[1] | 1 | SUBROUTINE init_1d_model |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1347] | 22 | ! |
---|
[1354] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_1d_model.f90 1354 2014-04-08 15:22:57Z heinze $ |
---|
| 27 | ! |
---|
[1354] | 28 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 29 | ! REAL constants provided with KIND-attribute |
---|
| 30 | ! |
---|
[1347] | 31 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 32 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 33 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 34 | ! |
---|
[1323] | 35 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 36 | ! REAL functions provided with KIND-attribute |
---|
| 37 | ! |
---|
[1321] | 38 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 39 | ! ONLY-attribute added to USE-statements, |
---|
| 40 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 41 | ! kinds are defined in new module kinds, |
---|
| 42 | ! revision history before 2012 removed, |
---|
| 43 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 44 | ! all variable declaration statements |
---|
[1321] | 45 | ! |
---|
[1037] | 46 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 47 | ! code put under GPL (PALM 3.9) |
---|
| 48 | ! |
---|
[1017] | 49 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 50 | ! adjustment of mixing length to the Prandtl mixing length at first grid point |
---|
| 51 | ! above ground removed |
---|
| 52 | ! |
---|
[1002] | 53 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 54 | ! all actions concerning leapfrog scheme removed |
---|
| 55 | ! |
---|
[997] | 56 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 57 | ! little reformatting |
---|
| 58 | ! |
---|
[979] | 59 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 60 | ! roughness length for scalar quantities z0h1d added |
---|
| 61 | ! |
---|
[1] | 62 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 63 | ! Initial revision |
---|
| 64 | ! |
---|
| 65 | ! |
---|
| 66 | ! Description: |
---|
| 67 | ! ------------ |
---|
| 68 | ! 1D-model to initialize the 3D-arrays. |
---|
| 69 | ! The temperature profile is set as steady and a corresponding steady solution |
---|
| 70 | ! of the wind profile is being computed. |
---|
| 71 | ! All subroutines required can be found within this file. |
---|
| 72 | !------------------------------------------------------------------------------! |
---|
| 73 | |
---|
[1320] | 74 | USE arrays_3d, & |
---|
| 75 | ONLY: l_grid, ug, u_init, vg, v_init, zu |
---|
| 76 | |
---|
| 77 | USE indices, & |
---|
| 78 | ONLY: nzb, nzt |
---|
| 79 | |
---|
| 80 | USE kinds |
---|
| 81 | |
---|
| 82 | USE model_1d, & |
---|
| 83 | ONLY: e1d, e1d_p, kh1d, km1d, l1d, l_black, qs1d, rif1d, & |
---|
| 84 | simulated_time_1d, te_e, te_em, te_u, te_um, te_v, te_vm, ts1d, & |
---|
| 85 | u1d, u1d_p, us1d, usws1d, v1d, v1d_p, vsws1d, z01d, z0h1d |
---|
| 86 | |
---|
| 87 | USE control_parameters, & |
---|
| 88 | ONLY: constant_diffusion, f, humidity, kappa, km_constant, & |
---|
| 89 | mixing_length_1d, passive_scalar, prandtl_layer, & |
---|
| 90 | prandtl_number, roughness_length, simulated_time_chr, & |
---|
| 91 | z0h_factor |
---|
[1] | 92 | |
---|
| 93 | IMPLICIT NONE |
---|
| 94 | |
---|
[1320] | 95 | CHARACTER (LEN=9) :: time_to_string !: |
---|
| 96 | |
---|
| 97 | INTEGER(iwp) :: k !: |
---|
| 98 | |
---|
| 99 | REAL(wp) :: lambda !: |
---|
[1] | 100 | |
---|
| 101 | ! |
---|
| 102 | !-- Allocate required 1D-arrays |
---|
[1320] | 103 | ALLOCATE( e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), & |
---|
| 104 | kh1d(nzb:nzt+1), km1d(nzb:nzt+1), & |
---|
| 105 | l_black(nzb:nzt+1), l1d(nzb:nzt+1), & |
---|
| 106 | rif1d(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
| 107 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 108 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 109 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), & |
---|
[1001] | 110 | v1d_p(nzb:nzt+1) ) |
---|
[1] | 111 | |
---|
| 112 | ! |
---|
| 113 | !-- Initialize arrays |
---|
| 114 | IF ( constant_diffusion ) THEN |
---|
[1001] | 115 | km1d = km_constant |
---|
| 116 | kh1d = km_constant / prandtl_number |
---|
[1] | 117 | ELSE |
---|
[1353] | 118 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 119 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
| 120 | rif1d = 0.0_wp |
---|
[1] | 121 | ! |
---|
| 122 | !-- Compute the mixing length |
---|
[1353] | 123 | l_black(nzb) = 0.0_wp |
---|
[1] | 124 | |
---|
| 125 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 126 | ! |
---|
| 127 | !-- Blackadar mixing length |
---|
[1353] | 128 | IF ( f /= 0.0_wp ) THEN |
---|
| 129 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
