[1682] | 1 | !> @file init_1d_model.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1818] | 17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1961] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1961] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_1d_model.f90 2001 2016-08-20 18:41:22Z knoop $ |
---|
| 27 | ! |
---|
[2001] | 28 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 29 | ! Forced header and separation lines into 80 columns |
---|
| 30 | ! |
---|
[1961] | 31 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
[1960] | 32 | ! Remove passive_scalar from IF-statements, as 1D-scalar profile is effectively |
---|
| 33 | ! not used. |
---|
| 34 | ! Formatting adjustment |
---|
[1809] | 35 | ! |
---|
| 36 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 37 | ! routine local_flush replaced by FORTRAN statement |
---|
| 38 | ! |
---|
[1710] | 39 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 40 | ! Set initial time step to 10 s to avoid instability of the 1d model for small |
---|
| 41 | ! grid spacings |
---|
| 42 | ! |
---|
[1698] | 43 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 44 | ! small E- and F-FORMAT changes to avoid informative compiler messages about |
---|
| 45 | ! insufficient field width |
---|
| 46 | ! |
---|
[1692] | 47 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 48 | ! Renamed prandtl_layer to constant_flux_layer. rif is replaced by ol and zeta. |
---|
| 49 | ! |
---|
[1683] | 50 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 51 | ! Code annotations made doxygen readable |
---|
| 52 | ! |
---|
[1354] | 53 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 54 | ! REAL constants provided with KIND-attribute |
---|
| 55 | ! |
---|
[1347] | 56 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 57 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 58 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 59 | ! |
---|
[1323] | 60 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 61 | ! REAL functions provided with KIND-attribute |
---|
| 62 | ! |
---|
[1321] | 63 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 64 | ! ONLY-attribute added to USE-statements, |
---|
| 65 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 66 | ! kinds are defined in new module kinds, |
---|
| 67 | ! revision history before 2012 removed, |
---|
| 68 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 69 | ! all variable declaration statements |
---|
[1321] | 70 | ! |
---|
[1037] | 71 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 72 | ! code put under GPL (PALM 3.9) |
---|
| 73 | ! |
---|
[1017] | 74 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 75 | ! adjustment of mixing length to the Prandtl mixing length at first grid point |
---|
| 76 | ! above ground removed |
---|
| 77 | ! |
---|
[1002] | 78 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 79 | ! all actions concerning leapfrog scheme removed |
---|
| 80 | ! |
---|
[997] | 81 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 82 | ! little reformatting |
---|
| 83 | ! |
---|
[979] | 84 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 85 | ! roughness length for scalar quantities z0h1d added |
---|
| 86 | ! |
---|
[1] | 87 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 88 | ! Initial revision |
---|
| 89 | ! |
---|
| 90 | ! |
---|
| 91 | ! Description: |
---|
| 92 | ! ------------ |
---|
[1682] | 93 | !> 1D-model to initialize the 3D-arrays. |
---|
| 94 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
| 95 | !> of the wind profile is being computed. |
---|
| 96 | !> All subroutines required can be found within this file. |
---|
[1691] | 97 | !> |
---|
| 98 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
[1709] | 99 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
[1] | 100 | !------------------------------------------------------------------------------! |
---|
[1682] | 101 | SUBROUTINE init_1d_model |
---|
| 102 | |
---|
[1] | 103 | |
---|
[1320] | 104 | USE arrays_3d, & |
---|
| 105 | ONLY: l_grid, ug, u_init, vg, v_init, zu |
---|
| 106 | |
---|
| 107 | USE indices, & |
---|
| 108 | ONLY: nzb, nzt |
---|
| 109 | |
---|
| 110 | USE kinds |
---|
| 111 | |
---|
| 112 | USE model_1d, & |
---|
| 113 | ONLY: e1d, e1d_p, kh1d, km1d, l1d, l_black, qs1d, rif1d, & |
---|
| 114 | simulated_time_1d, te_e, te_em, te_u, te_um, te_v, te_vm, ts1d, & |
---|
| 115 | u1d, u1d_p, us1d, usws1d, v1d, v1d_p, vsws1d, z01d, z0h1d |
---|
| 116 | |
---|
| 117 | USE control_parameters, & |
---|
[1691] | 118 | ONLY: constant_diffusion, constant_flux_layer, f, humidity, kappa, & |
---|
[1960] | 119 | km_constant, mixing_length_1d, prandtl_number, & |
---|
[1691] | 120 | roughness_length, simulated_time_chr, z0h_factor |
---|
[1] | 121 | |
---|
| 122 | IMPLICIT NONE |
---|
| 123 | |
---|
[1682] | 124 | CHARACTER (LEN=9) :: time_to_string !< |
---|
[1320] | 125 | |
---|
[1682] | 126 | INTEGER(iwp) :: k !< |
---|
[1320] | 127 | |
---|
