[3469] | 1 | !> @file indoor_model_mod.f90 |
---|
| 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of the PALM model system. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 2018-2018 Leibniz Universitaet Hannover |
---|
| 18 | ! Copyright 2018-2018 Hochschule Offenburg |
---|
| 19 | !--------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
| 21 | ! Current revisions: |
---|
| 22 | ! ----------------- |
---|
| 23 | ! |
---|
| 24 | ! |
---|
| 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: indoor_model_mod.f90 3469 2018-10-30 20:05:07Z knoop $ |
---|
| 28 | ! Initial revision (tlang, suehring, kanani, srissman) |
---|
| 29 | ! |
---|
| 30 | ! |
---|
| 31 | ! |
---|
| 32 | ! Authors: |
---|
| 33 | ! -------- |
---|
| 34 | ! @author Tobias Lang |
---|
| 35 | ! @author Jens Pfafferott |
---|
| 36 | ! @author Farah Kanani-Suehring |
---|
| 37 | ! @author Matthias Suehring |
---|
| 38 | ! @author Sascha RiÃmann |
---|
| 39 | ! |
---|
| 40 | ! |
---|
| 41 | ! Description: |
---|
| 42 | ! ------------ |
---|
| 43 | !> <Description of the new module> |
---|
| 44 | !> Module for Indoor Climate Model (ICM) |
---|
| 45 | !> The module is based on the DIN EN ISO 13790 with simplified hour-based procedure. |
---|
| 46 | !> This model is a equivalent circuit diagram of a three-point RC-model (5R1C). |
---|
| 47 | !> This module differ between indoor-air temperature an average temperature of indoor surfaces which make it prossible to determine thermal comfort |
---|
| 48 | !> the heat transfer between indoor and outdoor is simplified |
---|
| 49 | |
---|
| 50 | !> @todo Replace window_area_per_facade by %frac(1,m) for window |
---|
| 51 | !> @todo emissivity change for window blinds if solar_protection_on=1 |
---|
| 52 | !> @todo write datas in netcdf file as output data |
---|
| 53 | !> @todo reduce the building volume with netto ground surface to take respect costruction areas like walls and ceilings. Have effect on factor_a, factor_c, airchange and lambda_at |
---|
| 54 | !> |
---|
| 55 | !> @note Do we allow use of integer flags, or only logical flags? (concerns e.g. cooling_on, heating_on) |
---|
| 56 | !> @note How to write indoor temperature output to pt array? |
---|
| 57 | !> |
---|
| 58 | !> @bug <Enter known bugs here> |
---|
| 59 | !------------------------------------------------------------------------------! |
---|
| 60 | MODULE indoor_model_mod |
---|
| 61 | |
---|
| 62 | USE control_parameters, & |
---|
| 63 | ONLY: initializing_actions |
---|
| 64 | |
---|
| 65 | USE kinds |
---|
| 66 | |
---|
| 67 | USE surface_mod, & |
---|
| 68 | ONLY: surf_usm_h, surf_usm_v |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | IMPLICIT NONE |
---|
| 72 | |
---|
| 73 | ! |
---|
| 74 | !-- Define data structure for buidlings. |
---|
| 75 | TYPE build |
---|
| 76 | |
---|
| 77 | INTEGER(iwp) :: id !< building ID |
---|
| 78 | INTEGER(iwp) :: kb_min !< lowest vertical index of a building |
---|
| 79 | INTEGER(iwp) :: kb_max !< highest vertical index of a building |
---|
| 80 | INTEGER(iwp) :: num_facades_per_building_h !< total number of horizontal facades elements |
---|
| 81 | INTEGER(iwp) :: num_facades_per_building_h_l !< number of horizontal facade elements on local subdomain |
---|
| 82 | INTEGER(iwp) :: num_facades_per_building_v !< total number of vertical facades elements |
---|
| 83 | INTEGER(iwp) :: num_facades_per_building_v_l !< number of vertical facade elements on local subdomain |
