[1682] | 1 | !> @file init_1d_model.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1818] | 17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1961] | 22 | ! |
---|
[2060] | 23 | ! |
---|
[1961] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_1d_model.f90 2060 2016-11-10 14:21:22Z maronga $ |
---|
| 27 | ! |
---|
[2060] | 28 | ! 2059 2016-11-10 14:20:40Z maronga |
---|
| 29 | ! Corrected min/max values of Rif. |
---|
| 30 | ! |
---|
[2001] | 31 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 32 | ! Forced header and separation lines into 80 columns |
---|
| 33 | ! |
---|
[1961] | 34 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
[1960] | 35 | ! Remove passive_scalar from IF-statements, as 1D-scalar profile is effectively |
---|
| 36 | ! not used. |
---|
| 37 | ! Formatting adjustment |
---|
[1809] | 38 | ! |
---|
| 39 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 40 | ! routine local_flush replaced by FORTRAN statement |
---|
| 41 | ! |
---|
[1710] | 42 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 43 | ! Set initial time step to 10 s to avoid instability of the 1d model for small |
---|
| 44 | ! grid spacings |
---|
| 45 | ! |
---|
[1698] | 46 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 47 | ! small E- and F-FORMAT changes to avoid informative compiler messages about |
---|
| 48 | ! insufficient field width |
---|
| 49 | ! |
---|
[1692] | 50 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 51 | ! Renamed prandtl_layer to constant_flux_layer. rif is replaced by ol and zeta. |
---|
| 52 | ! |
---|
[1683] | 53 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 54 | ! Code annotations made doxygen readable |
---|
| 55 | ! |
---|
[1354] | 56 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 57 | ! REAL constants provided with KIND-attribute |
---|
| 58 | ! |
---|
[1347] | 59 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 60 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 61 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 62 | ! |
---|
[1323] | 63 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 64 | ! REAL functions provided with KIND-attribute |
---|
| 65 | ! |
---|
[1321] | 66 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 67 | ! ONLY-attribute added to USE-statements, |
---|
| 68 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 69 | ! kinds are defined in new module kinds, |
---|
| 70 | ! revision history before 2012 removed, |
---|
| 71 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 72 | ! all variable declaration statements |
---|
[1321] | 73 | ! |
---|
[1037] | 74 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 75 | ! code put under GPL (PALM 3.9) |
---|
| 76 | ! |
---|
[1017] | 77 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 78 | ! adjustment of mixing length to the Prandtl mixing length at first grid point |
---|
| 79 | ! above ground removed |
---|
| 80 | ! |
---|
[1002] | 81 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 82 | ! all actions concerning leapfrog scheme removed |
---|
| 83 | ! |
---|
[997] | 84 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 85 | ! little reformatting |
---|
| 86 | ! |
---|
[979] | 87 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 88 | ! roughness length for scalar quantities z0h1d added |
---|
| 89 | ! |
---|
[1] | 90 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 91 | ! Initial revision |
---|
| 92 | ! |
---|
| 93 | ! |
---|
| 94 | ! Description: |
---|
| 95 | ! ------------ |
---|
[1682] | 96 | !> 1D-model to initialize the 3D-arrays. |
---|
| 97 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
| 98 | !> of the wind profile is being computed. |
---|
| 99 | !> All subroutines required can be found within this file. |
---|
[1691] | 100 | !> |
---|
| 101 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
[1709] | 102 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
[1] | 103 | !------------------------------------------------------------------------------! |
---|
[1682] | 104 | SUBROUTINE init_1d_model |
---|
| 105 | |
---|
[1] | 106 | |
---|
[1320] | 107 | USE arrays_3d, & |
---|
| 108 | ONLY: l_grid, ug, u_init, vg, v_init, zu |
---|
| 109 | |
---|
| 110 | USE indices, & |
---|
| 111 | ONLY: nzb, nzt |
---|
| 112 | |
---|
| 113 | USE kinds |
---|
| 114 | |
---|
| 115 | USE model_1d, & |
---|
| 116 | ONLY: e1d, e1d_p, kh1d, km1d, l1d, l_black, qs1d, rif1d, & |
---|
| 117 | simulated_time_1d, te_e, te_em, te_u, te_um, te_v, te_vm, ts1d, & |
---|
| 118 | u1d, u1d_p, us1d, usws1d, v1d, v1d_p, vsws1d, z01d, z0h1d |
---|
| 119 | |
---|
| 120 | USE control_parameters, & |
---|
[1691] | 121 | ONLY: constant_diffusion, constant_flux_layer, f, humidity, kappa, & |
---|
[1960] | 122 | km_constant, mixing_length_1d, prandtl_number, & |
---|
[1691] | 123 | roughness_length, simulated_time_chr, z0h_factor |
---|
[1] | 124 | |
---|
| 125 | IMPLICIT NONE |
---|
| 126 | |
---|
[1682] | 127 | CHARACTER (LEN=9) :: time_to_string !< |
