[151] | 1 | SUBROUTINE inflow_turbulence |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: inflow_turbulence.f90 151 2008-03-07 13:42:18Z letzel $ |
---|
| 11 | ! |
---|
| 12 | ! |
---|
| 13 | ! Description: |
---|
| 14 | ! ------------ |
---|
| 15 | ! Imposing turbulence at the respective inflow using the turbulence |
---|
| 16 | ! recycling method of Kataoka and Mizuno (2002). |
---|
| 17 | !------------------------------------------------------------------------------! |
---|
| 18 | |
---|
| 19 | USE arrays_3d |
---|
| 20 | USE control_parameters |
---|
| 21 | USE cpulog |
---|
| 22 | USE grid_variables |
---|
| 23 | USE indices |
---|
| 24 | USE interfaces |
---|
| 25 | USE pegrid |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | IMPLICIT NONE |
---|
| 29 | |
---|
| 30 | INTEGER :: i, imax, j, k, ngp_ifd, ngp_pr |
---|
| 31 | |
---|
| 32 | REAL, DIMENSION(1:2) :: volume_flow_l, volume_flow_offset |
---|
| 33 | REAL, DIMENSION(nzb:nzt+1,5) :: avpr, avpr_l |
---|
| 34 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,5) :: inflow_dist |
---|
| 35 | |
---|
| 36 | CALL cpu_log( log_point(40), 'inflow_turbulence', 'start' ) |
---|
| 37 | |
---|
| 38 | ! |
---|
| 39 | !-- Carry out horizontal averaging in the recycling plane |
---|
| 40 | avpr_l = 0.0 |
---|
| 41 | ngp_pr = ( nzt - nzb + 2 ) * 5 |
---|
| 42 | ngp_ifd = ngp_pr * ( nyn - nys + 3 ) |
---|
| 43 | |
---|
| 44 | ! |
---|
| 45 | !-- First, local averaging within the recycling domain |
---|
| 46 | IF ( recycling_plane >= nxl ) THEN |
---|
| 47 | |
---|
| 48 | imax = MIN( nxr, recycling_plane ) |
---|
| 49 | |
---|
| 50 | DO i = nxl, imax |
---|
| 51 | DO j = nys, nyn |
---|
| 52 | DO k = nzb, nzt+1 |
---|
| 53 | |
---|
| 54 | avpr_l(k,1) = avpr_l(k,1) + u(k,j,i) |
---|
| 55 | avpr_l(k,2) = avpr_l(k,2) + v(k,j,i) |
---|
| 56 | avpr_l(k,3) = avpr_l(k,3) + w(k,j,i) |
---|
| 57 | avpr_l(k,4) = avpr_l(k,4) + pt(k,j,i) |
---|
| 58 | avpr_l(k,5) = avpr_l(k,5) + e(k,j,i) |
---|
| 59 | |
---|
| 60 | ENDDO |
---|
| 61 | ENDDO |
---|
| 62 | ENDDO |
---|
| 63 | |
---|
| 64 | ENDIF |
---|
| 65 | |
---|
| 66 | ! WRITE (9,*) '*** averaged profiles avpr_l' |
---|
| 67 | ! DO k = nzb, nzt+1 |
---|
| 68 | ! WRITE (9,'(F5.1,1X,F5.1,1X,F5.1,1X,F6.1,1X,F7.2)') avpr_l(k,1),avpr_l(k,2),avpr_l(k,3),avpr_l(k,4),avpr_l(k,5) |
---|
| 69 | ! ENDDO |
---|
| 70 | ! WRITE (9,*) ' ' |
---|
| 71 | |
---|
| 72 | #if defined( __parallel ) |
---|
| 73 | ! |
---|
| 74 | !-- Now, averaging over all PEs |
---|