| 130 | ABS( f ) + 1E-10_wp |
---|
[1] | 131 | ELSE |
---|
[1353] | 132 | lambda = 30.0_wp |
---|
[1] | 133 | ENDIF |
---|
| 134 | |
---|
| 135 | DO k = nzb+1, nzt+1 |
---|
[1353] | 136 | l_black(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 137 | ENDDO |
---|
| 138 | |
---|
| 139 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 140 | ! |
---|
| 141 | !-- Use the same mixing length as in 3D model |
---|
| 142 | l_black(1:nzt) = l_grid |
---|
| 143 | l_black(nzt+1) = l_black(nzt) |
---|
| 144 | |
---|
| 145 | ENDIF |
---|
| 146 | ENDIF |
---|
| 147 | l1d = l_black |
---|
| 148 | u1d = u_init |
---|
| 149 | u1d_p = u_init |
---|
| 150 | v1d = v_init |
---|
| 151 | v1d_p = v_init |
---|
| 152 | |
---|
| 153 | ! |
---|
| 154 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 155 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 156 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
[1353] | 157 | u1d(0:1) = 0.1_wp |
---|
| 158 | u1d_p(0:1) = 0.1_wp |
---|
| 159 | v1d(0:1) = 0.1_wp |
---|
| 160 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 161 | |
---|
| 162 | ! |
---|
| 163 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
| 164 | IF ( prandtl_layer ) THEN |
---|
[1353] | 165 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 166 | ELSE |
---|
[1353] | 167 | e1d(nzb+1) = 1.0_wp |
---|
| 168 | km1d(nzb+1) = 1.0_wp |
---|
| 169 | us1d = 0.0_wp |
---|
[1] | 170 | ENDIF |
---|
[1353] | 171 | ts1d = 0.0_wp |
---|
| 172 | usws1d = 0.0_wp |
---|
| 173 | vsws1d = 0.0_wp |
---|
[996] | 174 | z01d = roughness_length |
---|
[978] | 175 | z0h1d = z0h_factor * z01d |
---|
[1353] | 176 | IF ( humidity .OR. passive_scalar ) qs1d = 0.0_wp |
---|
[1] | 177 | |
---|
| 178 | ! |
---|
[46] | 179 | !-- Tendencies must be preset in order to avoid runtime errors within the |
---|
| 180 | !-- first Runge-Kutta step |
---|
[1353] | 181 | te_em = 0.0_wp |
---|
| 182 | te_um = 0.0_wp |
---|
| 183 | te_vm = 0.0_wp |
---|
[46] | 184 | |
---|
| 185 | ! |
---|
[1] | 186 | !-- Set start time in hh:mm:ss - format |
---|
| 187 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Integrate the 1D-model equations using the leap-frog scheme |
---|
| 191 | CALL time_integration_1d |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | END SUBROUTINE init_1d_model |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | SUBROUTINE time_integration_1d |
---|
| 199 | |
---|
| 200 | !------------------------------------------------------------------------------! |
---|
| 201 | ! Description: |
---|
| 202 | ! ------------ |
---|
| 203 | ! Leap-frog time differencing scheme for the 1D-model. |
---|
| 204 | !------------------------------------------------------------------------------! |
---|
| 205 | |
---|
[1320] | 206 | USE arrays_3d, & |
---|
| 207 | ONLY: dd2zu, ddzu, ddzw, l_grid, pt_init, q_init, ug, vg, zu |
---|
| 208 | |
---|
| 209 | USE control_parameters, & |
---|
| 210 | ONLY: constant_diffusion, dissipation_1d, humidity, & |
---|
| 211 | intermediate_timestep_count, intermediate_timestep_count_max, & |
---|
| 212 | f, g, ibc_e_b, kappa, mixing_length_1d, passive_scalar, & |
---|
| 213 | prandtl_layer, rif_max, rif_min, simulated_time_chr, & |
---|
| 214 | timestep_scheme, tsc |
---|
| 215 | |
---|
| 216 | USE indices, & |
---|
| 217 | ONLY: nzb, nzb_diff, nzt |
---|
| 218 | |
---|
| 219 | USE kinds |
---|
| 220 | |
---|
| 221 | USE model_1d, & |
---|
| 222 | ONLY: current_timestep_number_1d, damp_level_ind_1d, dt_1d, & |
---|
| 223 | dt_pr_1d, dt_run_control_1d, e1d, e1d_p, end_time_1d, & |
---|
| 224 | kh1d, km1d, l1d, l_black, qs1d, rif1d, simulated_time_1d, & |
---|
| 225 | stop_dt_1d, te_e, te_em, te_u, te_um, te_v, te_vm, time_pr_1d, & |
---|
| 226 | ts1d, time_run_control_1d, u1d, u1d_p, us1d, usws1d, v1d, & |
---|
| 227 | v1d_p, vsws1d, z01d, z0h1d |
---|
| 228 | |
---|
[1] | 229 | USE pegrid |
---|
| 230 | |
---|
| 231 | IMPLICIT NONE |
---|
| 232 | |
---|
[1320] | 233 | CHARACTER (LEN=9) :: time_to_string !: |
---|
| 234 | |
---|
| 235 | INTEGER(iwp) :: k !: |
---|
| 236 | |
---|
| 237 | REAL(wp) :: a !: |
---|
| 238 | REAL(wp) :: b !: |
---|
| 239 | REAL(wp) :: dissipation !: |
---|
| 240 | REAL(wp) :: dpt_dz !: |
---|
| 241 | REAL(wp) :: flux !: |
---|
| 242 | REAL(wp) :: kmzm !: |
---|
| 243 | REAL(wp) :: kmzp !: |
---|
| 244 | REAL(wp) :: l_stable !: |
---|
| 245 | REAL(wp) :: pt_0 !: |
---|
| 246 | REAL(wp) :: uv_total !: |
---|
[1] | 247 | |
---|
| 248 | ! |
---|
| 249 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 250 | !-- determine and printout quantities used for run control |
---|
| 251 | CALL timestep_1d |
---|
| 252 | CALL run_control_1d |
---|
| 253 | |
---|
| 254 | ! |
---|
| 255 | !-- Start of time loop |
---|
