1 | SUBROUTINE init_1d_model |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: init_1d_model.f90 1310 2014-03-14 08:01:56Z fricke $ |
---|
27 | ! |
---|
28 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
29 | ! code put under GPL (PALM 3.9) |
---|
30 | ! |
---|
31 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
32 | ! adjustment of mixing length to the Prandtl mixing length at first grid point |
---|
33 | ! above ground removed |
---|
34 | ! |
---|
35 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
36 | ! all actions concerning leapfrog scheme removed |
---|
37 | ! |
---|
38 | ! 996 2012-09-07 10:41:47Z raasch |
---|
39 | ! little reformatting |
---|
40 | ! |
---|
41 | ! 978 2012-08-09 08:28:32Z fricke |
---|
42 | ! roughness length for scalar quantities z0h1d added |
---|
43 | ! |
---|
44 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
45 | ! replaced mirror boundary conditions for u and v at the ground |
---|
46 | ! by dirichlet boundary conditions |
---|
47 | ! |
---|
48 | ! 254 2009-03-05 15:33:42Z heinze |
---|
49 | ! Output of messages replaced by message handling routine. |
---|
50 | ! |
---|
51 | ! 184 2008-08-04 15:53:39Z letzel |
---|
52 | ! provisional solution for run_control_1d output: add 'CALL check_open( 15 )' |
---|
53 | ! |
---|
54 | ! 135 2007-11-22 12:24:23Z raasch |
---|
55 | ! Bugfix: absolute value of f must be used when calculating the Blackadar |
---|
56 | ! mixing length |
---|
57 | ! |
---|
58 | ! 82 2007-04-16 15:40:52Z raasch |
---|
59 | ! Preprocessor strings for different linux clusters changed to "lc", |
---|
60 | ! routine local_flush is used for buffer flushing |
---|
61 | ! |
---|
62 | ! 75 2007-03-22 09:54:05Z raasch |
---|
63 | ! Bugfix: preset of tendencies te_em, te_um, te_vm, |
---|
64 | ! moisture renamed humidity |
---|
65 | ! |
---|
66 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
67 | ! |
---|
68 | ! Revision 1.21 2006/06/02 15:19:57 raasch |
---|
69 | ! cpp-directives extended for lctit |
---|
70 | ! |
---|
71 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
72 | ! Initial revision |
---|
73 | ! |
---|
74 | ! |
---|
75 | ! Description: |
---|
76 | ! ------------ |
---|
77 | ! 1D-model to initialize the 3D-arrays. |
---|
78 | ! The temperature profile is set as steady and a corresponding steady solution |
---|
79 | ! of the wind profile is being computed. |
---|
80 | ! All subroutines required can be found within this file. |
---|
81 | !------------------------------------------------------------------------------! |
---|
82 | |
---|
83 | USE arrays_3d |
---|
84 | USE indices |
---|
85 | USE model_1d |
---|
86 | USE control_parameters |
---|
87 | |
---|
88 | IMPLICIT NONE |
---|
89 | |
---|
90 | CHARACTER (LEN=9) :: time_to_string |
---|
91 | INTEGER :: k |
---|
92 | REAL :: lambda |
---|
93 | |
---|
94 | ! |
---|
95 | !-- Allocate required 1D-arrays |
---|
96 | ALLOCATE( e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), & |
---|
97 | kh1d(nzb:nzt+1), km1d(nzb:nzt+1), & |
---|
98 | l_black(nzb:nzt+1), l1d(nzb:nzt+1), & |
---|
99 | rif1d(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
100 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
101 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
102 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), & |
---|
103 | v1d_p(nzb:nzt+1) ) |
---|
104 | |
---|
105 | ! |
---|
106 | !-- Initialize arrays |
---|
107 | IF ( constant_diffusion ) THEN |
---|
108 | km1d = km_constant |
---|
109 | kh1d = km_constant / prandtl_number |
---|
110 | ELSE |
---|
111 | e1d = 0.0; e1d_p = 0.0 |
---|
112 | kh1d = 0.0; km1d = 0.0 |
---|
113 | rif1d = 0.0 |
---|
114 | ! |
---|
115 | !-- Compute the mixing length |
---|
116 | l_black(nzb) = 0.0 |
---|
117 | |
---|
118 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
119 | ! |
---|
120 | !-- Blackadar mixing length |
---|
121 | IF ( f /= 0.0 ) THEN |
---|
122 | lambda = 2.7E-4 * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
123 | ABS( f ) + 1E-10 |
---|
124 | ELSE |
---|