[1682] | 128 | REAL(wp) :: lambda !< |
---|
[1] | 129 | |
---|
| 130 | ! |
---|
| 131 | !-- Allocate required 1D-arrays |
---|
[1320] | 132 | ALLOCATE( e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), & |
---|
| 133 | kh1d(nzb:nzt+1), km1d(nzb:nzt+1), & |
---|
| 134 | l_black(nzb:nzt+1), l1d(nzb:nzt+1), & |
---|
| 135 | rif1d(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
| 136 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 137 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 138 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), & |
---|
[1001] | 139 | v1d_p(nzb:nzt+1) ) |
---|
[1] | 140 | |
---|
| 141 | ! |
---|
| 142 | !-- Initialize arrays |
---|
| 143 | IF ( constant_diffusion ) THEN |
---|
[1001] | 144 | km1d = km_constant |
---|
| 145 | kh1d = km_constant / prandtl_number |
---|
[1] | 146 | ELSE |
---|
[1353] | 147 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 148 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
| 149 | rif1d = 0.0_wp |
---|
[1] | 150 | ! |
---|
| 151 | !-- Compute the mixing length |
---|
[1353] | 152 | l_black(nzb) = 0.0_wp |
---|
[1] | 153 | |
---|
| 154 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 155 | ! |
---|
| 156 | !-- Blackadar mixing length |
---|
[1353] | 157 | IF ( f /= 0.0_wp ) THEN |
---|
| 158 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
| 159 | ABS( f ) + 1E-10_wp |
---|
[1] | 160 | ELSE |
---|
[1353] | 161 | lambda = 30.0_wp |
---|
[1] | 162 | ENDIF |
---|
| 163 | |
---|
| 164 | DO k = nzb+1, nzt+1 |
---|
[1353] | 165 | l_black(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 166 | ENDDO |
---|
| 167 | |
---|
| 168 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 169 | ! |
---|
| 170 | !-- Use the same mixing length as in 3D model |
---|
| 171 | l_black(1:nzt) = l_grid |
---|
| 172 | l_black(nzt+1) = l_black(nzt) |
---|
| 173 | |
---|
| 174 | ENDIF |
---|
| 175 | ENDIF |
---|
| 176 | l1d = l_black |
---|
| 177 | u1d = u_init |
---|
| 178 | u1d_p = u_init |
---|
| 179 | v1d = v_init |
---|
| 180 | v1d_p = v_init |
---|
| 181 | |
---|
| 182 | ! |
---|
| 183 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 184 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 185 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
[1353] | 186 | u1d(0:1) = 0.1_wp |
---|
| 187 | u1d_p(0:1) = 0.1_wp |
---|
| 188 | v1d(0:1) = 0.1_wp |
---|
| 189 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 190 | |
---|
| 191 | ! |
---|
| 192 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
[1691] | 193 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 194 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 195 | ELSE |
---|
[1353] | 196 | e1d(nzb+1) = 1.0_wp |
---|
| 197 | km1d(nzb+1) = 1.0_wp |
---|
| 198 | us1d = 0.0_wp |
---|
[1] | 199 | ENDIF |
---|
[1353] | 200 | ts1d = 0.0_wp |
---|
| 201 | usws1d = 0.0_wp |
---|
| 202 | vsws1d = 0.0_wp |
---|
[996] | 203 | z01d = roughness_length |
---|
[978] | 204 | z0h1d = z0h_factor * z01d |
---|
[1960] | 205 | IF ( humidity ) qs1d = 0.0_wp |
---|
[1] | 206 | |
---|
| 207 | ! |
---|
[46] | 208 | !-- Tendencies must be preset in order to avoid runtime errors within the |
---|
| 209 | !-- first Runge-Kutta step |
---|
[1353] | 210 | te_em = 0.0_wp |
---|
| 211 | te_um = 0.0_wp |
---|
| 212 | te_vm = 0.0_wp |
---|
[46] | 213 | |
---|
| 214 | ! |
---|
[1] | 215 | !-- Set start time in hh:mm:ss - format |
---|
| 216 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 217 | |
---|
| 218 | ! |
---|
| 219 | !-- Integrate the 1D-model equations using the leap-frog scheme |
---|
| 220 | CALL time_integration_1d |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | END SUBROUTINE init_1d_model |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | |
---|
| 227 | !------------------------------------------------------------------------------! |
---|
| 228 | ! Description: |
---|
| 229 | ! ------------ |
---|
[1682] | 230 | !> Leap-frog time differencing scheme for the 1D-model. |
---|
[1] | 231 | !------------------------------------------------------------------------------! |
---|
[1682] | 232 | |
---|
| 233 | SUBROUTINE time_integration_1d |
---|
[1] | 234 | |
---|
[1682] | 235 | |
---|
[1320] | 236 | USE arrays_3d, & |
---|
| 237 | ONLY: dd2zu, ddzu, ddzw, l_grid, pt_init, q_init, ug, vg, zu |
---|
| 238 | |
---|
| 239 | USE control_parameters, & |
---|
[1691] | 240 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, & |
---|
| 241 | humidity, intermediate_timestep_count, & |
---|
| 242 | intermediate_timestep_count_max, f, g, ibc_e_b, kappa, & |
---|
[1960] | 243 | mixing_length_1d, & |
---|
[1691] | 244 | simulated_time_chr, timestep_scheme, tsc, zeta_max, zeta_min |
---|
[1320] | 245 | |
---|
| 246 | USE indices, & |
---|
| 247 | ONLY: nzb, nzb_diff, nzt |
---|
| 248 | |
---|
| 249 | USE kinds |
---|
| 250 | |
---|
| 251 | USE model_1d, & |
---|
| 252 | ONLY: current_timestep_number_1d, damp_level_ind_1d, dt_1d, & |
---|
| 253 | dt_pr_1d, dt_run_control_1d, e1d, e1d_p, end_time_1d, & |
