1 | SUBROUTINE init_1d_model |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: init_1d_model.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
12 | ! |
---|
13 | ! Revision 1.21 2006/06/02 15:19:57 raasch |
---|
14 | ! cpp-directives extended for lctit |
---|
15 | ! |
---|
16 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
17 | ! Initial revision |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Description: |
---|
21 | ! ------------ |
---|
22 | ! 1D-model to initialize the 3D-arrays. |
---|
23 | ! The temperature profile is set as steady and a corresponding steady solution |
---|
24 | ! of the wind profile is being computed. |
---|
25 | ! All subroutines required can be found within this file. |
---|
26 | !------------------------------------------------------------------------------! |
---|
27 | |
---|
28 | USE arrays_3d |
---|
29 | USE indices |
---|
30 | USE model_1d |
---|
31 | USE control_parameters |
---|
32 | |
---|
33 | IMPLICIT NONE |
---|
34 | |
---|
35 | CHARACTER (LEN=9) :: time_to_string |
---|
36 | INTEGER :: k |
---|
37 | REAL :: lambda |
---|
38 | |
---|
39 | ! |
---|
40 | !-- Allocate required 1D-arrays |
---|
41 | ALLOCATE( e1d(nzb:nzt+1), e1d_m(nzb:nzt+1), e1d_p(nzb:nzt+1), & |
---|
42 | kh1d(nzb:nzt+1), kh1d_m(nzb:nzt+1), km1d(nzb:nzt+1), & |
---|
43 | km1d_m(nzb:nzt+1), l_black(nzb:nzt+1), l1d(nzb:nzt+1), & |
---|
44 | l1d_m(nzb:nzt+1), rif1d(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
45 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
46 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
47 | u1d_m(nzb:nzt+1), u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), & |
---|
48 | v1d_m(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
49 | |
---|
50 | ! |
---|
51 | !-- Initialize arrays |
---|
52 | IF ( constant_diffusion ) THEN |
---|
53 | km1d = km_constant |
---|
54 | km1d_m = km_constant |
---|
55 | kh1d = km_constant / prandtl_number |
---|
56 | kh1d_m = km_constant / prandtl_number |
---|
57 | ELSE |
---|
58 | e1d = 0.0; e1d_m = 0.0; e1d_p = 0.0 |
---|
59 | kh1d = 0.0; kh1d_m = 0.0; km1d = 0.0; km1d_m = 0.0 |
---|
60 | rif1d = 0.0 |
---|
61 | ! |
---|
62 | !-- Compute the mixing length |
---|
63 | l_black(nzb) = 0.0 |
---|
64 | |
---|
65 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
66 | ! |
---|
67 | !-- Blackadar mixing length |
---|
68 | IF ( f /= 0.0 ) THEN |
---|
69 | lambda = 2.7E-4 * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / f + 1E-10 |
---|
70 | ELSE |
---|
71 | lambda = 30.0 |
---|
72 | ENDIF |
---|
73 | |
---|
74 | DO k = nzb+1, nzt+1 |
---|
75 | l_black(k) = kappa * zu(k) / ( 1.0 + kappa * zu(k) / lambda ) |
---|
76 | ENDDO |
---|
77 | |
---|
78 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
79 | ! |
---|
80 | !-- Use the same mixing length as in 3D model |
---|
81 | l_black(1:nzt) = l_grid |
---|
82 | l_black(nzt+1) = l_black(nzt) |
---|
83 | |
---|
84 | ENDIF |
---|
85 | |
---|
86 | ! |
---|
87 | !-- Adjust mixing length to the prandtl mixing length (within the prandtl |
---|
88 | !-- layer) |
---|
89 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
90 | k = nzb+1 |
---|
91 | l_black(k) = MIN( l_black(k), kappa * zu(k) ) |
---|
92 | ENDIF |
---|
93 | ENDIF |
---|
94 | l1d = l_black |
---|
95 | l1d_m = l_black |
---|
96 | u1d = u_init |
---|
97 | u1d_m = u_init |
---|
98 | u1d_p = u_init |
---|
99 | v1d = v_init |
---|
100 | v1d_m = v_init |
---|
101 | v1d_p = v_init |
---|
102 | |
---|
103 | ! |
---|
104 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
105 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
106 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
107 | u1d(0:1) = 0.1 |
---|
108 | u1d_m(0:1) = 0.1 |
---|
109 | u1d_p(0:1) = 0.1 |
---|
110 | v1d(0:1) = 0.1 |
---|
111 | v1d_m(0:1) = 0.1 |
---|
112 | v1d_p(0:1) = 0.1 |
---|
113 | |
---|
114 | ! |
---|
115 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
116 | IF ( prandtl_layer ) THEN |
---|
117 | us1d = 0.1 ! without initial friction the flow would not change |
---|
118 | ELSE |
---|
119 | e1d(nzb+1) = 1.0 |
---|
120 | km1d(nzb+1) = 1.0 |
---|
121 | us1d = 0.0 |
---|
122 | ENDIF |
---|
123 | ts1d = 0.0 |
---|
124 | usws1d = 0.0; usws1d_m = 0.0 |
---|
125 | vsws1d = 0.0; vsws1d_m = 0.0 |
---|
126 | z01d = roughness_length |
---|
127 | IF ( moisture .OR. passive_scalar ) qs1d = 0.0 |
---|
128 | |
---|
129 | ! |
---|
130 | !-- Set start time in hh:mm:ss - format |
---|
131 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