---|
[1320] | 128 | |
---|
[1682] | 129 | INTEGER(iwp) :: k !< |
---|
[1320] | 130 | |
---|
[1682] | 131 | REAL(wp) :: lambda !< |
---|
[1] | 132 | |
---|
| 133 | ! |
---|
| 134 | !-- Allocate required 1D-arrays |
---|
[1320] | 135 | ALLOCATE( e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), & |
---|
| 136 | kh1d(nzb:nzt+1), km1d(nzb:nzt+1), & |
---|
| 137 | l_black(nzb:nzt+1), l1d(nzb:nzt+1), & |
---|
| 138 | rif1d(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
| 139 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 140 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 141 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), & |
---|
[1001] | 142 | v1d_p(nzb:nzt+1) ) |
---|
[1] | 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Initialize arrays |
---|
| 146 | IF ( constant_diffusion ) THEN |
---|
[1001] | 147 | km1d = km_constant |
---|
| 148 | kh1d = km_constant / prandtl_number |
---|
[1] | 149 | ELSE |
---|
[1353] | 150 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 151 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
| 152 | rif1d = 0.0_wp |
---|
[1] | 153 | ! |
---|
| 154 | !-- Compute the mixing length |
---|
[1353] | 155 | l_black(nzb) = 0.0_wp |
---|
[1] | 156 | |
---|
| 157 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 158 | ! |
---|
| 159 | !-- Blackadar mixing length |
---|
[1353] | 160 | IF ( f /= 0.0_wp ) THEN |
---|
| 161 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
| 162 | ABS( f ) + 1E-10_wp |
---|
[1] | 163 | ELSE |
---|
[1353] | 164 | lambda = 30.0_wp |
---|
[1] | 165 | ENDIF |
---|
| 166 | |
---|
| 167 | DO k = nzb+1, nzt+1 |
---|
[1353] | 168 | l_black(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 169 | ENDDO |
---|
| 170 | |
---|
| 171 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 172 | ! |
---|
| 173 | !-- Use the same mixing length as in 3D model |
---|
| 174 | l_black(1:nzt) = l_grid |
---|
| 175 | l_black(nzt+1) = l_black(nzt) |
---|
| 176 | |
---|
| 177 | ENDIF |
---|
| 178 | ENDIF |
---|
| 179 | l1d = l_black |
---|
| 180 | u1d = u_init |
---|
| 181 | u1d_p = u_init |
---|
| 182 | v1d = v_init |
---|
| 183 | v1d_p = v_init |
---|
| 184 | |
---|
| 185 | ! |
---|
| 186 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 187 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 188 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
[1353] | 189 | u1d(0:1) = 0.1_wp |
---|
| 190 | u1d_p(0:1) = 0.1_wp |
---|
| 191 | v1d(0:1) = 0.1_wp |
---|
| 192 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 193 | |
---|
| 194 | ! |
---|
| 195 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
[1691] | 196 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 197 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 198 | ELSE |
---|
[1353] | 199 | e1d(nzb+1) = 1.0_wp |
---|
| 200 | km1d(nzb+1) = 1.0_wp |
---|
| 201 | us1d = 0.0_wp |
---|
[1] | 202 | ENDIF |
---|
[1353] | 203 | ts1d = 0.0_wp |
---|
| 204 | usws1d = 0.0_wp |
---|
| 205 | vsws1d = 0.0_wp |
---|
[996] | 206 | z01d = roughness_length |
---|
[978] | 207 | z0h1d = z0h_factor * z01d |
---|
[1960] | 208 | IF ( humidity ) qs1d = 0.0_wp |
---|
[1] | 209 | |
---|
| 210 | ! |
---|
[46] | 211 | !-- Tendencies must be preset in order to avoid runtime errors within the |
---|
| 212 | !-- first Runge-Kutta step |
---|
[1353] | 213 | te_em = 0.0_wp |
---|
| 214 | te_um = 0.0_wp |
---|
| 215 | te_vm = 0.0_wp |
---|
[46] | 216 | |
---|
| 217 | ! |
---|
[1] | 218 | !-- Set start time in hh:mm:ss - format |
---|
| 219 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- Integrate the 1D-model equations using the leap-frog scheme |
---|
| 223 | CALL time_integration_1d |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | END SUBROUTINE init_1d_model |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | !------------------------------------------------------------------------------! |
---|
| 231 | ! Description: |
---|
| 232 | ! ------------ |
---|
[1682] | 233 | !> Leap-frog time differencing scheme for the 1D-model. |
---|
[1] | 234 | !------------------------------------------------------------------------------! |
---|
[1682] | 235 | |
---|
| 236 | SUBROUTINE time_integration_1d |
---|
[1] | 237 | |
---|
[1682] | 238 | |
---|
[1320] | 239 | USE arrays_3d, & |
---|
| 240 | ONLY: dd2zu, ddzu, ddzw, l_grid, pt_init, q_init, ug, vg, zu |
---|
| 241 | |
---|
| 242 | USE control_parameters, & |
---|
[1691] | 243 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, & |
---|
| 244 | humidity, intermediate_timestep_count, & |
---|
| 245 | intermediate_timestep_count_max, f, g, ibc_e_b, kappa, & |
---|
[1960] | 246 | mixing_length_1d, & |
---|
[2059] | 247 | simulated_time_chr, timestep_scheme, tsc |
---|
[1320] | 248 | |
---|
| 249 | USE indices, & |
---|
| 250 | ONLY: nzb, nzb_diff, nzt |
---|
| 251 | |
---|
| 252 | USE kinds |
---|
| 253 | |
---|
| 254 | USE model_1d, & |
---|
| 255 | ONLY: current_timestep_number_1d, damp_level_ind_1d, dt_1d, & |
---|