125 | lambda = 30.0 |
---|
126 | ENDIF |
---|
127 | |
---|
128 | DO k = nzb+1, nzt+1 |
---|
129 | l_black(k) = kappa * zu(k) / ( 1.0 + kappa * zu(k) / lambda ) |
---|
130 | ENDDO |
---|
131 | |
---|
132 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
133 | ! |
---|
134 | !-- Use the same mixing length as in 3D model |
---|
135 | l_black(1:nzt) = l_grid |
---|
136 | l_black(nzt+1) = l_black(nzt) |
---|
137 | |
---|
138 | ENDIF |
---|
139 | ENDIF |
---|
140 | l1d = l_black |
---|
141 | u1d = u_init |
---|
142 | u1d_p = u_init |
---|
143 | v1d = v_init |
---|
144 | v1d_p = v_init |
---|
145 | |
---|
146 | ! |
---|
147 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
148 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
149 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
150 | u1d(0:1) = 0.1 |
---|
151 | u1d_p(0:1) = 0.1 |
---|
152 | v1d(0:1) = 0.1 |
---|
153 | v1d_p(0:1) = 0.1 |
---|
154 | |
---|
155 | ! |
---|
156 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
157 | IF ( prandtl_layer ) THEN |
---|
158 | us1d = 0.1 ! without initial friction the flow would not change |
---|
159 | ELSE |
---|
160 | e1d(nzb+1) = 1.0 |
---|
161 | km1d(nzb+1) = 1.0 |
---|
162 | us1d = 0.0 |
---|
163 | ENDIF |
---|
164 | ts1d = 0.0 |
---|
165 | usws1d = 0.0 |
---|
166 | vsws1d = 0.0 |
---|
167 | z01d = roughness_length |
---|
168 | z0h1d = z0h_factor * z01d |
---|
169 | IF ( humidity .OR. passive_scalar ) qs1d = 0.0 |
---|
170 | |
---|
171 | ! |
---|
172 | !-- Tendencies must be preset in order to avoid runtime errors within the |
---|
173 | !-- first Runge-Kutta step |
---|
174 | te_em = 0.0 |
---|
175 | te_um = 0.0 |
---|
176 | te_vm = 0.0 |
---|
177 | |
---|
178 | ! |
---|
179 | !-- Set start time in hh:mm:ss - format |
---|
180 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
181 | |
---|
182 | ! |
---|
183 | !-- Integrate the 1D-model equations using the leap-frog scheme |
---|
184 | CALL time_integration_1d |
---|
185 | |
---|
186 | |
---|
187 | END SUBROUTINE init_1d_model |
---|
188 | |
---|
189 | |
---|
190 | |
---|
191 | SUBROUTINE time_integration_1d |
---|
192 | |
---|
193 | !------------------------------------------------------------------------------! |
---|
194 | ! Description: |
---|
195 | ! ------------ |
---|
196 | ! Leap-frog time differencing scheme for the 1D-model. |
---|
197 | !------------------------------------------------------------------------------! |
---|
198 | |
---|
199 | USE arrays_3d |
---|
200 | USE control_parameters |
---|
201 | USE indices |
---|
202 | USE model_1d |
---|
203 | USE pegrid |
---|
204 | |
---|
205 | IMPLICIT NONE |
---|
206 | |
---|
207 | CHARACTER (LEN=9) :: time_to_string |
---|
208 | INTEGER :: k |
---|
209 | REAL :: a, b, dissipation, dpt_dz, flux, kmzm, kmzp, l_stable, pt_0, & |
---|
210 | uv_total |
---|
211 | |
---|
212 | ! |
---|
213 | !-- Determine the time step at the start of a 1D-simulation and |
---|
214 | !-- determine and printout quantities used for run control |
---|
215 | CALL timestep_1d |
---|
216 | CALL run_control_1d |
---|
217 | |
---|
218 | ! |
---|
219 | !-- Start of time loop |
---|
220 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
221 | |
---|
222 | ! |
---|
223 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
224 | !-- timesteps |
---|
225 | |
---|
226 | intermediate_timestep_count = 0 |
---|
227 | DO WHILE ( intermediate_timestep_count < & |
---|
228 | intermediate_timestep_count_max ) |
---|
229 | |
---|
230 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
231 | |
---|
232 | CALL timestep_scheme_steering |
---|
233 | |
---|
234 | ! |
---|
235 | !-- Compute all tendency terms. If a Prandtl-layer is simulated, k starts |
---|
236 | !-- at nzb+2. |
---|
237 | DO k = nzb_diff, nzt |
---|
238 | |
---|
239 | kmzm = 0.5 * ( km1d(k-1) + km1d(k) ) |
---|
240 | kmzp = 0.5 * ( km1d(k) + km1d(k+1) ) |
---|
241 | ! |
---|
242 | !-- u-component |
---|
243 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
244 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