| 256 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 260 | !-- timesteps |
---|
| 261 | |
---|
| 262 | intermediate_timestep_count = 0 |
---|
| 263 | DO WHILE ( intermediate_timestep_count < & |
---|
| 264 | intermediate_timestep_count_max ) |
---|
| 265 | |
---|
| 266 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 267 | |
---|
| 268 | CALL timestep_scheme_steering |
---|
| 269 | |
---|
| 270 | ! |
---|
| 271 | !-- Compute all tendency terms. If a Prandtl-layer is simulated, k starts |
---|
| 272 | !-- at nzb+2. |
---|
| 273 | DO k = nzb_diff, nzt |
---|
| 274 | |
---|
[1353] | 275 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 276 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 277 | ! |
---|
| 278 | !-- u-component |
---|
| 279 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
[1001] | 280 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 281 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
| 282 | ) * ddzw(k) |
---|
[1] | 283 | ! |
---|
| 284 | !-- v-component |
---|
[1001] | 285 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 286 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 287 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
| 288 | ) * ddzw(k) |
---|
[1] | 289 | ENDDO |
---|
| 290 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 291 | DO k = nzb_diff, nzt |
---|
| 292 | ! |
---|
| 293 | !-- TKE |
---|
[1353] | 294 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 295 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 296 | IF ( .NOT. humidity ) THEN |
---|
[1] | 297 | pt_0 = pt_init(k) |
---|
| 298 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 299 | ELSE |
---|
[1353] | 300 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 301 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 302 | 0.61_wp * pt_init(k) * & |
---|
| 303 | ( q_init(k+1) - q_init(k-1) ) ) * dd2zu(k) |
---|
[1] | 304 | ENDIF |
---|
| 305 | |
---|
| 306 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 307 | ! |
---|
| 308 | !-- According to Detering, c_e=0.064 |
---|
[1353] | 309 | dissipation = 0.064_wp * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 310 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[1353] | 311 | dissipation = ( 0.19_wp + 0.74_wp * l1d(k) / l_grid(k) ) & |
---|
[1001] | 312 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 313 | ENDIF |
---|
| 314 | |
---|
| 315 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 316 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 317 | ) & |
---|
| 318 | - g / pt_0 * kh1d(k) * flux & |
---|
| 319 | + ( & |
---|
[1001] | 320 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 321 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 322 | ) * ddzw(k) & |
---|
[1001] | 323 | - dissipation |
---|
[1] | 324 | ENDDO |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Tendency terms at the top of the Prandtl-layer. |
---|
| 329 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 330 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
| 331 | IF ( prandtl_layer ) THEN |
---|
| 332 | |
---|
| 333 | k = nzb+1 |
---|
[1353] | 334 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 335 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 336 | IF ( .NOT. humidity ) THEN |
---|
[1] | 337 | pt_0 = pt_init(k) |
---|
| 338 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 339 | ELSE |
---|
[1353] | 340 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 341 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 342 | 0.61_wp * pt_init(k) * ( q_init(k+1) - q_init(k-1) ) & |
---|
[1] | 343 | ) * dd2zu(k) |
---|
| 344 | ENDIF |
---|
| 345 | |
---|
| 346 | IF ( dissipation_1d == 'detering' ) THEN |
---|
| 347 | ! |
---|
| 348 | !-- According to Detering, c_e=0.064 |
---|
[1353] | 349 | dissipation = 0.064_wp * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 350 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[1353] | 351 | dissipation = ( 0.19_wp + 0.74_wp * l1d(k) / l_grid(k) ) & |
---|
[1001] | 352 | * e1d(k) * SQRT( e1d(k) ) / l1d(k) |
---|
[1] | 353 | ENDIF |
---|
| 354 | |
---|
| 355 | ! |
---|
| 356 | !-- u-component |
---|
[1001] | 357 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 358 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 359 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 360 | ! |
---|
| 361 | !-- v-component |
---|
[1001] | 362 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 363 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 364 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 365 | ! |
---|
| 366 | !-- TKE |
---|
| 367 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 368 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 369 | ) & |
---|