---|
| 84 | |
---|
| 85 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: l_v !< index array linking surface-element orientation index |
---|
| 86 | !< for vertical surfaces with building |
---|
| 87 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_h !< index array linking surface-element index for |
---|
| 88 | !< horizontal surfaces with building |
---|
| 89 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: m_v !< index array linking surface-element index for |
---|
| 90 | !< vertical surfaces with building |
---|
| 91 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_h !< number of horizontal facade elements per buidling |
---|
| 92 | !< and height level |
---|
| 93 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facade_v !< number of vertical facades elements per buidling |
---|
| 94 | !< and height level |
---|
| 95 | |
---|
| 96 | LOGICAL :: on_pe = .FALSE. !< flag indicating whether a building with certain ID is on local subdomain |
---|
| 97 | |
---|
| 98 | REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in !< mean building indoor temperature, height dependent |
---|
| 99 | REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l !< mean building indoor temperature on local subdomain, height dependent |
---|
| 100 | REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume, height dependent |
---|
| 101 | REAL(wp), DIMENSION(:), ALLOCATABLE :: vol_frac !< fraction of local on total building volume, height dependent |
---|
| 102 | REAL(wp), DIMENSION(:), ALLOCATABLE :: vpf !< building volume volume per facade element, height dependent |
---|
| 103 | |
---|
| 104 | END TYPE build |
---|
| 105 | |
---|
| 106 | TYPE(build), DIMENSION(:), ALLOCATABLE :: buildings !< building array |
---|
| 107 | |
---|
| 108 | INTEGER(iwp) :: num_build !< total number of buildings in domain |
---|
| 109 | |
---|
| 110 | REAL(wp) :: volume_fraction |
---|
| 111 | |
---|
| 112 | REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in !< dummy array for indoor temperature for the |
---|
| 113 | !< total building volume at each discrete height level |
---|
| 114 | REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l !< dummy array for indoor temperature for the |
---|
| 115 | !< local building volume fraction at each discrete height level |
---|
| 116 | |
---|
| 117 | ! |
---|
| 118 | !-- Declare all global variables within the module |
---|
| 119 | |
---|
| 120 | INTEGER(iwp) :: building_type = 1 !< namelist parameter with |
---|
| 121 | !< X1=construction year (cy) 1950, X2=cy 2000, X3=cy 2050 |
---|
| 122 | !< R=Residental building, O=Office, RW=Enlarged Windows, P=Panel type (Plattenbau) WBS 70, H=Hospital (in progress), I=Industrial halls (in progress), S=Special Building (in progress) |
---|
| 123 | !< (0=R1, 1=R2, 2=R3, 3=O1, 4=O2, 5=O3,...) |
---|
| 124 | INTEGER(iwp) :: cooling_on !< Indoor cooling flag (0=off, 1=on) |
---|
| 125 | INTEGER(iwp) :: heating_on !< Indoor heating flag (0=off, 1=on) |
---|
| 126 | INTEGER(iwp) :: solar_protection_off !< Solar protection off |
---|
| 127 | INTEGER(iwp) :: solar_protection_on !< Solar protection on |
---|
| 128 | |
---|
| 129 | REAL(wp) :: air_change_high !< [1/h] air changes per time_utc_hour |
---|
| 130 | REAL(wp) :: air_change_low !< [1/h] air changes per time_utc_hour |
---|
| 131 | REAL(wp) :: eff_mass_area !< [m²] the effective mass-related area |
---|