132 | |
---|
133 | ! |
---|
134 | !-- Integrate the 1D-model equations using the leap-frog scheme |
---|
135 | CALL time_integration_1d |
---|
136 | |
---|
137 | |
---|
138 | END SUBROUTINE init_1d_model |
---|
139 | |
---|
140 | |
---|
141 | |
---|
142 | SUBROUTINE time_integration_1d |
---|
143 | |
---|
144 | !------------------------------------------------------------------------------! |
---|
145 | ! Description: |
---|
146 | ! ------------ |
---|
147 | ! Leap-frog time differencing scheme for the 1D-model. |
---|
148 | !------------------------------------------------------------------------------! |
---|
149 | |
---|
150 | USE arrays_3d |
---|
151 | USE control_parameters |
---|
152 | USE indices |
---|
153 | USE model_1d |
---|
154 | USE pegrid |
---|
155 | |
---|
156 | IMPLICIT NONE |
---|
157 | |
---|
158 | CHARACTER (LEN=9) :: time_to_string |
---|
159 | INTEGER :: k |
---|
160 | REAL :: a, b, dissipation, dpt_dz, flux, kmzm, kmzp, l_stable, pt_0, & |
---|
161 | uv_total |
---|
162 | |
---|
163 | ! |
---|
164 | !-- Determine the time step at the start of a 1D-simulation and |
---|
165 | !-- determine and printout quantities used for run control |
---|
166 | CALL timestep_1d |
---|
167 | CALL run_control_1d |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Start of time loop |
---|
171 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
172 | |
---|
173 | ! |
---|
174 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
175 | !-- timesteps |
---|
176 | |
---|
177 | intermediate_timestep_count = 0 |
---|
178 | DO WHILE ( intermediate_timestep_count < & |
---|
179 | intermediate_timestep_count_max ) |
---|
180 | |
---|
181 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
182 | |
---|
183 | CALL timestep_scheme_steering |
---|
184 | |
---|
185 | ! |
---|
186 | !-- Compute all tendency terms. If a Prandtl-layer is simulated, k starts |
---|
187 | !-- at nzb+2. |
---|
188 | DO k = nzb_diff, nzt |
---|
189 | |
---|
190 | kmzm = 0.5 * ( km1d_m(k-1) + km1d_m(k) ) |
---|
191 | kmzp = 0.5 * ( km1d_m(k) + km1d_m(k+1) ) |
---|
192 | ! |
---|
193 | !-- u-component |
---|
194 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
195 | kmzp * ( u1d_m(k+1) - u1d_m(k) ) * ddzu(k+1) & |
---|
196 | - kmzm * ( u1d_m(k) - u1d_m(k-1) ) * ddzu(k) & |
---|
197 | ) * ddzw(k) |
---|
198 | ! |
---|
199 | !-- v-component |
---|
200 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
201 | kmzp * ( v1d_m(k+1) - v1d_m(k) ) * ddzu(k+1) & |
---|
202 | - kmzm * ( v1d_m(k) - v1d_m(k-1) ) * ddzu(k) & |
---|
203 | ) * ddzw(k) |
---|
204 | ENDDO |
---|
205 | IF ( .NOT. constant_diffusion ) THEN |
---|
206 | DO k = nzb_diff, nzt |
---|
207 | ! |
---|
208 | !-- TKE |
---|
209 | kmzm = 0.5 * ( km1d_m(k-1) + km1d_m(k) ) |
---|
210 | kmzp = 0.5 * ( km1d_m(k) + km1d_m(k+1) ) |
---|
211 | IF ( .NOT. moisture ) THEN |
---|
212 | pt_0 = pt_init(k) |
---|
213 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
214 | ELSE |
---|
215 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
216 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
217 | 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
218 | ) * dd2zu(k) |
---|
219 | ENDIF |
---|
220 | |
---|
221 | IF ( dissipation_1d == 'detering' ) THEN |
---|
222 | ! |
---|
223 | !-- According to Detering, c_e=0.064 |
---|
224 | dissipation = 0.064 * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
225 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
226 | dissipation = ( 0.19 + 0.74 * l1d_m(k) / l_grid(k) ) & |
---|
227 | * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
228 | ENDIF |
---|
229 | |
---|
230 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
231 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
232 | ) & |
---|
233 | - g / pt_0 * kh1d(k) * flux & |
---|
234 | + ( & |
---|
235 | kmzp * ( e1d_m(k+1) - e1d_m(k) ) * ddzu(k+1) & |
---|
236 | - kmzm * ( e1d_m(k) - e1d_m(k-1) ) * ddzu(k) & |
---|
237 | ) * ddzw(k) & |
---|
238 | - dissipation |
---|
239 | ENDDO |
---|
240 | ENDIF |
---|
241 | |
---|
242 | ! |
---|
243 | !-- Tendency terms at the top of the Prandtl-layer. |
---|
244 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
245 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
246 | IF ( prandtl_layer ) THEN |
---|
247 | |
---|
248 | k = nzb+1 |
---|
249 | kmzm = 0.5 * ( km1d_m(k-1) + km1d_m(k) ) |
---|
250 | kmzp = 0.5 * ( km1d_m(k) + km1d_m(k+1) ) |
---|
251 | IF ( .NOT. moisture ) THEN |
---|
