[1] | 1 | SUBROUTINE init_1d_model |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: init_1d_model.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
| 11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 12 | ! |
---|
[1] | 13 | ! Revision 1.21 2006/06/02 15:19:57 raasch |
---|
| 14 | ! cpp-directives extended for lctit |
---|
| 15 | ! |
---|
| 16 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 17 | ! Initial revision |
---|
| 18 | ! |
---|
| 19 | ! |
---|
| 20 | ! Description: |
---|
| 21 | ! ------------ |
---|
| 22 | ! 1D-model to initialize the 3D-arrays. |
---|
| 23 | ! The temperature profile is set as steady and a corresponding steady solution |
---|
| 24 | ! of the wind profile is being computed. |
---|
| 25 | ! All subroutines required can be found within this file. |
---|
| 26 | !------------------------------------------------------------------------------! |
---|
| 27 | |
---|
| 28 | USE arrays_3d |
---|
| 29 | USE indices |
---|
| 30 | USE model_1d |
---|
| 31 | USE control_parameters |
---|
| 32 | |
---|
| 33 | IMPLICIT NONE |
---|
| 34 | |
---|
| 35 | CHARACTER (LEN=9) :: time_to_string |
---|
| 36 | INTEGER :: k |
---|
| 37 | REAL :: lambda |
---|
| 38 | |
---|
| 39 | ! |
---|
| 40 | !-- Allocate required 1D-arrays |
---|
| 41 | ALLOCATE( e1d(nzb:nzt+1), e1d_m(nzb:nzt+1), e1d_p(nzb:nzt+1), & |
---|
| 42 | kh1d(nzb:nzt+1), kh1d_m(nzb:nzt+1), km1d(nzb:nzt+1), & |
---|
| 43 | km1d_m(nzb:nzt+1), l_black(nzb:nzt+1), l1d(nzb:nzt+1), & |
---|
| 44 | l1d_m(nzb:nzt+1), rif1d(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
| 45 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 46 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 47 | u1d_m(nzb:nzt+1), u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), & |
---|
| 48 | v1d_m(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
| 49 | |
---|
| 50 | ! |
---|
| 51 | !-- Initialize arrays |
---|
| 52 | IF ( constant_diffusion ) THEN |
---|
| 53 | km1d = km_constant |
---|
| 54 | km1d_m = km_constant |
---|
| 55 | kh1d = km_constant / prandtl_number |
---|
| 56 | kh1d_m = km_constant / prandtl_number |
---|
| 57 | ELSE |
---|
| 58 | e1d = 0.0; e1d_m = 0.0; e1d_p = 0.0 |
---|
| 59 | kh1d = 0.0; kh1d_m = 0.0; km1d = 0.0; km1d_m = 0.0 |
---|
| 60 | rif1d = 0.0 |
---|
| 61 | ! |
---|
| 62 | !-- Compute the mixing length |
---|
| 63 | l_black(nzb) = 0.0 |
---|
| 64 | |
---|
| 65 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 66 | ! |
---|
| 67 | !-- Blackadar mixing length |
---|
| 68 | IF ( f /= 0.0 ) THEN |
---|
| 69 | lambda = 2.7E-4 * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / f + 1E-10 |
---|
| 70 | ELSE |
---|
| 71 | lambda = 30.0 |
---|
| 72 | ENDIF |
---|
| 73 | |
---|
| 74 | DO k = nzb+1, nzt+1 |
---|
| 75 | l_black(k) = kappa * zu(k) / ( 1.0 + kappa * zu(k) / lambda ) |
---|
| 76 | ENDDO |
---|
| 77 | |
---|
| 78 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 79 | ! |
---|
| 80 | !-- Use the same mixing length as in 3D model |
---|
| 81 | l_black(1:nzt) = l_grid |
---|
| 82 | l_black(nzt+1) = l_black(nzt) |
---|
| 83 | |
---|
| 84 | ENDIF |
---|
| 85 | |
---|
| 86 | ! |
---|
| 87 | !-- Adjust mixing length to the prandtl mixing length (within the prandtl |
---|
| 88 | !-- layer) |
---|
| 89 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
| 90 | k = nzb+1 |
---|
| 91 | l_black(k) = MIN( l_black(k), kappa * zu(k) ) |
---|
| 92 | ENDIF |
---|
| 93 | ENDIF |
---|
| 94 | l1d = l_black |
---|
| 95 | l1d_m = l_black |
---|
| 96 | u1d = u_init |
---|
| 97 | u1d_m = u_init |
---|
| 98 | u1d_p = u_init |
---|
| 99 | v1d = v_init |
---|
| 100 | v1d_m = v_init |
---|
| 101 | v1d_p = v_init |
---|
| 102 | |
---|
| 103 | ! |
---|
| 104 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 105 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 106 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
| 107 | u1d(0:1) = 0.1 |
---|
| 108 | u1d_m(0:1) = 0.1 |
---|
| 109 | u1d_p(0:1) = 0.1 |
---|
| 110 | v1d(0:1) = 0.1 |
---|
| 111 | v1d_m(0:1) = 0.1 |
---|
| 112 | v1d_p(0:1) = 0.1 |
---|
| 113 | |
---|
| 114 | ! |
---|
| 115 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
| 116 | IF ( prandtl_layer ) THEN |
---|
| 117 | us1d = 0.1 ! without initial friction the flow would not change |
---|
| 118 | ELSE |
---|
| 119 | e1d(nzb+1) = 1.0 |
---|
| 120 | km1d(nzb+1) = 1.0 |
---|
| 121 | us1d = 0.0 |
---|
| 122 | ENDIF |
---|
| 123 | ts1d = 0.0 |
---|
| 124 | usws1d = 0.0; usws1d_m = 0.0 |
---|
| 125 | vsws1d = 0.0; vsws1d_m = 0.0 |
---|
| 126 | z01d = roughness_length |
---|
| 127 | IF ( moisture .OR. passive_scalar ) qs1d = 0.0 |
---|
| 128 | |
---|
| 129 | ! |
---|
| 130 | !-- Set start time in hh:mm:ss - format |