| 132 | REAL(wp) :: floor_area_per_facade !< [m²] net floor area (Sum of all floors) |
---|
| 133 | REAL(wp) :: total_area !<! [m²] area of all surfaces pointing to zone |
---|
| 134 | REAL(wp) :: window_area_per_facade !< [m2] window area per facade element |
---|
| 135 | REAL(wp) :: air_change !< [1/h] Airflow |
---|
| 136 | REAL(wp) :: bldg_part_surf_i = 4 !< [m²_surf,i] part building surface, from Palm, das mÌsste mittlerweile "facade_element_area" sein! |
---|
| 137 | REAL(wp) :: facade_element_area !< [m²_facade] building surface facade |
---|
| 138 | REAL(wp) :: indoor_volume_per_facade !< [m³] indoor air volume per facade element |
---|
| 139 | REAL(wp) :: c_m !< [J/K] internal heat storage capacity |
---|
| 140 | REAL(wp) :: dt_indoor = 3600.0_wp !< [s] namelist parameter: time interval for indoor-model application |
---|
| 141 | REAL(wp) :: eta_ve !< [-] heat recovery efficiency |
---|
| 142 | REAL(wp) :: f_c_win !< [-] shading factor |
---|
| 143 | REAL(wp) :: factor_a !< [-] Dynamic parameters specific effective surface according to Table 12; 2.5 (very light, light and medium), 3.0 (heavy), 3.5 (very heavy) |
---|
| 144 | REAL(wp) :: factor_c !< [J/(m2 K)] Dynamic parameters inner heatstorage according to Table 12; 80000 (very light), 110000 (light), 165000 (medium), 260000 (heavy), 370000 (very heavy) |
---|
| 145 | REAL(wp) :: g_value_win !< [-] SHGC factor |
---|
| 146 | REAL(wp) :: h_tr_1 !<! [W/K] Heat transfer coefficient auxiliary variable 1 |
---|
| 147 | REAL(wp) :: h_tr_2 !<! [W/K] Heat transfer coefficient auxiliary variable 2 |
---|
| 148 | REAL(wp) :: h_tr_3 !<! [W/K] Heat transfer coefficient auxiliary variable 3 |
---|
| 149 | REAL(wp) :: h_tr_em !<! [W/K] Heat transfer coefficient of the emmision (got with h_tr_ms the thermal mass) |
---|
| 150 | REAL(wp) :: h_tr_is !<! [W/K] thermal coupling conductance (Thermischer Kopplungsleitwert) |
---|
| 151 | REAL(wp) :: h_tr_ms !<! [W/K] Heat transfer conductance term (got with h_tr_em the thermal mass) |
---|
| 152 | REAL(wp) :: h_tr_op !<! [W/K] heat transfer coefficient of opaque components (assumption: got all thermal mass) contains of h_tr_em and h_tr_ms |
---|
| 153 | REAL(wp) :: h_tr_w !<! [W/K] heat transfer coefficient of doors, windows, curtain walls and glazed walls (assumption: thermal mass=0) |
---|
| 154 | REAL(wp) :: h_ve !<! [W/K] heat transfer of ventilation |
---|
| 155 | REAL(wp) :: height_storey !< [m] storey heigth |
---|
| 156 | REAL(wp) :: height_cei_con !< [m] ceiling construction heigth |
---|
| 157 | REAL(wp) :: initial_indoor_temperature !< namelist parameter |
---|
| 158 | REAL(wp) :: lambda_at !< [-] ratio internal surface/floor area chap. 7.2.2.2. |
---|
| 159 | REAL(wp) :: lambda_layer3 !< [W/(m*K)] Thermal conductivity of the inner layer |
---|
| 160 | REAL(wp) :: net_sw_in !< net short-wave radiation (in - out; was i_global --> CORRECT?) |
---|
| 161 | REAL(wp) :: qint_high !< [W/m2] internal heat gains, option Database qint_0-23 |
---|
| 162 | REAL(wp) :: qint_low !< [W/m2] internal heat gains, option Database qint_0-23 |
---|
| 163 | REAL(wp) :: phi_c_max !< [W] Max. Cooling capacity (negative) |
---|
| 164 | REAL(wp) :: phi_h_max !< [W] Max. Heating capacity (negative) |
---|
| 165 | REAL(wp) :: phi_hc_nd !<! [W] heating demand and/or cooling demand |
---|
| 166 | REAL(wp) :: phi_hc_nd_10 !<! [W] heating demand and/or cooling demand for heating or cooling |
---|
| 167 | REAL(wp) :: phi_hc_nd_ac !<! [W] actual heating demand and/or cooling demand |