252 | pt_0 = pt_init(k) |
---|
253 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
254 | ELSE |
---|
255 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
256 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
257 | 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
258 | ) * dd2zu(k) |
---|
259 | ENDIF |
---|
260 | |
---|
261 | IF ( dissipation_1d == 'detering' ) THEN |
---|
262 | ! |
---|
263 | !-- According to Detering, c_e=0.064 |
---|
264 | dissipation = 0.064 * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
265 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
266 | dissipation = ( 0.19 + 0.74 * l1d_m(k) / l_grid(k) ) & |
---|
267 | * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
268 | ENDIF |
---|
269 | |
---|
270 | ! |
---|
271 | !-- u-component |
---|
272 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
273 | kmzp * ( u1d_m(k+1) - u1d_m(k) ) * ddzu(k+1) + usws1d_m & |
---|
274 | ) * 2.0 * ddzw(k) |
---|
275 | ! |
---|
276 | !-- v-component |
---|
277 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
278 | kmzp * ( v1d_m(k+1) - v1d_m(k) ) * ddzu(k+1) + vsws1d_m & |
---|
279 | ) * 2.0 * ddzw(k) |
---|
280 | ! |
---|
281 | !-- TKE |
---|
282 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
283 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
284 | ) & |
---|
285 | - g / pt_0 * kh1d(k) * flux & |
---|
286 | + ( & |
---|
287 | kmzp * ( e1d_m(k+1) - e1d_m(k) ) * ddzu(k+1) & |
---|
288 | - kmzm * ( e1d_m(k) - e1d_m(k-1) ) * ddzu(k) & |
---|
289 | ) * ddzw(k) & |
---|
290 | - dissipation |
---|
291 | ENDIF |
---|
292 | |
---|
293 | ! |
---|
294 | !-- Prognostic equations for all 1D variables |
---|
295 | DO k = nzb+1, nzt |
---|
296 | |
---|
297 | u1d_p(k) = ( 1. - tsc(1) ) * u1d_m(k) + & |
---|
298 | tsc(1) * u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
299 | tsc(3) * te_um(k) ) |
---|
300 | v1d_p(k) = ( 1. - tsc(1) ) * v1d_m(k) + & |
---|
301 | tsc(1) * v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
302 | tsc(3) * te_vm(k) ) |
---|
303 | |
---|
304 | ENDDO |
---|
305 | IF ( .NOT. constant_diffusion ) THEN |
---|
306 | DO k = nzb+1, nzt |
---|
307 | |
---|
308 | e1d_p(k) = ( 1. - tsc(1) ) * e1d_m(k) + & |
---|
309 | tsc(1) * e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
310 | tsc(3) * te_em(k) ) |
---|
311 | |
---|
312 | ENDDO |
---|
313 | ! |
---|
314 | !-- Eliminate negative TKE values, which can result from the |
---|
315 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
316 | !-- value is reduced to 10 percent of its old value. |
---|
317 | WHERE ( e1d_p < 0.0 ) e1d_p = 0.1 * e1d |
---|
318 | ENDIF |
---|
319 | |
---|
320 | ! |
---|
321 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
322 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
323 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
324 | |
---|
325 | DO k = nzb+1, nzt |
---|
326 | te_um(k) = te_u(k) |
---|
327 | te_vm(k) = te_v(k) |
---|
328 | ENDDO |
---|
329 | |
---|
330 | IF ( .NOT. constant_diffusion ) THEN |
---|
331 | DO k = nzb+1, nzt |
---|
332 | te_em(k) = te_e(k) |
---|
333 | ENDDO |
---|
334 | ENDIF |
---|
335 | |
---|
336 | ELSEIF ( intermediate_timestep_count < & |
---|
337 | intermediate_timestep_count_max ) THEN |
---|
338 | |
---|
339 | DO k = nzb+1, nzt |
---|
340 | te_um(k) = -9.5625 * te_u(k) + 5.3125 * te_um(k) |
---|
341 | te_vm(k) = -9.5625 * te_v(k) + 5.3125 * te_vm(k) |
---|
342 | ENDDO |
---|
343 | |
---|
344 | IF ( .NOT. constant_diffusion ) THEN |
---|
345 | DO k = nzb+1, nzt |
---|
346 | te_em(k) = -9.5625 * te_e(k) + 5.3125 * te_em(k) |
---|
347 | ENDDO |
---|
348 | ENDIF |
---|
349 | |
---|
350 | ENDIF |
---|
351 | ENDIF |
---|
352 | |
---|
353 | |
---|
354 | ! |
---|
355 | !-- Boundary conditions for the prognostic variables. |
---|
356 | !-- At the top boundary (nzt+1) u,v and e keep their initial values |
---|
357 | !-- (ug(nzt+1), vg(nzt+1), 0), at the bottom boundary the mirror |
---|
358 | !-- boundary condition applies to u and v. |
---|
359 | !-- The boundary condition for e is set further below ( (u*/cm)**2 ). |
---|
360 | u1d_p(nzb) = -u1d_p(nzb+1) |
---|
361 | v1d_p(nzb) = -v1d_p(nzb+1) |
---|
362 | |
---|
363 | ! |
---|
364 | !-- If necessary, apply the time filter |
---|
365 | IF ( asselin_filter_factor /= 0.0 .AND. & |
---|
366 | timestep_scheme(1:5) /= 'runge' ) THEN |
---|
367 | |
---|
368 | u1d = u1d + asselin_filter_factor * ( u1d_p - 2.0 * u1d + u1d_m ) |
---|