---|
| 131 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 132 | |
---|
| 133 | ! |
---|
| 134 | !-- Integrate the 1D-model equations using the leap-frog scheme |
---|
| 135 | CALL time_integration_1d |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | END SUBROUTINE init_1d_model |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | SUBROUTINE time_integration_1d |
---|
| 143 | |
---|
| 144 | !------------------------------------------------------------------------------! |
---|
| 145 | ! Description: |
---|
| 146 | ! ------------ |
---|
| 147 | ! Leap-frog time differencing scheme for the 1D-model. |
---|
| 148 | !------------------------------------------------------------------------------! |
---|
| 149 | |
---|
| 150 | USE arrays_3d |
---|
| 151 | USE control_parameters |
---|
| 152 | USE indices |
---|
| 153 | USE model_1d |
---|
| 154 | USE pegrid |
---|
| 155 | |
---|
| 156 | IMPLICIT NONE |
---|
| 157 | |
---|
| 158 | CHARACTER (LEN=9) :: time_to_string |
---|
| 159 | INTEGER :: k |
---|
| 160 | REAL :: a, b, dissipation, dpt_dz, flux, kmzm, kmzp, l_stable, pt_0, & |
---|
| 161 | uv_total |
---|
| 162 | |
---|
| 163 | ! |
---|
| 164 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 165 | !-- determine and printout quantities used for run control |
---|
| 166 | CALL timestep_1d |
---|
| 167 | CALL run_control_1d |
---|
| 168 | |
---|
| 169 | ! |
---|
| 170 | !-- Start of time loop |
---|
| 171 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 172 | |
---|
| 173 | ! |
---|
| 174 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 175 | !-- timesteps |
---|
| 176 | |
---|
| 177 | intermediate_timestep_count = 0 |
---|
| 178 | DO WHILE ( intermediate_timestep_count < & |
---|
| 179 | intermediate_timestep_count_max ) |
---|
| 180 | |
---|
| 181 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 182 | |
---|
| 183 | CALL timestep_scheme_steering |
---|
| 184 | |
---|
| 185 | ! |
---|
| 186 | !-- Compute all tendency terms. If a Prandtl-layer is simulated, k starts |
---|
| 187 | !-- at nzb+2. |
---|
| 188 | DO k = nzb_diff, nzt |
---|
| 189 | |
---|
| 190 | kmzm = 0.5 * ( km1d_m(k-1) + km1d_m(k) ) |
---|
| 191 | kmzp = 0.5 * ( km1d_m(k) + km1d_m(k+1) ) |
---|
| 192 | ! |
---|
| 193 | !-- u-component |
---|
| 194 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 195 | kmzp * ( u1d_m(k+1) - u1d_m(k) ) * ddzu(k+1) & |
---|
| 196 | - kmzm * ( u1d_m(k) - u1d_m(k-1) ) * ddzu(k) & |
---|
| 197 | ) * ddzw(k) |
---|
| 198 | ! |
---|
| 199 | !-- v-component |
---|
| 200 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 201 | kmzp * ( v1d_m(k+1) - v1d_m(k) ) * ddzu(k+1) & |
---|
| 202 | - kmzm * ( v1d_m(k) - v1d_m(k-1) ) * ddzu(k) & |
---|
| 203 | ) * ddzw(k) |
---|
| 204 | ENDDO |
---|
| 205 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 206 | DO k = nzb_diff, nzt |
---|
| 207 | ! |
---|
| 208 | !-- TKE |
---|
| 209 | kmzm = 0.5 * ( km1d_m(k-1) + km1d_m(k) ) |
---|
| 210 | kmzp = 0.5 * ( km1d_m(k) + km1d_m(k+1) ) |
---|
| 211 | IF ( .NOT. moisture ) THEN |
---|
| 212 | pt_0 = pt_init(k) |
---|
| 213 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 214 | ELSE |
---|
| 215 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
| 216 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 217 | 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
| 218 | ) * dd2zu(k) |
---|
| 219 | ENDIF |
---|
| 220 | |
---|
| 221 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 222 | ! |
---|
| 223 | !-- According to Detering, c_e=0.064 |
---|
| 224 | dissipation = 0.064 * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
| 225 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
| 226 | dissipation = ( 0.19 + 0.74 * l1d_m(k) / l_grid(k) ) & |
---|
| 227 | * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
| 228 | ENDIF |
---|
| 229 | |
---|
| 230 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 231 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 232 | ) & |
---|
| 233 | - g / pt_0 * kh1d(k) * flux & |
---|
| 234 | + ( & |
---|
| 235 | kmzp * ( e1d_m(k+1) - e1d_m(k) ) * ddzu(k+1) & |
---|
| 236 | - kmzm * ( e1d_m(k) - e1d_m(k-1) ) * ddzu(k) & |
---|
| 237 | ) * ddzw(k) & |
---|
| 238 | - dissipation |
---|
| 239 | ENDDO |
---|
| 240 | ENDIF |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | !-- Tendency terms at the top of the Prandtl-layer. |
---|
| 244 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 245 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
| 246 | IF ( prandtl_layer ) THEN |
---|
| 247 | |
---|
| 248 | k = nzb+1 |
---|
| 249 | kmzm = 0.5 * ( km1d_m(k-1) + km1d_m(k) ) |
---|
| 250 | kmzp = 0.5 * ( km1d_m(k) + km1d_m(k+1) ) |
---|