245 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
246 | ) * ddzw(k) |
---|
247 | ! |
---|
248 | !-- v-component |
---|
249 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
250 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
251 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
252 | ) * ddzw(k) |
---|
253 | ENDDO |
---|
254 | IF ( .NOT. constant_diffusion ) THEN |
---|
255 | DO k = nzb_diff, nzt |
---|
256 | ! |
---|
257 | !-- TKE |
---|
258 | kmzm = 0.5 * ( km1d(k-1) + km1d(k) ) |
---|
259 | kmzp = 0.5 * ( km1d(k) + km1d(k+1) ) |
---|
260 | IF ( .NOT. humidity ) THEN |
---|
261 | pt_0 = pt_init(k) |
---|
262 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
263 | ELSE |
---|
264 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
265 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
266 | 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
267 | ) * dd2zu(k) |
---|
268 | ENDIF |
---|
269 | |
---|
270 | IF ( dissipation_1d == 'detering' ) THEN |
---|
271 | ! |
---|
272 | !-- According to Detering, c_e=0.064 |
---|
273 | dissipation = 0.064 * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
274 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
275 | dissipation = ( 0.19 + 0.74 * l1d(k) / l_grid(k) ) & |
---|
276 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
277 | ENDIF |
---|
278 | |
---|
279 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
280 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
281 | ) & |
---|
282 | - g / pt_0 * kh1d(k) * flux & |
---|
283 | + ( & |
---|
284 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
285 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
286 | ) * ddzw(k) & |
---|
287 | - dissipation |
---|
288 | ENDDO |
---|
289 | ENDIF |
---|
290 | |
---|
291 | ! |
---|
292 | !-- Tendency terms at the top of the Prandtl-layer. |
---|
293 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
294 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
295 | IF ( prandtl_layer ) THEN |
---|
296 | |
---|
297 | k = nzb+1 |
---|
298 | kmzm = 0.5 * ( km1d(k-1) + km1d(k) ) |
---|
299 | kmzp = 0.5 * ( km1d(k) + km1d(k+1) ) |
---|
300 | IF ( .NOT. humidity ) THEN |
---|
301 | pt_0 = pt_init(k) |
---|
302 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
303 | ELSE |
---|
304 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
305 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
306 | 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
307 | ) * dd2zu(k) |
---|
308 | ENDIF |
---|
309 | |
---|
310 | IF ( dissipation_1d == 'detering' ) THEN |
---|
311 | ! |
---|
312 | !-- According to Detering, c_e=0.064 |
---|
313 | dissipation = 0.064 * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
314 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
315 | dissipation = ( 0.19 + 0.74 * l1d(k) / l_grid(k) ) & |
---|
316 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
317 | ENDIF |
---|
318 | |
---|
319 | ! |
---|
320 | !-- u-component |
---|
321 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
322 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
323 | ) * 2.0 * ddzw(k) |
---|
324 | ! |
---|
325 | !-- v-component |
---|
326 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
327 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
328 | ) * 2.0 * ddzw(k) |
---|
329 | ! |
---|
330 | !-- TKE |
---|
331 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
332 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
333 | ) & |
---|
334 | - g / pt_0 * kh1d(k) * flux & |
---|
335 | + ( & |
---|
336 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
337 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
338 | ) * ddzw(k) & |
---|
339 | - dissipation |
---|
340 | ENDIF |
---|
341 | |
---|
342 | ! |
---|
343 | !-- Prognostic equations for all 1D variables |
---|
344 | DO k = nzb+1, nzt |
---|
345 | |
---|
346 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
347 | tsc(3) * te_um(k) ) |
---|
348 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