369 | v1d = v1d + asselin_filter_factor * ( v1d_p - 2.0 * v1d + v1d_m ) |
---|
370 | |
---|
371 | IF ( .NOT. constant_diffusion ) THEN |
---|
372 | e1d = e1d + asselin_filter_factor * & |
---|
373 | ( e1d_p - 2.0 * e1d + e1d_m ) |
---|
374 | ENDIF |
---|
375 | |
---|
376 | ENDIF |
---|
377 | |
---|
378 | ! |
---|
379 | !-- Swap the time levels in preparation for the next time step. |
---|
380 | IF ( timestep_scheme(1:4) == 'leap' ) THEN |
---|
381 | u1d_m = u1d |
---|
382 | v1d_m = v1d |
---|
383 | IF ( .NOT. constant_diffusion ) THEN |
---|
384 | e1d_m = e1d |
---|
385 | kh1d_m = kh1d ! The old diffusion quantities are required for |
---|
386 | km1d_m = km1d ! explicit diffusion in the leap-frog scheme. |
---|
387 | l1d_m = l1d |
---|
388 | IF ( prandtl_layer ) THEN |
---|
389 | usws1d_m = usws1d |
---|
390 | vsws1d_m = vsws1d |
---|
391 | ENDIF |
---|
392 | ENDIF |
---|
393 | ENDIF |
---|
394 | u1d = u1d_p |
---|
395 | v1d = v1d_p |
---|
396 | IF ( .NOT. constant_diffusion ) THEN |
---|
397 | e1d = e1d_p |
---|
398 | ENDIF |
---|
399 | |
---|
400 | ! |
---|
401 | !-- Compute diffusion quantities |
---|
402 | IF ( .NOT. constant_diffusion ) THEN |
---|
403 | |
---|
404 | ! |
---|
405 | !-- First compute the vertical fluxes in the Prandtl-layer |
---|
406 | IF ( prandtl_layer ) THEN |
---|
407 | ! |
---|
408 | !-- Compute theta* using Rif numbers of the previous time step |
---|
409 | IF ( rif1d(1) >= 0.0 ) THEN |
---|
410 | ! |
---|
411 | !-- Stable stratification |
---|
412 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
413 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
414 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
415 | ) |
---|
416 | ELSE |
---|
417 | ! |
---|
418 | !-- Unstable stratification |
---|
419 | a = SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) |
---|
420 | b = SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) * z01d ) |
---|
421 | ! |
---|
422 | !-- In the borderline case the formula for stable stratification |
---|
423 | !-- must be applied, because otherwise a zero division would |
---|
424 | !-- occur in the argument of the logarithm. |
---|
425 | IF ( a == 0.0 .OR. b == 0.0 ) THEN |
---|
426 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
427 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
428 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
429 | ) |
---|
430 | ELSE |
---|
431 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
432 | LOG( (a-1.0) / (a+1.0) * (b+1.0) / (b-1.0) ) |
---|
433 | ENDIF |
---|
434 | ENDIF |
---|
435 | |
---|
436 | ENDIF ! prandtl_layer |
---|
437 | |
---|
438 | ! |
---|
439 | !-- Compute the Richardson-flux numbers, |
---|
440 | !-- first at the top of the Prandtl-layer using u* of the previous |
---|
441 | !-- time step (+1E-30, if u* = 0), then in the remaining area. There |
---|
442 | !-- the rif-numbers of the previous time step are used. |
---|
443 | |
---|
444 | IF ( prandtl_layer ) THEN |
---|
445 | IF ( .NOT. moisture ) THEN |
---|
446 | pt_0 = pt_init(nzb+1) |
---|
447 | flux = ts1d |
---|
448 | ELSE |
---|
449 | pt_0 = pt_init(nzb+1) * ( 1.0 + 0.61 * q_init(nzb+1) ) |
---|
450 | flux = ts1d + 0.61 * pt_init(k) * qs1d |
---|
451 | ENDIF |
---|
452 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
453 | ( pt_0 * ( us1d**2 + 1E-30 ) ) |
---|
454 | ENDIF |
---|
455 | |
---|
456 | DO k = nzb_diff, nzt |
---|
457 | IF ( .NOT. moisture ) THEN |
---|
458 | pt_0 = pt_init(k) |
---|
459 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
460 | ELSE |
---|
461 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
462 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
463 | + 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) )& |
---|
464 | ) * dd2zu(k) |
---|
465 | ENDIF |
---|
466 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
467 | rif1d(k) = g / pt_0 * flux / & |
---|
468 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
469 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
470 | + 1E-30 & |
---|
471 | ) |
---|
472 | ELSE |
---|
473 | rif1d(k) = g / pt_0 * flux / & |
---|
474 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
475 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
476 | + 1E-30 & |
---|
477 | ) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
478 | ENDIF |
---|
479 | ENDDO |
---|
480 | ! |
---|
481 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
482 | !-- range. It is exceeded excessively for very small velocities |
---|
483 | !-- (u,v --> 0). |
---|