| 75 | CALL MPI_ALLREDUCE( avpr_l(nzb,1), avpr(nzb,1), ngp_pr, MPI_REAL, MPI_SUM, & |
---|
| 76 | comm2d, ierr ) |
---|
| 77 | #else |
---|
| 78 | avpr = avpr_l |
---|
| 79 | #endif |
---|
| 80 | |
---|
| 81 | avpr = avpr / ( ( ny + 1 ) * ( recycling_plane + 1 ) ) |
---|
| 82 | |
---|
| 83 | ! WRITE (9,*) '*** averaged profiles' |
---|
| 84 | ! DO k = nzb, nzt+1 |
---|
| 85 | ! WRITE (9,'(F5.1,1X,F5.1,1X,F5.1,1X,F6.1,1X,F7.2)') avpr(k,1),avpr(k,2),avpr(k,3),avpr(k,4),avpr(k,5) |
---|
| 86 | ! ENDDO |
---|
| 87 | ! WRITE (9,*) ' ' |
---|
| 88 | |
---|
| 89 | ! |
---|
| 90 | !-- Calculate the disturbances at the recycling plane |
---|
| 91 | i = recycling_plane |
---|
| 92 | |
---|
| 93 | IF ( i >= nxl .AND. i <= nxr ) THEN |
---|
| 94 | |
---|
| 95 | DO j = nys-1, nyn+1 |
---|
| 96 | DO k = nzb, nzt+1 |
---|
| 97 | |
---|
| 98 | inflow_dist(k,j,1) = u(k,j,i+1) - avpr(k,1) |
---|
| 99 | inflow_dist(k,j,2) = v(k,j,i) - avpr(k,2) |
---|
| 100 | inflow_dist(k,j,3) = w(k,j,i) - avpr(k,3) |
---|
| 101 | inflow_dist(k,j,4) = pt(k,j,i) - avpr(k,4) |
---|
| 102 | inflow_dist(k,j,5) = e(k,j,i) - avpr(k,5) |
---|
| 103 | |
---|
| 104 | ENDDO |
---|
| 105 | ENDDO |
---|
| 106 | |
---|
| 107 | ENDIF |
---|
| 108 | |
---|
| 109 | ! |
---|
| 110 | !-- For parallel runs, send the disturbances to the respective inflow PE |
---|
| 111 | #if defined( __parallel ) |
---|
| 112 | IF ( i >= nxl .AND. i <= nxr .AND. myid /= id_inflow ) THEN |
---|
| 113 | |
---|
| 114 | ! print*, '*** sending id = ', myid, ' send to:', id_inflow |
---|
| 115 | CALL MPI_SEND( inflow_dist(nzb,nys-1,1), ngp_ifd, MPI_REAL, & |
---|
| 116 | id_inflow, 1, comm1dx, ierr ) |
---|
| 117 | |
---|
| 118 | ELSEIF ( ( i < nxl .OR. i > nxr ) .AND. myid == id_inflow ) THEN |
---|
| 119 | |
---|
| 120 | ! print*, '*** receiving id = ', myid |
---|
| 121 | CALL MPI_RECV( inflow_dist(nzb,nys-1,1), ngp_ifd, MPI_REAL, & |
---|
| 122 | MPI_ANY_SOURCE, 1, comm1dx, status, ierr ) |
---|
| 123 | |
---|
| 124 | ENDIF |
---|
| 125 | #endif |
---|
| 126 | |
---|
| 127 | ! |
---|
| 128 | !-- Add the disturbance at the inflow |
---|
| 129 | IF ( nxl == 0 ) THEN |
---|
| 130 | |
---|
| 131 | DO j = nys-1, nyn+1 |
---|
| 132 | DO k = nzb, nzt+1 |
---|
| 133 | |
---|
| 134 | ! WRITE (9,*) 'j=',j,' k=',k |
---|
| 135 | ! WRITE (9,*) 'mean_u = ', mean_inflow_profiles(k,1), ' dist_u = ',& |
---|
| 136 | ! inflow_dist(k,j,1) |
---|
| 137 | ! WRITE (9,*) 'mean_v = ', mean_inflow_profiles(k,2), ' dist_v = ',& |
---|
| 138 | ! inflow_dist(k,j,2) |
---|