---|
| 254 | kh1d, km1d, l1d, l_black, qs1d, rif1d, simulated_time_1d, & |
---|
| 255 | stop_dt_1d, te_e, te_em, te_u, te_um, te_v, te_vm, time_pr_1d, & |
---|
| 256 | ts1d, time_run_control_1d, u1d, u1d_p, us1d, usws1d, v1d, & |
---|
| 257 | v1d_p, vsws1d, z01d, z0h1d |
---|
| 258 | |
---|
[1] | 259 | USE pegrid |
---|
| 260 | |
---|
| 261 | IMPLICIT NONE |
---|
| 262 | |
---|
[1682] | 263 | CHARACTER (LEN=9) :: time_to_string !< |
---|
[1320] | 264 | |
---|
[1682] | 265 | INTEGER(iwp) :: k !< |
---|
[1320] | 266 | |
---|
[1682] | 267 | REAL(wp) :: a !< |
---|
| 268 | REAL(wp) :: b !< |
---|
| 269 | REAL(wp) :: dissipation !< |
---|
| 270 | REAL(wp) :: dpt_dz !< |
---|
| 271 | REAL(wp) :: flux !< |
---|
| 272 | REAL(wp) :: kmzm !< |
---|
| 273 | REAL(wp) :: kmzp !< |
---|
| 274 | REAL(wp) :: l_stable !< |
---|
| 275 | REAL(wp) :: pt_0 !< |
---|
| 276 | REAL(wp) :: uv_total !< |
---|
[1] | 277 | |
---|
| 278 | ! |
---|
| 279 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 280 | !-- determine and printout quantities used for run control |
---|
[1709] | 281 | dt_1d = 10.0_wp |
---|
[1] | 282 | CALL run_control_1d |
---|
| 283 | |
---|
| 284 | ! |
---|
| 285 | !-- Start of time loop |
---|
| 286 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 290 | !-- timesteps |
---|
| 291 | |
---|
| 292 | intermediate_timestep_count = 0 |
---|
| 293 | DO WHILE ( intermediate_timestep_count < & |
---|
| 294 | intermediate_timestep_count_max ) |
---|
| 295 | |
---|
| 296 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 297 | |
---|
| 298 | CALL timestep_scheme_steering |
---|
| 299 | |
---|
| 300 | ! |
---|
| 301 | !-- Compute all tendency terms. If a Prandtl-layer is simulated, k starts |
---|
| 302 | !-- at nzb+2. |
---|
| 303 | DO k = nzb_diff, nzt |
---|
| 304 | |
---|
[1353] | 305 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 306 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 307 | ! |
---|
| 308 | !-- u-component |
---|
| 309 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
[1001] | 310 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 311 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
| 312 | ) * ddzw(k) |
---|
[1] | 313 | ! |
---|
| 314 | !-- v-component |
---|
[1001] | 315 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 316 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 317 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
| 318 | ) * ddzw(k) |
---|
[1] | 319 | ENDDO |
---|
| 320 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 321 | DO k = nzb_diff, nzt |
---|
| 322 | ! |
---|
| 323 | !-- TKE |
---|
[1353] | 324 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 325 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 326 | IF ( .NOT. humidity ) THEN |
---|
[1] | 327 | pt_0 = pt_init(k) |
---|
| 328 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 329 | ELSE |
---|
[1353] | 330 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 331 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 332 | 0.61_wp * pt_init(k) * & |
---|
| 333 | ( q_init(k+1) - q_init(k-1) ) ) * dd2zu(k) |
---|
[1] | 334 | ENDIF |
---|
| 335 | |
---|
| 336 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 337 | ! |
---|
| 338 | !-- According to Detering, c_e=0.064 |
---|
[1353] | 339 | dissipation = 0.064_wp * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 340 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[1353] | 341 | dissipation = ( 0.19_wp + 0.74_wp * l1d(k) / l_grid(k) ) & |
---|
[1001] | 342 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 343 | ENDIF |
---|
| 344 | |
---|
| 345 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 346 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 347 | ) & |
---|
| 348 | - g / pt_0 * kh1d(k) * flux & |
---|
| 349 | + ( & |
---|
[1001] | 350 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 351 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 352 | ) * ddzw(k) & |
---|
[1001] | 353 | - dissipation |
---|
[1] | 354 | ENDDO |
---|
| 355 | ENDIF |
---|
| 356 | |
---|
| 357 | ! |
---|
| 358 | !-- Tendency terms at the top of the Prandtl-layer. |
---|
| 359 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 360 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
[1691] | 361 | IF ( constant_flux_layer ) THEN |
---|
[1] | 362 | |
---|
| 363 | k = nzb+1 |
---|
[1353] | 364 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 365 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 366 | IF ( .NOT. humidity ) THEN |
---|
[1] | 367 | pt_0 = pt_init(k) |
---|
| 368 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 369 | ELSE |
---|
[1353] | 370 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 371 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 372 | 0.61_wp * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
[1] | 373 | ) * dd2zu(k) |
---|
| 374 | ENDIF |
---|
| 375 | |
---|
| 376 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 377 | ! |