---|
| 168 | REAL(wp) :: phi_hc_nd_un !<! [W] unlimited heating demand and/or cooling demand which is necessary to reach the demanded required temperature (heating is positive, cooling is negative) |
---|
| 169 | REAL(wp) :: phi_ia !< [W] internal air load = internal loads * 0.5, Eq. (C.1) |
---|
| 170 | REAL(wp) :: phi_m !<! [W] mass specific thermal load (internal and external) |
---|
| 171 | REAL(wp) :: phi_mtot !<! [W] total mass specific thermal load (internal and external) |
---|
| 172 | REAL(wp) :: phi_sol !< [W] solar loads |
---|
| 173 | REAL(wp) :: phi_st !<! [W] mass specific thermal load implied non thermal mass |
---|
| 174 | REAL(wp) :: q_emission !< emissions, in first version = 0, option for second part of the project |
---|
| 175 | REAL(wp) :: q_wall_win !< heat flux from indoor into wall/window |
---|
| 176 | REAL(wp) :: q_waste_heat !< waste heat, sum of waste heat over the roof to Palm |
---|
| 177 | REAL(wp) :: q_waste_heat_bldg !< [W/building] waste heat of the complete building, in Palm sum of all indoor_model-calculations |
---|
| 178 | REAL(wp) :: s_layer3 !< [m] half thickness of the inner layer (layer_3) |
---|
| 179 | REAL(wp) :: schedule_d !< activation for internal loads (low or high + low) |
---|
| 180 | REAL(wp) :: skip_time_do_indoor = 0.0_wp !< [s] Indoor model is not called before this time |
---|
| 181 | REAL(wp) :: theta_air !<! [°C] air temperature of the RC-node |
---|
| 182 | REAL(wp) :: theta_air_0 !<! [oC] air temperature of the RC-node in equilibrium |
---|
| 183 | REAL(wp) :: theta_air_10 !<! [oC] air temperature of the RC-node from a heating capacity of 10 W/m² |
---|
| 184 | REAL(wp) :: theta_air_ac !< [oC] actual room temperature after heating/cooling |
---|
| 185 | REAL(wp) :: theta_air_set !< [oC] Setpoint_temperature for the room |
---|
| 186 | REAL(wp) :: theta_int_c_set !< [oC] Max. Setpoint temperature (summer) |
---|
| 187 | REAL(wp) :: theta_int_h_set !< [oC] Max. Setpoint temperature (winter) |
---|
| 188 | REAL(wp) :: theta_m !<! [oC} inner temperature of the RC-node |
---|
| 189 | REAL(wp) :: theta_m_t !<! [oC] (Fictive) component temperature timestep |
---|
| 190 | REAL(wp) :: theta_m_t_prev !< [oC] (Fictive) component temperature previous timestep (do not change) |
---|
| 191 | REAL(wp) :: theta_op !< [oC] operative temperature |
---|
| 192 | REAL(wp) :: theta_s !<! [oC] surface temperature of the RC-node |
---|
| 193 | REAL(wp) :: time_indoor = 0.0_wp !< [s] time since last call of indoor model |
---|
| 194 | REAL(wp) :: time_utc_hour !< Time in hours per day (UTC) |
---|
| 195 | REAL(wp) :: u_value_win !< [W/(m2*K)] transmittance |
---|
| 196 | REAL(wp) :: ventilation_int_loads !< Zuteilung der GebÀude fÌr Verlauf/AktivitÀt der LÌftung und internen Lasten |
---|
| 197 | |
---|
| 198 | ! |
---|
| 199 | !-- Declare all global parameters within the module |
---|
| 200 | REAL(wp), PARAMETER :: params_f_f = 0.3_wp !< [-] frame ratio chap. 8.3.2.1.1 for buildings with mostly cooling 2.0_wp |
---|
| 201 | REAL(wp), PARAMETER :: params_f_w = 0.9_wp !< [-] correction factor (fuer nicht senkrechten Stahlungseinfall DIN 4108-2 chap.8, (hier konstant, keine WinkelabhÀngigkeit) |
---|
| 202 | REAL(wp), PARAMETER :: params_f_win = 0.5_wp !< [-] proportion of window area, Database A_win aus Datenbank 27 window_area_per_facade_percent |
---|