| 256 | dt_pr_1d, dt_run_control_1d, e1d, e1d_p, end_time_1d, & |
---|
| 257 | kh1d, km1d, l1d, l_black, qs1d, rif1d, simulated_time_1d, & |
---|
| 258 | stop_dt_1d, te_e, te_em, te_u, te_um, te_v, te_vm, time_pr_1d, & |
---|
| 259 | ts1d, time_run_control_1d, u1d, u1d_p, us1d, usws1d, v1d, & |
---|
| 260 | v1d_p, vsws1d, z01d, z0h1d |
---|
| 261 | |
---|
[1] | 262 | USE pegrid |
---|
| 263 | |
---|
| 264 | IMPLICIT NONE |
---|
| 265 | |
---|
[1682] | 266 | CHARACTER (LEN=9) :: time_to_string !< |
---|
[1320] | 267 | |
---|
[1682] | 268 | INTEGER(iwp) :: k !< |
---|
[1320] | 269 | |
---|
[1682] | 270 | REAL(wp) :: a !< |
---|
| 271 | REAL(wp) :: b !< |
---|
| 272 | REAL(wp) :: dissipation !< |
---|
| 273 | REAL(wp) :: dpt_dz !< |
---|
| 274 | REAL(wp) :: flux !< |
---|
| 275 | REAL(wp) :: kmzm !< |
---|
| 276 | REAL(wp) :: kmzp !< |
---|
| 277 | REAL(wp) :: l_stable !< |
---|
| 278 | REAL(wp) :: pt_0 !< |
---|
| 279 | REAL(wp) :: uv_total !< |
---|
[1] | 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 283 | !-- determine and printout quantities used for run control |
---|
[1709] | 284 | dt_1d = 10.0_wp |
---|
[1] | 285 | CALL run_control_1d |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- Start of time loop |
---|
| 289 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 293 | !-- timesteps |
---|
| 294 | |
---|
| 295 | intermediate_timestep_count = 0 |
---|
| 296 | DO WHILE ( intermediate_timestep_count < & |
---|
| 297 | intermediate_timestep_count_max ) |
---|
| 298 | |
---|
| 299 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 300 | |
---|
| 301 | CALL timestep_scheme_steering |
---|
| 302 | |
---|
| 303 | ! |
---|
| 304 | !-- Compute all tendency terms. If a Prandtl-layer is simulated, k starts |
---|
| 305 | !-- at nzb+2. |
---|
| 306 | DO k = nzb_diff, nzt |
---|
| 307 | |
---|
[1353] | 308 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 309 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 310 | ! |
---|
| 311 | !-- u-component |
---|
| 312 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
[1001] | 313 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 314 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
| 315 | ) * ddzw(k) |
---|
[1] | 316 | ! |
---|
| 317 | !-- v-component |
---|
[1001] | 318 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 319 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 320 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
| 321 | ) * ddzw(k) |
---|
[1] | 322 | ENDDO |
---|
| 323 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 324 | DO k = nzb_diff, nzt |
---|
| 325 | ! |
---|
| 326 | !-- TKE |
---|
[1353] | 327 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 328 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 329 | IF ( .NOT. humidity ) THEN |
---|
[1] | 330 | pt_0 = pt_init(k) |
---|
| 331 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 332 | ELSE |
---|
[1353] | 333 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 334 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 335 | 0.61_wp * pt_init(k) * & |
---|
| 336 | ( q_init(k+1) - q_init(k-1) ) ) * dd2zu(k) |
---|
[1] | 337 | ENDIF |
---|
| 338 | |
---|
| 339 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 340 | ! |
---|
| 341 | !-- According to Detering, c_e=0.064 |
---|
[1353] | 342 | dissipation = 0.064_wp * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 343 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[1353] | 344 | dissipation = ( 0.19_wp + 0.74_wp * l1d(k) / l_grid(k) ) & |
---|
[1001] | 345 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 346 | ENDIF |
---|
| 347 | |
---|
| 348 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 349 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 350 | ) & |
---|
| 351 | - g / pt_0 * kh1d(k) * flux & |
---|
| 352 | + ( & |
---|
[1001] | 353 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 354 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 355 | ) * ddzw(k) & |
---|
[1001] | 356 | - dissipation |
---|
[1] | 357 | ENDDO |
---|
| 358 | ENDIF |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- Tendency terms at the top of the Prandtl-layer. |
---|
| 362 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 363 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
[1691] | 364 | IF ( constant_flux_layer ) THEN |
---|
[1] | 365 | |
---|
| 366 | k = nzb+1 |
---|
[1353] | 367 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 368 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 369 | IF ( .NOT. humidity ) THEN |
---|
[1] | 370 | pt_0 = pt_init(k) |
---|
| 371 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 372 | ELSE |
---|
[1353] | 373 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 374 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 375 | 0.61_wp * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
[1] | 376 | ) * dd2zu(k) |
---|
| 377 | ENDIF |
---|
| 378 | |
---|
| 379 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 380 | ! |
