 604 | u(:,j,i) = u1d |
---|
| 605 | v(:,j,i) = v1d |
---|
| 606 | ENDDO |
---|
| 607 | ENDDO |
---|
| 608 | |
---|
[75] | 609 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 610 | DO i = nxlg, nxrg |
---|
| 611 | DO j = nysg, nyng |
---|
[1] | 612 | q(:,j,i) = q_init |
---|
| 613 | ENDDO |
---|
| 614 | ENDDO |
---|
[1115] | 615 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 616 | precipitation ) THEN |
---|
[1053] | 617 | DO i = nxlg, nxrg |
---|
| 618 | DO j = nysg, nyng |
---|
[1115] | 619 | qr(:,j,i) = 0.0 |
---|
| 620 | nr(:,j,i) = 0.0 |
---|
[1053] | 621 | ENDDO |
---|
| 622 | ENDDO |
---|
[1115] | 623 | ! |
---|
| 624 | !-- Initialze nc_1d with default value |
---|
| 625 | nc_1d(:) = nc_const |
---|
| 626 | |
---|
[1053] | 627 | ENDIF |
---|
[1] | 628 | ENDIF |
---|
| 629 | |
---|
| 630 | IF ( .NOT. constant_diffusion ) THEN |
---|
[667] | 631 | DO i = nxlg, nxrg |
---|
| 632 | DO j = nysg, nyng |
---|
[1] | 633 | e(:,j,i) = e1d |
---|
| 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | ! |
---|
| 637 | !-- Store initial profiles for output purposes etc. |
---|
| 638 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 639 | |
---|
| 640 | IF ( prandtl_layer ) THEN |
---|
| 641 | rif = rif1d(nzb+1) |
---|
| 642 | ts = 0.0 ! could actually be computed more accurately in the |
---|
| 643 | ! 1D model. Update when opportunity arises. |
---|
| 644 | us = us1d |
---|
| 645 | usws = usws1d |
---|
| 646 | vsws = vsws1d |
---|
| 647 | ELSE |
---|
| 648 | ts = 0.0 ! must be set, because used in |
---|
| 649 | rif = 0.0 ! flowste |
---|
| 650 | us = 0.0 |
---|
| 651 | usws = 0.0 |
---|
| 652 | vsws = 0.0 |
---|
| 653 | ENDIF |
---|
| 654 | |
---|
| 655 | ELSE |
---|
| 656 | e = 0.0 ! must be set, because used in |
---|
| 657 | rif = 0.0 ! flowste |
---|
| 658 | ts = 0.0 |
---|
| 659 | us = 0.0 |
---|
| 660 | usws = 0.0 |
---|
| 661 | vsws = 0.0 |
---|
| 662 | ENDIF |
---|
[102] | 663 | uswst = top_momentumflux_u |
---|
| 664 | vswst = top_momentumflux_v |
---|
[1] | 665 | |
---|
| 666 | ! |
---|
| 667 | !-- In every case qs = 0.0 (see also pt) |
---|
| 668 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 669 | !-- Update when opportunity arises! |
---|
[1053] | 670 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 671 | qs = 0.0 |
---|
[1115] | 672 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 673 | precipitation ) THEN |
---|
[1053] | 674 | qrs = 0.0 |
---|
| 675 | nrs = 0.0 |
---|
| 676 | ENDIF |
---|
| 677 | ENDIF |
---|
[1] | 678 | |
---|
| 679 | ! |
---|
| 680 | !-- inside buildings set velocities back to zero |
---|
| 681 | IF ( topography /= 'flat' ) THEN |
---|
| 682 | DO i = nxl-1, nxr+1 |
---|
| 683 | DO j = nys-1, nyn+1 |
---|
| 684 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 685 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 686 | ENDDO |
---|
| 687 | ENDDO |
---|
[667] | 688 | |
---|
[1] | 689 | ! |
---|
| 690 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 691 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 692 | !-- below the topography; need to correct later |
---|
| 693 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 694 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 695 | !-- the topography. |
---|
[667] | 696 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 697 | ! |
---|
[1] | 698 | !-- Neumann condition |
---|
| 699 | DO i = nxl-1, nxr+1 |
---|
| 700 | DO j = nys-1, nyn+1 |
---|
| 701 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 702 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 703 | ENDDO |
---|
| 704 | ENDDO |
---|
| 705 | |
---|
| 706 | ENDIF |
---|
| 707 | |
---|
| 708 | ENDIF |
---|
| 709 | |
---|
| 710 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 711 | THEN |
---|
[1241] | 712 | |
---|
[1] | 713 | ! |
---|
[1241] | 714 | !-- Overwrite initial profiles in case of nudging |
---|
| 715 | IF ( nudging ) THEN |
---|
| 716 | pt_init = ptnudge(:,1) |
---|
| 717 | u_init = unudge(:,1) |
---|
| 718 | v_init = vnudge(:,1) |
---|
| 719 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 720 | q_init = qnudge(:,1) |
---|
| 721 | ENDIF |
---|
| 722 | |
---|
| 723 | WRITE( message_string, * ) 'Initial profiles of u, v and ', & |
---|
| 724 | 'scalars from NUDGING_DATA are used.' |
---|
| 725 | CALL message( 'init_3d_model', 'PA0370', 0, 0, 0, 6, 0 ) |
---|
| 726 | ENDIF |
---|
| 727 | |
---|
| 728 | ! |
---|
[1] | 729 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 730 | !-- temperature profile with constant gradient) |
---|
[667] | 731 | DO i = nxlg, nxrg |
---|
| 732 | DO j = nysg, nyng |
---|
[1] | 733 | pt(:,j,i) = pt_init |
---|
| 734 | u(:,j,i) = u_init |
---|
| 735 | v(:,j,i) = v_init |
---|
| 736 | ENDDO |
---|
| 737 | ENDDO |
---|
[75] | 738 | |
---|
[1] | 739 | ! |
---|
[292] | 740 | !-- Set initial horizontal velocities at the lowest computational grid |
---|
| 741 | !-- levels to zero in order to avoid too small time steps caused by the |
---|
| 742 | !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs |
---|
| 743 | !-- in the limiting formula!). The original values are stored to be later |
---|
| 744 | !-- used for volume flow control. |
---|
[667] | 745 | DO i = nxlg, nxrg |
---|
| 746 | DO j = nysg, nyng |
---|
[1] | 747 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
| 748 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
| 749 | ENDDO |
---|
| 750 | ENDDO |
---|
| 751 | |
---|
[75] | 752 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[667] | 753 | DO i = nxlg, nxrg |
---|
| 754 | DO j = nysg, nyng |
---|
[1] | 755 | q(:,j,i) = q_init |
---|
| 756 | ENDDO |
---|
| 757 | ENDDO |
---|
[1115] | 758 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 759 | ! |
---|
| 760 | !-- Initialze nc_1d with default value |
---|
| 761 | nc_1d(:) = nc_const |
---|
| 762 | |
---|
| 763 | IF ( precipitation ) THEN |
---|
| 764 | DO i = nxlg, nxrg |
---|
| 765 | DO j = nysg, nyng |
---|
| 766 | qr(:,j,i) = 0.0 |
---|
| 767 | nr(:,j,i) = 0.0 |
---|
| 768 | ENDDO |
---|
[1053] | 769 | ENDDO |
---|
[1115] | 770 | ENDIF |
---|
| 771 | |
---|
[1053] | 772 | ENDIF |
---|
[1] | 773 | ENDIF |
---|
| 774 | |
---|
[94] | 775 | IF ( ocean ) THEN |
---|
[667] | 776 | DO i = nxlg, nxrg |
---|
| 777 | DO j = nysg, nyng |
---|