| 203 | REAL(wp), PARAMETER :: params_solar_protection = 300.0_wp !< [W/m2] chap. G.5.3.1 sun protection closed, if the radiation on facade exceeds this value |
---|
| 204 | REAL(wp), PARAMETER :: params_waste_heat_c = 4.0_wp !< [-] anthropogenic heat outputs for cooling e.g. 4 for KKM with COP = 3 |
---|
| 205 | REAL(wp), PARAMETER :: params_waste_heat_h = 1.111_wp !< [-] anthropogenic heat outputs for heating e.g. 1 / 0.9 = 1.111111 for combustion with eta = 0.9 or -3 for WP with COP = 4 |
---|
| 206 | REAL(wp), PARAMETER :: h_is = 3.45_wp !< [W/(m^2 K)] h_is = 3.45 between surface and air (chap. 7.2.2.2) |
---|
| 207 | REAL(wp), PARAMETER :: h_ms = 9.1_wp !< [W/K] h_ms = 9.10 W / (m2 K) between component and surface (chap. 12.2.2) |
---|
| 208 | |
---|
| 209 | SAVE |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | PRIVATE |
---|
| 213 | |
---|
| 214 | ! |
---|
| 215 | !-- Add INTERFACES that must be available to other modules |
---|
| 216 | PUBLIC im_init, im_main_heatcool, im_parin |
---|
| 217 | |
---|
| 218 | ! |
---|
| 219 | !-- Add VARIABLES that must be available to other modules |
---|
| 220 | PUBLIC dt_indoor, skip_time_do_indoor, time_indoor |
---|
| 221 | |
---|
| 222 | ! |
---|
| 223 | !-- Calculations for indoor temperatures |
---|
| 224 | INTERFACE im_calc_temperatures |
---|
| 225 | MODULE PROCEDURE im_calc_temperatures |
---|
| 226 | END INTERFACE im_calc_temperatures |
---|
| 227 | ! |
---|
| 228 | !-- Initialization actions |
---|
| 229 | INTERFACE im_init |
---|
| 230 | MODULE PROCEDURE im_init |
---|
| 231 | END INTERFACE im_init |
---|
| 232 | |
---|
| 233 | ! |
---|
| 234 | !-- Main part of indoor model |
---|
| 235 | INTERFACE im_main_heatcool |
---|
| 236 | MODULE PROCEDURE im_main_heatcool |
---|
| 237 | END INTERFACE im_main_heatcool |
---|
| 238 | ! |
---|
| 239 | !-- Reading of NAMELIST parameters |
---|
| 240 | INTERFACE im_parin |
---|
| 241 | MODULE PROCEDURE im_parin |
---|
| 242 | END INTERFACE im_parin |
---|
| 243 | |
---|
| 244 | CONTAINS |
---|
| 245 | |
---|
| 246 | !------------------------------------------------------------------------------! |
---|
| 247 | ! Description: |
---|
| 248 | ! ------------ |
---|
| 249 | !< Calculation of the air temperatures and mean radiation temperature |
---|
| 250 | !< This is basis for the operative temperature |
---|
| 251 | !< Based on a Crank-Nicholson scheme with a timestep of a hour |
---|
| 252 | !------------------------------------------------------------------------------! |
---|
| 253 | SUBROUTINE im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, & |
---|
| 254 | near_facade_temperature, phi_hc_nd_dummy ) |
---|
| 255 | |
---|
| 256 | USE arrays_3d, & |
---|
| 257 | ONLY: pt |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | IMPLICIT NONE |
---|
| 261 | |
---|
| 262 | |
---|
| 263 | INTEGER(iwp) :: i |
---|
| 264 | INTEGER(iwp) :: j |
---|
| 265 | INTEGER(iwp) :: k |
---|
| 266 | |
---|
| 267 | REAL(wp) :: indoor_wall_window_temperature !< weighted temperature of innermost wall/window layer |
---|
| 268 | REAL(wp) :: near_facade_temperature |
---|
| 269 | REAL(wp) :: phi_hc_nd_dummy |
---|
| 270 | |
---|
| 271 | !< Calculation of total mass specific thermal load (internal and external) |
---|
| 272 | phi_mtot = ( phi_m + h_tr_em * indoor_wall_window_temperature & |
---|
| 273 | + h_tr_3 * ( phi_st + h_tr_w * pt(k,j,i) & |
---|
| 274 | + h_tr_1 * & |
---|
| 275 | ( ( ( phi_ia + phi_hc_nd_dummy ) / h_ve ) & |
---|