349 | tsc(3) * te_vm(k) ) |
---|
350 | |
---|
351 | ENDDO |
---|
352 | IF ( .NOT. constant_diffusion ) THEN |
---|
353 | DO k = nzb+1, nzt |
---|
354 | |
---|
355 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
356 | tsc(3) * te_em(k) ) |
---|
357 | |
---|
358 | ENDDO |
---|
359 | ! |
---|
360 | !-- Eliminate negative TKE values, which can result from the |
---|
361 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
362 | !-- value is reduced to 10 percent of its old value. |
---|
363 | WHERE ( e1d_p < 0.0 ) e1d_p = 0.1 * e1d |
---|
364 | ENDIF |
---|
365 | |
---|
366 | ! |
---|
367 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
368 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
369 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
370 | |
---|
371 | DO k = nzb+1, nzt |
---|
372 | te_um(k) = te_u(k) |
---|
373 | te_vm(k) = te_v(k) |
---|
374 | ENDDO |
---|
375 | |
---|
376 | IF ( .NOT. constant_diffusion ) THEN |
---|
377 | DO k = nzb+1, nzt |
---|
378 | te_em(k) = te_e(k) |
---|
379 | ENDDO |
---|
380 | ENDIF |
---|
381 | |
---|
382 | ELSEIF ( intermediate_timestep_count < & |
---|
383 | intermediate_timestep_count_max ) THEN |
---|
384 | |
---|
385 | DO k = nzb+1, nzt |
---|
386 | te_um(k) = -9.5625 * te_u(k) + 5.3125 * te_um(k) |
---|
387 | te_vm(k) = -9.5625 * te_v(k) + 5.3125 * te_vm(k) |
---|
388 | ENDDO |
---|
389 | |
---|
390 | IF ( .NOT. constant_diffusion ) THEN |
---|
391 | DO k = nzb+1, nzt |
---|
392 | te_em(k) = -9.5625 * te_e(k) + 5.3125 * te_em(k) |
---|
393 | ENDDO |
---|
394 | ENDIF |
---|
395 | |
---|
396 | ENDIF |
---|
397 | ENDIF |
---|
398 | |
---|
399 | |
---|
400 | ! |
---|
401 | !-- Boundary conditions for the prognostic variables. |
---|
402 | !-- At the top boundary (nzt+1) u,v and e keep their initial values |
---|
403 | !-- (ug(nzt+1), vg(nzt+1), 0), at the bottom boundary the mirror |
---|
404 | !-- boundary condition applies to u and v. |
---|
405 | !-- The boundary condition for e is set further below ( (u*/cm)**2 ). |
---|
406 | ! u1d_p(nzb) = -u1d_p(nzb+1) |
---|
407 | ! v1d_p(nzb) = -v1d_p(nzb+1) |
---|
408 | |
---|
409 | u1d_p(nzb) = 0.0 |
---|
410 | v1d_p(nzb) = 0.0 |
---|
411 | |
---|
412 | ! |
---|
413 | !-- Swap the time levels in preparation for the next time step. |
---|
414 | u1d = u1d_p |
---|
415 | v1d = v1d_p |
---|
416 | IF ( .NOT. constant_diffusion ) THEN |
---|
417 | e1d = e1d_p |
---|
418 | ENDIF |
---|
419 | |
---|
420 | ! |
---|
421 | !-- Compute diffusion quantities |
---|
422 | IF ( .NOT. constant_diffusion ) THEN |
---|
423 | |
---|
424 | ! |
---|
425 | !-- First compute the vertical fluxes in the Prandtl-layer |
---|
426 | IF ( prandtl_layer ) THEN |
---|
427 | ! |
---|
428 | !-- Compute theta* using Rif numbers of the previous time step |
---|
429 | IF ( rif1d(1) >= 0.0 ) THEN |
---|
430 | ! |
---|
431 | !-- Stable stratification |
---|
432 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
433 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0 * rif1d(nzb+1) * & |
---|
434 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
435 | ) |
---|
436 | ELSE |
---|
437 | ! |
---|
438 | !-- Unstable stratification |
---|
439 | a = SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) |
---|
440 | b = SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) * z0h1d ) |
---|
441 | ! |
---|
442 | !-- In the borderline case the formula for stable stratification |
---|
443 | !-- must be applied, because otherwise a zero division would |
---|
444 | !-- occur in the argument of the logarithm. |
---|
445 | IF ( a == 0.0 .OR. b == 0.0 ) THEN |
---|
446 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
447 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0 * rif1d(nzb+1) * & |
---|
448 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
449 | ) |
---|
450 | ELSE |
---|
451 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
452 | LOG( (a-1.0) / (a+1.0) * (b+1.0) / (b-1.0) ) |
---|
453 | ENDIF |
---|
454 | ENDIF |
---|
455 | |
---|
456 | ENDIF ! prandtl_layer |
---|
457 | |
---|