[94] | 778 | sa(:,j,i) = sa_init |
---|
| 779 | ENDDO |
---|
| 780 | ENDDO |
---|
| 781 | ENDIF |
---|
[1] | 782 | |
---|
| 783 | IF ( constant_diffusion ) THEN |
---|
| 784 | km = km_constant |
---|
| 785 | kh = km / prandtl_number |
---|
[108] | 786 | e = 0.0 |
---|
| 787 | ELSEIF ( e_init > 0.0 ) THEN |
---|
| 788 | DO k = nzb+1, nzt |
---|
| 789 | km(k,:,:) = 0.1 * l_grid(k) * SQRT( e_init ) |
---|
| 790 | ENDDO |
---|
| 791 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
| 792 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
| 793 | kh = km / prandtl_number |
---|
| 794 | e = e_init |
---|
[1] | 795 | ELSE |
---|
[108] | 796 | IF ( .NOT. ocean ) THEN |
---|
| 797 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
| 798 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
| 799 | ! production terms, as long as not yet |
---|
| 800 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 801 | ELSE |
---|
| 802 | kh = 0.00001 |
---|
| 803 | km = 0.00001 |
---|
| 804 | ENDIF |
---|
| 805 | e = 0.0 |
---|
[1] | 806 | ENDIF |
---|
[102] | 807 | rif = 0.0 |
---|
| 808 | ts = 0.0 |
---|
| 809 | us = 0.0 |
---|
| 810 | usws = 0.0 |
---|
| 811 | uswst = top_momentumflux_u |
---|
| 812 | vsws = 0.0 |
---|
| 813 | vswst = top_momentumflux_v |
---|
[75] | 814 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
[1] | 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Compute initial temperature field and other constants used in case |
---|
| 818 | !-- of a sloping surface |
---|
| 819 | IF ( sloping_surface ) CALL init_slope |
---|
| 820 | |
---|
[46] | 821 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
| 822 | THEN |
---|
| 823 | ! |
---|
| 824 | !-- Initialization will completely be done by the user |
---|
| 825 | CALL user_init_3d_model |
---|
| 826 | |
---|
[1] | 827 | ENDIF |
---|
[667] | 828 | ! |
---|
| 829 | !-- Bottom boundary |
---|
| 830 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
| 831 | u(nzb,:,:) = 0.0 |
---|
| 832 | v(nzb,:,:) = 0.0 |
---|
| 833 | ENDIF |
---|
[1] | 834 | |
---|
| 835 | ! |
---|
[151] | 836 | !-- Apply channel flow boundary condition |
---|
[132] | 837 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
| 838 | u(nzt+1,:,:) = 0.0 |
---|
| 839 | v(nzt+1,:,:) = 0.0 |
---|
| 840 | ENDIF |
---|
| 841 | |
---|
| 842 | ! |
---|
[1] | 843 | !-- Calculate virtual potential temperature |
---|
[75] | 844 | IF ( humidity ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
[1] | 845 | |
---|
| 846 | ! |
---|
| 847 | !-- Store initial profiles for output purposes etc. |
---|
| 848 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 849 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[667] | 850 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN |
---|
| 851 | hom(nzb,1,5,:) = 0.0 |
---|
| 852 | hom(nzb,1,6,:) = 0.0 |
---|
[1] | 853 | ENDIF |
---|
| 854 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 855 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 856 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 857 | |
---|
[97] | 858 | IF ( ocean ) THEN |
---|
| 859 | ! |
---|
| 860 | !-- Store initial salinity profile |
---|
| 861 | hom(:,1,26,:) = SPREAD( sa(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 862 | ENDIF |
---|
[1] | 863 | |
---|
[75] | 864 | IF ( humidity ) THEN |
---|
[1] | 865 | ! |
---|
| 866 | !-- Store initial profile of total water content, virtual potential |
---|
| 867 | !-- temperature |
---|
| 868 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 869 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 870 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 871 | ! |
---|
| 872 | !-- Store initial profile of specific humidity and potential |
---|
| 873 | !-- temperature |
---|
| 874 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 875 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 876 | ENDIF |
---|
| 877 | ENDIF |
---|
| 878 | |
---|
| 879 | IF ( passive_scalar ) THEN |
---|
| 880 | ! |
---|
| 881 | !-- Store initial scalar profile |
---|
| 882 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 883 | ENDIF |
---|
| 884 | |
---|
| 885 | ! |
---|
[19] | 886 | !-- Initialize fluxes at bottom surface |
---|
[1] | 887 | IF ( use_surface_fluxes ) THEN |
---|
| 888 | |
---|
| 889 | IF ( constant_heatflux ) THEN |
---|
| 890 | ! |
---|
| 891 | !-- Heat flux is prescribed |
---|
| 892 | IF ( random_heatflux ) THEN |
---|
| 893 | CALL disturb_heatflux |
---|
| 894 | ELSE |
---|
| 895 | shf = surface_heatflux |
---|
| 896 | ! |
---|
[1241] | 897 | !-- Initialize shf with data from external file LSF_DATA |
---|
| 898 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 899 | CALL ls_forcing_surf ( simulated_time ) |
---|
| 900 | ENDIF |
---|
| 901 | |
---|
| 902 | ! |
---|
[1] | 903 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 904 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
[667] | 905 | DO i = nxlg, nxrg |
---|
| 906 | DO j = nysg, nyng |
---|
[1] | 907 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 908 | shf(j,i) = wall_heatflux(0) |
---|
| 909 | ENDIF |
---|
| 910 | ENDDO |
---|
| 911 | ENDDO |
---|
| 912 | ENDIF |
---|
| 913 | ENDIF |
---|
| 914 | ENDIF |
---|
| 915 | |
---|
| 916 | ! |
---|
| 917 | !-- Determine the near-surface water flux |
---|
[75] | 918 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1115] | 919 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 920 | precipitation ) THEN |
---|
| 921 | qrsws = 0.0 |
---|
| 922 | nrsws = 0.0 |
---|
[1053] | 923 | ENDIF |
---|
[1] | 924 | IF ( constant_waterflux ) THEN |
---|
| 925 | qsws = surface_waterflux |
---|
[407] | 926 | ! |
---|
| 927 | !-- Over topography surface_waterflux is replaced by |
---|
| 928 | !-- wall_humidityflux(0) |
---|
| 929 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 930 | wall_qflux = wall_humidityflux |
---|
[667] | 931 | DO i = nxlg, nxrg |
---|
| 932 | DO j = nysg, nyng |
---|
[407] | 933 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 934 | qsws(j,i) = wall_qflux(0) |
---|
| 935 | ENDIF |
---|
| 936 | ENDDO |
---|
| 937 | ENDDO |
---|
| 938 | ENDIF |
---|
[1] | 939 | ENDIF |
---|
| 940 | ENDIF |
---|
| 941 | |
---|
| 942 | ENDIF |
---|
| 943 | |
---|
| 944 | ! |
---|
[19] | 945 | !-- Initialize fluxes at top surface |
---|