484 | WHERE ( rif1d < rif_min ) rif1d = rif_min |
---|
485 | WHERE ( rif1d > rif_max ) rif1d = rif_max |
---|
486 | |
---|
487 | ! |
---|
488 | !-- Compute u* from the absolute velocity value |
---|
489 | IF ( prandtl_layer ) THEN |
---|
490 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
491 | |
---|
492 | IF ( rif1d(nzb+1) >= 0.0 ) THEN |
---|
493 | ! |
---|
494 | !-- Stable stratification |
---|
495 | us1d = kappa * uv_total / ( & |
---|
496 | LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
497 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
498 | ) |
---|
499 | ELSE |
---|
500 | ! |
---|
501 | !-- Unstable stratification |
---|
502 | a = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) ) |
---|
503 | b = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) & |
---|
504 | * z01d ) ) |
---|
505 | ! |
---|
506 | !-- In the borderline case the formula for stable stratification |
---|
507 | !-- must be applied, because otherwise a zero division would |
---|
508 | !-- occur in the argument of the logarithm. |
---|
509 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
510 | us1d = kappa * uv_total / ( & |
---|
511 | LOG( zu(nzb+1) / z01d ) + & |
---|
512 | 5.0 * rif1d(nzb+1) * ( zu(nzb+1) - z01d ) / & |
---|
513 | zu(nzb+1) ) |
---|
514 | ELSE |
---|
515 | us1d = kappa * uv_total / ( & |
---|
516 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) +& |
---|
517 | 2.0 * ( ATAN( b ) - ATAN( a ) ) & |
---|
518 | ) |
---|
519 | ENDIF |
---|
520 | ENDIF |
---|
521 | |
---|
522 | ! |
---|
523 | !-- Compute the momentum fluxes for the diffusion terms |
---|
524 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
525 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
526 | |
---|
527 | ! |
---|
528 | !-- Boundary condition for the turbulent kinetic energy at the top |
---|
529 | !-- of the Prandtl-layer. c_m = 0.4 according to Detering. |
---|
530 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
531 | !-- compatibility with the 3D model. |
---|
532 | IF ( ibc_e_b == 2 ) THEN |
---|
533 | e1d(nzb+1) = ( us1d / 0.1 )**2 |
---|
534 | ! e1d(nzb+1) = ( us1d / 0.4 )**2 !not used so far, see also |
---|
535 | !prandtl_fluxes |
---|
536 | ENDIF |
---|
537 | e1d(nzb) = e1d(nzb+1) |
---|
538 | |
---|
539 | IF ( moisture .OR. passive_scalar ) THEN |
---|
540 | ! |
---|
541 | !-- Compute q* |
---|
542 | IF ( rif1d(1) >= 0.0 ) THEN |
---|
543 | ! |
---|
544 | !-- Stable stratification |
---|
545 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
546 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
547 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
548 | ) |
---|
549 | ELSE |
---|
550 | ! |
---|
551 | !-- Unstable stratification |
---|
552 | a = SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) |
---|
553 | b = SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) * z01d ) |
---|
554 | ! |
---|
555 | !-- In the borderline case the formula for stable stratification |
---|
556 | !-- must be applied, because otherwise a zero division would |
---|
557 | !-- occur in the argument of the logarithm. |
---|
558 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
559 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
560 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
561 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
562 | ) |
---|
563 | ELSE |
---|
564 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
565 | LOG( (a-1.0) / (a+1.0) * (b+1.0) / (b-1.0) ) |
---|
566 | ENDIF |
---|
567 | ENDIF |
---|
568 | ELSE |
---|
569 | qs1d = 0.0 |
---|
570 | ENDIF |
---|
571 | |
---|
572 | ENDIF ! prandtl_layer |
---|
573 | |
---|
574 | ! |
---|
575 | !-- Compute the diabatic mixing length |
---|
576 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
577 | DO k = nzb+1, nzt |
---|
578 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
579 | l1d(k) = l_black(k) / ( 1.0 + 5.0 * rif1d(k) ) |
---|
580 | ELSE |
---|
581 | l1d(k) = l_black(k) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
582 | ENDIF |
---|
583 | l1d(k) = l_black(k) |
---|
584 | ENDDO |
---|
585 | |
---|
586 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
587 | DO k = nzb+1, nzt |
---|
588 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
589 | IF ( dpt_dz > 0.0 ) THEN |
---|
590 | l_stable = 0.76 * SQRT( e1d(k) ) / & |
---|
591 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5 |
---|
592 | ELSE |
---|
593 | l_stable = l_grid(k) |
---|
594 | ENDIF |
---|
595 | l1d(k) = MIN( l_grid(k), l_stable ) |