| 251 | IF ( .NOT. moisture ) THEN |
---|
| 252 | pt_0 = pt_init(k) |
---|
| 253 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 254 | ELSE |
---|
| 255 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
| 256 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 257 | 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
| 258 | ) * dd2zu(k) |
---|
| 259 | ENDIF |
---|
| 260 | |
---|
| 261 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 262 | ! |
---|
| 263 | !-- According to Detering, c_e=0.064 |
---|
| 264 | dissipation = 0.064 * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
| 265 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
| 266 | dissipation = ( 0.19 + 0.74 * l1d_m(k) / l_grid(k) ) & |
---|
| 267 | * e1d_m(k) * SQRT( e1d_m(k) ) / l1d_m(k) |
---|
| 268 | ENDIF |
---|
| 269 | |
---|
| 270 | ! |
---|
| 271 | !-- u-component |
---|
| 272 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 273 | kmzp * ( u1d_m(k+1) - u1d_m(k) ) * ddzu(k+1) + usws1d_m & |
---|
| 274 | ) * 2.0 * ddzw(k) |
---|
| 275 | ! |
---|
| 276 | !-- v-component |
---|
| 277 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 278 | kmzp * ( v1d_m(k+1) - v1d_m(k) ) * ddzu(k+1) + vsws1d_m & |
---|
| 279 | ) * 2.0 * ddzw(k) |
---|
| 280 | ! |
---|
| 281 | !-- TKE |
---|
| 282 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 283 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 284 | ) & |
---|
| 285 | - g / pt_0 * kh1d(k) * flux & |
---|
| 286 | + ( & |
---|
| 287 | kmzp * ( e1d_m(k+1) - e1d_m(k) ) * ddzu(k+1) & |
---|
| 288 | - kmzm * ( e1d_m(k) - e1d_m(k-1) ) * ddzu(k) & |
---|
| 289 | ) * ddzw(k) & |
---|
| 290 | - dissipation |
---|
| 291 | ENDIF |
---|
| 292 | |
---|
| 293 | ! |
---|
| 294 | !-- Prognostic equations for all 1D variables |
---|
| 295 | DO k = nzb+1, nzt |
---|
| 296 | |
---|
| 297 | u1d_p(k) = ( 1. - tsc(1) ) * u1d_m(k) + & |
---|
| 298 | tsc(1) * u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 299 | tsc(3) * te_um(k) ) |
---|
| 300 | v1d_p(k) = ( 1. - tsc(1) ) * v1d_m(k) + & |
---|
| 301 | tsc(1) * v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 302 | tsc(3) * te_vm(k) ) |
---|
| 303 | |
---|
| 304 | ENDDO |
---|
| 305 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 306 | DO k = nzb+1, nzt |
---|
| 307 | |
---|
| 308 | e1d_p(k) = ( 1. - tsc(1) ) * e1d_m(k) + & |
---|
| 309 | tsc(1) * e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 310 | tsc(3) * te_em(k) ) |
---|
| 311 | |
---|
| 312 | ENDDO |
---|
| 313 | ! |
---|
| 314 | !-- Eliminate negative TKE values, which can result from the |
---|
| 315 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 316 | !-- value is reduced to 10 percent of its old value. |
---|
| 317 | WHERE ( e1d_p < 0.0 ) e1d_p = 0.1 * e1d |
---|
| 318 | ENDIF |
---|
| 319 | |
---|
| 320 | ! |
---|
| 321 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 322 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 323 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 324 | |
---|
| 325 | DO k = nzb+1, nzt |
---|
| 326 | te_um(k) = te_u(k) |
---|
| 327 | te_vm(k) = te_v(k) |
---|
| 328 | ENDDO |
---|
| 329 | |
---|
| 330 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 331 | DO k = nzb+1, nzt |
---|
| 332 | te_em(k) = te_e(k) |
---|
| 333 | ENDDO |
---|
| 334 | ENDIF |
---|
| 335 | |
---|
| 336 | ELSEIF ( intermediate_timestep_count < & |
---|
| 337 | intermediate_timestep_count_max ) THEN |
---|
| 338 | |
---|
| 339 | DO k = nzb+1, nzt |
---|
| 340 | te_um(k) = -9.5625 * te_u(k) + 5.3125 * te_um(k) |
---|
| 341 | te_vm(k) = -9.5625 * te_v(k) + 5.3125 * te_vm(k) |
---|
| 342 | ENDDO |
---|
| 343 | |
---|
| 344 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 345 | DO k = nzb+1, nzt |
---|
| 346 | te_em(k) = -9.5625 * te_e(k) + 5.3125 * te_em(k) |
---|
| 347 | ENDDO |
---|
| 348 | ENDIF |
---|
| 349 | |
---|
| 350 | ENDIF |
---|
| 351 | ENDIF |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | ! |
---|
| 355 | !-- Boundary conditions for the prognostic variables. |
---|
| 356 | !-- At the top boundary (nzt+1) u,v and e keep their initial values |
---|
| 357 | !-- (ug(nzt+1), vg(nzt+1), 0), at the bottom boundary the mirror |
---|
| 358 | !-- boundary condition applies to u and v. |
---|
| 359 | !-- The boundary condition for e is set further below ( (u*/cm)**2 ). |
---|
| 360 | u1d_p(nzb) = -u1d_p(nzb+1) |
---|
| 361 | v1d_p(nzb) = -v1d_p(nzb+1) |
---|
| 362 | |
---|
| 363 | ! |
---|
| 364 | !-- If necessary, apply the time filter |
---|
| 365 | IF ( asselin_filter_factor /= 0.0 .AND. & |
---|
| 366 | timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 367 | |
---|
| 368 | u1d = u1d + asselin_filter_factor * ( u1d_p - 2.0 * u1d + u1d_m ) |