---|
| 378 | !-- According to Detering, c_e=0.064 |
---|
[1353] | 379 | dissipation = 0.064_wp * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 380 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[1353] | 381 | dissipation = ( 0.19_wp + 0.74_wp * l1d(k) / l_grid(k) ) & |
---|
[1001] | 382 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 383 | ENDIF |
---|
| 384 | |
---|
| 385 | ! |
---|
| 386 | !-- u-component |
---|
[1001] | 387 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 388 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 389 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 390 | ! |
---|
| 391 | !-- v-component |
---|
[1001] | 392 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 393 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 394 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 395 | ! |
---|
| 396 | !-- TKE |
---|
| 397 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 398 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 399 | ) & |
---|
| 400 | - g / pt_0 * kh1d(k) * flux & |
---|
| 401 | + ( & |
---|
[1001] | 402 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 403 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 404 | ) * ddzw(k) & |
---|
[1001] | 405 | - dissipation |
---|
[1] | 406 | ENDIF |
---|
| 407 | |
---|
| 408 | ! |
---|
| 409 | !-- Prognostic equations for all 1D variables |
---|
| 410 | DO k = nzb+1, nzt |
---|
| 411 | |
---|
[1001] | 412 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 413 | tsc(3) * te_um(k) ) |
---|
| 414 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 415 | tsc(3) * te_vm(k) ) |
---|
[1] | 416 | |
---|
| 417 | ENDDO |
---|
| 418 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 419 | DO k = nzb+1, nzt |
---|
| 420 | |
---|
[1001] | 421 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 422 | tsc(3) * te_em(k) ) |
---|
[1] | 423 | |
---|
| 424 | ENDDO |
---|
| 425 | ! |
---|
| 426 | !-- Eliminate negative TKE values, which can result from the |
---|
| 427 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 428 | !-- value is reduced to 10 percent of its old value. |
---|
[1353] | 429 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[1] | 430 | ENDIF |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 434 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 435 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 436 | |
---|
| 437 | DO k = nzb+1, nzt |
---|
| 438 | te_um(k) = te_u(k) |
---|
| 439 | te_vm(k) = te_v(k) |
---|
| 440 | ENDDO |
---|
| 441 | |
---|
| 442 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 443 | DO k = nzb+1, nzt |
---|
| 444 | te_em(k) = te_e(k) |
---|
| 445 | ENDDO |
---|
| 446 | ENDIF |
---|
| 447 | |
---|
| 448 | ELSEIF ( intermediate_timestep_count < & |
---|
| 449 | intermediate_timestep_count_max ) THEN |
---|
| 450 | |
---|
| 451 | DO k = nzb+1, nzt |
---|
[1353] | 452 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 453 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 454 | ENDDO |
---|
| 455 | |
---|
| 456 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 457 | DO k = nzb+1, nzt |
---|
[1353] | 458 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 459 | ENDDO |
---|
| 460 | ENDIF |
---|
| 461 | |
---|
| 462 | ENDIF |
---|
| 463 | ENDIF |
---|
| 464 | |
---|
| 465 | |
---|
| 466 | ! |
---|
| 467 | !-- Boundary conditions for the prognostic variables. |
---|
| 468 | !-- At the top boundary (nzt+1) u,v and e keep their initial values |
---|
| 469 | !-- (ug(nzt+1), vg(nzt+1), 0), at the bottom boundary the mirror |
---|
| 470 | !-- boundary condition applies to u and v. |
---|
| 471 | !-- The boundary condition for e is set further below ( (u*/cm)**2 ). |
---|
[667] | 472 | ! u1d_p(nzb) = -u1d_p(nzb+1) |
---|
| 473 | ! v1d_p(nzb) = -v1d_p(nzb+1) |
---|
[1] | 474 | |
---|
[1353] | 475 | u1d_p(nzb) = 0.0_wp |
---|
| 476 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 477 | |
---|
[1] | 478 | ! |
---|
| 479 | !-- Swap the time levels in preparation for the next time step. |
---|
| 480 | u1d = u1d_p |
---|
| 481 | v1d = v1d_p |
---|
| 482 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 483 | e1d = e1d_p |
---|
| 484 | ENDIF |
---|
| 485 | |
---|
| 486 | ! |
---|
| 487 | !-- Compute diffusion quantities |
---|
| 488 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 489 | |
---|
| 490 | ! |
---|
| 491 | !-- First compute the vertical fluxes in the Prandtl-layer |
---|
[1691] | 492 | IF ( constant_flux_layer ) THEN |
---|
[1] | 493 | ! |
---|
| 494 | !-- Compute theta* using Rif numbers of the previous time step |
---|
[1353] | 495 | IF ( rif1d(1) >= 0.0_wp ) THEN |
---|
[1] | 496 | ! |
---|
| 497 | !-- Stable stratification |
---|
[1353] | 498 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 499 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 500 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 501 | ) |
---|
| 502 | ELSE |
---|
| 503 | ! |
---|
| 504 | !-- Unstable stratification |