[94] | 946 | !-- Currently, only the heatflux and salinity flux can be prescribed. |
---|
| 947 | !-- The latent flux is zero in this case! |
---|
[19] | 948 | IF ( use_top_fluxes ) THEN |
---|
| 949 | |
---|
| 950 | IF ( constant_top_heatflux ) THEN |
---|
| 951 | ! |
---|
| 952 | !-- Heat flux is prescribed |
---|
| 953 | tswst = top_heatflux |
---|
| 954 | |
---|
[1053] | 955 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 956 | qswst = 0.0 |
---|
[1115] | 957 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 958 | precipitation ) THEN |
---|
[1053] | 959 | nrswst = 0.0 |
---|
| 960 | qrswst = 0.0 |
---|
| 961 | ENDIF |
---|
| 962 | ENDIF |
---|
[94] | 963 | |
---|
| 964 | IF ( ocean ) THEN |
---|
[95] | 965 | saswsb = bottom_salinityflux |
---|
[94] | 966 | saswst = top_salinityflux |
---|
| 967 | ENDIF |
---|
[102] | 968 | ENDIF |
---|
[19] | 969 | |
---|
[102] | 970 | ! |
---|
| 971 | !-- Initialization in case of a coupled model run |
---|
| 972 | IF ( coupling_mode == 'ocean_to_atmosphere' ) THEN |
---|
| 973 | tswst = 0.0 |
---|
| 974 | ENDIF |
---|
| 975 | |
---|
[19] | 976 | ENDIF |
---|
| 977 | |
---|
| 978 | ! |
---|
[1] | 979 | !-- Initialize Prandtl layer quantities |
---|
| 980 | IF ( prandtl_layer ) THEN |
---|
| 981 | |
---|
| 982 | z0 = roughness_length |
---|
[978] | 983 | z0h = z0h_factor * z0 |
---|
[1] | 984 | |
---|
| 985 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 986 | ! |
---|
| 987 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 988 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 989 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 990 | !-- to be zero before the first time step. It approaches its correct |
---|
| 991 | !-- value in the course of the first few time steps. |
---|
| 992 | shf = 0.0 |
---|
| 993 | ENDIF |
---|
| 994 | |
---|
[75] | 995 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1001] | 996 | IF ( .NOT. constant_waterflux ) qsws = 0.0 |
---|
[1115] | 997 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 998 | precipitation ) THEN |
---|
| 999 | qrsws = 0.0 |
---|
| 1000 | nrsws = 0.0 |
---|
[1053] | 1001 | ENDIF |
---|
[1] | 1002 | ENDIF |
---|
| 1003 | |
---|
| 1004 | ENDIF |
---|
| 1005 | |
---|
[1179] | 1006 | ! |
---|
| 1007 | !-- Set the reference state to be used in the buoyancy terms (for ocean runs |
---|
| 1008 | !-- the reference state will be set (overwritten) in init_ocean) |
---|
| 1009 | IF ( use_single_reference_value ) THEN |
---|
| 1010 | IF ( .NOT. humidity ) THEN |
---|
| 1011 | ref_state(:) = pt_reference |
---|
| 1012 | ELSE |
---|
| 1013 | ref_state(:) = vpt_reference |
---|
| 1014 | ENDIF |
---|
| 1015 | ELSE |
---|
| 1016 | IF ( .NOT. humidity ) THEN |
---|
| 1017 | ref_state(:) = pt_init(:) |
---|
| 1018 | ELSE |
---|
| 1019 | ref_state(:) = vpt(:,nys,nxl) |
---|
| 1020 | ENDIF |
---|
| 1021 | ENDIF |
---|
[152] | 1022 | |
---|
| 1023 | ! |
---|
[707] | 1024 | !-- For the moment, vertical velocity is zero |
---|
| 1025 | w = 0.0 |
---|
[1] | 1026 | |
---|
| 1027 | ! |
---|
| 1028 | !-- Initialize array sums (must be defined in first call of pres) |
---|
| 1029 | sums = 0.0 |
---|
| 1030 | |
---|
| 1031 | ! |
---|
[707] | 1032 | !-- In case of iterative solvers, p must get an initial value |
---|
| 1033 | IF ( psolver == 'multigrid' .OR. psolver == 'sor' ) p = 0.0 |
---|
| 1034 | |
---|
| 1035 | ! |
---|
[72] | 1036 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
| 1037 | !-- are zero at beginning of the simulation |
---|
| 1038 | IF ( cloud_physics ) THEN |
---|
| 1039 | ql = 0.0 |
---|
| 1040 | IF ( precipitation ) precipitation_amount = 0.0 |
---|
[1115] | 1041 | IF ( icloud_scheme == 0 ) THEN |
---|
| 1042 | qc = 0.0 |
---|
| 1043 | nc_1d = nc_const |
---|
| 1044 | ENDIF |
---|
[72] | 1045 | ENDIF |
---|
[673] | 1046 | ! |
---|
[1] | 1047 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 1048 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 1049 | CALL init_rankine |
---|
| 1050 | ENDIF |
---|
| 1051 | |
---|
| 1052 | ! |
---|
| 1053 | !-- Impose temperature anomaly (advection test only) |
---|
| 1054 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 1055 | CALL init_pt_anomaly |
---|
| 1056 | ENDIF |
---|
| 1057 | |
---|
| 1058 | ! |
---|
| 1059 | !-- If required, change the surface temperature at the start of the 3D run |
---|
| 1060 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
| 1061 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 1066 | !-- run |
---|
[75] | 1067 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
[1] | 1068 | q_surface_initial_change /= 0.0 ) THEN |
---|
| 1069 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 1070 | ENDIF |
---|
| 1071 | ! |
---|
| 1072 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 1073 | CALL random_function_ini |
---|
| 1074 | |
---|
| 1075 | ! |
---|
| 1076 | !-- Initialize old and new time levels. |
---|
[1001] | 1077 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
[1] | 1078 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 1079 | |
---|
[75] | 1080 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1001] | 1081 | tq_m = 0.0 |
---|
[1] | 1082 | q_p = q |
---|
[1115] | 1083 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1084 | precipitation ) THEN |
---|
[1053] | 1085 | tqr_m = 0.0 |
---|
| 1086 | qr_p = qr |
---|
| 1087 | tnr_m = 0.0 |
---|
| 1088 | nr_p = nr |
---|
| 1089 | ENDIF |
---|
[1] | 1090 | ENDIF |
---|
| 1091 | |
---|
[94] | 1092 | IF ( ocean ) THEN |
---|
| 1093 | tsa_m = 0.0 |
---|
| 1094 | sa_p = sa |
---|
| 1095 | ENDIF |
---|
[667] | 1096 | |
---|
[94] | 1097 | |
---|
[147] | 1098 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
[667] | 1099 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
[1] | 1100 | THEN |
---|
| 1101 | ! |
---|
[767] | 1102 | !-- When reading data for cyclic fill of 3D prerun data files, read |
---|
| 1103 | !-- some of the global variables from the restart file which are required |
---|
| 1104 | !-- for initializing the inflow |
---|
[328] | 1105 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
[559] | 1106 | |
---|
[759] | 1107 | DO i = 0, io_blocks-1 |
---|
| 1108 | IF ( i == io_group ) THEN |
---|
| 1109 | CALL read_parts_of_var_list |
---|
| 1110 | CALL close_file( 13 ) |
---|
| 1111 | ENDIF |