---|
| 369 | v1d = v1d + asselin_filter_factor * ( v1d_p - 2.0 * v1d + v1d_m ) |
---|
| 370 | |
---|
| 371 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 372 | e1d = e1d + asselin_filter_factor * & |
---|
| 373 | ( e1d_p - 2.0 * e1d + e1d_m ) |
---|
| 374 | ENDIF |
---|
| 375 | |
---|
| 376 | ENDIF |
---|
| 377 | |
---|
| 378 | ! |
---|
| 379 | !-- Swap the time levels in preparation for the next time step. |
---|
| 380 | IF ( timestep_scheme(1:4) == 'leap' ) THEN |
---|
| 381 | u1d_m = u1d |
---|
| 382 | v1d_m = v1d |
---|
| 383 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 384 | e1d_m = e1d |
---|
| 385 | kh1d_m = kh1d ! The old diffusion quantities are required for |
---|
| 386 | km1d_m = km1d ! explicit diffusion in the leap-frog scheme. |
---|
| 387 | l1d_m = l1d |
---|
| 388 | IF ( prandtl_layer ) THEN |
---|
| 389 | usws1d_m = usws1d |
---|
| 390 | vsws1d_m = vsws1d |
---|
| 391 | ENDIF |
---|
| 392 | ENDIF |
---|
| 393 | ENDIF |
---|
| 394 | u1d = u1d_p |
---|
| 395 | v1d = v1d_p |
---|
| 396 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 397 | e1d = e1d_p |
---|
| 398 | ENDIF |
---|
| 399 | |
---|
| 400 | ! |
---|
| 401 | !-- Compute diffusion quantities |
---|
| 402 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 403 | |
---|
| 404 | ! |
---|
| 405 | !-- First compute the vertical fluxes in the Prandtl-layer |
---|
| 406 | IF ( prandtl_layer ) THEN |
---|
| 407 | ! |
---|
| 408 | !-- Compute theta* using Rif numbers of the previous time step |
---|
| 409 | IF ( rif1d(1) >= 0.0 ) THEN |
---|
| 410 | ! |
---|
| 411 | !-- Stable stratification |
---|
| 412 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 413 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
| 414 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 415 | ) |
---|
| 416 | ELSE |
---|
| 417 | ! |
---|
| 418 | !-- Unstable stratification |
---|
| 419 | a = SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) |
---|
| 420 | b = SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) * z01d ) |
---|
| 421 | ! |
---|
| 422 | !-- In the borderline case the formula for stable stratification |
---|
| 423 | !-- must be applied, because otherwise a zero division would |
---|
| 424 | !-- occur in the argument of the logarithm. |
---|
| 425 | IF ( a == 0.0 .OR. b == 0.0 ) THEN |
---|
| 426 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 427 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
| 428 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 429 | ) |
---|
| 430 | ELSE |
---|
| 431 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 432 | LOG( (a-1.0) / (a+1.0) * (b+1.0) / (b-1.0) ) |
---|
| 433 | ENDIF |
---|
| 434 | ENDIF |
---|
| 435 | |
---|
| 436 | ENDIF ! prandtl_layer |
---|
| 437 | |
---|
| 438 | ! |
---|
| 439 | !-- Compute the Richardson-flux numbers, |
---|
| 440 | !-- first at the top of the Prandtl-layer using u* of the previous |
---|
| 441 | !-- time step (+1E-30, if u* = 0), then in the remaining area. There |
---|
| 442 | !-- the rif-numbers of the previous time step are used. |
---|
| 443 | |
---|
| 444 | IF ( prandtl_layer ) THEN |
---|
| 445 | IF ( .NOT. moisture ) THEN |
---|
| 446 | pt_0 = pt_init(nzb+1) |
---|
| 447 | flux = ts1d |
---|
| 448 | ELSE |
---|
| 449 | pt_0 = pt_init(nzb+1) * ( 1.0 + 0.61 * q_init(nzb+1) ) |
---|
| 450 | flux = ts1d + 0.61 * pt_init(k) * qs1d |
---|
| 451 | ENDIF |
---|
| 452 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
| 453 | ( pt_0 * ( us1d**2 + 1E-30 ) ) |
---|
| 454 | ENDIF |
---|
| 455 | |
---|
| 456 | DO k = nzb_diff, nzt |
---|
| 457 | IF ( .NOT. moisture ) THEN |
---|
| 458 | pt_0 = pt_init(k) |
---|
| 459 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 460 | ELSE |
---|
| 461 | pt_0 = pt_init(k) * ( 1.0 + 0.61 * q_init(k) ) |
---|
| 462 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
| 463 | + 0.61 * pt_init(k) * ( q_init(k+1) - q_init(k-1) )& |
---|
| 464 | ) * dd2zu(k) |
---|
| 465 | ENDIF |
---|
| 466 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
| 467 | rif1d(k) = g / pt_0 * flux / & |
---|
| 468 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 469 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 470 | + 1E-30 & |
---|
| 471 | ) |
---|
| 472 | ELSE |
---|
| 473 | rif1d(k) = g / pt_0 * flux / & |
---|
| 474 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 475 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 476 | + 1E-30 & |
---|
| 477 | ) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
| 478 | ENDIF |
---|
| 479 | ENDDO |
---|
| 480 | ! |
---|
| 481 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 482 | !-- range. It is exceeded excessively for very small velocities |