| 370 | - g / pt_0 * kh1d(k) * flux & |
---|
| 371 | + ( & |
---|
[1001] | 372 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 373 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 374 | ) * ddzw(k) & |
---|
[1001] | 375 | - dissipation |
---|
[1] | 376 | ENDIF |
---|
| 377 | |
---|
| 378 | ! |
---|
| 379 | !-- Prognostic equations for all 1D variables |
---|
| 380 | DO k = nzb+1, nzt |
---|
| 381 | |
---|
[1001] | 382 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 383 | tsc(3) * te_um(k) ) |
---|
| 384 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 385 | tsc(3) * te_vm(k) ) |
---|
[1] | 386 | |
---|
| 387 | ENDDO |
---|
| 388 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 389 | DO k = nzb+1, nzt |
---|
| 390 | |
---|
[1001] | 391 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 392 | tsc(3) * te_em(k) ) |
---|
[1] | 393 | |
---|
| 394 | ENDDO |
---|
| 395 | ! |
---|
| 396 | !-- Eliminate negative TKE values, which can result from the |
---|
| 397 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 398 | !-- value is reduced to 10 percent of its old value. |
---|
[1353] | 399 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[1] | 400 | ENDIF |
---|
| 401 | |
---|
| 402 | ! |
---|
| 403 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 404 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 405 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 406 | |
---|
| 407 | DO k = nzb+1, nzt |
---|
| 408 | te_um(k) = te_u(k) |
---|
| 409 | te_vm(k) = te_v(k) |
---|
| 410 | ENDDO |
---|
| 411 | |
---|
| 412 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 413 | DO k = nzb+1, nzt |
---|
| 414 | te_em(k) = te_e(k) |
---|
| 415 | ENDDO |
---|
| 416 | ENDIF |
---|
| 417 | |
---|
| 418 | ELSEIF ( intermediate_timestep_count < & |
---|
| 419 | intermediate_timestep_count_max ) THEN |
---|
| 420 | |
---|
| 421 | DO k = nzb+1, nzt |
---|
[1353] | 422 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 423 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 424 | ENDDO |
---|
| 425 | |
---|
| 426 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 427 | DO k = nzb+1, nzt |
---|
[1353] | 428 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 429 | ENDDO |
---|
| 430 | ENDIF |
---|
| 431 | |
---|
| 432 | ENDIF |
---|
| 433 | ENDIF |
---|
| 434 | |
---|
| 435 | |
---|
| 436 | ! |
---|
| 437 | !-- Boundary conditions for the prognostic variables. |
---|
| 438 | !-- At the top boundary (nzt+1) u,v and e keep their initial values |
---|
| 439 | !-- (ug(nzt+1), vg(nzt+1), 0), at the bottom boundary the mirror |
---|
| 440 | !-- boundary condition applies to u and v. |
---|
| 441 | !-- The boundary condition for e is set further below ( (u*/cm)**2 ). |
---|
[667] | 442 | ! u1d_p(nzb) = -u1d_p(nzb+1) |
---|
| 443 | ! v1d_p(nzb) = -v1d_p(nzb+1) |
---|
[1] | 444 | |
---|
[1353] | 445 | u1d_p(nzb) = 0.0_wp |
---|
| 446 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 447 | |
---|
[1] | 448 | ! |
---|
| 449 | !-- Swap the time levels in preparation for the next time step. |
---|
| 450 | u1d = u1d_p |
---|
| 451 | v1d = v1d_p |
---|
| 452 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 453 | e1d = e1d_p |
---|
| 454 | ENDIF |
---|
| 455 | |
---|
| 456 | ! |
---|
| 457 | !-- Compute diffusion quantities |
---|
| 458 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 459 | |
---|
| 460 | ! |
---|
| 461 | !-- First compute the vertical fluxes in the Prandtl-layer |
---|
| 462 | IF ( prandtl_layer ) THEN |
---|
| 463 | ! |
---|
| 464 | !-- Compute theta* using Rif numbers of the previous time step |
---|
[1353] | 465 | IF ( rif1d(1) >= 0.0_wp ) THEN |
---|
[1] | 466 | ! |
---|
| 467 | !-- Stable stratification |
---|
[1353] | 468 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 469 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 470 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 471 | ) |
---|
| 472 | ELSE |
---|
| 473 | ! |
---|
| 474 | !-- Unstable stratification |
---|
[1353] | 475 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 476 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 477 | zu(nzb+1) * z0h1d ) |
---|
[1] | 478 | ! |
---|
| 479 | !-- In the borderline case the formula for stable stratification |
---|
| 480 | !-- must be applied, because otherwise a zero division would |
---|
| 481 | !-- occur in the argument of the logarithm. |
---|
[1353] | 482 | IF ( a == 0.0_wp .OR. b == 0.0_wp ) THEN |
---|
[996] | 483 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
[1353] | 484 | ( LOG( zu(nzb+1) / z0h1d ) + & |
---|
| 485 | 5.0_wp * rif1d(nzb+1) * & |
---|
| 486 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 487 | ) |
---|
| 488 | ELSE |
---|