458 | ! |
---|
459 | !-- Compute the Richardson-flux numbers, |
---|
460 | !-- first at the top of the Prandtl-layer using u* of the previous |
---|
461 | !-- time step (+1E-30, if u* = 0), then in the remaining area. There |
---|
462 | !-- the rif-numbers of the previous time step are used. |
---|
463 | |
---|
464 | IF ( prandtl_layer ) THEN |
---|
465 | IF ( .NOT. humidity ) THEN |
---|
466 | pt_0 = pt_init(nzb+1) |
---|
467 | flux = ts1d |
---|
468 | ELSE |
---|
469 | pt_0 = pt_init(nzb+1) * ( 1.0 + 0.61 * q_init(nzb+1) ) |
---|
470 | flux = ts1d + 0.61 * pt_init(k) * qs1d |
---|
471 | ENDIF |
---|
472 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
473 | ( pt_0 * ( us1d**2 + 1E-30 ) ) |
---|
474 | ENDIF |
---|
475 | |
---|
476 | DO k = nzb_diff, nzt |
---|
477 | IF ( .NOT. humidity ) THEN |
---|
478 | pt_0 = pt_init(k) |
---|
479 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
480 | ELSE |
---|
481 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
482 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
483 | + 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) )& |
---|
484 | ) * dd2zu(k) |
---|
485 | ENDIF |
---|
486 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
487 | rif1d(k) = g / pt_0 * flux / & |
---|
488 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
489 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
490 | + 1E-30 & |
---|
491 | ) |
---|
492 | ELSE |
---|
493 | rif1d(k) = g / pt_0 * flux / & |
---|
494 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
495 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
496 | + 1E-30 & |
---|
497 | ) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
498 | ENDIF |
---|
499 | ENDDO |
---|
500 | ! |
---|
501 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
502 | !-- range. It is exceeded excessively for very small velocities |
---|
503 | !-- (u,v --> 0). |
---|
504 | WHERE ( rif1d < rif_min ) rif1d = rif_min |
---|
505 | WHERE ( rif1d > rif_max ) rif1d = rif_max |
---|
506 | |
---|
507 | ! |
---|
508 | !-- Compute u* from the absolute velocity value |
---|
509 | IF ( prandtl_layer ) THEN |
---|
510 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
511 | |
---|
512 | IF ( rif1d(nzb+1) >= 0.0 ) THEN |
---|
513 | ! |
---|
514 | !-- Stable stratification |
---|
515 | us1d = kappa * uv_total / ( & |
---|
516 | LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
517 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
518 | ) |
---|
519 | ELSE |
---|
520 | ! |
---|
521 | !-- Unstable stratification |
---|
522 | a = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) ) |
---|
523 | b = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) & |
---|
524 | * z01d ) ) |
---|
525 | ! |
---|
526 | !-- In the borderline case the formula for stable stratification |
---|
527 | !-- must be applied, because otherwise a zero division would |
---|
528 | !-- occur in the argument of the logarithm. |
---|
529 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
530 | us1d = kappa * uv_total / ( & |
---|
531 | LOG( zu(nzb+1) / z01d ) + & |
---|
532 | 5.0 * rif1d(nzb+1) * ( zu(nzb+1) - z01d ) / & |
---|
533 | zu(nzb+1) ) |
---|
534 | ELSE |
---|
535 | us1d = kappa * uv_total / ( & |
---|
536 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) +& |
---|
537 | 2.0 * ( ATAN( b ) - ATAN( a ) ) & |
---|
538 | ) |
---|
539 | ENDIF |
---|
540 | ENDIF |
---|
541 | |
---|
542 | ! |
---|
543 | !-- Compute the momentum fluxes for the diffusion terms |
---|
544 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
545 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
546 | |
---|
547 | ! |
---|
548 | !-- Boundary condition for the turbulent kinetic energy at the top |
---|
549 | !-- of the Prandtl-layer. c_m = 0.4 according to Detering. |
---|
550 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
551 | !-- compatibility with the 3D model. |
---|
552 | IF ( ibc_e_b == 2 ) THEN |
---|
553 | e1d(nzb+1) = ( us1d / 0.1 )**2 |
---|
554 | ! e1d(nzb+1) = ( us1d / 0.4 )**2 !not used so far, see also |