---|
| 1112 | #if defined( __parallel ) |
---|
| 1113 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1114 | #endif |
---|
| 1115 | ENDDO |
---|
[328] | 1116 | |
---|
[767] | 1117 | ENDIF |
---|
| 1118 | |
---|
[151] | 1119 | ! |
---|
[767] | 1120 | !-- Read binary data from restart file |
---|
| 1121 | DO i = 0, io_blocks-1 |
---|
| 1122 | IF ( i == io_group ) THEN |
---|
| 1123 | CALL read_3d_binary |
---|
| 1124 | ENDIF |
---|
| 1125 | #if defined( __parallel ) |
---|
| 1126 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1127 | #endif |
---|
| 1128 | ENDDO |
---|
| 1129 | |
---|
[328] | 1130 | ! |
---|
[767] | 1131 | !-- Initialization of the turbulence recycling method |
---|
| 1132 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
| 1133 | turbulent_inflow ) THEN |
---|
| 1134 | ! |
---|
| 1135 | !-- First store the profiles to be used at the inflow. |
---|
| 1136 | !-- These profiles are the (temporally) and horizontally averaged vertical |
---|
| 1137 | !-- profiles from the prerun. Alternatively, prescribed profiles |
---|
| 1138 | !-- for u,v-components can be used. |
---|
| 1139 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,5) ) |
---|
[151] | 1140 | |
---|
[767] | 1141 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1142 | mean_inflow_profiles(:,1) = u_init ! u |
---|
| 1143 | mean_inflow_profiles(:,2) = v_init ! v |
---|
| 1144 | ELSE |
---|
[328] | 1145 | mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u |
---|
| 1146 | mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v |
---|
[767] | 1147 | ENDIF |
---|
| 1148 | mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt |
---|
| 1149 | mean_inflow_profiles(:,5) = hom_sum(:,8,0) ! e |
---|
[151] | 1150 | |
---|
| 1151 | ! |
---|
[767] | 1152 | !-- If necessary, adjust the horizontal flow field to the prescribed |
---|
| 1153 | !-- profiles |
---|
| 1154 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1155 | DO i = nxlg, nxrg |
---|
[667] | 1156 | DO j = nysg, nyng |
---|
[328] | 1157 | DO k = nzb, nzt+1 |
---|
[767] | 1158 | u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) |
---|
| 1159 | v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) |
---|
[328] | 1160 | ENDDO |
---|
[151] | 1161 | ENDDO |
---|
[767] | 1162 | ENDDO |
---|
| 1163 | ENDIF |
---|
[151] | 1164 | |
---|
| 1165 | ! |
---|
[767] | 1166 | !-- Use these mean profiles at the inflow (provided that Dirichlet |
---|
| 1167 | !-- conditions are used) |
---|
| 1168 | IF ( inflow_l ) THEN |
---|
| 1169 | DO j = nysg, nyng |
---|
| 1170 | DO k = nzb, nzt+1 |
---|
| 1171 | u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) |
---|
| 1172 | v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) |
---|
| 1173 | w(k,j,nxlg:-1) = 0.0 |
---|
| 1174 | pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) |
---|
| 1175 | e(k,j,nxlg:-1) = mean_inflow_profiles(k,5) |
---|
| 1176 | ENDDO |
---|
| 1177 | ENDDO |
---|
| 1178 | ENDIF |
---|
| 1179 | |
---|
[151] | 1180 | ! |
---|
[767] | 1181 | !-- Calculate the damping factors to be used at the inflow. For a |
---|
| 1182 | !-- turbulent inflow the turbulent fluctuations have to be limited |
---|
| 1183 | !-- vertically because otherwise the turbulent inflow layer will grow |
---|
| 1184 | !-- in time. |
---|
| 1185 | IF ( inflow_damping_height == 9999999.9 ) THEN |
---|
| 1186 | ! |
---|
| 1187 | !-- Default: use the inversion height calculated by the prerun; if |
---|
| 1188 | !-- this is zero, inflow_damping_height must be explicitly |
---|
| 1189 | !-- specified. |
---|
| 1190 | IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0 ) THEN |
---|
| 1191 | inflow_damping_height = hom_sum(nzb+6,pr_palm,0) |
---|
| 1192 | ELSE |
---|
| 1193 | WRITE( message_string, * ) 'inflow_damping_height must be ',& |
---|
| 1194 | 'explicitly specified because&the inversion height ', & |
---|
| 1195 | 'calculated by the prerun is zero.' |
---|
| 1196 | CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) |
---|
[292] | 1197 | ENDIF |
---|
[151] | 1198 | |
---|
[767] | 1199 | ENDIF |
---|
| 1200 | |
---|
| 1201 | IF ( inflow_damping_width == 9999999.9 ) THEN |
---|
[151] | 1202 | ! |
---|
[767] | 1203 | !-- Default for the transition range: one tenth of the undamped |
---|
| 1204 | !-- layer |
---|
| 1205 | inflow_damping_width = 0.1 * inflow_damping_height |
---|
[151] | 1206 | |
---|
[767] | 1207 | ENDIF |
---|
[151] | 1208 | |
---|
[767] | 1209 | ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) |
---|
[151] | 1210 | |
---|
[767] | 1211 | DO k = nzb, nzt+1 |
---|
[151] | 1212 | |
---|
[767] | 1213 | IF ( zu(k) <= inflow_damping_height ) THEN |
---|
| 1214 | inflow_damping_factor(k) = 1.0 |
---|
[996] | 1215 | ELSEIF ( zu(k) <= ( inflow_damping_height + inflow_damping_width ) ) THEN |
---|
| 1216 | inflow_damping_factor(k) = 1.0 - & |
---|
| 1217 | ( zu(k) - inflow_damping_height ) / & |
---|
| 1218 | inflow_damping_width |
---|
[767] | 1219 | ELSE |
---|
| 1220 | inflow_damping_factor(k) = 0.0 |
---|
| 1221 | ENDIF |
---|
[151] | 1222 | |
---|
[767] | 1223 | ENDDO |
---|
[151] | 1224 | |
---|
[147] | 1225 | ENDIF |
---|
| 1226 | |
---|
[152] | 1227 | ! |
---|
[359] | 1228 | !-- Inside buildings set velocities and TKE back to zero |
---|
| 1229 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
| 1230 | topography /= 'flat' ) THEN |
---|
| 1231 | ! |
---|
| 1232 | !-- Inside buildings set velocities and TKE back to zero. |
---|
| 1233 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, |
---|
| 1234 | !-- maybe revise later. |
---|
[1001] | 1235 | DO i = nxlg, nxrg |
---|
| 1236 | DO j = nysg, nyng |
---|
| 1237 | u (nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1238 | v (nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1239 | w (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1240 | e (nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1241 | tu_m(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 1242 | tv_m(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 1243 | tw_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1244 | te_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
| 1245 | tpt_m(nzb:nzb_w_inner(j,i),j,i) = 0.0 |
---|
[359] | 1246 | ENDDO |
---|
[1001] | 1247 | ENDDO |
---|
[359] | 1248 | |
---|