---|
596 | ENDDO |
---|
597 | ENDIF |
---|
598 | |
---|
599 | ! |
---|
600 | !-- Adjust mixing length to the prandtl mixing length |
---|
601 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
602 | k = nzb+1 |
---|
603 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
604 | l1d(k) = MIN( l1d(k), kappa * zu(k) / ( 1.0 + 5.0 * & |
---|
605 | rif1d(k) ) ) |
---|
606 | ELSE |
---|
607 | l1d(k) = MIN( l1d(k), kappa * zu(k) * & |
---|
608 | SQRT( SQRT( 1.0 - 16.0 * rif1d(k) ) ) ) |
---|
609 | ENDIF |
---|
610 | ENDIF |
---|
611 | |
---|
612 | ! |
---|
613 | !-- Compute the diffusion coefficients for momentum via the |
---|
614 | !-- corresponding Prandtl-layer relationship and according to |
---|
615 | !-- Prandtl-Kolmogorov, respectively. The unstable stratification is |
---|
616 | !-- computed via the adiabatic mixing length, for the unstability has |
---|
617 | !-- already been taken account of via the TKE (cf. also Diss.). |
---|
618 | IF ( prandtl_layer ) THEN |
---|
619 | IF ( rif1d(nzb+1) >= 0.0 ) THEN |
---|
620 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
621 | ( 1.0 + 5.0 * rif1d(nzb+1) ) |
---|
622 | ELSE |
---|
623 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
624 | ( 1.0 - 16.0 * rif1d(nzb+1) )**0.25 |
---|
625 | ENDIF |
---|
626 | ENDIF |
---|
627 | DO k = nzb_diff, nzt |
---|
628 | ! km1d(k) = 0.4 * SQRT( e1d(k) ) !changed: adjustment to 3D-model |
---|
629 | km1d(k) = 0.1 * SQRT( e1d(k) ) |
---|
630 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
631 | km1d(k) = km1d(k) * l1d(k) |
---|
632 | ELSE |
---|
633 | km1d(k) = km1d(k) * l_black(k) |
---|
634 | ENDIF |
---|
635 | ENDDO |
---|
636 | |
---|
637 | ! |
---|
638 | !-- Add damping layer |
---|
639 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
640 | km1d(k) = 1.1 * km1d(k-1) |
---|
641 | km1d(k) = MIN( km1d(k), 10.0 ) |
---|
642 | ENDDO |
---|
643 | |
---|
644 | ! |
---|
645 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
646 | !-- kh = phim / phih * km |
---|
647 | DO k = nzb+1, nzt |
---|
648 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
649 | kh1d(k) = km1d(k) |
---|
650 | ELSE |
---|
651 | kh1d(k) = km1d(k) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
652 | ENDIF |
---|
653 | ENDDO |
---|
654 | |
---|
655 | ENDIF ! .NOT. constant_diffusion |
---|
656 | |
---|
657 | ! |
---|
658 | !-- The Runge-Kutta scheme needs the recent diffusion quantities |
---|
659 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
660 | u1d_m = u1d |
---|
661 | v1d_m = v1d |
---|
662 | IF ( .NOT. constant_diffusion ) THEN |
---|
663 | e1d_m = e1d |
---|
664 | kh1d_m = kh1d |
---|
665 | km1d_m = km1d |
---|
666 | l1d_m = l1d |
---|
667 | IF ( prandtl_layer ) THEN |
---|
668 | usws1d_m = usws1d |
---|
669 | vsws1d_m = vsws1d |
---|
670 | ENDIF |
---|
671 | ENDIF |
---|
672 | ENDIF |
---|
673 | |
---|
674 | |
---|
675 | ENDDO ! intermediate step loop |
---|
676 | |
---|
677 | ! |
---|
678 | !-- Increment simulated time and output times |
---|
679 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
680 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
681 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
682 | time_pr_1d = time_pr_1d + dt_1d |
---|
683 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
684 | |
---|
685 | ! |
---|
686 | !-- Determine and print out quantities for run control |
---|
687 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
688 | CALL run_control_1d |
---|
689 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
690 | ENDIF |
---|
691 | |
---|
692 | ! |
---|
693 | !-- Profile output on file |
---|
694 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
695 | CALL print_1d_model |
---|
696 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
697 | ENDIF |
---|
698 | |
---|
699 | ! |
---|
700 | !-- Determine size of next time step |
---|
701 | CALL timestep_1d |
---|
702 | |
---|
703 | ENDDO ! time loop |
---|
704 | |
---|
705 | |
---|
706 | END SUBROUTINE time_integration_1d |
---|
707 | |
---|
708 | |
---|
709 | SUBROUTINE run_control_1d |
---|
710 | |
---|
711 | !------------------------------------------------------------------------------! |
---|
712 | ! Description: |
---|
713 | ! ------------ |
---|
714 | ! Compute and print out quantities for run control of the 1D model. |
---|
715 | !------------------------------------------------------------------------------! |
---|
716 | |
---|
717 | USE constants |
---|
718 | USE indices |