---|
[1353] | 505 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 506 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 507 | zu(nzb+1) * z0h1d ) |
---|
[1] | 508 | ! |
---|
| 509 | !-- In the borderline case the formula for stable stratification |
---|
| 510 | !-- must be applied, because otherwise a zero division would |
---|
| 511 | !-- occur in the argument of the logarithm. |
---|
[1353] | 512 | IF ( a == 0.0_wp .OR. b == 0.0_wp ) THEN |
---|
[996] | 513 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
[1353] | 514 | ( LOG( zu(nzb+1) / z0h1d ) + & |
---|
| 515 | 5.0_wp * rif1d(nzb+1) * & |
---|
| 516 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 517 | ) |
---|
| 518 | ELSE |
---|
[1353] | 519 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 520 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 521 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 522 | ENDIF |
---|
| 523 | ENDIF |
---|
| 524 | |
---|
[1691] | 525 | ENDIF ! constant_flux_layer |
---|
[1] | 526 | |
---|
| 527 | ! |
---|
| 528 | !-- Compute the Richardson-flux numbers, |
---|
| 529 | !-- first at the top of the Prandtl-layer using u* of the previous |
---|
| 530 | !-- time step (+1E-30, if u* = 0), then in the remaining area. There |
---|
| 531 | !-- the rif-numbers of the previous time step are used. |
---|
| 532 | |
---|
[1691] | 533 | IF ( constant_flux_layer ) THEN |
---|
[75] | 534 | IF ( .NOT. humidity ) THEN |
---|
[1] | 535 | pt_0 = pt_init(nzb+1) |
---|
| 536 | flux = ts1d |
---|
| 537 | ELSE |
---|
[1353] | 538 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 539 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 540 | ENDIF |
---|
| 541 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
[1353] | 542 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 543 | ENDIF |
---|
| 544 | |
---|
| 545 | DO k = nzb_diff, nzt |
---|
[75] | 546 | IF ( .NOT. humidity ) THEN |
---|
[1] | 547 | pt_0 = pt_init(k) |
---|
| 548 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 549 | ELSE |
---|
[1353] | 550 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[1] | 551 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
[1353] | 552 | + 0.61_wp * pt_init(k) & |
---|
| 553 | * ( q_init(k+1) - q_init(k-1) ) & |
---|
[1] | 554 | ) * dd2zu(k) |
---|
| 555 | ENDIF |
---|
[1353] | 556 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 557 | rif1d(k) = g / pt_0 * flux / & |
---|
| 558 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 559 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 560 | + 1E-30_wp & |
---|
[1] | 561 | ) |
---|
| 562 | ELSE |
---|
[1353] | 563 | rif1d(k) = g / pt_0 * flux / & |
---|
| 564 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 565 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 566 | + 1E-30_wp & |
---|
| 567 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 568 | ENDIF |
---|
| 569 | ENDDO |
---|
| 570 | ! |
---|
| 571 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 572 | !-- range. It is exceeded excessively for very small velocities |
---|
| 573 | !-- (u,v --> 0). |
---|
[1691] | 574 | WHERE ( rif1d < zeta_min ) rif1d = zeta_min |
---|
| 575 | WHERE ( rif1d > zeta_max ) rif1d = zeta_max |
---|
[1] | 576 | |
---|
| 577 | ! |
---|
| 578 | !-- Compute u* from the absolute velocity value |
---|
[1691] | 579 | IF ( constant_flux_layer ) THEN |
---|
[1] | 580 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 581 | |
---|
[1353] | 582 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 583 | ! |
---|
| 584 | !-- Stable stratification |
---|
| 585 | us1d = kappa * uv_total / ( & |
---|
[1353] | 586 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
[1] | 587 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 588 | ) |
---|
| 589 | ELSE |
---|
| 590 | ! |
---|
| 591 | !-- Unstable stratification |
---|
[1353] | 592 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
| 593 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 594 | zu(nzb+1) * z01d ) ) |
---|
[1] | 595 | ! |
---|
| 596 | !-- In the borderline case the formula for stable stratification |
---|
| 597 | !-- must be applied, because otherwise a zero division would |
---|
| 598 | !-- occur in the argument of the logarithm. |
---|
[1353] | 599 | IF ( a == 1.0_wp .OR. b == 1.0_wp ) THEN |
---|
| 600 | us1d = kappa * uv_total / ( & |
---|
| 601 | LOG( zu(nzb+1) / z01d ) + & |
---|
| 602 | 5.0_wp * rif1d(nzb+1) * ( zu(nzb+1) - z01d ) / & |
---|
[1] | 603 | zu(nzb+1) ) |
---|
| 604 | ELSE |
---|
| 605 | us1d = kappa * uv_total / ( & |
---|
[1353] | 606 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 607 | (1.0_wp+a) ) + & |
---|
| 608 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
[1] | 609 | ) |
---|
| 610 | ENDIF |
---|
| 611 | ENDIF |
---|
| 612 | |
---|
| 613 | ! |
---|
| 614 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 615 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 616 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 617 | |