| 1249 | ENDIF |
---|
| 1250 | |
---|
| 1251 | ! |
---|
[1] | 1252 | !-- Calculate initial temperature field and other constants used in case |
---|
| 1253 | !-- of a sloping surface |
---|
| 1254 | IF ( sloping_surface ) CALL init_slope |
---|
| 1255 | |
---|
| 1256 | ! |
---|
| 1257 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 1258 | !-- including ghost points) |
---|
| 1259 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[1053] | 1260 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1261 | q_p = q |
---|
[1115] | 1262 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1263 | precipitation ) THEN |
---|
[1053] | 1264 | qr_p = qr |
---|
| 1265 | nr_p = nr |
---|
| 1266 | ENDIF |
---|
| 1267 | ENDIF |
---|
[94] | 1268 | IF ( ocean ) sa_p = sa |
---|
[1] | 1269 | |
---|
[181] | 1270 | ! |
---|
| 1271 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
| 1272 | !-- have to be predefined here because they are used (but multiplied with 0) |
---|
| 1273 | !-- there before they are set. |
---|
[1001] | 1274 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
[1053] | 1275 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1276 | tq_m = 0.0 |
---|
[1115] | 1277 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1278 | precipitation ) THEN |
---|
[1053] | 1279 | tqr_m = 0.0 |
---|
| 1280 | tnr_m = 0.0 |
---|
| 1281 | ENDIF |
---|
| 1282 | ENDIF |
---|
[1001] | 1283 | IF ( ocean ) tsa_m = 0.0 |
---|
[181] | 1284 | |
---|
[1] | 1285 | ELSE |
---|
| 1286 | ! |
---|
| 1287 | !-- Actually this part of the programm should not be reached |
---|
[254] | 1288 | message_string = 'unknown initializing problem' |
---|
| 1289 | CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) |
---|
[1] | 1290 | ENDIF |
---|
| 1291 | |
---|
[151] | 1292 | |
---|
| 1293 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1] | 1294 | ! |
---|
[151] | 1295 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
| 1296 | IF ( outflow_l ) THEN |
---|
| 1297 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1298 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1299 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1300 | ENDIF |
---|
| 1301 | IF ( outflow_r ) THEN |
---|
| 1302 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1303 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1304 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1305 | ENDIF |
---|
| 1306 | IF ( outflow_s ) THEN |
---|
| 1307 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 1308 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 1309 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 1310 | ENDIF |
---|
| 1311 | IF ( outflow_n ) THEN |
---|
| 1312 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1313 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1314 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1315 | ENDIF |
---|
[667] | 1316 | |
---|
[151] | 1317 | ENDIF |
---|
[680] | 1318 | |
---|
[667] | 1319 | ! |
---|
| 1320 | !-- Calculate the initial volume flow at the right and north boundary |
---|
[709] | 1321 | IF ( conserve_volume_flow ) THEN |
---|
[151] | 1322 | |
---|
[767] | 1323 | IF ( use_prescribed_profile_data ) THEN |
---|
[667] | 1324 | |
---|
[732] | 1325 | volume_flow_initial_l = 0.0 |
---|
| 1326 | volume_flow_area_l = 0.0 |
---|
| 1327 | |
---|
[667] | 1328 | IF ( nxr == nx ) THEN |
---|
| 1329 | DO j = nys, nyn |
---|
[709] | 1330 | DO k = nzb_2d(j,nx)+1, nzt |
---|
[667] | 1331 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[767] | 1332 | u_init(k) * dzw(k) |
---|
| 1333 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1334 | ENDDO |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDIF |
---|
| 1337 | |
---|
| 1338 | IF ( nyn == ny ) THEN |
---|
| 1339 | DO i = nxl, nxr |
---|
| 1340 | DO k = nzb_2d(ny,i)+1, nzt |
---|
| 1341 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1342 | v_init(k) * dzw(k) |
---|
| 1343 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1344 | ENDDO |
---|
| 1345 | ENDDO |
---|
| 1346 | ENDIF |
---|
| 1347 | |
---|
| 1348 | #if defined( __parallel ) |
---|
| 1349 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1350 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1351 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1352 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1353 | |
---|
| 1354 | #else |
---|
| 1355 | volume_flow_initial = volume_flow_initial_l |
---|
| 1356 | volume_flow_area = volume_flow_area_l |
---|
| 1357 | #endif |
---|
| 1358 | |
---|
| 1359 | ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1360 | |
---|
| 1361 | volume_flow_initial_l = 0.0 |
---|
| 1362 | volume_flow_area_l = 0.0 |
---|
| 1363 | |
---|
| 1364 | IF ( nxr == nx ) THEN |
---|
| 1365 | DO j = nys, nyn |
---|
| 1366 | DO k = nzb_2d(j,nx)+1, nzt |
---|
| 1367 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[667] | 1368 | hom_sum(k,1,0) * dzw(k) |
---|
| 1369 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1370 | ENDDO |
---|
| 1371 | ENDDO |
---|
| 1372 | ENDIF |
---|
| 1373 | |
---|
| 1374 | IF ( nyn == ny ) THEN |
---|
| 1375 | DO i = nxl, nxr |
---|
[709] | 1376 | DO k = nzb_2d(ny,i)+1, nzt |
---|
[667] | 1377 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
[709] | 1378 | hom_sum(k,2,0) * dzw(k) |
---|
[667] | 1379 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1380 | ENDDO |
---|
| 1381 | ENDDO |
---|
| 1382 | ENDIF |
---|
| 1383 | |
---|
[732] | 1384 | #if defined( __parallel ) |
---|
| 1385 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1386 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1387 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1388 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1389 | |
---|
| 1390 | #else |
---|
| 1391 | volume_flow_initial = volume_flow_initial_l |
---|
| 1392 | volume_flow_area = volume_flow_area_l |
---|
| 1393 | #endif |
---|
| 1394 | |
---|
[667] | 1395 | ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1396 | |
---|
[732] | 1397 | volume_flow_initial_l = 0.0 |
---|
| 1398 | volume_flow_area_l = 0.0 |
---|
| 1399 | |
---|
[667] | 1400 | IF ( nxr == nx ) THEN |
---|
| 1401 | DO j = nys, nyn |
---|
[709] | 1402 | DO k = nzb_2d(j,nx)+1, nzt |
---|
[667] | 1403 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