---|
555 | !prandtl_fluxes |
---|
556 | ENDIF |
---|
557 | e1d(nzb) = e1d(nzb+1) |
---|
558 | |
---|
559 | IF ( humidity .OR. passive_scalar ) THEN |
---|
560 | ! |
---|
561 | !-- Compute q* |
---|
562 | IF ( rif1d(1) >= 0.0 ) THEN |
---|
563 | ! |
---|
564 | !-- Stable stratification |
---|
565 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
566 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0 * rif1d(nzb+1) * & |
---|
567 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
568 | ) |
---|
569 | ELSE |
---|
570 | ! |
---|
571 | !-- Unstable stratification |
---|
572 | a = SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) |
---|
573 | b = SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) * z0h1d ) |
---|
574 | ! |
---|
575 | !-- In the borderline case the formula for stable stratification |
---|
576 | !-- must be applied, because otherwise a zero division would |
---|
577 | !-- occur in the argument of the logarithm. |
---|
578 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
579 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
580 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0 * rif1d(nzb+1) * & |
---|
581 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
582 | ) |
---|
583 | ELSE |
---|
584 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
585 | LOG( (a-1.0) / (a+1.0) * (b+1.0) / (b-1.0) ) |
---|
586 | ENDIF |
---|
587 | ENDIF |
---|
588 | ELSE |
---|
589 | qs1d = 0.0 |
---|
590 | ENDIF |
---|
591 | |
---|
592 | ENDIF ! prandtl_layer |
---|
593 | |
---|
594 | ! |
---|
595 | !-- Compute the diabatic mixing length |
---|
596 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
597 | DO k = nzb+1, nzt |
---|
598 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
599 | l1d(k) = l_black(k) / ( 1.0 + 5.0 * rif1d(k) ) |
---|
600 | ELSE |
---|
601 | l1d(k) = l_black(k) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
602 | ENDIF |
---|
603 | l1d(k) = l_black(k) |
---|
604 | ENDDO |
---|
605 | |
---|
606 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
607 | DO k = nzb+1, nzt |
---|
608 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
609 | IF ( dpt_dz > 0.0 ) THEN |
---|
610 | l_stable = 0.76 * SQRT( e1d(k) ) / & |
---|
611 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5 |
---|
612 | ELSE |
---|
613 | l_stable = l_grid(k) |
---|
614 | ENDIF |
---|
615 | l1d(k) = MIN( l_grid(k), l_stable ) |
---|
616 | ENDDO |
---|
617 | ENDIF |
---|
618 | |
---|
619 | ! |
---|
620 | !-- Compute the diffusion coefficients for momentum via the |
---|
621 | !-- corresponding Prandtl-layer relationship and according to |
---|
622 | !-- Prandtl-Kolmogorov, respectively. The unstable stratification is |
---|
623 | !-- computed via the adiabatic mixing length, for the unstability has |
---|
624 | !-- already been taken account of via the TKE (cf. also Diss.). |
---|
625 | IF ( prandtl_layer ) THEN |
---|
626 | IF ( rif1d(nzb+1) >= 0.0 ) THEN |
---|
627 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
628 | ( 1.0 + 5.0 * rif1d(nzb+1) ) |
---|
629 | ELSE |
---|
630 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
631 | ( 1.0 - 16.0 * rif1d(nzb+1) )**0.25 |
---|
632 | ENDIF |
---|
633 | ENDIF |
---|
634 | DO k = nzb_diff, nzt |
---|
635 | ! km1d(k) = 0.4 * SQRT( e1d(k) ) !changed: adjustment to 3D-model |
---|
636 | km1d(k) = 0.1 * SQRT( e1d(k) ) |
---|
637 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
638 | km1d(k) = km1d(k) * l1d(k) |
---|
639 | ELSE |
---|
640 | km1d(k) = km1d(k) * l_black(k) |
---|
641 | ENDIF |
---|
642 | ENDDO |
---|
643 | |
---|
644 | ! |
---|
645 | !-- Add damping layer |
---|
646 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
647 | km1d(k) = 1.1 * km1d(k-1) |
---|
648 | km1d(k) = MIN( km1d(k), 10.0 ) |
---|
649 | ENDDO |
---|
650 | |
---|
651 | ! |
---|
652 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
653 | !-- kh = phim / phih * km |
---|
654 | DO k = nzb+1, nzt |
---|
655 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