---|
| 618 | ! |
---|
| 619 | !-- Boundary condition for the turbulent kinetic energy at the top |
---|
| 620 | !-- of the Prandtl-layer. c_m = 0.4 according to Detering. |
---|
| 621 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 622 | !-- compatibility with the 3D model. |
---|
| 623 | IF ( ibc_e_b == 2 ) THEN |
---|
[1353] | 624 | e1d(nzb+1) = ( us1d / 0.1_wp )**2 |
---|
| 625 | ! e1d(nzb+1) = ( us1d / 0.4_wp )**2 !not used so far, see also |
---|
| 626 | !prandtl_fluxes |
---|
[1] | 627 | ENDIF |
---|
| 628 | e1d(nzb) = e1d(nzb+1) |
---|
| 629 | |
---|
[1960] | 630 | IF ( humidity ) THEN |
---|
[1] | 631 | ! |
---|
| 632 | !-- Compute q* |
---|
[1353] | 633 | IF ( rif1d(1) >= 0.0_wp ) THEN |
---|
[1] | 634 | ! |
---|
[1960] | 635 | !-- Stable stratification |
---|
| 636 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
[1353] | 637 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 638 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 639 | ) |
---|
[1960] | 640 | ELSE |
---|
[1] | 641 | ! |
---|
[1960] | 642 | !-- Unstable stratification |
---|
| 643 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 644 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 645 | zu(nzb+1) * z0h1d ) |
---|
[1] | 646 | ! |
---|
[1960] | 647 | !-- In the borderline case the formula for stable stratification |
---|
| 648 | !-- must be applied, because otherwise a zero division would |
---|
| 649 | !-- occur in the argument of the logarithm. |
---|
| 650 | IF ( a == 1.0_wp .OR. b == 1.0_wp ) THEN |
---|
| 651 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 652 | ( LOG( zu(nzb+1) / z0h1d ) + & |
---|
| 653 | 5.0_wp * rif1d(nzb+1) * & |
---|
| 654 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
| 655 | ) |
---|
| 656 | ELSE |
---|
| 657 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 658 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 659 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
| 660 | ENDIF |
---|
| 661 | ENDIF |
---|
[1] | 662 | ELSE |
---|
[1353] | 663 | qs1d = 0.0_wp |
---|
[1] | 664 | ENDIF |
---|
| 665 | |
---|
[1691] | 666 | ENDIF ! constant_flux_layer |
---|
[1] | 667 | |
---|
| 668 | ! |
---|
| 669 | !-- Compute the diabatic mixing length |
---|
| 670 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 671 | DO k = nzb+1, nzt |
---|
[1353] | 672 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 673 | l1d(k) = l_black(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
[1] | 674 | ELSE |
---|
[1353] | 675 | l1d(k) = l_black(k) * & |
---|
| 676 | ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 677 | ENDIF |
---|
| 678 | l1d(k) = l_black(k) |
---|
| 679 | ENDDO |
---|
| 680 | |
---|
| 681 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 682 | DO k = nzb+1, nzt |
---|
| 683 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
[1353] | 684 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
| 685 | l_stable = 0.76_wp * SQRT( e1d(k) ) / & |
---|
| 686 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
[1] | 687 | ELSE |
---|
| 688 | l_stable = l_grid(k) |
---|
| 689 | ENDIF |
---|
| 690 | l1d(k) = MIN( l_grid(k), l_stable ) |
---|
| 691 | ENDDO |
---|
| 692 | ENDIF |
---|
| 693 | |
---|
| 694 | ! |
---|
| 695 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 696 | !-- corresponding Prandtl-layer relationship and according to |
---|
| 697 | !-- Prandtl-Kolmogorov, respectively. The unstable stratification is |
---|
| 698 | !-- computed via the adiabatic mixing length, for the unstability has |
---|
| 699 | !-- already been taken account of via the TKE (cf. also Diss.). |
---|
[1691] | 700 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 701 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
| 702 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 703 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
[1] | 704 | ELSE |
---|
[1353] | 705 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 706 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
[1] | 707 | ENDIF |
---|
| 708 | ENDIF |
---|
| 709 | DO k = nzb_diff, nzt |
---|
| 710 | ! km1d(k) = 0.4 * SQRT( e1d(k) ) !changed: adjustment to 3D-model |
---|
[1353] | 711 | km1d(k) = 0.1_wp * SQRT( e1d(k) ) |
---|
| 712 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 713 | km1d(k) = km1d(k) * l1d(k) |
---|
| 714 | ELSE |
---|
| 715 | km1d(k) = km1d(k) * l_black(k) |
---|
| 716 | ENDIF |
---|
| 717 | ENDDO |
---|
| 718 | |
---|
| 719 | ! |
---|
| 720 | !-- Add damping layer |
---|
| 721 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 722 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 723 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 724 | ENDDO |
---|
| 725 | |
---|
| 726 | ! |
---|
| 727 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 728 | !-- kh = phim / phih * km |
---|
| 729 | DO k = nzb+1, nzt |
---|
[1353] | 730 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 731 | kh1d(k) = km1d(k) |
---|
| 732 | ELSE |
---|