---|
| 381 | !-- According to Detering, c_e=0.064 |
---|
[1353] | 382 | dissipation = 0.064_wp * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 383 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[1353] | 384 | dissipation = ( 0.19_wp + 0.74_wp * l1d(k) / l_grid(k) ) & |
---|
[1001] | 385 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 386 | ENDIF |
---|
| 387 | |
---|
| 388 | ! |
---|
| 389 | !-- u-component |
---|
[1001] | 390 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 391 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 392 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 393 | ! |
---|
| 394 | !-- v-component |
---|
[1001] | 395 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 396 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 397 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 398 | ! |
---|
| 399 | !-- TKE |
---|
| 400 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 401 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 402 | ) & |
---|
| 403 | - g / pt_0 * kh1d(k) * flux & |
---|
| 404 | + ( & |
---|
[1001] | 405 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 406 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 407 | ) * ddzw(k) & |
---|
[1001] | 408 | - dissipation |
---|
[1] | 409 | ENDIF |
---|
| 410 | |
---|
| 411 | ! |
---|
| 412 | !-- Prognostic equations for all 1D variables |
---|
| 413 | DO k = nzb+1, nzt |
---|
| 414 | |
---|
[1001] | 415 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 416 | tsc(3) * te_um(k) ) |
---|
| 417 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 418 | tsc(3) * te_vm(k) ) |
---|
[1] | 419 | |
---|
| 420 | ENDDO |
---|
| 421 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 422 | DO k = nzb+1, nzt |
---|
| 423 | |
---|
[1001] | 424 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 425 | tsc(3) * te_em(k) ) |
---|
[1] | 426 | |
---|
| 427 | ENDDO |
---|
| 428 | ! |
---|
| 429 | !-- Eliminate negative TKE values, which can result from the |
---|
| 430 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 431 | !-- value is reduced to 10 percent of its old value. |
---|
[1353] | 432 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[1] | 433 | ENDIF |
---|
| 434 | |
---|
| 435 | ! |
---|
| 436 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 437 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 438 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 439 | |
---|
| 440 | DO k = nzb+1, nzt |
---|
| 441 | te_um(k) = te_u(k) |
---|
| 442 | te_vm(k) = te_v(k) |
---|
| 443 | ENDDO |
---|
| 444 | |
---|
| 445 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 446 | DO k = nzb+1, nzt |
---|
| 447 | te_em(k) = te_e(k) |
---|
| 448 | ENDDO |
---|
| 449 | ENDIF |
---|
| 450 | |
---|
| 451 | ELSEIF ( intermediate_timestep_count < & |
---|
| 452 | intermediate_timestep_count_max ) THEN |
---|
| 453 | |
---|
| 454 | DO k = nzb+1, nzt |
---|
[1353] | 455 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 456 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 457 | ENDDO |
---|
| 458 | |
---|
| 459 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 460 | DO k = nzb+1, nzt |
---|
[1353] | 461 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 462 | ENDDO |
---|
| 463 | ENDIF |
---|
| 464 | |
---|
| 465 | ENDIF |
---|
| 466 | ENDIF |
---|
| 467 | |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Boundary conditions for the prognostic variables. |
---|
| 471 | !-- At the top boundary (nzt+1) u,v and e keep their initial values |
---|
| 472 | !-- (ug(nzt+1), vg(nzt+1), 0), at the bottom boundary the mirror |
---|
| 473 | !-- boundary condition applies to u and v. |
---|
| 474 | !-- The boundary condition for e is set further below ( (u*/cm)**2 ). |
---|
[667] | 475 | ! u1d_p(nzb) = -u1d_p(nzb+1) |
---|
| 476 | ! v1d_p(nzb) = -v1d_p(nzb+1) |
---|
[1] | 477 | |
---|
[1353] | 478 | u1d_p(nzb) = 0.0_wp |
---|
| 479 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 480 | |
---|
[1] | 481 | ! |
---|
| 482 | !-- Swap the time levels in preparation for the next time step. |
---|
| 483 | u1d = u1d_p |
---|
| 484 | v1d = v1d_p |
---|
| 485 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 486 | e1d = e1d_p |
---|
| 487 | ENDIF |
---|
| 488 | |
---|
| 489 | ! |
---|
| 490 | !-- Compute diffusion quantities |
---|
| 491 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 492 | |
---|
| 493 | ! |
---|
| 494 | !-- First compute the vertical fluxes in the Prandtl-layer |
---|
[1691] | 495 | IF ( constant_flux_layer ) THEN |
---|
[1] | 496 | ! |
---|
| 497 | !-- Compute theta* using Rif numbers of the previous time step |
---|
[1353] | 498 | IF ( rif1d(1) >= 0.0_wp ) THEN |
---|
[1] | 499 | ! |
---|
| 500 | !-- Stable stratification |
---|
[1353] | 501 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 502 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 503 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 504 | ) |
---|
| 505 | ELSE |
---|
| 506 | ! |