---|
719 | USE model_1d |
---|
720 | USE pegrid |
---|
721 | USE control_parameters |
---|
722 | |
---|
723 | IMPLICIT NONE |
---|
724 | |
---|
725 | INTEGER :: k |
---|
726 | REAL :: alpha, energy, umax, uv_total, vmax |
---|
727 | |
---|
728 | ! |
---|
729 | !-- Output |
---|
730 | IF ( myid == 0 ) THEN |
---|
731 | ! |
---|
732 | !-- If necessary, write header |
---|
733 | IF ( .NOT. run_control_header_1d ) THEN |
---|
734 | WRITE ( 15, 100 ) |
---|
735 | run_control_header_1d = .TRUE. |
---|
736 | ENDIF |
---|
737 | |
---|
738 | ! |
---|
739 | !-- Compute control quantities |
---|
740 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
741 | umax = 0.0; vmax = 0.0; energy = 0.0 |
---|
742 | DO k = nzb+1, nzt+1 |
---|
743 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
744 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
745 | energy = energy + 0.5 * ( u1d(k)**2 + v1d(k)**2 ) |
---|
746 | ENDDO |
---|
747 | energy = energy / REAL( nzt - nzb + 1 ) |
---|
748 | |
---|
749 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
750 | IF ( ABS( v1d(nzb+1) ) .LT. 1.0E-5 ) THEN |
---|
751 | alpha = ACOS( SIGN( 1.0 , u1d(nzb+1) ) ) |
---|
752 | ELSE |
---|
753 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
754 | IF ( v1d(nzb+1) <= 0.0 ) alpha = 2.0 * pi - alpha |
---|
755 | ENDIF |
---|
756 | alpha = alpha / ( 2.0 * pi ) * 360.0 |
---|
757 | |
---|
758 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
759 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
760 | #if defined( __ibm ) |
---|
761 | ! |
---|
762 | !-- Write buffer contents to disc immediately |
---|
763 | CALL FLUSH_( 15 ) |
---|
764 | #elif defined( __lcmuk ) || defined( __lctit ) || defined( __nec ) |
---|
765 | CALL FLUSH( 15 ) |
---|
766 | #endif |
---|
767 | |
---|
768 | ENDIF |
---|
769 | |
---|
770 | ! |
---|
771 | !-- formats |
---|
772 | 100 FORMAT (///'1D-Zeitschrittkontrollausgaben:'/ & |
---|
773 | &'------------------------------'// & |
---|
774 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
775 | &'-------------------------------------------------------------') |
---|
776 | 101 FORMAT (I5,2X,A9,1X,F6.2,2X,F6.2,1X,F6.2,2X,F5.3,2X,F5.1,2X,F7.2) |
---|
777 | |
---|
778 | |
---|
779 | END SUBROUTINE run_control_1d |
---|
780 | |
---|
781 | |
---|
782 | |
---|
783 | SUBROUTINE timestep_1d |
---|
784 | |
---|
785 | !------------------------------------------------------------------------------! |
---|
786 | ! Description: |
---|
787 | ! ------------ |
---|
788 | ! Compute the time step w.r.t. the diffusion criterion |
---|
789 | !------------------------------------------------------------------------------! |
---|
790 | |
---|
791 | USE arrays_3d |
---|
792 | USE indices |
---|
793 | USE model_1d |
---|
794 | USE pegrid |
---|
795 | USE control_parameters |
---|
796 | |
---|
797 | IMPLICIT NONE |
---|
798 | |
---|
799 | INTEGER :: k |
---|
800 | REAL :: div, dt_diff, fac, percent_change, value |
---|
801 | |
---|
802 | |
---|
803 | ! |
---|
804 | !-- Compute the currently feasible time step according to the diffusion |
---|
805 | !-- criterion. At nzb+1 the half grid length is used. |
---|
806 | IF ( timestep_scheme(1:4) == 'leap' ) THEN |
---|
807 | fac = 0.25 |
---|
808 | ELSE |
---|
809 | fac = 0.35 |
---|
810 | ENDIF |
---|
811 | dt_diff = dt_max_1d |
---|
812 | DO k = nzb+2, nzt |
---|
813 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20 ) |
---|
814 | dt_diff = MIN( value, dt_diff ) |
---|
815 | ENDDO |
---|
816 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20 ) |
---|
817 | dt_1d = MIN( value, dt_diff ) |
---|
818 | |
---|
819 | ! |
---|
820 | !-- Set flag when the time step becomes too small |
---|
821 | IF ( dt_1d < ( 0.00001 * dt_max_1d ) ) THEN |
---|
822 | stop_dt_1d = .TRUE. |
---|
823 | IF ( myid == 0 ) THEN |
---|
824 | PRINT*,'+++ timestep_1d: timestep has exceeded the lower limit' |
---|
825 | PRINT*,' dt_1d = ',dt_1d,' s simulation stopped!' |
---|
826 | ENDIF |
---|
827 | CALL local_stop |
---|
828 | ENDIF |
---|
829 | |
---|
830 | IF ( timestep_scheme(1:4) == 'leap' ) THEN |
---|
831 | |
---|
832 | ! |
---|
833 | !-- The current time step will only be changed if the new time step exceeds |
---|
834 | !-- its previous value by 5 % or falls 2 % below. After a time step |
---|
835 | !-- reduction at least 30 iterations must be done with this value before a |
---|
836 | !-- new reduction will be allowed again. |
---|
837 | !-- The control parameters for application of Euler- or leap-frog schemes are |