[1353] | 733 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 734 | ENDIF |
---|
| 735 | ENDDO |
---|
| 736 | |
---|
| 737 | ENDIF ! .NOT. constant_diffusion |
---|
| 738 | |
---|
| 739 | ENDDO ! intermediate step loop |
---|
| 740 | |
---|
| 741 | ! |
---|
| 742 | !-- Increment simulated time and output times |
---|
| 743 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 744 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 745 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 746 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 747 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 748 | |
---|
| 749 | ! |
---|
| 750 | !-- Determine and print out quantities for run control |
---|
| 751 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 752 | CALL run_control_1d |
---|
| 753 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 754 | ENDIF |
---|
| 755 | |
---|
| 756 | ! |
---|
| 757 | !-- Profile output on file |
---|
| 758 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 759 | CALL print_1d_model |
---|
| 760 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 761 | ENDIF |
---|
| 762 | |
---|
| 763 | ! |
---|
| 764 | !-- Determine size of next time step |
---|
| 765 | CALL timestep_1d |
---|
| 766 | |
---|
| 767 | ENDDO ! time loop |
---|
| 768 | |
---|
| 769 | |
---|
| 770 | END SUBROUTINE time_integration_1d |
---|
| 771 | |
---|
| 772 | |
---|
| 773 | !------------------------------------------------------------------------------! |
---|
| 774 | ! Description: |
---|
| 775 | ! ------------ |
---|
[1682] | 776 | !> Compute and print out quantities for run control of the 1D model. |
---|
[1] | 777 | !------------------------------------------------------------------------------! |
---|
[1682] | 778 | |
---|
| 779 | SUBROUTINE run_control_1d |
---|
[1] | 780 | |
---|
[1682] | 781 | |
---|
[1320] | 782 | USE constants, & |
---|
| 783 | ONLY: pi |
---|
| 784 | |
---|
| 785 | USE indices, & |
---|
| 786 | ONLY: nzb, nzt |
---|
| 787 | |
---|
| 788 | USE kinds |
---|
| 789 | |
---|
| 790 | USE model_1d, & |
---|
| 791 | ONLY: current_timestep_number_1d, dt_1d, run_control_header_1d, u1d, & |
---|
| 792 | us1d, v1d |
---|
| 793 | |
---|
[1] | 794 | USE pegrid |
---|
[1320] | 795 | |
---|
| 796 | USE control_parameters, & |
---|
| 797 | ONLY: simulated_time_chr |
---|
[1] | 798 | |
---|
| 799 | IMPLICIT NONE |
---|
| 800 | |
---|
[1682] | 801 | INTEGER(iwp) :: k !< |
---|
[1320] | 802 | |
---|
| 803 | REAL(wp) :: alpha |
---|
| 804 | REAL(wp) :: energy |
---|
| 805 | REAL(wp) :: umax |
---|
| 806 | REAL(wp) :: uv_total |
---|
| 807 | REAL(wp) :: vmax |
---|
[1] | 808 | |
---|
| 809 | ! |
---|
| 810 | !-- Output |
---|
| 811 | IF ( myid == 0 ) THEN |
---|
| 812 | ! |
---|
| 813 | !-- If necessary, write header |
---|
| 814 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 815 | CALL check_open( 15 ) |
---|
[1] | 816 | WRITE ( 15, 100 ) |
---|
| 817 | run_control_header_1d = .TRUE. |
---|
| 818 | ENDIF |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- Compute control quantities |
---|
| 822 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 823 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 824 | DO k = nzb+1, nzt+1 |
---|
| 825 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 826 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 827 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 828 | ENDDO |
---|
[1322] | 829 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 830 | |
---|
| 831 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1691] | 832 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
[1346] | 833 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 834 | ELSE |
---|
| 835 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 836 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 837 | ENDIF |
---|
[1353] | 838 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 839 | |
---|
| 840 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 841 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 842 | ! |
---|
| 843 | !-- Write buffer contents to disc immediately |
---|
[1808] | 844 | FLUSH( 15 ) |
---|
[1] | 845 | |
---|
| 846 | ENDIF |
---|
| 847 | |
---|
| 848 | ! |
---|
| 849 | !-- formats |
---|
| 850 | 100 FORMAT (///'1D-Zeitschrittkontrollausgaben:'/ & |
---|
| 851 | &'------------------------------'// & |
---|
| 852 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
| 853 | &'-------------------------------------------------------------') |
---|
[1697] | 854 | 101 FORMAT (I5,2X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
[1] | 855 | |
---|
| 856 | |
---|
| 857 | END SUBROUTINE run_control_1d |
---|
| 858 | |
---|
| 859 | |
---|
| 860 | |
---|
| 861 | !------------------------------------------------------------------------------! |
---|
| 862 | ! Description: |
---|
| 863 | ! ------------ |
---|
[1682] | 864 | !> Compute the time step w.r.t. the diffusion criterion |
---|