---|
| 507 | !-- Unstable stratification |
---|
[1353] | 508 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 509 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 510 | zu(nzb+1) * z0h1d ) |
---|
[1] | 511 | ! |
---|
| 512 | !-- In the borderline case the formula for stable stratification |
---|
| 513 | !-- must be applied, because otherwise a zero division would |
---|
| 514 | !-- occur in the argument of the logarithm. |
---|
[1353] | 515 | IF ( a == 0.0_wp .OR. b == 0.0_wp ) THEN |
---|
[996] | 516 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
[1353] | 517 | ( LOG( zu(nzb+1) / z0h1d ) + & |
---|
| 518 | 5.0_wp * rif1d(nzb+1) * & |
---|
| 519 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 520 | ) |
---|
| 521 | ELSE |
---|
[1353] | 522 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 523 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 524 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 525 | ENDIF |
---|
| 526 | ENDIF |
---|
| 527 | |
---|
[1691] | 528 | ENDIF ! constant_flux_layer |
---|
[1] | 529 | |
---|
| 530 | ! |
---|
| 531 | !-- Compute the Richardson-flux numbers, |
---|
| 532 | !-- first at the top of the Prandtl-layer using u* of the previous |
---|
| 533 | !-- time step (+1E-30, if u* = 0), then in the remaining area. There |
---|
| 534 | !-- the rif-numbers of the previous time step are used. |
---|
| 535 | |
---|
[1691] | 536 | IF ( constant_flux_layer ) THEN |
---|
[75] | 537 | IF ( .NOT. humidity ) THEN |
---|
[1] | 538 | pt_0 = pt_init(nzb+1) |
---|
| 539 | flux = ts1d |
---|
| 540 | ELSE |
---|
[1353] | 541 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 542 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 543 | ENDIF |
---|
| 544 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
[1353] | 545 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 546 | ENDIF |
---|
| 547 | |
---|
| 548 | DO k = nzb_diff, nzt |
---|
[75] | 549 | IF ( .NOT. humidity ) THEN |
---|
[1] | 550 | pt_0 = pt_init(k) |
---|
| 551 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 552 | ELSE |
---|
[1353] | 553 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[1] | 554 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
[1353] | 555 | + 0.61_wp * pt_init(k) & |
---|
| 556 | * ( q_init(k+1) - q_init(k-1) ) & |
---|
[1] | 557 | ) * dd2zu(k) |
---|
| 558 | ENDIF |
---|
[1353] | 559 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 560 | rif1d(k) = g / pt_0 * flux / & |
---|
| 561 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 562 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 563 | + 1E-30_wp & |
---|
[1] | 564 | ) |
---|
| 565 | ELSE |
---|
[1353] | 566 | rif1d(k) = g / pt_0 * flux / & |
---|
| 567 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 568 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 569 | + 1E-30_wp & |
---|
| 570 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 571 | ENDIF |
---|
| 572 | ENDDO |
---|
| 573 | ! |
---|
| 574 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 575 | !-- range. It is exceeded excessively for very small velocities |
---|
| 576 | !-- (u,v --> 0). |
---|
[2059] | 577 | WHERE ( rif1d < -5.0_wp ) rif1d = -5.0_wp |
---|
| 578 | WHERE ( rif1d > 1.0_wp ) rif1d = 1.0_wp |
---|
[1] | 579 | |
---|
| 580 | ! |
---|
| 581 | !-- Compute u* from the absolute velocity value |
---|
[1691] | 582 | IF ( constant_flux_layer ) THEN |
---|
[1] | 583 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 584 | |
---|
[1353] | 585 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 586 | ! |
---|
| 587 | !-- Stable stratification |
---|
| 588 | us1d = kappa * uv_total / ( & |
---|
[1353] | 589 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
[1] | 590 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 591 | ) |
---|
| 592 | ELSE |
---|
| 593 | ! |
---|
| 594 | !-- Unstable stratification |
---|
[1353] | 595 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
| 596 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 597 | zu(nzb+1) * z01d ) ) |
---|
[1] | 598 | ! |
---|
| 599 | !-- In the borderline case the formula for stable stratification |
---|
| 600 | !-- must be applied, because otherwise a zero division would |
---|
| 601 | !-- occur in the argument of the logarithm. |
---|
[1353] | 602 | IF ( a == 1.0_wp .OR. b == 1.0_wp ) THEN |
---|
| 603 | us1d = kappa * uv_total / ( & |
---|
| 604 | LOG( zu(nzb+1) / z01d ) + & |
---|
| 605 | 5.0_wp * rif1d(nzb+1) * ( zu(nzb+1) - z01d ) / & |
---|
[1] | 606 | zu(nzb+1) ) |
---|
| 607 | ELSE |
---|
| 608 | us1d = kappa * uv_total / ( & |
---|
[1353] | 609 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 610 | (1.0_wp+a) ) + & |
---|
| 611 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
[1] | 612 | ) |
---|
| 613 | ENDIF |
---|
| 614 | ENDIF |
---|
| 615 | |
---|
| 616 | ! |
---|
| 617 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 618 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 619 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 620 | |