[1353] | 489 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 490 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 491 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 492 | ENDIF |
---|
| 493 | ENDIF |
---|
| 494 | |
---|
| 495 | ENDIF ! prandtl_layer |
---|
| 496 | |
---|
| 497 | ! |
---|
| 498 | !-- Compute the Richardson-flux numbers, |
---|
| 499 | !-- first at the top of the Prandtl-layer using u* of the previous |
---|
| 500 | !-- time step (+1E-30, if u* = 0), then in the remaining area. There |
---|
| 501 | !-- the rif-numbers of the previous time step are used. |
---|
| 502 | |
---|
| 503 | IF ( prandtl_layer ) THEN |
---|
[75] | 504 | IF ( .NOT. humidity ) THEN |
---|
[1] | 505 | pt_0 = pt_init(nzb+1) |
---|
| 506 | flux = ts1d |
---|
| 507 | ELSE |
---|
[1353] | 508 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 509 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 510 | ENDIF |
---|
| 511 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
[1353] | 512 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 513 | ENDIF |
---|
| 514 | |
---|
| 515 | DO k = nzb_diff, nzt |
---|
[75] | 516 | IF ( .NOT. humidity ) THEN |
---|
[1] | 517 | pt_0 = pt_init(k) |
---|
| 518 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 519 | ELSE |
---|
[1353] | 520 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[1] | 521 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
[1353] | 522 | + 0.61_wp * pt_init(k) & |
---|
| 523 | * ( q_init(k+1) - q_init(k-1) ) & |
---|
[1] | 524 | ) * dd2zu(k) |
---|
| 525 | ENDIF |
---|
[1353] | 526 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 527 | rif1d(k) = g / pt_0 * flux / & |
---|
| 528 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 529 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 530 | + 1E-30_wp & |
---|
[1] | 531 | ) |
---|
| 532 | ELSE |
---|
[1353] | 533 | rif1d(k) = g / pt_0 * flux / & |
---|
| 534 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 535 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 536 | + 1E-30_wp & |
---|
| 537 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 538 | ENDIF |
---|
| 539 | ENDDO |
---|
| 540 | ! |
---|
| 541 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 542 | !-- range. It is exceeded excessively for very small velocities |
---|
| 543 | !-- (u,v --> 0). |
---|
| 544 | WHERE ( rif1d < rif_min ) rif1d = rif_min |
---|
| 545 | WHERE ( rif1d > rif_max ) rif1d = rif_max |
---|
| 546 | |
---|
| 547 | ! |
---|
| 548 | !-- Compute u* from the absolute velocity value |
---|
| 549 | IF ( prandtl_layer ) THEN |
---|
| 550 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 551 | |
---|
[1353] | 552 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 553 | ! |
---|
| 554 | !-- Stable stratification |
---|
| 555 | us1d = kappa * uv_total / ( & |
---|
[1353] | 556 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
[1] | 557 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 558 | ) |
---|
| 559 | ELSE |
---|
| 560 | ! |
---|
| 561 | !-- Unstable stratification |
---|
[1353] | 562 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
| 563 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 564 | zu(nzb+1) * z01d ) ) |
---|
[1] | 565 | ! |
---|
| 566 | !-- In the borderline case the formula for stable stratification |
---|
| 567 | !-- must be applied, because otherwise a zero division would |
---|
| 568 | !-- occur in the argument of the logarithm. |
---|
[1353] | 569 | IF ( a == 1.0_wp .OR. b == 1.0_wp ) THEN |
---|
| 570 | us1d = kappa * uv_total / ( & |
---|
| 571 | LOG( zu(nzb+1) / z01d ) + & |
---|
| 572 | 5.0_wp * rif1d(nzb+1) * ( zu(nzb+1) - z01d ) / & |
---|
[1] | 573 | zu(nzb+1) ) |
---|
| 574 | ELSE |
---|
| 575 | us1d = kappa * uv_total / ( & |
---|
[1353] | 576 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 577 | (1.0_wp+a) ) + & |
---|
| 578 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
[1] | 579 | ) |
---|
| 580 | ENDIF |
---|
| 581 | ENDIF |
---|
| 582 | |
---|
| 583 | ! |
---|
| 584 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 585 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 586 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 587 | |
---|
| 588 | ! |
---|
| 589 | !-- Boundary condition for the turbulent kinetic energy at the top |
---|
| 590 | !-- of the Prandtl-layer. c_m = 0.4 according to Detering. |
---|
| 591 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 592 | !-- compatibility with the 3D model. |
---|
| 593 | IF ( ibc_e_b == 2 ) THEN |
---|
[1353] | 594 | e1d(nzb+1) = ( us1d / 0.1_wp )**2 |
---|
| 595 | ! e1d(nzb+1) = ( us1d / 0.4_wp )**2 !not used so far, see also |
---|
| 596 | !prandtl_fluxes |
---|
[1] | 597 | ENDIF |
---|
| 598 | e1d(nzb) = e1d(nzb+1) |
---|