656 | kh1d(k) = km1d(k) |
---|
657 | ELSE |
---|
658 | kh1d(k) = km1d(k) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
659 | ENDIF |
---|
660 | ENDDO |
---|
661 | |
---|
662 | ENDIF ! .NOT. constant_diffusion |
---|
663 | |
---|
664 | ENDDO ! intermediate step loop |
---|
665 | |
---|
666 | ! |
---|
667 | !-- Increment simulated time and output times |
---|
668 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
669 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
670 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
671 | time_pr_1d = time_pr_1d + dt_1d |
---|
672 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
673 | |
---|
674 | ! |
---|
675 | !-- Determine and print out quantities for run control |
---|
676 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
677 | CALL run_control_1d |
---|
678 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
679 | ENDIF |
---|
680 | |
---|
681 | ! |
---|
682 | !-- Profile output on file |
---|
683 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
684 | CALL print_1d_model |
---|
685 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
686 | ENDIF |
---|
687 | |
---|
688 | ! |
---|
689 | !-- Determine size of next time step |
---|
690 | CALL timestep_1d |
---|
691 | |
---|
692 | ENDDO ! time loop |
---|
693 | |
---|
694 | |
---|
695 | END SUBROUTINE time_integration_1d |
---|
696 | |
---|
697 | |
---|
698 | SUBROUTINE run_control_1d |
---|
699 | |
---|
700 | !------------------------------------------------------------------------------! |
---|
701 | ! Description: |
---|
702 | ! ------------ |
---|
703 | ! Compute and print out quantities for run control of the 1D model. |
---|
704 | !------------------------------------------------------------------------------! |
---|
705 | |
---|
706 | USE constants |
---|
707 | USE indices |
---|
708 | USE model_1d |
---|
709 | USE pegrid |
---|
710 | USE control_parameters |
---|
711 | |
---|
712 | IMPLICIT NONE |
---|
713 | |
---|
714 | INTEGER :: k |
---|
715 | REAL :: alpha, energy, umax, uv_total, vmax |
---|
716 | |
---|
717 | ! |
---|
718 | !-- Output |
---|
719 | IF ( myid == 0 ) THEN |
---|
720 | ! |
---|
721 | !-- If necessary, write header |
---|
722 | IF ( .NOT. run_control_header_1d ) THEN |
---|
723 | CALL check_open( 15 ) |
---|
724 | WRITE ( 15, 100 ) |
---|
725 | run_control_header_1d = .TRUE. |
---|
726 | ENDIF |
---|
727 | |
---|
728 | ! |
---|
729 | !-- Compute control quantities |
---|
730 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
731 | umax = 0.0; vmax = 0.0; energy = 0.0 |
---|
732 | DO k = nzb+1, nzt+1 |
---|
733 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
734 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
735 | energy = energy + 0.5 * ( u1d(k)**2 + v1d(k)**2 ) |
---|
736 | ENDDO |
---|
737 | energy = energy / REAL( nzt - nzb + 1 ) |
---|
738 | |
---|
739 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
740 | IF ( ABS( v1d(nzb+1) ) .LT. 1.0E-5 ) THEN |
---|
741 | alpha = ACOS( SIGN( 1.0 , u1d(nzb+1) ) ) |
---|
742 | ELSE |
---|
743 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
744 | IF ( v1d(nzb+1) <= 0.0 ) alpha = 2.0 * pi - alpha |
---|
745 | ENDIF |
---|
746 | alpha = alpha / ( 2.0 * pi ) * 360.0 |
---|
747 | |
---|
748 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
749 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
750 | ! |
---|
751 | !-- Write buffer contents to disc immediately |
---|
752 | CALL local_flush( 15 ) |
---|
753 | |
---|
754 | ENDIF |
---|
755 | |
---|
756 | ! |
---|
757 | !-- formats |
---|
758 | 100 FORMAT (///'1D-Zeitschrittkontrollausgaben:'/ & |
---|
759 | &'------------------------------'// & |
---|
760 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
761 | &'-------------------------------------------------------------') |
---|
762 | 101 FORMAT (I5,2X,A9,1X,F6.2,2X,F6.2,1X,F6.2,2X,F5.3,2X,F5.1,2X,F7.2) |
---|
763 | |
---|
764 | |
---|
765 | END SUBROUTINE run_control_1d |
---|
766 | |
---|
767 | |
---|
768 | |
---|
769 | SUBROUTINE timestep_1d |
---|