| 276 | + near_facade_temperature ) & |
---|
| 277 | ) / h_tr_2 & |
---|
| 278 | ) !< [oC] Eq. (C.5) |
---|
| 279 | |
---|
| 280 | !< Calculation of component temperature at factual timestep |
---|
| 281 | theta_m_t = ( ( theta_m_t_prev & |
---|
| 282 | * ( ( c_m / 3600 ) - 0.5 * ( h_tr_3 + h_tr_em ) ) + phi_mtot & |
---|
| 283 | ) & |
---|
| 284 | / ( ( c_m / 3600 ) + 0.5 * ( h_tr_3 + h_tr_em ) ) & |
---|
| 285 | ) !< [oC] Eq. (C.4) |
---|
| 286 | |
---|
| 287 | !< Calculation of mean inner temperature for the RC-node in actual timestep |
---|
| 288 | theta_m = ( theta_m_t + theta_m_t_prev ) * 0.5 !< [oC] Eq. (C.9) |
---|
| 289 | |
---|
| 290 | !< Calculation of mean surface temperature of the RC-node in actual timestep |
---|
| 291 | theta_s = ( ( h_tr_ms * theta_m + phi_st + h_tr_w * pt(k,j,i) & |
---|
| 292 | + h_tr_1 * ( near_facade_temperature + ( phi_ia + phi_hc_nd_dummy ) / h_ve ) & |
---|
| 293 | ) & |
---|
| 294 | / ( h_tr_ms + h_tr_w + h_tr_1 ) & |
---|
| 295 | ) !< [oC] Eq. (C.10) |
---|
| 296 | |
---|
| 297 | !< Calculation of the air temperature of the RC-node |
---|
| 298 | theta_air = ( h_tr_is * theta_s + h_ve * near_facade_temperature & |
---|
| 299 | + phi_ia + phi_hc_nd_dummy ) / ( h_tr_is + h_ve ) !< [oC] Eq. (C.11) |
---|
| 300 | |
---|
| 301 | END SUBROUTINE im_calc_temperatures |
---|
| 302 | |
---|
| 303 | !------------------------------------------------------------------------------! |
---|
| 304 | ! Description: |
---|
| 305 | ! ------------ |
---|
| 306 | !> Initialization of the indoor model. |
---|
| 307 | !> Static information are calculated here, e.g. building parameters and |
---|
| 308 | !> geometrical information, everything that doesn't change in time. |
---|
| 309 | ! |
---|
| 310 | !-- Input values |
---|
| 311 | !-- Input datas from Palm, M4 |
---|
| 312 | ! i_global --> net_sw_in !global radiation [W/m2] |
---|
| 313 | ! theta_e --> pt(k,j,i) !undisturbed outside temperature, 1. PALM volume, for windows |
---|
| 314 | ! theta_sup = theta_f --> surf_usm_h%t_surf_10cm(m) |
---|
| 315 | ! surf_usm_v(l)%t_surf_10cm(m) !Air temperature, facade near (10cm) air temperature from 1. Palm volume |
---|
| 316 | ! theta_node --> t_wall_h(nzt_wall,m) |
---|
| 317 | ! t_wall_v(l)%t(nzt_wall,m) !Temperature of innermost wall layer, for opaque wall |
---|
| 318 | !------------------------------------------------------------------------------! |
---|
| 319 | SUBROUTINE im_init |
---|
| 320 | |
---|
| 321 | USE arrays_3d, & |
---|
| 322 | ONLY: dzw |
---|
| 323 | |
---|
| 324 | USE control_parameters, & |
---|
| 325 | ONLY: message_string |
---|
| 326 | |
---|
| 327 | USE indices, & |
---|
| 328 | ONLY: nxl, nxr, nyn, nys, nzb, nzt, wall_flags_0 |
---|
| 329 | |
---|
| 330 | USE grid_variables, & |
---|
| 331 | ONLY: dx, dy |
---|
| 332 | |
---|
| 333 | USE netcdf_data_input_mod, & |
---|
| 334 | ONLY: building_id_f |
---|
| 335 | |
---|
| 336 | USE pegrid |
---|
| 337 | |
---|
| 338 | USE surface_mod, & |
---|
| 339 | ONLY: surf_usm_h, surf_usm_v |
---|
| 340 | |
---|
| 341 | USE urban_surface_mod, & |
---|
| 342 | ONLY: building_pars, building_type |
---|
| 343 | |
---|
| 344 | IMPLICIT NONE |
---|
| 345 | |
---|
| 346 | INTEGER(iwp) :: fa !< running index for facade elements of each building |
---|
| 347 | INTEGER(iwp) :: i !< running index along x-direction |
---|
| 348 | INTEGER(iwp) :: j !< running index along y-direction |
---|
| 349 | INTEGER(iwp) :: k !< running index along z-direction |