---|
| 621 | ! |
---|
| 622 | !-- Boundary condition for the turbulent kinetic energy at the top |
---|
| 623 | !-- of the Prandtl-layer. c_m = 0.4 according to Detering. |
---|
| 624 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 625 | !-- compatibility with the 3D model. |
---|
| 626 | IF ( ibc_e_b == 2 ) THEN |
---|
[1353] | 627 | e1d(nzb+1) = ( us1d / 0.1_wp )**2 |
---|
| 628 | ! e1d(nzb+1) = ( us1d / 0.4_wp )**2 !not used so far, see also |
---|
| 629 | !prandtl_fluxes |
---|
[1] | 630 | ENDIF |
---|
| 631 | e1d(nzb) = e1d(nzb+1) |
---|
| 632 | |
---|
[1960] | 633 | IF ( humidity ) THEN |
---|
[1] | 634 | ! |
---|
| 635 | !-- Compute q* |
---|
[1353] | 636 | IF ( rif1d(1) >= 0.0_wp ) THEN |
---|
[1] | 637 | ! |
---|
[1960] | 638 | !-- Stable stratification |
---|
| 639 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
[1353] | 640 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 641 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 642 | ) |
---|
[1960] | 643 | ELSE |
---|
[1] | 644 | ! |
---|
[1960] | 645 | !-- Unstable stratification |
---|
| 646 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 647 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 648 | zu(nzb+1) * z0h1d ) |
---|
[1] | 649 | ! |
---|
[1960] | 650 | !-- In the borderline case the formula for stable stratification |
---|
| 651 | !-- must be applied, because otherwise a zero division would |
---|
| 652 | !-- occur in the argument of the logarithm. |
---|
| 653 | IF ( a == 1.0_wp .OR. b == 1.0_wp ) THEN |
---|
| 654 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 655 | ( LOG( zu(nzb+1) / z0h1d ) + & |
---|
| 656 | 5.0_wp * rif1d(nzb+1) * & |
---|
| 657 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
| 658 | ) |
---|
| 659 | ELSE |
---|
| 660 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 661 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 662 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
| 663 | ENDIF |
---|
| 664 | ENDIF |
---|
[1] | 665 | ELSE |
---|
[1353] | 666 | qs1d = 0.0_wp |
---|
[1] | 667 | ENDIF |
---|
| 668 | |
---|
[1691] | 669 | ENDIF ! constant_flux_layer |
---|
[1] | 670 | |
---|
| 671 | ! |
---|
| 672 | !-- Compute the diabatic mixing length |
---|
| 673 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 674 | DO k = nzb+1, nzt |
---|
[1353] | 675 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 676 | l1d(k) = l_black(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
[1] | 677 | ELSE |
---|
[1353] | 678 | l1d(k) = l_black(k) * & |
---|
| 679 | ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 680 | ENDIF |
---|
| 681 | l1d(k) = l_black(k) |
---|
| 682 | ENDDO |
---|
| 683 | |
---|
| 684 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 685 | DO k = nzb+1, nzt |
---|
| 686 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
[1353] | 687 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
| 688 | l_stable = 0.76_wp * SQRT( e1d(k) ) / & |
---|
| 689 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
[1] | 690 | ELSE |
---|
| 691 | l_stable = l_grid(k) |
---|
| 692 | ENDIF |
---|
| 693 | l1d(k) = MIN( l_grid(k), l_stable ) |
---|
| 694 | ENDDO |
---|
| 695 | ENDIF |
---|
| 696 | |
---|
| 697 | ! |
---|
| 698 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 699 | !-- corresponding Prandtl-layer relationship and according to |
---|
| 700 | !-- Prandtl-Kolmogorov, respectively. The unstable stratification is |
---|
| 701 | !-- computed via the adiabatic mixing length, for the unstability has |
---|
| 702 | !-- already been taken account of via the TKE (cf. also Diss.). |
---|
[1691] | 703 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 704 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
| 705 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 706 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
[1] | 707 | ELSE |
---|
[1353] | 708 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 709 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
[1] | 710 | ENDIF |
---|
| 711 | ENDIF |
---|
| 712 | DO k = nzb_diff, nzt |
---|
| 713 | ! km1d(k) = 0.4 * SQRT( e1d(k) ) !changed: adjustment to 3D-model |
---|
[1353] | 714 | km1d(k) = 0.1_wp * SQRT( e1d(k) ) |
---|
| 715 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 716 | km1d(k) = km1d(k) * l1d(k) |
---|
| 717 | ELSE |
---|
| 718 | km1d(k) = km1d(k) * l_black(k) |
---|
| 719 | ENDIF |
---|
| 720 | ENDDO |
---|
| 721 | |
---|
| 722 | ! |
---|
| 723 | !-- Add damping layer |
---|
| 724 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 725 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 726 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 727 | ENDDO |
---|
| 728 | |
---|
| 729 | ! |
---|
| 730 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 731 | !-- kh = phim / phih * km |
---|
| 732 | DO k = nzb+1, nzt |
---|
[1353] | 733 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 734 | kh1d(k) = km1d(k) |
---|
| 735 | ELSE |