770 | |
---|
771 | !------------------------------------------------------------------------------! |
---|
772 | ! Description: |
---|
773 | ! ------------ |
---|
774 | ! Compute the time step w.r.t. the diffusion criterion |
---|
775 | !------------------------------------------------------------------------------! |
---|
776 | |
---|
777 | USE arrays_3d |
---|
778 | USE indices |
---|
779 | USE model_1d |
---|
780 | USE pegrid |
---|
781 | USE control_parameters |
---|
782 | |
---|
783 | IMPLICIT NONE |
---|
784 | |
---|
785 | INTEGER :: k |
---|
786 | REAL :: div, dt_diff, fac, value |
---|
787 | |
---|
788 | |
---|
789 | ! |
---|
790 | !-- Compute the currently feasible time step according to the diffusion |
---|
791 | !-- criterion. At nzb+1 the half grid length is used. |
---|
792 | fac = 0.35 |
---|
793 | dt_diff = dt_max_1d |
---|
794 | DO k = nzb+2, nzt |
---|
795 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20 ) |
---|
796 | dt_diff = MIN( value, dt_diff ) |
---|
797 | ENDDO |
---|
798 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20 ) |
---|
799 | dt_1d = MIN( value, dt_diff ) |
---|
800 | |
---|
801 | ! |
---|
802 | !-- Set flag when the time step becomes too small |
---|
803 | IF ( dt_1d < ( 0.00001 * dt_max_1d ) ) THEN |
---|
804 | stop_dt_1d = .TRUE. |
---|
805 | |
---|
806 | WRITE( message_string, * ) 'timestep has exceeded the lower limit &', & |
---|
807 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
808 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
809 | |
---|
810 | ENDIF |
---|
811 | |
---|
812 | ! |
---|
813 | !-- A more or less simple new time step value is obtained taking only the |
---|
814 | !-- first two significant digits |
---|
815 | div = 1000.0 |
---|
816 | DO WHILE ( dt_1d < div ) |
---|
817 | div = div / 10.0 |
---|
818 | ENDDO |
---|
819 | dt_1d = NINT( dt_1d * 100.0 / div ) * div / 100.0 |
---|
820 | |
---|
821 | old_dt_1d = dt_1d |
---|
822 | |
---|
823 | |
---|
824 | END SUBROUTINE timestep_1d |
---|
825 | |
---|
826 | |
---|
827 | |
---|
828 | SUBROUTINE print_1d_model |
---|
829 | |
---|
830 | !------------------------------------------------------------------------------! |
---|
831 | ! Description: |
---|
832 | ! ------------ |
---|
833 | ! List output of profiles from the 1D-model |
---|
834 | !------------------------------------------------------------------------------! |
---|
835 | |
---|
836 | USE arrays_3d |
---|
837 | USE indices |
---|
838 | USE model_1d |
---|
839 | USE pegrid |
---|
840 | USE control_parameters |
---|
841 | |
---|
842 | IMPLICIT NONE |
---|
843 | |
---|
844 | |
---|
845 | INTEGER :: k |
---|
846 | |
---|
847 | |
---|
848 | IF ( myid == 0 ) THEN |
---|
849 | ! |
---|
850 | !-- Open list output file for profiles from the 1D-model |
---|
851 | CALL check_open( 17 ) |
---|
852 | |
---|
853 | ! |
---|
854 | !-- Write Header |
---|
855 | WRITE ( 17, 100 ) TRIM( run_description_header ), & |
---|
856 | TRIM( simulated_time_chr ) |
---|
857 | WRITE ( 17, 101 ) |
---|
858 | |
---|
859 | ! |
---|
860 | !-- Write the values |
---|
861 | WRITE ( 17, 102 ) |
---|
862 | WRITE ( 17, 101 ) |
---|
863 | DO k = nzt+1, nzb, -1 |
---|
864 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
865 | rif1d(k), km1d(k), kh1d(k), l1d(k), zu(k), k |
---|
866 | ENDDO |
---|
867 | WRITE ( 17, 101 ) |
---|
868 | WRITE ( 17, 102 ) |
---|
869 | WRITE ( 17, 101 ) |
---|
870 | |
---|
871 | ! |
---|
872 | !-- Write buffer contents to disc immediately |
---|
873 | CALL local_flush( 17 ) |
---|
874 | |
---|
875 | ENDIF |
---|
876 | |
---|
877 | ! |
---|
878 | !-- Formats |
---|
879 | 100 FORMAT (//1X,A/1X,10('-')/' 1d-model profiles'/ & |
---|
880 | ' Time: ',A) |
---|
881 | 101 FORMAT (1X,79('-')) |
---|
882 | 102 FORMAT (' k zu u v pt e rif Km Kh ', & |
---|
883 | 'l zu k') |
---|
884 | 103 FORMAT (1X,I4,1X,F7.1,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F5.2,1X,F5.2, & |
---|
885 | 1X,F5.2,1X,F6.2,1X,F7.1,2X,I4) |
---|
886 | |
---|
887 | |
---|
888 | END SUBROUTINE print_1d_model |
---|