---|
838 | !-- set accordingly. |
---|
839 | percent_change = dt_1d / old_dt_1d - 1.0 |
---|
840 | IF ( percent_change > 0.05 .OR. percent_change < -0.02 ) THEN |
---|
841 | |
---|
842 | ! |
---|
843 | !-- Each time step increase is by at most 2 % |
---|
844 | IF ( percent_change > 0.0 .AND. simulated_time_1d /= 0.0 ) THEN |
---|
845 | dt_1d = 1.02 * old_dt_1d |
---|
846 | ENDIF |
---|
847 | |
---|
848 | ! |
---|
849 | !-- A more or less simple new time step value is obtained taking only the |
---|
850 | !-- first two significant digits |
---|
851 | div = 1000.0 |
---|
852 | DO WHILE ( dt_1d < div ) |
---|
853 | div = div / 10.0 |
---|
854 | ENDDO |
---|
855 | dt_1d = NINT( dt_1d * 100.0 / div ) * div / 100.0 |
---|
856 | |
---|
857 | ! |
---|
858 | !-- Now the time step can be changed. |
---|
859 | IF ( percent_change < 0.0 ) THEN |
---|
860 | ! |
---|
861 | !-- Time step reduction |
---|
862 | old_dt_1d = dt_1d |
---|
863 | last_dt_change_1d = current_timestep_number_1d |
---|
864 | ELSE |
---|
865 | ! |
---|
866 | !-- Time step will only be increased if at least 30 iterations have |
---|
867 | !-- been done since the previous time step change, and of course at |
---|
868 | !-- simulation start, respectively. |
---|
869 | IF ( current_timestep_number_1d >= last_dt_change_1d + 30 .OR. & |
---|
870 | simulated_time_1d == 0.0 ) THEN |
---|
871 | old_dt_1d = dt_1d |
---|
872 | last_dt_change_1d = current_timestep_number_1d |
---|
873 | ELSE |
---|
874 | dt_1d = old_dt_1d |
---|
875 | ENDIF |
---|
876 | ENDIF |
---|
877 | ELSE |
---|
878 | ! |
---|
879 | !-- No time step change since the difference is too small |
---|
880 | dt_1d = old_dt_1d |
---|
881 | ENDIF |
---|
882 | |
---|
883 | ELSE ! Runge-Kutta |
---|
884 | |
---|
885 | !-- A more or less simple new time step value is obtained taking only the |
---|
886 | !-- first two significant digits |
---|
887 | div = 1000.0 |
---|
888 | DO WHILE ( dt_1d < div ) |
---|
889 | div = div / 10.0 |
---|
890 | ENDDO |
---|
891 | dt_1d = NINT( dt_1d * 100.0 / div ) * div / 100.0 |
---|
892 | |
---|
893 | old_dt_1d = dt_1d |
---|
894 | last_dt_change_1d = current_timestep_number_1d |
---|
895 | |
---|
896 | ENDIF |
---|
897 | |
---|
898 | END SUBROUTINE timestep_1d |
---|
899 | |
---|
900 | |
---|
901 | |
---|
902 | SUBROUTINE print_1d_model |
---|
903 | |
---|
904 | !------------------------------------------------------------------------------! |
---|
905 | ! Description: |
---|
906 | ! ------------ |
---|
907 | ! List output of profiles from the 1D-model |
---|
908 | !------------------------------------------------------------------------------! |
---|
909 | |
---|
910 | USE arrays_3d |
---|
911 | USE indices |
---|
912 | USE model_1d |
---|
913 | USE pegrid |
---|
914 | USE control_parameters |
---|
915 | |
---|
916 | IMPLICIT NONE |
---|
917 | |
---|
918 | |
---|
919 | INTEGER :: k |
---|
920 | |
---|
921 | |
---|
922 | IF ( myid == 0 ) THEN |
---|
923 | ! |
---|
924 | !-- Open list output file for profiles from the 1D-model |
---|
925 | CALL check_open( 17 ) |
---|
926 | |
---|
927 | ! |
---|
928 | !-- Write Header |
---|
929 | WRITE ( 17, 100 ) TRIM( run_description_header ), & |
---|
930 | TRIM( simulated_time_chr ) |
---|
931 | WRITE ( 17, 101 ) |
---|
932 | |
---|
933 | ! |
---|
934 | !-- Write the values |
---|
935 | WRITE ( 17, 102 ) |
---|
936 | WRITE ( 17, 101 ) |
---|
937 | DO k = nzt+1, nzb, -1 |
---|
938 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
939 | rif1d(k), km1d(k), kh1d(k), l1d(k), zu(k), k |
---|
940 | ENDDO |
---|
941 | WRITE ( 17, 101 ) |
---|
942 | WRITE ( 17, 102 ) |
---|
943 | WRITE ( 17, 101 ) |
---|
944 | |
---|
945 | #if defined( __ibm ) |
---|
946 | ! |
---|
947 | !-- Write buffer contents to disc immediately |
---|
948 | CALL FLUSH_( 17 ) |
---|
949 | #elif defined( __lcmuk ) || defined( __lctit ) || defined( __nec ) |
---|
950 | CALL FLUSH( 17 ) |
---|
951 | #endif |
---|
952 | |
---|
953 | ENDIF |
---|
954 | |
---|
955 | ! |
---|
956 | !-- Formats |
---|
957 | 100 FORMAT (//1X,A/1X,10('-')/' 1d-model profiles'/ & |
---|
958 | ' Time: ',A) |
---|
959 | 101 FORMAT (1X,79('-')) |
---|
960 | 102 FORMAT (' k zu u v pt e rif Km Kh ', & |
---|
961 | 'l zu k') |
---|
962 | 103 FORMAT (1X,I4,1X,F7.1,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F5.2,1X,F5.2, & |
---|
963 | 1X,F5.2,1X,F6.2,1X,F7.1,2X,I4) |
---|
964 | |
---|
965 | |
---|
966 | END SUBROUTINE print_1d_model |
---|