| 599 | |
---|
[75] | 600 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 601 | ! |
---|
| 602 | !-- Compute q* |
---|
[1353] | 603 | IF ( rif1d(1) >= 0.0_wp ) THEN |
---|
[1] | 604 | ! |
---|
| 605 | !-- Stable stratification |
---|
[1353] | 606 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 607 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 608 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 609 | ) |
---|
| 610 | ELSE |
---|
| 611 | ! |
---|
| 612 | !-- Unstable stratification |
---|
[1353] | 613 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 614 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 615 | zu(nzb+1) * z0h1d ) |
---|
[1] | 616 | ! |
---|
| 617 | !-- In the borderline case the formula for stable stratification |
---|
| 618 | !-- must be applied, because otherwise a zero division would |
---|
| 619 | !-- occur in the argument of the logarithm. |
---|
[1353] | 620 | IF ( a == 1.0_wp .OR. b == 1.0_wp ) THEN |
---|
[996] | 621 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
[1353] | 622 | ( LOG( zu(nzb+1) / z0h1d ) + & |
---|
| 623 | 5.0_wp * rif1d(nzb+1) * & |
---|
| 624 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 625 | ) |
---|
| 626 | ELSE |
---|
[1353] | 627 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 628 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 629 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 630 | ENDIF |
---|
| 631 | ENDIF |
---|
| 632 | ELSE |
---|
[1353] | 633 | qs1d = 0.0_wp |
---|
[1] | 634 | ENDIF |
---|
| 635 | |
---|
| 636 | ENDIF ! prandtl_layer |
---|
| 637 | |
---|
| 638 | ! |
---|
| 639 | !-- Compute the diabatic mixing length |
---|
| 640 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 641 | DO k = nzb+1, nzt |
---|
[1353] | 642 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 643 | l1d(k) = l_black(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
[1] | 644 | ELSE |
---|
[1353] | 645 | l1d(k) = l_black(k) * & |
---|
| 646 | ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 647 | ENDIF |
---|
| 648 | l1d(k) = l_black(k) |
---|
| 649 | ENDDO |
---|
| 650 | |
---|
| 651 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 652 | DO k = nzb+1, nzt |
---|
| 653 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
[1353] | 654 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
| 655 | l_stable = 0.76_wp * SQRT( e1d(k) ) / & |
---|
| 656 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
[1] | 657 | ELSE |
---|
| 658 | l_stable = l_grid(k) |
---|
| 659 | ENDIF |
---|
| 660 | l1d(k) = MIN( l_grid(k), l_stable ) |
---|
| 661 | ENDDO |
---|
| 662 | ENDIF |
---|
| 663 | |
---|
| 664 | ! |
---|
| 665 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 666 | !-- corresponding Prandtl-layer relationship and according to |
---|
| 667 | !-- Prandtl-Kolmogorov, respectively. The unstable stratification is |
---|
| 668 | !-- computed via the adiabatic mixing length, for the unstability has |
---|
| 669 | !-- already been taken account of via the TKE (cf. also Diss.). |
---|
| 670 | IF ( prandtl_layer ) THEN |
---|
[1353] | 671 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
| 672 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 673 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
[1] | 674 | ELSE |
---|
[1353] | 675 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 676 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
[1] | 677 | ENDIF |
---|
| 678 | ENDIF |
---|
| 679 | DO k = nzb_diff, nzt |
---|
| 680 | ! km1d(k) = 0.4 * SQRT( e1d(k) ) !changed: adjustment to 3D-model |
---|
[1353] | 681 | km1d(k) = 0.1_wp * SQRT( e1d(k) ) |
---|
| 682 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 683 | km1d(k) = km1d(k) * l1d(k) |
---|
| 684 | ELSE |
---|
| 685 | km1d(k) = km1d(k) * l_black(k) |
---|
| 686 | ENDIF |
---|
| 687 | ENDDO |
---|
| 688 | |
---|
| 689 | ! |
---|
| 690 | !-- Add damping layer |
---|
| 691 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 692 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 693 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 694 | ENDDO |
---|
| 695 | |
---|
| 696 | ! |
---|
| 697 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 698 | !-- kh = phim / phih * km |
---|
| 699 | DO k = nzb+1, nzt |
---|
[1353] | 700 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 701 | kh1d(k) = km1d(k) |
---|
| 702 | ELSE |
---|
[1353] | 703 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 704 | ENDIF |
---|
| 705 | ENDDO |
---|
| 706 | |
---|
| 707 | ENDIF ! .NOT. constant_diffusion |
---|
| 708 | |
---|
| 709 | ENDDO ! intermediate step loop |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Increment simulated time and output times |
---|