[709] | 1404 | u(k,j,nx) * dzw(k) |
---|
[667] | 1405 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) |
---|
| 1406 | ENDDO |
---|
| 1407 | ENDDO |
---|
| 1408 | ENDIF |
---|
| 1409 | |
---|
| 1410 | IF ( nyn == ny ) THEN |
---|
| 1411 | DO i = nxl, nxr |
---|
[709] | 1412 | DO k = nzb_2d(ny,i)+1, nzt |
---|
[667] | 1413 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1414 | v(k,ny,i) * dzw(k) |
---|
| 1415 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) |
---|
| 1416 | ENDDO |
---|
| 1417 | ENDDO |
---|
| 1418 | ENDIF |
---|
| 1419 | |
---|
| 1420 | #if defined( __parallel ) |
---|
[732] | 1421 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1422 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1423 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1424 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[667] | 1425 | |
---|
| 1426 | #else |
---|
[732] | 1427 | volume_flow_initial = volume_flow_initial_l |
---|
| 1428 | volume_flow_area = volume_flow_area_l |
---|
[667] | 1429 | #endif |
---|
| 1430 | |
---|
[732] | 1431 | ENDIF |
---|
| 1432 | |
---|
[151] | 1433 | ! |
---|
[709] | 1434 | !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated |
---|
| 1435 | !-- from u|v_bulk instead |
---|
[680] | 1436 | IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN |
---|
| 1437 | volume_flow_initial(1) = u_bulk * volume_flow_area(1) |
---|
| 1438 | volume_flow_initial(2) = v_bulk * volume_flow_area(2) |
---|
| 1439 | ENDIF |
---|
[667] | 1440 | |
---|
[680] | 1441 | ENDIF |
---|
| 1442 | |
---|
[787] | 1443 | ! |
---|
| 1444 | !-- Initialize quantities for special advections schemes |
---|
| 1445 | CALL init_advec |
---|
[680] | 1446 | |
---|
[667] | 1447 | ! |
---|
[680] | 1448 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 1449 | !-- remove the divergences from the velocity field at the initial stage |
---|
| 1450 | IF ( create_disturbances .AND. & |
---|
| 1451 | TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
| 1452 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
| 1453 | |
---|
| 1454 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
| 1455 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
| 1456 | n_sor = nsor_ini |
---|
[1221] | 1457 | !$acc data copyin( d, ddzu, ddzw, nzb_s_inner, nzb_u_inner ) & |
---|
| 1458 | !$acc copyin( nzb_v_inner, nzb_w_inner, p, rflags_s_inner, tend ) & |
---|
| 1459 | !$acc copyin( weight_pres, weight_substep ) & |
---|
| 1460 | !$acc copy( tri, tric, u, v, w ) |
---|
[680] | 1461 | CALL pres |
---|
[1111] | 1462 | !$acc end data |
---|
[680] | 1463 | n_sor = nsor |
---|
| 1464 | ENDIF |
---|
| 1465 | |
---|
| 1466 | ! |
---|
[138] | 1467 | !-- Initialization of the leaf area density |
---|
[709] | 1468 | IF ( plant_canopy ) THEN |
---|
[138] | 1469 | |
---|
| 1470 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1471 | |
---|
| 1472 | CASE( 'block' ) |
---|
| 1473 | |
---|
[667] | 1474 | DO i = nxlg, nxrg |
---|
| 1475 | DO j = nysg, nyng |
---|
[138] | 1476 | lad_s(:,j,i) = lad(:) |
---|
| 1477 | cdc(:,j,i) = drag_coefficient |
---|
[709] | 1478 | IF ( passive_scalar ) THEN |
---|
[153] | 1479 | sls(:,j,i) = leaf_surface_concentration |
---|
| 1480 | sec(:,j,i) = scalar_exchange_coefficient |
---|
| 1481 | ENDIF |
---|
[138] | 1482 | ENDDO |
---|
| 1483 | ENDDO |
---|
| 1484 | |
---|
| 1485 | CASE DEFAULT |
---|
| 1486 | |
---|
| 1487 | ! |
---|
| 1488 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1489 | !-- canopy mode contains a wrong character string or if the |
---|
| 1490 | !-- user has coded a special case in the user interface. |
---|
| 1491 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1492 | !-- which of these two conditions applies. |
---|
| 1493 | CALL user_init_plant_canopy |
---|
| 1494 | |
---|
| 1495 | END SELECT |
---|
| 1496 | |
---|
[667] | 1497 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1498 | CALL exchange_horiz( cdc, nbgp ) |
---|
[138] | 1499 | |
---|
[709] | 1500 | IF ( passive_scalar ) THEN |
---|
[667] | 1501 | CALL exchange_horiz( sls, nbgp ) |
---|
| 1502 | CALL exchange_horiz( sec, nbgp ) |
---|
[153] | 1503 | ENDIF |
---|
| 1504 | |
---|
| 1505 | ! |
---|
| 1506 | !-- Sharp boundaries of the plant canopy in horizontal directions |
---|
| 1507 | !-- In vertical direction the interpolation is retained, as the leaf |
---|
| 1508 | !-- area density is initialised by prescribing a vertical profile |
---|
| 1509 | !-- consisting of piecewise linear segments. The upper boundary |
---|
| 1510 | !-- of the plant canopy is now defined by lad_w(pch_index,:,:) = 0.0. |
---|
| 1511 | |
---|
[138] | 1512 | DO i = nxl, nxr |
---|
| 1513 | DO j = nys, nyn |
---|
| 1514 | DO k = nzb, nzt+1 |
---|
[709] | 1515 | IF ( lad_s(k,j,i) > 0.0 ) THEN |
---|
[153] | 1516 | lad_u(k,j,i) = lad_s(k,j,i) |
---|
| 1517 | lad_u(k,j,i+1) = lad_s(k,j,i) |
---|
| 1518 | lad_v(k,j,i) = lad_s(k,j,i) |
---|
| 1519 | lad_v(k,j+1,i) = lad_s(k,j,i) |
---|
| 1520 | ENDIF |
---|
[138] | 1521 | ENDDO |
---|
| 1522 | DO k = nzb, nzt |
---|
| 1523 | lad_w(k,j,i) = 0.5 * ( lad_s(k+1,j,i) + lad_s(k,j,i) ) |
---|
| 1524 | ENDDO |
---|
| 1525 | ENDDO |
---|
| 1526 | ENDDO |
---|
| 1527 | |
---|
[153] | 1528 | lad_w(pch_index,:,:) = 0.0 |
---|
| 1529 | lad_w(nzt+1,:,:) = lad_w(nzt,:,:) |
---|
[138] | 1530 | |
---|
[667] | 1531 | CALL exchange_horiz( lad_u, nbgp ) |
---|
| 1532 | CALL exchange_horiz( lad_v, nbgp ) |
---|
| 1533 | CALL exchange_horiz( lad_w, nbgp ) |
---|
[153] | 1534 | |
---|
| 1535 | ! |
---|
| 1536 | !-- Initialisation of the canopy heat source distribution |
---|
[709] | 1537 | IF ( cthf /= 0.0 ) THEN |
---|
[153] | 1538 | ! |
---|
| 1539 | !-- Piecewise evaluation of the leaf area index by |
---|
| 1540 | !-- integration of the leaf area density |
---|
| 1541 | lai(:,:,:) = 0.0 |
---|
[667] | 1542 | DO i = nxlg, nxrg |
---|
| 1543 | DO j = nysg, nyng |
---|
[153] | 1544 | DO k = pch_index-1, 0, -1 |
---|
| 1545 | lai(k,j,i) = lai(k+1,j,i) + & |
---|
| 1546 | ( 0.5 * ( lad_w(k+1,j,i) + & |
---|
| 1547 | lad_s(k+1,j,i) ) * & |
---|
| 1548 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1549 | ( 0.5 * ( lad_w(k,j,i) + & |
---|
| 1550 | lad_s(k+1,j,i) ) * & |
---|
| 1551 | ( zu(k+1) - zw(k) ) ) |
---|
| 1552 | ENDDO |
---|
| 1553 | ENDDO |