---|
| 483 | !-- (u,v --> 0). |
---|
| 484 | WHERE ( rif1d < rif_min ) rif1d = rif_min |
---|
| 485 | WHERE ( rif1d > rif_max ) rif1d = rif_max |
---|
| 486 | |
---|
| 487 | ! |
---|
| 488 | !-- Compute u* from the absolute velocity value |
---|
| 489 | IF ( prandtl_layer ) THEN |
---|
| 490 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 491 | |
---|
| 492 | IF ( rif1d(nzb+1) >= 0.0 ) THEN |
---|
| 493 | ! |
---|
| 494 | !-- Stable stratification |
---|
| 495 | us1d = kappa * uv_total / ( & |
---|
| 496 | LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
| 497 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 498 | ) |
---|
| 499 | ELSE |
---|
| 500 | ! |
---|
| 501 | !-- Unstable stratification |
---|
| 502 | a = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) ) |
---|
| 503 | b = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) & |
---|
| 504 | * z01d ) ) |
---|
| 505 | ! |
---|
| 506 | !-- In the borderline case the formula for stable stratification |
---|
| 507 | !-- must be applied, because otherwise a zero division would |
---|
| 508 | !-- occur in the argument of the logarithm. |
---|
| 509 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
| 510 | us1d = kappa * uv_total / ( & |
---|
| 511 | LOG( zu(nzb+1) / z01d ) + & |
---|
| 512 | 5.0 * rif1d(nzb+1) * ( zu(nzb+1) - z01d ) / & |
---|
| 513 | zu(nzb+1) ) |
---|
| 514 | ELSE |
---|
| 515 | us1d = kappa * uv_total / ( & |
---|
| 516 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) +& |
---|
| 517 | 2.0 * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 518 | ) |
---|
| 519 | ENDIF |
---|
| 520 | ENDIF |
---|
| 521 | |
---|
| 522 | ! |
---|
| 523 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 524 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 525 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 526 | |
---|
| 527 | ! |
---|
| 528 | !-- Boundary condition for the turbulent kinetic energy at the top |
---|
| 529 | !-- of the Prandtl-layer. c_m = 0.4 according to Detering. |
---|
| 530 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 531 | !-- compatibility with the 3D model. |
---|
| 532 | IF ( ibc_e_b == 2 ) THEN |
---|
| 533 | e1d(nzb+1) = ( us1d / 0.1 )**2 |
---|
| 534 | ! e1d(nzb+1) = ( us1d / 0.4 )**2 !not used so far, see also |
---|
| 535 | !prandtl_fluxes |
---|
| 536 | ENDIF |
---|
| 537 | e1d(nzb) = e1d(nzb+1) |
---|
| 538 | |
---|
| 539 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 540 | ! |
---|
| 541 | !-- Compute q* |
---|
| 542 | IF ( rif1d(1) >= 0.0 ) THEN |
---|
| 543 | ! |
---|
| 544 | !-- Stable stratification |
---|
| 545 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 546 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
| 547 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 548 | ) |
---|
| 549 | ELSE |
---|
| 550 | ! |
---|
| 551 | !-- Unstable stratification |
---|
| 552 | a = SQRT( 1.0 - 16.0 * rif1d(nzb+1) ) |
---|
| 553 | b = SQRT( 1.0 - 16.0 * rif1d(nzb+1) / zu(nzb+1) * z01d ) |
---|
| 554 | ! |
---|
| 555 | !-- In the borderline case the formula for stable stratification |
---|
| 556 | !-- must be applied, because otherwise a zero division would |
---|
| 557 | !-- occur in the argument of the logarithm. |
---|
| 558 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
| 559 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 560 | ( LOG( zu(nzb+1) / z01d ) + 5.0 * rif1d(nzb+1) * & |
---|
| 561 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 562 | ) |
---|
| 563 | ELSE |
---|
| 564 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 565 | LOG( (a-1.0) / (a+1.0) * (b+1.0) / (b-1.0) ) |
---|
| 566 | ENDIF |
---|
| 567 | ENDIF |
---|
| 568 | ELSE |
---|
| 569 | qs1d = 0.0 |
---|
| 570 | ENDIF |
---|
| 571 | |
---|
| 572 | ENDIF ! prandtl_layer |
---|
| 573 | |
---|
| 574 | ! |
---|
| 575 | !-- Compute the diabatic mixing length |
---|
| 576 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 577 | DO k = nzb+1, nzt |
---|
| 578 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
| 579 | l1d(k) = l_black(k) / ( 1.0 + 5.0 * rif1d(k) ) |
---|
| 580 | ELSE |
---|
| 581 | l1d(k) = l_black(k) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
| 582 | ENDIF |
---|
| 583 | l1d(k) = l_black(k) |
---|
| 584 | ENDDO |
---|
| 585 | |
---|
| 586 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 587 | DO k = nzb+1, nzt |
---|
| 588 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 589 | IF ( dpt_dz > 0.0 ) THEN |
---|
| 590 | l_stable = 0.76 * SQRT( e1d(k) ) / & |
---|
| 591 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5 |
---|
| 592 | ELSE |
---|
| 593 | l_stable = l_grid(k) |
---|
| 594 | ENDIF |
---|