| 713 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 714 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 715 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 716 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 717 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 718 | |
---|
| 719 | ! |
---|
| 720 | !-- Determine and print out quantities for run control |
---|
| 721 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 722 | CALL run_control_1d |
---|
| 723 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 724 | ENDIF |
---|
| 725 | |
---|
| 726 | ! |
---|
| 727 | !-- Profile output on file |
---|
| 728 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 729 | CALL print_1d_model |
---|
| 730 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 731 | ENDIF |
---|
| 732 | |
---|
| 733 | ! |
---|
| 734 | !-- Determine size of next time step |
---|
| 735 | CALL timestep_1d |
---|
| 736 | |
---|
| 737 | ENDDO ! time loop |
---|
| 738 | |
---|
| 739 | |
---|
| 740 | END SUBROUTINE time_integration_1d |
---|
| 741 | |
---|
| 742 | |
---|
| 743 | SUBROUTINE run_control_1d |
---|
| 744 | |
---|
| 745 | !------------------------------------------------------------------------------! |
---|
| 746 | ! Description: |
---|
| 747 | ! ------------ |
---|
| 748 | ! Compute and print out quantities for run control of the 1D model. |
---|
| 749 | !------------------------------------------------------------------------------! |
---|
| 750 | |
---|
[1320] | 751 | USE constants, & |
---|
| 752 | ONLY: pi |
---|
| 753 | |
---|
| 754 | USE indices, & |
---|
| 755 | ONLY: nzb, nzt |
---|
| 756 | |
---|
| 757 | USE kinds |
---|
| 758 | |
---|
| 759 | USE model_1d, & |
---|
| 760 | ONLY: current_timestep_number_1d, dt_1d, run_control_header_1d, u1d, & |
---|
| 761 | us1d, v1d |
---|
| 762 | |
---|
[1] | 763 | USE pegrid |
---|
[1320] | 764 | |
---|
| 765 | USE control_parameters, & |
---|
| 766 | ONLY: simulated_time_chr |
---|
[1] | 767 | |
---|
| 768 | IMPLICIT NONE |
---|
| 769 | |
---|
[1320] | 770 | INTEGER(iwp) :: k !: |
---|
| 771 | |
---|
| 772 | REAL(wp) :: alpha |
---|
| 773 | REAL(wp) :: energy |
---|
| 774 | REAL(wp) :: umax |
---|
| 775 | REAL(wp) :: uv_total |
---|
| 776 | REAL(wp) :: vmax |
---|
[1] | 777 | |
---|
| 778 | ! |
---|
| 779 | !-- Output |
---|
| 780 | IF ( myid == 0 ) THEN |
---|
| 781 | ! |
---|
| 782 | !-- If necessary, write header |
---|
| 783 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 784 | CALL check_open( 15 ) |
---|
[1] | 785 | WRITE ( 15, 100 ) |
---|
| 786 | run_control_header_1d = .TRUE. |
---|
| 787 | ENDIF |
---|
| 788 | |
---|
| 789 | ! |
---|
| 790 | !-- Compute control quantities |
---|
| 791 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 792 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 793 | DO k = nzb+1, nzt+1 |
---|
| 794 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 795 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 796 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 797 | ENDDO |
---|
[1322] | 798 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 799 | |
---|
| 800 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1353] | 801 | IF ( ABS( v1d(nzb+1) ) .LT. 1.0E-5_wp ) THEN |
---|
[1346] | 802 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 803 | ELSE |
---|
| 804 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 805 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 806 | ENDIF |
---|
[1353] | 807 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 808 | |
---|
| 809 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 810 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 811 | ! |
---|
| 812 | !-- Write buffer contents to disc immediately |
---|
[82] | 813 | CALL local_flush( 15 ) |
---|
[1] | 814 | |
---|
| 815 | ENDIF |
---|
| 816 | |
---|
| 817 | ! |
---|
| 818 | !-- formats |
---|
| 819 | 100 FORMAT (///'1D-Zeitschrittkontrollausgaben:'/ & |
---|
| 820 | &'------------------------------'// & |
---|
| 821 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
| 822 | &'-------------------------------------------------------------') |
---|
| 823 | 101 FORMAT (I5,2X,A9,1X,F6.2,2X,F6.2,1X,F6.2,2X,F5.3,2X,F5.1,2X,F7.2) |
---|
| 824 | |
---|
| 825 | |
---|
| 826 | END SUBROUTINE run_control_1d |
---|
| 827 | |
---|
| 828 | |
---|
| 829 | |
---|
| 830 | SUBROUTINE timestep_1d |
---|
| 831 | |
---|
| 832 | !------------------------------------------------------------------------------! |
---|
| 833 | ! Description: |
---|
| 834 | ! ------------ |
---|
| 835 | ! Compute the time step w.r.t. the diffusion criterion |
---|
| 836 | !------------------------------------------------------------------------------! |
---|
| 837 | |
---|