---|
| 350 | INTEGER(iwp) :: l !< running index for surface-element orientation |
---|
| 351 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 352 | INTEGER(iwp) :: n !< building index |
---|
| 353 | INTEGER(iwp) :: nb !< building index |
---|
| 354 | |
---|
| 355 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids !< building IDs on entire model domain |
---|
| 356 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final !< building IDs on entire model domain, |
---|
| 357 | !< multiple occurences are sorted out |
---|
| 358 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_final_tmp !< temporary array used for resizing |
---|
| 359 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l !< building IDs on local subdomain |
---|
| 360 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: build_ids_l_tmp !< temporary array used to resize array of building IDs |
---|
| 361 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displace_dum !< displacements of start addresses, used for MPI_ALLGATHERV |
---|
| 362 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_max_l !< highest vertical index of a building on subdomain |
---|
| 363 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_min_l !< lowest vertical index of a building on subdomain |
---|
| 364 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: n_fa !< counting array |
---|
| 365 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_h !< dummy array used for summing-up total number of |
---|
| 366 | !< horizontal facade elements |
---|
| 367 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: num_facades_v !< dummy array used for summing-up total number of |
---|
| 368 | !< vertical facade elements |
---|
| 369 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_h !< dummy array used for MPI_ALLREDUCE |
---|
| 370 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: receive_dum_v !< dummy array used for MPI_ALLREDUCE |
---|
| 371 | |
---|
| 372 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings !< number of buildings with different ID on entire model domain |
---|
| 373 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: num_buildings_l !< number of buildings with different ID on local subdomain |
---|
| 374 | |
---|
| 375 | REAL(wp), DIMENSION(:), ALLOCATABLE :: local_weight !< dummy representing fraction of local on total building volume, |
---|
| 376 | !< height dependent |
---|
| 377 | REAL(wp), DIMENSION(:), ALLOCATABLE :: volume !< total building volume at each discrete height level |
---|
| 378 | REAL(wp), DIMENSION(:), ALLOCATABLE :: volume_l !< total building volume at each discrete height level, |
---|
| 379 | !< on local subdomain |
---|
| 380 | |
---|
| 381 | ! |
---|
| 382 | !-- Initializing of indoor model is only possible if buildings can be |
---|
| 383 | !-- distinguished by their IDs. |
---|
| 384 | IF ( .NOT. building_id_f%from_file ) THEN |
---|
| 385 | message_string = 'Indoor model requires information about building_id' |
---|
| 386 | CALL message( 'im_init', 'PA0999', 1, 2, 0, 6, 0 ) |
---|
| 387 | ENDIF |
---|
| 388 | ! |
---|
| 389 | !-- Determine number of different building IDs on local subdomain. |
---|
| 390 | num_buildings_l = 0 |
---|
| 391 | num_buildings = 0 |
---|
| 392 | ALLOCATE( build_ids_l(1) ) |
---|
| 393 | DO i = nxl, nxr |
---|
| 394 | DO j = nys, nyn |
---|
| 395 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 396 | IF ( num_buildings_l(myid) > 0 ) THEN |