| 595 | l1d(k) = MIN( l_grid(k), l_stable ) |
---|
| 596 | ENDDO |
---|
| 597 | ENDIF |
---|
| 598 | |
---|
| 599 | ! |
---|
| 600 | !-- Adjust mixing length to the prandtl mixing length |
---|
| 601 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
| 602 | k = nzb+1 |
---|
| 603 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
| 604 | l1d(k) = MIN( l1d(k), kappa * zu(k) / ( 1.0 + 5.0 * & |
---|
| 605 | rif1d(k) ) ) |
---|
| 606 | ELSE |
---|
| 607 | l1d(k) = MIN( l1d(k), kappa * zu(k) * & |
---|
| 608 | SQRT( SQRT( 1.0 - 16.0 * rif1d(k) ) ) ) |
---|
| 609 | ENDIF |
---|
| 610 | ENDIF |
---|
| 611 | |
---|
| 612 | ! |
---|
| 613 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 614 | !-- corresponding Prandtl-layer relationship and according to |
---|
| 615 | !-- Prandtl-Kolmogorov, respectively. The unstable stratification is |
---|
| 616 | !-- computed via the adiabatic mixing length, for the unstability has |
---|
| 617 | !-- already been taken account of via the TKE (cf. also Diss.). |
---|
| 618 | IF ( prandtl_layer ) THEN |
---|
| 619 | IF ( rif1d(nzb+1) >= 0.0 ) THEN |
---|
| 620 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 621 | ( 1.0 + 5.0 * rif1d(nzb+1) ) |
---|
| 622 | ELSE |
---|
| 623 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 624 | ( 1.0 - 16.0 * rif1d(nzb+1) )**0.25 |
---|
| 625 | ENDIF |
---|
| 626 | ENDIF |
---|
| 627 | DO k = nzb_diff, nzt |
---|
| 628 | ! km1d(k) = 0.4 * SQRT( e1d(k) ) !changed: adjustment to 3D-model |
---|
| 629 | km1d(k) = 0.1 * SQRT( e1d(k) ) |
---|
| 630 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
| 631 | km1d(k) = km1d(k) * l1d(k) |
---|
| 632 | ELSE |
---|
| 633 | km1d(k) = km1d(k) * l_black(k) |
---|
| 634 | ENDIF |
---|
| 635 | ENDDO |
---|
| 636 | |
---|
| 637 | ! |
---|
| 638 | !-- Add damping layer |
---|
| 639 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
| 640 | km1d(k) = 1.1 * km1d(k-1) |
---|
| 641 | km1d(k) = MIN( km1d(k), 10.0 ) |
---|
| 642 | ENDDO |
---|
| 643 | |
---|
| 644 | ! |
---|
| 645 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 646 | !-- kh = phim / phih * km |
---|
| 647 | DO k = nzb+1, nzt |
---|
| 648 | IF ( rif1d(k) >= 0.0 ) THEN |
---|
| 649 | kh1d(k) = km1d(k) |
---|
| 650 | ELSE |
---|
| 651 | kh1d(k) = km1d(k) * ( 1.0 - 16.0 * rif1d(k) )**0.25 |
---|
| 652 | ENDIF |
---|
| 653 | ENDDO |
---|
| 654 | |
---|
| 655 | ENDIF ! .NOT. constant_diffusion |
---|
| 656 | |
---|
| 657 | ! |
---|
| 658 | !-- The Runge-Kutta scheme needs the recent diffusion quantities |
---|
| 659 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 660 | u1d_m = u1d |
---|
| 661 | v1d_m = v1d |
---|
| 662 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 663 | e1d_m = e1d |
---|
| 664 | kh1d_m = kh1d |
---|
| 665 | km1d_m = km1d |
---|
| 666 | l1d_m = l1d |
---|
| 667 | IF ( prandtl_layer ) THEN |
---|
| 668 | usws1d_m = usws1d |
---|
| 669 | vsws1d_m = vsws1d |
---|
| 670 | ENDIF |
---|
| 671 | ENDIF |
---|
| 672 | ENDIF |
---|
| 673 | |
---|
| 674 | |
---|
| 675 | ENDDO ! intermediate step loop |
---|
| 676 | |
---|
| 677 | ! |
---|
| 678 | !-- Increment simulated time and output times |
---|
| 679 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 680 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 681 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 682 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 683 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 684 | |
---|
| 685 | ! |
---|
| 686 | !-- Determine and print out quantities for run control |
---|
| 687 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 688 | CALL run_control_1d |
---|
| 689 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 690 | ENDIF |
---|
| 691 | |
---|
| 692 | ! |
---|
| 693 | !-- Profile output on file |
---|
| 694 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 695 | CALL print_1d_model |
---|
| 696 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 697 | ENDIF |
---|
| 698 | |
---|
| 699 | ! |
---|
| 700 | !-- Determine size of next time step |
---|
| 701 | CALL timestep_1d |
---|
| 702 | |
---|
| 703 | ENDDO ! time loop |
---|
| 704 | |
---|
| 705 | |
---|
| 706 | END SUBROUTINE time_integration_1d |
---|
| 707 | |
---|
| 708 | |
---|
| 709 | SUBROUTINE run_control_1d |
---|
| 710 | |
---|
| 711 | !------------------------------------------------------------------------------! |
---|
| 712 | ! Description: |
---|
| 713 | ! ------------ |
---|
| 714 | ! Compute and print out quantities for run control of the 1D model. |
---|
| 715 | !------------------------------------------------------------------------------! |
---|
| 716 | |
---|
| 717 | USE constants |
---|
| 718 | USE indices |
---|