[1320] | 838 | USE arrays_3d, & |
---|
| 839 | ONLY: dzu, zu |
---|
| 840 | |
---|
| 841 | USE indices, & |
---|
| 842 | ONLY: nzb, nzt |
---|
| 843 | |
---|
| 844 | USE kinds |
---|
| 845 | |
---|
| 846 | USE model_1d, & |
---|
| 847 | ONLY: dt_1d, dt_max_1d, km1d, old_dt_1d, stop_dt_1d |
---|
| 848 | |
---|
[1] | 849 | USE pegrid |
---|
[1320] | 850 | |
---|
| 851 | USE control_parameters, & |
---|
| 852 | ONLY: message_string |
---|
[1] | 853 | |
---|
| 854 | IMPLICIT NONE |
---|
| 855 | |
---|
[1320] | 856 | INTEGER(iwp) :: k !: |
---|
| 857 | |
---|
| 858 | REAL(wp) :: div !: |
---|
| 859 | REAL(wp) :: dt_diff !: |
---|
| 860 | REAL(wp) :: fac !: |
---|
| 861 | REAL(wp) :: value !: |
---|
[1] | 862 | |
---|
| 863 | |
---|
| 864 | ! |
---|
| 865 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 866 | !-- criterion. At nzb+1 the half grid length is used. |
---|
[1353] | 867 | fac = 0.35_wp |
---|
[1] | 868 | dt_diff = dt_max_1d |
---|
| 869 | DO k = nzb+2, nzt |
---|
[1353] | 870 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 871 | dt_diff = MIN( value, dt_diff ) |
---|
| 872 | ENDDO |
---|
[1353] | 873 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 874 | dt_1d = MIN( value, dt_diff ) |
---|
| 875 | |
---|
| 876 | ! |
---|
| 877 | !-- Set flag when the time step becomes too small |
---|
[1353] | 878 | IF ( dt_1d < ( 0.00001_wp * dt_max_1d ) ) THEN |
---|
[1] | 879 | stop_dt_1d = .TRUE. |
---|
[254] | 880 | |
---|
| 881 | WRITE( message_string, * ) 'timestep has exceeded the lower limit &', & |
---|
| 882 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 883 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
| 884 | |
---|
[1] | 885 | ENDIF |
---|
| 886 | |
---|
| 887 | ! |
---|
[1001] | 888 | !-- A more or less simple new time step value is obtained taking only the |
---|
| 889 | !-- first two significant digits |
---|
[1353] | 890 | div = 1000.0_wp |
---|
[1001] | 891 | DO WHILE ( dt_1d < div ) |
---|
[1353] | 892 | div = div / 10.0_wp |
---|
[1001] | 893 | ENDDO |
---|
[1353] | 894 | dt_1d = NINT( dt_1d * 100.0_wp / div ) * div / 100.0_wp |
---|
[1] | 895 | |
---|
[1001] | 896 | old_dt_1d = dt_1d |
---|
[1] | 897 | |
---|
| 898 | |
---|
| 899 | END SUBROUTINE timestep_1d |
---|
| 900 | |
---|
| 901 | |
---|
| 902 | |
---|
| 903 | SUBROUTINE print_1d_model |
---|
| 904 | |
---|
| 905 | !------------------------------------------------------------------------------! |
---|
| 906 | ! Description: |
---|
| 907 | ! ------------ |
---|
| 908 | ! List output of profiles from the 1D-model |
---|
| 909 | !------------------------------------------------------------------------------! |
---|
| 910 | |
---|
[1320] | 911 | USE arrays_3d, & |
---|
| 912 | ONLY: pt_init, zu |
---|
| 913 | |
---|
| 914 | USE indices, & |
---|
| 915 | ONLY: nzb, nzt |
---|
| 916 | |
---|
| 917 | USE kinds |
---|
| 918 | |
---|
| 919 | USE model_1d, & |
---|
| 920 | ONLY: e1d, kh1d, km1d, l1d, rif1d, u1d, v1d |
---|
| 921 | |
---|
[1] | 922 | USE pegrid |
---|
[1320] | 923 | |
---|
| 924 | USE control_parameters, & |
---|
| 925 | ONLY: run_description_header, simulated_time_chr |
---|
[1] | 926 | |
---|
| 927 | IMPLICIT NONE |
---|
| 928 | |
---|
| 929 | |
---|
[1320] | 930 | INTEGER(iwp) :: k !: |
---|
[1] | 931 | |
---|
| 932 | |
---|
| 933 | IF ( myid == 0 ) THEN |
---|
| 934 | ! |
---|
| 935 | !-- Open list output file for profiles from the 1D-model |
---|
| 936 | CALL check_open( 17 ) |
---|
| 937 | |
---|
| 938 | ! |
---|
| 939 | !-- Write Header |
---|
| 940 | WRITE ( 17, 100 ) TRIM( run_description_header ), & |
---|
| 941 | TRIM( simulated_time_chr ) |
---|
| 942 | WRITE ( 17, 101 ) |
---|
| 943 | |
---|
| 944 | ! |
---|
| 945 | !-- Write the values |
---|
| 946 | WRITE ( 17, 102 ) |
---|
| 947 | WRITE ( 17, 101 ) |
---|
| 948 | DO k = nzt+1, nzb, -1 |
---|
| 949 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
| 950 | rif1d(k), km1d(k), kh1d(k), l1d(k), zu(k), k |
---|
| 951 | ENDDO |
---|
| 952 | WRITE ( 17, 101 ) |
---|
| 953 | WRITE ( 17, 102 ) |
---|
| 954 | WRITE ( 17, 101 ) |
---|
| 955 | |
---|
| 956 | ! |
---|
| 957 | !-- Write buffer contents to disc immediately |
---|
[82] | 958 | CALL local_flush( 17 ) |
---|
[1] | 959 | |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
| 962 | ! |
---|
| 963 | !-- Formats |
---|
| 964 | 100 FORMAT (//1X,A/1X,10('-')/' 1d-model profiles'/ & |
---|
| 965 | ' Time: ',A) |
---|
| 966 | 101 FORMAT (1X,79('-')) |
---|
| 967 | 102 FORMAT (' k zu u v pt e rif Km Kh ', & |
---|
| 968 | 'l zu k') |
---|
| 969 | 103 FORMAT (1X,I4,1X,F7.1,1X,F6.2,1X,F6.2,1X,F6.2,1X,F6.2,1X,F5.2,1X,F5.2, & |
---|
| 970 | 1X,F5.2,1X,F6.2,1X,F7.1,2X,I4) |
---|
| 971 | |
---|
| 972 | |
---|
| 973 | END SUBROUTINE print_1d_model |
---|