[1] | 865 | !------------------------------------------------------------------------------! |
---|
[1682] | 866 | |
---|
| 867 | SUBROUTINE timestep_1d |
---|
[1] | 868 | |
---|
[1682] | 869 | |
---|
[1320] | 870 | USE arrays_3d, & |
---|
| 871 | ONLY: dzu, zu |
---|
| 872 | |
---|
| 873 | USE indices, & |
---|
| 874 | ONLY: nzb, nzt |
---|
| 875 | |
---|
| 876 | USE kinds |
---|
| 877 | |
---|
| 878 | USE model_1d, & |
---|
| 879 | ONLY: dt_1d, dt_max_1d, km1d, old_dt_1d, stop_dt_1d |
---|
| 880 | |
---|
[1] | 881 | USE pegrid |
---|
[1320] | 882 | |
---|
[1709] | 883 | USE control_parameters, & |
---|
[1320] | 884 | ONLY: message_string |
---|
[1] | 885 | |
---|
| 886 | IMPLICIT NONE |
---|
| 887 | |
---|
[1682] | 888 | INTEGER(iwp) :: k !< |
---|
[1320] | 889 | |
---|
[1682] | 890 | REAL(wp) :: div !< |
---|
| 891 | REAL(wp) :: dt_diff !< |
---|
| 892 | REAL(wp) :: fac !< |
---|
| 893 | REAL(wp) :: value !< |
---|
[1] | 894 | |
---|
| 895 | |
---|
| 896 | ! |
---|
| 897 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 898 | !-- criterion. At nzb+1 the half grid length is used. |
---|
[1353] | 899 | fac = 0.35_wp |
---|
[1] | 900 | dt_diff = dt_max_1d |
---|
| 901 | DO k = nzb+2, nzt |
---|
[1353] | 902 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 903 | dt_diff = MIN( value, dt_diff ) |
---|
| 904 | ENDDO |
---|
[1353] | 905 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 906 | dt_1d = MIN( value, dt_diff ) |
---|
| 907 | |
---|
| 908 | ! |
---|
| 909 | !-- Set flag when the time step becomes too small |
---|
[1353] | 910 | IF ( dt_1d < ( 0.00001_wp * dt_max_1d ) ) THEN |
---|
[1] | 911 | stop_dt_1d = .TRUE. |
---|
[254] | 912 | |
---|
| 913 | WRITE( message_string, * ) 'timestep has exceeded the lower limit &', & |
---|
| 914 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 915 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
| 916 | |
---|
[1] | 917 | ENDIF |
---|
| 918 | |
---|
| 919 | ! |
---|
[1001] | 920 | !-- A more or less simple new time step value is obtained taking only the |
---|
| 921 | !-- first two significant digits |
---|
[1353] | 922 | div = 1000.0_wp |
---|
[1001] | 923 | DO WHILE ( dt_1d < div ) |
---|
[1353] | 924 | div = div / 10.0_wp |
---|
[1001] | 925 | ENDDO |
---|
[1353] | 926 | dt_1d = NINT( dt_1d * 100.0_wp / div ) * div / 100.0_wp |
---|
[1] | 927 | |
---|
[1001] | 928 | old_dt_1d = dt_1d |
---|
[1] | 929 | |
---|
| 930 | |
---|
| 931 | END SUBROUTINE timestep_1d |
---|
| 932 | |
---|
| 933 | |
---|
| 934 | |
---|
| 935 | !------------------------------------------------------------------------------! |
---|
| 936 | ! Description: |
---|
| 937 | ! ------------ |
---|
[1682] | 938 | !> List output of profiles from the 1D-model |
---|
[1] | 939 | !------------------------------------------------------------------------------! |
---|
[1682] | 940 | |
---|
| 941 | SUBROUTINE print_1d_model |
---|
[1] | 942 | |
---|
[1682] | 943 | |
---|
[1320] | 944 | USE arrays_3d, & |
---|
| 945 | ONLY: pt_init, zu |
---|
| 946 | |
---|
| 947 | USE indices, & |
---|
| 948 | ONLY: nzb, nzt |
---|
| 949 | |
---|
| 950 | USE kinds |
---|
| 951 | |
---|
| 952 | USE model_1d, & |
---|
| 953 | ONLY: e1d, kh1d, km1d, l1d, rif1d, u1d, v1d |
---|
| 954 | |
---|
[1] | 955 | USE pegrid |
---|
[1320] | 956 | |
---|
| 957 | USE control_parameters, & |
---|
| 958 | ONLY: run_description_header, simulated_time_chr |
---|
[1] | 959 | |
---|
| 960 | IMPLICIT NONE |
---|
| 961 | |
---|
| 962 | |
---|
[1682] | 963 | INTEGER(iwp) :: k !< |
---|
[1] | 964 | |
---|
| 965 | |
---|
| 966 | IF ( myid == 0 ) THEN |
---|
| 967 | ! |
---|
| 968 | !-- Open list output file for profiles from the 1D-model |
---|
| 969 | CALL check_open( 17 ) |
---|
| 970 | |
---|
| 971 | ! |
---|
| 972 | !-- Write Header |
---|
| 973 | WRITE ( 17, 100 ) TRIM( run_description_header ), & |
---|
| 974 | TRIM( simulated_time_chr ) |
---|
| 975 | WRITE ( 17, 101 ) |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- Write the values |
---|
| 979 | WRITE ( 17, 102 ) |
---|
| 980 | WRITE ( 17, 101 ) |
---|
| 981 | DO k = nzt+1, nzb, -1 |
---|
| 982 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
| 983 | rif1d(k), km1d(k), kh1d(k), l1d(k), zu(k), k |
---|
| 984 | ENDDO |
---|
| 985 | WRITE ( 17, 101 ) |
---|
| 986 | WRITE ( 17, 102 ) |
---|
| 987 | WRITE ( 17, 101 ) |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Write buffer contents to disc immediately |
---|
[1808] | 991 | FLUSH( 17 ) |
---|
[1] | 992 | |
---|
| 993 | ENDIF |
---|
| 994 | |
---|
| 995 | ! |
---|
| 996 | !-- Formats |
---|
| 997 | 100 FORMAT (//1X,A/1X,10('-')/' 1d-model profiles'/ & |
---|
| 998 | ' Time: ',A) |
---|
| 999 | 101 FORMAT (1X,79('-')) |
---|
| 1000 | 102 FORMAT (' k zu u v pt e rif Km Kh ', & |
---|
| 1001 | 'l zu k') |
---|
| 1002 | 103 FORMAT (1X,I4,1X,F7.1,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F5.2,1X,F5.2, & |
---|
| 1003 | 1X,F5.2,1X,F6.2,1X,F7.1,2X,I4) |
---|
| 1004 | |
---|
| 1005 | |
---|
| 1006 | END SUBROUTINE print_1d_model |
---|