| 719 | USE model_1d |
---|
| 720 | USE pegrid |
---|
| 721 | USE control_parameters |
---|
| 722 | |
---|
| 723 | IMPLICIT NONE |
---|
| 724 | |
---|
| 725 | INTEGER :: k |
---|
| 726 | REAL :: alpha, energy, umax, uv_total, vmax |
---|
| 727 | |
---|
| 728 | ! |
---|
| 729 | !-- Output |
---|
| 730 | IF ( myid == 0 ) THEN |
---|
| 731 | ! |
---|
| 732 | !-- If necessary, write header |
---|
| 733 | IF ( .NOT. run_control_header_1d ) THEN |
---|
| 734 | WRITE ( 15, 100 ) |
---|
| 735 | run_control_header_1d = .TRUE. |
---|
| 736 | ENDIF |
---|
| 737 | |
---|
| 738 | ! |
---|
| 739 | !-- Compute control quantities |
---|
| 740 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
| 741 | umax = 0.0; vmax = 0.0; energy = 0.0 |
---|
| 742 | DO k = nzb+1, nzt+1 |
---|
| 743 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 744 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
| 745 | energy = energy + 0.5 * ( u1d(k)**2 + v1d(k)**2 ) |
---|
| 746 | ENDDO |
---|
| 747 | energy = energy / REAL( nzt - nzb + 1 ) |
---|
| 748 | |
---|
| 749 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 750 | IF ( ABS( v1d(nzb+1) ) .LT. 1.0E-5 ) THEN |
---|
| 751 | alpha = ACOS( SIGN( 1.0 , u1d(nzb+1) ) ) |
---|
| 752 | ELSE |
---|
| 753 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
| 754 | IF ( v1d(nzb+1) <= 0.0 ) alpha = 2.0 * pi - alpha |
---|
| 755 | ENDIF |
---|
| 756 | alpha = alpha / ( 2.0 * pi ) * 360.0 |
---|
| 757 | |
---|
| 758 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 759 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 760 | #if defined( __ibm ) |
---|
| 761 | ! |
---|
| 762 | !-- Write buffer contents to disc immediately |
---|
| 763 | CALL FLUSH_( 15 ) |
---|
| 764 | #elif defined( __lcmuk ) || defined( __lctit ) || defined( __nec ) |
---|
| 765 | CALL FLUSH( 15 ) |
---|
| 766 | #endif |
---|
| 767 | |
---|
| 768 | ENDIF |
---|
| 769 | |
---|
| 770 | ! |
---|
| 771 | !-- formats |
---|
| 772 | 100 FORMAT (///'1D-Zeitschrittkontrollausgaben:'/ & |
---|
| 773 | &'------------------------------'// & |
---|
| 774 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
| 775 | &'-------------------------------------------------------------') |
---|
| 776 | 101 FORMAT (I5,2X,A9,1X,F6.2,2X,F6.2,1X,F6.2,2X,F5.3,2X,F5.1,2X,F7.2) |
---|
| 777 | |
---|
| 778 | |
---|
| 779 | END SUBROUTINE run_control_1d |
---|
| 780 | |
---|
| 781 | |
---|
| 782 | |
---|
| 783 | SUBROUTINE timestep_1d |
---|
| 784 | |
---|
| 785 | !------------------------------------------------------------------------------! |
---|
| 786 | ! Description: |
---|
| 787 | ! ------------ |
---|
| 788 | ! Compute the time step w.r.t. the diffusion criterion |
---|
| 789 | !------------------------------------------------------------------------------! |
---|
| 790 | |
---|
| 791 | USE arrays_3d |
---|
| 792 | USE indices |
---|
| 793 | USE model_1d |
---|
| 794 | USE pegrid |
---|
| 795 | USE control_parameters |
---|
| 796 | |
---|
| 797 | IMPLICIT NONE |
---|
| 798 | |
---|
| 799 | INTEGER :: k |
---|
| 800 | REAL :: div, dt_diff, fac, percent_change, value |
---|
| 801 | |
---|
| 802 | |
---|
| 803 | ! |
---|
| 804 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 805 | !-- criterion. At nzb+1 the half grid length is used. |
---|
| 806 | IF ( timestep_scheme(1:4) == 'leap' ) THEN |
---|
| 807 | fac = 0.25 |
---|
| 808 | ELSE |
---|
| 809 | fac = 0.35 |
---|
| 810 | ENDIF |
---|
| 811 | dt_diff = dt_max_1d |
---|
| 812 | DO k = nzb+2, nzt |
---|
| 813 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20 ) |
---|
| 814 | dt_diff = MIN( value, dt_diff ) |
---|
| 815 | ENDDO |
---|
| 816 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20 ) |
---|
| 817 | dt_1d = MIN( value, dt_diff ) |
---|
| 818 | |
---|
| 819 | ! |
---|
| 820 | !-- Set flag when the time step becomes too small |
---|
| 821 | IF ( dt_1d < ( 0.00001 * dt_max_1d ) ) THEN |
---|
| 822 | stop_dt_1d = .TRUE. |
---|
| 823 | IF ( myid == 0 ) THEN |
---|
| 824 | PRINT*,'+++ timestep_1d: timestep has exceeded the lower limit' |
---|
| 825 | PRINT*,' dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 826 | ENDIF |
---|
| 827 | CALL local_stop |
---|
| 828 | ENDIF |
---|
| 829 | |
---|
| 830 | IF ( timestep_scheme(1:4) == 'leap' ) THEN |
---|
| 831 | |
---|
| 832 | ! |
---|
| 833 | !-- The current time step will only be changed if the new time step exceeds |
---|
| 834 | !-- its previous value by 5 % or falls 2 % below. After a time step |
---|
| 835 | !-- reduction at least 30 iterations must be done with this value before a |
---|
| 836 | !-- new reduction will be allowed again. |
---|
| 837 | !-- The control parameters for application of Euler- or leap-frog schemes are |