---|
[1353] | 736 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 737 | ENDIF |
---|
| 738 | ENDDO |
---|
| 739 | |
---|
| 740 | ENDIF ! .NOT. constant_diffusion |
---|
| 741 | |
---|
| 742 | ENDDO ! intermediate step loop |
---|
| 743 | |
---|
| 744 | ! |
---|
| 745 | !-- Increment simulated time and output times |
---|
| 746 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 747 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 748 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 749 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 750 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 751 | |
---|
| 752 | ! |
---|
| 753 | !-- Determine and print out quantities for run control |
---|
| 754 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 755 | CALL run_control_1d |
---|
| 756 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 757 | ENDIF |
---|
| 758 | |
---|
| 759 | ! |
---|
| 760 | !-- Profile output on file |
---|
| 761 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 762 | CALL print_1d_model |
---|
| 763 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 764 | ENDIF |
---|
| 765 | |
---|
| 766 | ! |
---|
| 767 | !-- Determine size of next time step |
---|
| 768 | CALL timestep_1d |
---|
| 769 | |
---|
| 770 | ENDDO ! time loop |
---|
| 771 | |
---|
| 772 | |
---|
| 773 | END SUBROUTINE time_integration_1d |
---|
| 774 | |
---|
| 775 | |
---|
| 776 | !------------------------------------------------------------------------------! |
---|
| 777 | ! Description: |
---|
| 778 | ! ------------ |
---|
[1682] | 779 | !> Compute and print out quantities for run control of the 1D model. |
---|
[1] | 780 | !------------------------------------------------------------------------------! |
---|
[1682] | 781 | |
---|
| 782 | SUBROUTINE run_control_1d |
---|
[1] | 783 | |
---|
[1682] | 784 | |
---|
[1320] | 785 | USE constants, & |
---|
| 786 | ONLY: pi |
---|
| 787 | |
---|
| 788 | USE indices, & |
---|
| 789 | ONLY: nzb, nzt |
---|
| 790 | |
---|
| 791 | USE kinds |
---|
| 792 | |
---|
| 793 | USE model_1d, & |
---|
| 794 | ONLY: current_timestep_number_1d, dt_1d, run_control_header_1d, u1d, & |
---|
| 795 | us1d, v1d |
---|
| 796 | |
---|
[1] | 797 | USE pegrid |
---|
[1320] | 798 | |
---|
| 799 | USE control_parameters, & |
---|
| 800 | ONLY: simulated_time_chr |
---|
[1] | 801 | |
---|
| 802 | IMPLICIT NONE |
---|
| 803 | |
---|
[1682] | 804 | INTEGER(iwp) :: k !< |
---|
[1320] | 805 | |
---|
| 806 | REAL(wp) :: alpha |
---|
| 807 | REAL(wp) :: energy |
---|
| 808 | REAL(wp) :: umax |
---|
| 809 | REAL(wp) :: uv_total |
---|
| 810 | REAL(wp) :: vmax |
---|
[1] | 811 | |
---|
| 812 | ! |
---|
| 813 | !-- Output |
---|
| 814 | IF ( myid == 0 ) THEN |
---|
| 815 | ! |
---|
| 816 | !-- If necessary, write header |
---|
| 817 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 818 | CALL check_open( 15 ) |
---|
[1] | 819 | WRITE ( 15, 100 ) |
---|
| 820 | run_control_header_1d = .TRUE. |
---|
| 821 | ENDIF |
---|
| 822 | |
---|
| 823 | ! |
---|
| 824 | !-- Compute control quantities |
---|
| 825 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 826 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 827 | DO k = nzb+1, nzt+1 |
---|
| 828 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 829 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 830 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 831 | ENDDO |
---|
[1322] | 832 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 833 | |
---|
| 834 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1691] | 835 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
[1346] | 836 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 837 | ELSE |
---|
| 838 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 839 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 840 | ENDIF |
---|
[1353] | 841 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 842 | |
---|
| 843 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 844 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 845 | ! |
---|
| 846 | !-- Write buffer contents to disc immediately |
---|
[1808] | 847 | FLUSH( 15 ) |
---|
[1] | 848 | |
---|
| 849 | ENDIF |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- formats |
---|
| 853 | 100 FORMAT (///'1D-Zeitschrittkontrollausgaben:'/ & |
---|
| 854 | &'------------------------------'// & |
---|
| 855 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
| 856 | &'-------------------------------------------------------------') |
---|
[1697] | 857 | 101 FORMAT (I5,2X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
[1] | 858 | |
---|
| 859 | |
---|
| 860 | END SUBROUTINE run_control_1d |
---|
| 861 | |
---|
| 862 | |
---|
| 863 | |
---|
| 864 | !------------------------------------------------------------------------------! |
---|
| 865 | ! Description: |
---|
| 866 | ! ------------ |
---|
[1682] | 867 | !> Compute the time step w.r.t. the diffusion criterion |
---|