---|
| 1554 | ENDDO |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- Evaluation of the upward kinematic vertical heat flux within the |
---|
| 1558 | !-- canopy |
---|
[667] | 1559 | DO i = nxlg, nxrg |
---|
| 1560 | DO j = nysg, nyng |
---|
[153] | 1561 | DO k = 0, pch_index |
---|
| 1562 | canopy_heat_flux(k,j,i) = cthf * & |
---|
| 1563 | exp( -0.6 * lai(k,j,i) ) |
---|
| 1564 | ENDDO |
---|
| 1565 | ENDDO |
---|
| 1566 | ENDDO |
---|
| 1567 | |
---|
| 1568 | ! |
---|
| 1569 | !-- The near surface heat flux is derived from the heat flux |
---|
| 1570 | !-- distribution within the canopy |
---|
| 1571 | shf(:,:) = canopy_heat_flux(0,:,:) |
---|
| 1572 | |
---|
| 1573 | ENDIF |
---|
| 1574 | |
---|
[138] | 1575 | ENDIF |
---|
| 1576 | |
---|
| 1577 | ! |
---|
[1] | 1578 | !-- If required, initialize dvrp-software |
---|
| 1579 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
| 1580 | |
---|
[96] | 1581 | IF ( ocean ) THEN |
---|
[1] | 1582 | ! |
---|
[96] | 1583 | !-- Initialize quantities needed for the ocean model |
---|
| 1584 | CALL init_ocean |
---|
[388] | 1585 | |
---|
[96] | 1586 | ELSE |
---|
| 1587 | ! |
---|
| 1588 | !-- Initialize quantities for handling cloud physics |
---|
[849] | 1589 | !-- This routine must be called before lpm_init, because |
---|
[96] | 1590 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
[849] | 1591 | !-- lpm_init) is not defined. |
---|
[96] | 1592 | CALL init_cloud_physics |
---|
| 1593 | ENDIF |
---|
[1] | 1594 | |
---|
| 1595 | ! |
---|
| 1596 | !-- If required, initialize particles |
---|
[849] | 1597 | IF ( particle_advection ) CALL lpm_init |
---|
[1] | 1598 | |
---|
| 1599 | ! |
---|
[673] | 1600 | !-- Initialize the ws-scheme. |
---|
| 1601 | IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init |
---|
[1] | 1602 | |
---|
| 1603 | ! |
---|
[709] | 1604 | !-- Setting weighting factors for calculation of perturbation pressure |
---|
| 1605 | !-- and turbulent quantities from the RK substeps |
---|
| 1606 | IF ( TRIM(timestep_scheme) == 'runge-kutta-3' ) THEN ! for RK3-method |
---|
| 1607 | |
---|
[1322] | 1608 | weight_substep(1) = 1._wp/6._wp |
---|
| 1609 | weight_substep(2) = 3._wp/10._wp |
---|
| 1610 | weight_substep(3) = 8._wp/15._wp |
---|
[709] | 1611 | |
---|
[1322] | 1612 | weight_pres(1) = 1._wp/3._wp |
---|
| 1613 | weight_pres(2) = 5._wp/12._wp |
---|
| 1614 | weight_pres(3) = 1._wp/4._wp |
---|
[709] | 1615 | |
---|
| 1616 | ELSEIF ( TRIM(timestep_scheme) == 'runge-kutta-2' ) THEN ! for RK2-method |
---|
| 1617 | |
---|
[1322] | 1618 | weight_substep(1) = 1._wp/2._wp |
---|
| 1619 | weight_substep(2) = 1._wp/2._wp |
---|
[673] | 1620 | |
---|
[1322] | 1621 | weight_pres(1) = 1._wp/2._wp |
---|
| 1622 | weight_pres(2) = 1._wp/2._wp |
---|
[709] | 1623 | |
---|
[1001] | 1624 | ELSE ! for Euler-method |
---|
[709] | 1625 | |
---|
[673] | 1626 | weight_substep(1) = 1.0 |
---|
[709] | 1627 | weight_pres(1) = 1.0 |
---|
| 1628 | |
---|
[673] | 1629 | ENDIF |
---|
| 1630 | |
---|
| 1631 | ! |
---|
[1] | 1632 | !-- Initialize Rayleigh damping factors |
---|
[785] | 1633 | rdf = 0.0 |
---|
| 1634 | rdf_sc = 0.0 |
---|
[1] | 1635 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
[108] | 1636 | IF ( .NOT. ocean ) THEN |
---|
| 1637 | DO k = nzb+1, nzt |
---|
| 1638 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 1639 | rdf(k) = rayleigh_damping_factor * & |
---|
[1] | 1640 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
| 1641 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
| 1642 | )**2 |
---|
[108] | 1643 | ENDIF |
---|
| 1644 | ENDDO |
---|
| 1645 | ELSE |
---|
| 1646 | DO k = nzt, nzb+1, -1 |
---|
| 1647 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
| 1648 | rdf(k) = rayleigh_damping_factor * & |
---|
| 1649 | ( SIN( pi * 0.5 * ( rayleigh_damping_height - zu(k) ) & |
---|
| 1650 | / ( rayleigh_damping_height - zu(nzb+1)))& |
---|
| 1651 | )**2 |
---|
| 1652 | ENDIF |
---|
| 1653 | ENDDO |
---|
| 1654 | ENDIF |
---|
[1] | 1655 | ENDIF |
---|
[785] | 1656 | IF ( scalar_rayleigh_damping ) rdf_sc = rdf |
---|
[1] | 1657 | |
---|
| 1658 | ! |
---|
[240] | 1659 | !-- Initialize the starting level and the vertical smoothing factor used for |
---|
| 1660 | !-- the external pressure gradient |
---|
| 1661 | dp_smooth_factor = 1.0 |
---|
| 1662 | IF ( dp_external ) THEN |
---|
| 1663 | ! |
---|
| 1664 | !-- Set the starting level dp_level_ind_b only if it has not been set before |
---|
| 1665 | !-- (e.g. in init_grid). |
---|
| 1666 | IF ( dp_level_ind_b == 0 ) THEN |
---|
| 1667 | ind_array = MINLOC( ABS( dp_level_b - zu ) ) |
---|
| 1668 | dp_level_ind_b = ind_array(1) - 1 + nzb |
---|
| 1669 | ! MINLOC uses lower array bound 1 |
---|
| 1670 | ENDIF |
---|
| 1671 | IF ( dp_smooth ) THEN |
---|
| 1672 | dp_smooth_factor(:dp_level_ind_b) = 0.0 |
---|
| 1673 | DO k = dp_level_ind_b+1, nzt |
---|
| 1674 | dp_smooth_factor(k) = 0.5 * ( 1.0 + SIN( pi * & |
---|
[1322] | 1675 | ( REAL( k - dp_level_ind_b, KIND=wp ) / & |
---|
| 1676 | REAL( nzt - dp_level_ind_b, KIND=wp ) - 0.5 ) ) ) |
---|
[240] | 1677 | ENDDO |
---|
| 1678 | ENDIF |
---|
| 1679 | ENDIF |
---|
| 1680 | |
---|
| 1681 | ! |
---|
[978] | 1682 | !-- Initialize damping zone for the potential temperature in case of |
---|
| 1683 | !-- non-cyclic lateral boundaries. The damping zone has the maximum value |
---|
| 1684 | !-- at the inflow boundary and decreases to zero at pt_damping_width. |
---|
| 1685 | ptdf_x = 0.0 |
---|
| 1686 | ptdf_y = 0.0 |
---|
[1159] | 1687 | IF ( bc_lr_dirrad ) THEN |
---|
[996] | 1688 | DO i = nxl, nxr |
---|
[978] | 1689 | IF ( ( i * dx ) < pt_damping_width ) THEN |
---|
[1322] | 1690 | ptdf_x(i) = pt_damping_factor * ( SIN( pi * 0.5 * & |
---|
| 1691 | REAL( pt_damping_width - i * dx, KIND=wp ) / ( & |
---|
| 1692 | REAL( pt_damping_width, KIND=wp ) ) ) )**2 |
---|
[73] | 1693 | ENDIF |
---|
| 1694 | ENDDO |
---|
[1159] | 1695 | ELSEIF ( bc_lr_raddir ) THEN |
---|
[996] | 1696 | DO i = nxl, nxr |
---|
[978] | 1697 | IF ( ( i * dx ) > ( nx * dx - pt_damping_width ) ) THEN |
---|
[1322] | 1698 | ptdf_x(i) = pt_damping_factor * & |
---|
| 1699 | SIN( pi * 0.5 * & |
---|
| 1700 | ( ( i - nx ) * dx + pt_damping_width ) / & |
---|
| 1701 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[73] | 1702 | ENDIF |