| 139 | ! WRITE (9,*) 'mean_w = 0.0', ' dist_w = ',& |
---|
| 140 | ! inflow_dist(k,j,3) |
---|
| 141 | ! WRITE (9,*) 'mean_pt = ', mean_inflow_profiles(k,4), ' dist_pt = ',& |
---|
| 142 | ! inflow_dist(k,j,4) |
---|
| 143 | ! WRITE (9,*) 'mean_e = ', mean_inflow_profiles(k,5), ' dist_e = ',& |
---|
| 144 | ! inflow_dist(k,j,5) |
---|
| 145 | u(k,j,0) = mean_inflow_profiles(k,1) + & |
---|
| 146 | inflow_dist(k,j,1) * inflow_damping_factor(k) |
---|
| 147 | v(k,j,-1) = mean_inflow_profiles(k,2) + & |
---|
| 148 | inflow_dist(k,j,2) * inflow_damping_factor(k) |
---|
| 149 | w(k,j,-1) = inflow_dist(k,j,3) * inflow_damping_factor(k) |
---|
| 150 | pt(k,j,-1) = mean_inflow_profiles(k,4) + & |
---|
| 151 | inflow_dist(k,j,4) * inflow_damping_factor(k) |
---|
| 152 | e(k,j,-1) = mean_inflow_profiles(k,5) + & |
---|
| 153 | inflow_dist(k,j,5) * inflow_damping_factor(k) |
---|
| 154 | e(k,j,-1) = MAX( e(k,j,-1), 0.0 ) |
---|
| 155 | |
---|
| 156 | ENDDO |
---|
| 157 | ENDDO |
---|
| 158 | |
---|
| 159 | ENDIF |
---|
| 160 | |
---|
| 161 | ! |
---|
| 162 | !-- Conserve the volume flow at the inflow in order to avoid generation of |
---|
| 163 | !-- waves in the stable layer |
---|
| 164 | ! IF ( conserve_volume_flow .AND. inflow_l ) THEN |
---|
| 165 | |
---|
| 166 | ! volume_flow(1) = 0.0 |
---|
| 167 | ! volume_flow_l(1) = 0.0 |
---|
| 168 | |
---|
| 169 | ! i = 0 |
---|
| 170 | |
---|
| 171 | ! DO j = nys, nyn |
---|
| 172 | ! |
---|
| 173 | !-- Sum up the volume flow through the south/north boundary |
---|
| 174 | ! DO k = nzb_2d(j,i) + 1, nzt |
---|
| 175 | ! volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzu(k) |
---|
| 176 | ! ENDDO |
---|
| 177 | ! ENDDO |
---|
| 178 | |
---|
| 179 | #if defined( __parallel ) |
---|
| 180 | ! CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 1, MPI_REAL, & |
---|
| 181 | ! MPI_SUM, comm1dy, ierr ) |
---|
| 182 | #else |
---|
| 183 | ! volume_flow = volume_flow_l |
---|
| 184 | #endif |
---|
| 185 | ! volume_flow_offset(1) = ( volume_flow_initial(1) - volume_flow(1) ) & |
---|
| 186 | ! / volume_flow_area(1) |
---|
| 187 | |
---|
| 188 | ! DO j = nys-1, nyn+1 |
---|
| 189 | ! DO k = nzb_v_inner(j,i) + 1, nzt |
---|
| 190 | ! u(k,j,i) = u(k,j,i) + volume_flow_offset(1) |
---|
| 191 | ! ENDDO |
---|
| 192 | ! ENDDO |
---|
| 193 | |
---|
| 194 | ! ENDIF |
---|
| 195 | |
---|
| 196 | CALL cpu_log( log_point(40), 'inflow_turbulence', 'stop' ) |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | END SUBROUTINE inflow_turbulence |
---|