---|
| 838 | !-- set accordingly. |
---|
| 839 | percent_change = dt_1d / old_dt_1d - 1.0 |
---|
| 840 | IF ( percent_change > 0.05 .OR. percent_change < -0.02 ) THEN |
---|
| 841 | |
---|
| 842 | ! |
---|
| 843 | !-- Each time step increase is by at most 2 % |
---|
| 844 | IF ( percent_change > 0.0 .AND. simulated_time_1d /= 0.0 ) THEN |
---|
| 845 | dt_1d = 1.02 * old_dt_1d |
---|
| 846 | ENDIF |
---|
| 847 | |
---|
| 848 | ! |
---|
| 849 | !-- A more or less simple new time step value is obtained taking only the |
---|
| 850 | !-- first two significant digits |
---|
| 851 | div = 1000.0 |
---|
| 852 | DO WHILE ( dt_1d < div ) |
---|
| 853 | div = div / 10.0 |
---|
| 854 | ENDDO |
---|
| 855 | dt_1d = NINT( dt_1d * 100.0 / div ) * div / 100.0 |
---|
| 856 | |
---|
| 857 | ! |
---|
| 858 | !-- Now the time step can be changed. |
---|
| 859 | IF ( percent_change < 0.0 ) THEN |
---|
| 860 | ! |
---|
| 861 | !-- Time step reduction |
---|
| 862 | old_dt_1d = dt_1d |
---|
| 863 | last_dt_change_1d = current_timestep_number_1d |
---|
| 864 | ELSE |
---|
| 865 | ! |
---|
| 866 | !-- Time step will only be increased if at least 30 iterations have |
---|
| 867 | !-- been done since the previous time step change, and of course at |
---|
| 868 | !-- simulation start, respectively. |
---|
| 869 | IF ( current_timestep_number_1d >= last_dt_change_1d + 30 .OR. & |
---|
| 870 | simulated_time_1d == 0.0 ) THEN |
---|
| 871 | old_dt_1d = dt_1d |
---|
| 872 | last_dt_change_1d = current_timestep_number_1d |
---|
| 873 | ELSE |
---|
| 874 | dt_1d = old_dt_1d |
---|
| 875 | ENDIF |
---|
| 876 | ENDIF |
---|
| 877 | ELSE |
---|
| 878 | ! |
---|
| 879 | !-- No time step change since the difference is too small |
---|
| 880 | dt_1d = old_dt_1d |
---|
| 881 | ENDIF |
---|
| 882 | |
---|
| 883 | ELSE ! Runge-Kutta |
---|
| 884 | |
---|
| 885 | !-- A more or less simple new time step value is obtained taking only the |
---|
| 886 | !-- first two significant digits |
---|
| 887 | div = 1000.0 |
---|
| 888 | DO WHILE ( dt_1d < div ) |
---|
| 889 | div = div / 10.0 |
---|
| 890 | ENDDO |
---|
| 891 | dt_1d = NINT( dt_1d * 100.0 / div ) * div / 100.0 |
---|
| 892 | |
---|
| 893 | old_dt_1d = dt_1d |
---|
| 894 | last_dt_change_1d = current_timestep_number_1d |
---|
| 895 | |
---|
| 896 | ENDIF |
---|
| 897 | |
---|
| 898 | END SUBROUTINE timestep_1d |
---|
| 899 | |
---|
| 900 | |
---|
| 901 | |
---|
| 902 | SUBROUTINE print_1d_model |
---|
| 903 | |
---|
| 904 | !------------------------------------------------------------------------------! |
---|
| 905 | ! Description: |
---|
| 906 | ! ------------ |
---|
| 907 | ! List output of profiles from the 1D-model |
---|
| 908 | !------------------------------------------------------------------------------! |
---|
| 909 | |
---|
| 910 | USE arrays_3d |
---|
| 911 | USE indices |
---|
| 912 | USE model_1d |
---|
| 913 | USE pegrid |
---|
| 914 | USE control_parameters |
---|
| 915 | |
---|
| 916 | IMPLICIT NONE |
---|
| 917 | |
---|
| 918 | |
---|
| 919 | INTEGER :: k |
---|
| 920 | |
---|
| 921 | |
---|
| 922 | IF ( myid == 0 ) THEN |
---|
| 923 | ! |
---|
| 924 | !-- Open list output file for profiles from the 1D-model |
---|
| 925 | CALL check_open( 17 ) |
---|
| 926 | |
---|
| 927 | ! |
---|
| 928 | !-- Write Header |
---|
| 929 | WRITE ( 17, 100 ) TRIM( run_description_header ), & |
---|
| 930 | TRIM( simulated_time_chr ) |
---|
| 931 | WRITE ( 17, 101 ) |
---|
| 932 | |
---|
| 933 | ! |
---|
| 934 | !-- Write the values |
---|
| 935 | WRITE ( 17, 102 ) |
---|
| 936 | WRITE ( 17, 101 ) |
---|
| 937 | DO k = nzt+1, nzb, -1 |
---|
| 938 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
| 939 | rif1d(k), km1d(k), kh1d(k), l1d(k), zu(k), k |
---|
| 940 | ENDDO |
---|
| 941 | WRITE ( 17, 101 ) |
---|
| 942 | WRITE ( 17, 102 ) |
---|
| 943 | WRITE ( 17, 101 ) |
---|
| 944 | |
---|
| 945 | #if defined( __ibm ) |
---|
| 946 | ! |
---|
| 947 | !-- Write buffer contents to disc immediately |
---|
| 948 | CALL FLUSH_( 17 ) |
---|
| 949 | #elif defined( __lcmuk ) || defined( __lctit ) || defined( __nec ) |
---|
| 950 | CALL FLUSH( 17 ) |
---|
| 951 | #endif |
---|
| 952 | |
---|
| 953 | ENDIF |
---|
| 954 | |
---|
| 955 | ! |
---|
| 956 | !-- Formats |
---|
| 957 | 100 FORMAT (//1X,A/1X,10('-')/' 1d-model profiles'/ & |
---|
| 958 | ' Time: ',A) |
---|
| 959 | 101 FORMAT (1X,79('-')) |
---|
| 960 | 102 FORMAT (' k zu u v pt e rif Km Kh ', & |
---|
| 961 | 'l zu k') |
---|
| 962 | 103 FORMAT (1X,I4,1X,F7.1,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F5.2,1X,F5.2, & |
---|
| 963 | 1X,F5.2,1X,F6.2,1X,F7.1,2X,I4) |
---|
| 964 | |
---|
| 965 | |
---|
| 966 | END SUBROUTINE print_1d_model |
---|