---|
[978] | 1703 | ENDDO |
---|
[1159] | 1704 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[996] | 1705 | DO j = nys, nyn |
---|
[978] | 1706 | IF ( ( j * dy ) > ( ny * dy - pt_damping_width ) ) THEN |
---|
[1322] | 1707 | ptdf_y(j) = pt_damping_factor * & |
---|
| 1708 | SIN( pi * 0.5 * & |
---|
| 1709 | ( ( j - ny ) * dy + pt_damping_width ) / & |
---|
| 1710 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 1711 | ENDIF |
---|
[978] | 1712 | ENDDO |
---|
[1159] | 1713 | ELSEIF ( bc_ns_raddir ) THEN |
---|
[996] | 1714 | DO j = nys, nyn |
---|
[978] | 1715 | IF ( ( j * dy ) < pt_damping_width ) THEN |
---|
[1322] | 1716 | ptdf_y(j) = pt_damping_factor * & |
---|
| 1717 | SIN( pi * 0.5 * & |
---|
| 1718 | ( pt_damping_width - j * dy ) / & |
---|
| 1719 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 1720 | ENDIF |
---|
[73] | 1721 | ENDDO |
---|
[1] | 1722 | ENDIF |
---|
| 1723 | |
---|
| 1724 | ! |
---|
[709] | 1725 | !-- Initialize local summation arrays for routine flow_statistics. |
---|
| 1726 | !-- This is necessary because they may not yet have been initialized when they |
---|
| 1727 | !-- are called from flow_statistics (or - depending on the chosen model run - |
---|
| 1728 | !-- are never initialized) |
---|
[1] | 1729 | sums_divnew_l = 0.0 |
---|
| 1730 | sums_divold_l = 0.0 |
---|
| 1731 | sums_l_l = 0.0 |
---|
| 1732 | sums_up_fraction_l = 0.0 |
---|
| 1733 | sums_wsts_bc_l = 0.0 |
---|
| 1734 | |
---|
| 1735 | ! |
---|
| 1736 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
[1015] | 1737 | !-- Ghost points are excluded because counting values at the ghost boundaries |
---|
| 1738 | !-- would bias the statistics |
---|
[1] | 1739 | rmask = 1.0 |
---|
[1025] | 1740 | rmask(:,nxlg:nxl-1,:) = 0.0; rmask(:,nxr+1:nxrg,:) = 0.0 |
---|
| 1741 | rmask(nysg:nys-1,:,:) = 0.0; rmask(nyn+1:nyng,:,:) = 0.0 |
---|
[1] | 1742 | |
---|
| 1743 | ! |
---|
[51] | 1744 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
[709] | 1745 | !-- of allowed timeseries is exceeded |
---|
[1] | 1746 | CALL user_init |
---|
| 1747 | |
---|
[51] | 1748 | IF ( dots_num > dots_max ) THEN |
---|
[254] | 1749 | WRITE( message_string, * ) 'number of time series quantities exceeds', & |
---|
[274] | 1750 | ' its maximum of dots_max = ', dots_max, & |
---|
[254] | 1751 | ' &Please increase dots_max in modules.f90.' |
---|
| 1752 | CALL message( 'init_3d_model', 'PA0194', 1, 2, 0, 6, 0 ) |
---|
[51] | 1753 | ENDIF |
---|
| 1754 | |
---|
[1] | 1755 | ! |
---|
| 1756 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 1757 | !-- after call of user_init! |
---|
| 1758 | CALL close_file( 13 ) |
---|
| 1759 | |
---|
| 1760 | ! |
---|
| 1761 | !-- Compute total sum of active mask grid points |
---|
| 1762 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 1763 | !-- total domain |
---|
| 1764 | !-- ngp_3d: number of grid points of the total domain |
---|
[132] | 1765 | ngp_2dh_outer_l = 0 |
---|
| 1766 | ngp_2dh_outer = 0 |
---|
| 1767 | ngp_2dh_s_inner_l = 0 |
---|
| 1768 | ngp_2dh_s_inner = 0 |
---|
| 1769 | ngp_2dh_l = 0 |
---|
| 1770 | ngp_2dh = 0 |
---|
[485] | 1771 | ngp_3d_inner_l = 0.0 |
---|
[132] | 1772 | ngp_3d_inner = 0 |
---|
| 1773 | ngp_3d = 0 |
---|
| 1774 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
[1] | 1775 | |
---|
| 1776 | DO sr = 0, statistic_regions |
---|
| 1777 | DO i = nxl, nxr |
---|
| 1778 | DO j = nys, nyn |
---|
| 1779 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
| 1780 | ! |
---|
| 1781 | !-- All xy-grid points |
---|
| 1782 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1783 | ! |
---|
| 1784 | !-- xy-grid points above topography |
---|
| 1785 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 1786 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 1787 | ENDDO |
---|
[132] | 1788 | DO k = nzb_s_inner(j,i), nz + 1 |
---|
| 1789 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + 1 |
---|
| 1790 | ENDDO |
---|
[1] | 1791 | ! |
---|
| 1792 | !-- All grid points of the total domain above topography |
---|
| 1793 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 1794 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 1795 | ENDIF |
---|
| 1796 | ENDDO |
---|
| 1797 | ENDDO |
---|
| 1798 | ENDDO |
---|
| 1799 | |
---|
| 1800 | sr = statistic_regions + 1 |
---|
| 1801 | #if defined( __parallel ) |
---|
[622] | 1802 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1803 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
[1] | 1804 | comm2d, ierr ) |
---|
[622] | 1805 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1806 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
[1] | 1807 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1808 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1809 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & |
---|
[132] | 1810 | (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[622] | 1811 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[485] | 1812 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, & |
---|
[1] | 1813 | MPI_SUM, comm2d, ierr ) |
---|
[485] | 1814 | ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1815 | #else |
---|
[132] | 1816 | ngp_2dh = ngp_2dh_l |
---|
| 1817 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1818 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
[485] | 1819 | ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1820 | #endif |
---|
| 1821 | |
---|
[560] | 1822 | ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & |
---|
| 1823 | INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) |
---|
[1] | 1824 | |
---|
| 1825 | ! |
---|
| 1826 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1827 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1828 | !-- the respective subdomain lie below the surface topography |
---|
[667] | 1829 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
[631] | 1830 | ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), & |
---|
| 1831 | ngp_3d_inner(:) ) |
---|
[667] | 1832 | ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) |
---|
[1] | 1833 | |
---|
[485] | 1834 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l, ngp_3d_inner_tmp ) |
---|
[1] | 1835 | |
---|
| 1836 | |
---|
| 1837 | END SUBROUTINE init_3d_model |
---|