[1] | 868 | !------------------------------------------------------------------------------! |
---|
[1682] | 869 | |
---|
| 870 | SUBROUTINE timestep_1d |
---|
[1] | 871 | |
---|
[1682] | 872 | |
---|
[1320] | 873 | USE arrays_3d, & |
---|
| 874 | ONLY: dzu, zu |
---|
| 875 | |
---|
| 876 | USE indices, & |
---|
| 877 | ONLY: nzb, nzt |
---|
| 878 | |
---|
| 879 | USE kinds |
---|
| 880 | |
---|
| 881 | USE model_1d, & |
---|
| 882 | ONLY: dt_1d, dt_max_1d, km1d, old_dt_1d, stop_dt_1d |
---|
| 883 | |
---|
[1] | 884 | USE pegrid |
---|
[1320] | 885 | |
---|
[1709] | 886 | USE control_parameters, & |
---|
[1320] | 887 | ONLY: message_string |
---|
[1] | 888 | |
---|
| 889 | IMPLICIT NONE |
---|
| 890 | |
---|
[1682] | 891 | INTEGER(iwp) :: k !< |
---|
[1320] | 892 | |
---|
[1682] | 893 | REAL(wp) :: div !< |
---|
| 894 | REAL(wp) :: dt_diff !< |
---|
| 895 | REAL(wp) :: fac !< |
---|
| 896 | REAL(wp) :: value !< |
---|
[1] | 897 | |
---|
| 898 | |
---|
| 899 | ! |
---|
| 900 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 901 | !-- criterion. At nzb+1 the half grid length is used. |
---|
[1353] | 902 | fac = 0.35_wp |
---|
[1] | 903 | dt_diff = dt_max_1d |
---|
| 904 | DO k = nzb+2, nzt |
---|
[1353] | 905 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 906 | dt_diff = MIN( value, dt_diff ) |
---|
| 907 | ENDDO |
---|
[1353] | 908 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 909 | dt_1d = MIN( value, dt_diff ) |
---|
| 910 | |
---|
| 911 | ! |
---|
| 912 | !-- Set flag when the time step becomes too small |
---|
[1353] | 913 | IF ( dt_1d < ( 0.00001_wp * dt_max_1d ) ) THEN |
---|
[1] | 914 | stop_dt_1d = .TRUE. |
---|
[254] | 915 | |
---|
| 916 | WRITE( message_string, * ) 'timestep has exceeded the lower limit &', & |
---|
| 917 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 918 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
| 919 | |
---|
[1] | 920 | ENDIF |
---|
| 921 | |
---|
| 922 | ! |
---|
[1001] | 923 | !-- A more or less simple new time step value is obtained taking only the |
---|
| 924 | !-- first two significant digits |
---|
[1353] | 925 | div = 1000.0_wp |
---|
[1001] | 926 | DO WHILE ( dt_1d < div ) |
---|
[1353] | 927 | div = div / 10.0_wp |
---|
[1001] | 928 | ENDDO |
---|
[1353] | 929 | dt_1d = NINT( dt_1d * 100.0_wp / div ) * div / 100.0_wp |
---|
[1] | 930 | |
---|
[1001] | 931 | old_dt_1d = dt_1d |
---|
[1] | 932 | |
---|
| 933 | |
---|
| 934 | END SUBROUTINE timestep_1d |
---|
| 935 | |
---|
| 936 | |
---|
| 937 | |
---|
| 938 | !------------------------------------------------------------------------------! |
---|
| 939 | ! Description: |
---|
| 940 | ! ------------ |
---|
[1682] | 941 | !> List output of profiles from the 1D-model |
---|
[1] | 942 | !------------------------------------------------------------------------------! |
---|
[1682] | 943 | |
---|
| 944 | SUBROUTINE print_1d_model |
---|
[1] | 945 | |
---|
[1682] | 946 | |
---|
[1320] | 947 | USE arrays_3d, & |
---|
| 948 | ONLY: pt_init, zu |
---|
| 949 | |
---|
| 950 | USE indices, & |
---|
| 951 | ONLY: nzb, nzt |
---|
| 952 | |
---|
| 953 | USE kinds |
---|
| 954 | |
---|
| 955 | USE model_1d, & |
---|
| 956 | ONLY: e1d, kh1d, km1d, l1d, rif1d, u1d, v1d |
---|
| 957 | |
---|
[1] | 958 | USE pegrid |
---|
[1320] | 959 | |
---|
| 960 | USE control_parameters, & |
---|
| 961 | ONLY: run_description_header, simulated_time_chr |
---|
[1] | 962 | |
---|
| 963 | IMPLICIT NONE |
---|
| 964 | |
---|
| 965 | |
---|
[1682] | 966 | INTEGER(iwp) :: k !< |
---|
[1] | 967 | |
---|
| 968 | |
---|
| 969 | IF ( myid == 0 ) THEN |
---|
| 970 | ! |
---|
| 971 | !-- Open list output file for profiles from the 1D-model |
---|
| 972 | CALL check_open( 17 ) |
---|
| 973 | |
---|
| 974 | ! |
---|
| 975 | !-- Write Header |
---|
| 976 | WRITE ( 17, 100 ) TRIM( run_description_header ), & |
---|
| 977 | TRIM( simulated_time_chr ) |
---|
| 978 | WRITE ( 17, 101 ) |
---|
| 979 | |
---|
| 980 | ! |
---|
| 981 | !-- Write the values |
---|
| 982 | WRITE ( 17, 102 ) |
---|
| 983 | WRITE ( 17, 101 ) |
---|
| 984 | DO k = nzt+1, nzb, -1 |
---|
| 985 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
| 986 | rif1d(k), km1d(k), kh1d(k), l1d(k), zu(k), k |
---|
| 987 | ENDDO |
---|
| 988 | WRITE ( 17, 101 ) |
---|
| 989 | WRITE ( 17, 102 ) |
---|
| 990 | WRITE ( 17, 101 ) |
---|
| 991 | |
---|
| 992 | ! |
---|
| 993 | !-- Write buffer contents to disc immediately |
---|
[1808] | 994 | FLUSH( 17 ) |
---|
[1] | 995 | |
---|
| 996 | ENDIF |
---|
| 997 | |
---|
| 998 | ! |
---|
| 999 | !-- Formats |
---|
| 1000 | 100 FORMAT (//1X,A/1X,10('-')/' 1d-model profiles'/ & |
---|
| 1001 | ' Time: ',A) |
---|
| 1002 | 101 FORMAT (1X,79('-')) |
---|
| 1003 | 102 FORMAT (' k zu u v pt e rif Km Kh ', & |
---|
| 1004 | 'l zu k') |
---|
| 1005 | 103 FORMAT (1X,I4,1X,F7.1,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F5.2,1X,F5.2, & |
---|
| 1006 | 1X,F5.2,1X,F6.2,1X,F7.1,2X,I4) |
---|
| 1007 | |
---|
| 1008 | |
---|
| 1009 | END SUBROUTINE print_1d_model |
---|