---|
| 397 | IF ( ANY( building_id_f%var(j,i) .EQ. build_ids_l ) ) THEN |
---|
| 398 | CYCLE |
---|
| 399 | ELSE |
---|
| 400 | num_buildings_l(myid) = num_buildings_l(myid) + 1 |
---|
| 401 | ! |
---|
| 402 | !-- Resize array with different local building ids |
---|
| 403 | ALLOCATE( build_ids_l_tmp(1:SIZE(build_ids_l)) ) |
---|
| 404 | build_ids_l_tmp = build_ids_l |
---|
| 405 | DEALLOCATE( build_ids_l ) |
---|
| 406 | ALLOCATE( build_ids_l(1:num_buildings_l(myid)) ) |
---|
| 407 | build_ids_l(1:num_buildings_l(myid)-1) = & |
---|
| 408 | build_ids_l_tmp(1:num_buildings_l(myid)-1) |
---|
| 409 | build_ids_l(num_buildings_l(myid)) = building_id_f%var(j,i) |
---|
| 410 | DEALLOCATE( build_ids_l_tmp ) |
---|
| 411 | ENDIF |
---|
| 412 | ! |
---|
| 413 | !-- First occuring building id on PE |
---|
| 414 | ELSE |
---|
| 415 | num_buildings_l(myid) = num_buildings_l(myid) + 1 |
---|
| 416 | build_ids_l(1) = building_id_f%var(j,i) |
---|
| 417 | ENDIF |
---|
| 418 | ENDIF |
---|
| 419 | ENDDO |
---|
| 420 | ENDDO |
---|
| 421 | ! |
---|
| 422 | !-- Determine number of building IDs for the entire domain. (Note, building IDs |
---|
| 423 | !-- can appear multiple times as buildings might be distributed over several |
---|
| 424 | !-- PEs.) |
---|
| 425 | #if defined( __parallel ) |
---|
| 426 | CALL MPI_ALLREDUCE( num_buildings_l, num_buildings, numprocs, & |
---|
| 427 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
| 428 | #else |
---|
| 429 | num_buildings = num_buildings_l |
---|
| 430 | #endif |
---|
| 431 | ALLOCATE( build_ids(1:SUM(num_buildings)) ) |
---|
| 432 | ! |
---|
| 433 | !-- Gather building IDs. Therefore, first, determine displacements used |
---|
| 434 | !-- required for MPI_GATHERV call. |
---|
| 435 | ALLOCATE( displace_dum(0:numprocs-1) ) |
---|
| 436 | displace_dum(0) = 0 |
---|
| 437 | DO i = 1, numprocs-1 |
---|
| 438 | displace_dum(i) = displace_dum(i-1) + num_buildings(i-1) |
---|
| 439 | ENDDO |
---|
| 440 | |
---|
| 441 | #if defined( __parallel ) |
---|
| 442 | CALL MPI_ALLGATHERV( build_ids_l(1:num_buildings_l(myid)), & |
---|
| 443 | num_buildings(myid), & |
---|
| 444 | MPI_INTEGER, & |
---|
| 445 | build_ids, & |
---|
| 446 | num_buildings, & |
---|
| 447 | displace_dum, & |
---|
| 448 | MPI_INTEGER, & |
---|
| 449 | comm2d, ierr ) |
---|
| 450 | |
---|
| 451 | DEALLOCATE( displace_dum ) |
---|
| 452 | |
---|
| 453 | #else |
---|
| 454 | build_ids = build_ids_l |
---|
| 455 | #endif |
---|
| 456 | ! |
---|
| 457 | !-- Note: in parallel mode, building IDs can occur mutliple times, as |
---|
| 458 | !-- each PE has send its own ids. Therefore, sort out building IDs which |
---|
| 459 | !-- appear multiple times. |
---|
| 460 | num_build = 0 |
---|
| 461 | DO n = 1, SIZE(build_ids) |
---|
| 462 | |
---|
| 463 | IF ( ALLOCATED(build_ids_final) ) THEN |
---|
| 464 | IF ( ANY( build_ids(n) .EQ. build_ids_final ) ) THEN !FK: Warum ANY?, Warum .EQ.? --> s.o |
---|
| 465 | CYCLE |
---|
| 466 | ELSE |
---|
| 467 | num_build = num_build + 1 |
---|
| 468 | ! |
---|
| 469 | !-- Resize |
---|
| 470 | ALLOCATE( build_ids_final_tmp(1:num_build) ) |
---|
| 471 | build_ids_final_tmp(1:num_build-1) = build_ids_final(1:num_build-1) |
---|
| 472 | DEALLOCATE( build_ids_final ) |
---|
| 473 | ALLOCATE( build_ids_final(1:num_build) ) |
---|
| 474 | build_ids_final(1:num_build-1) = build_ids_final_tmp(1:num_build-1) |
---|
| 475 | build_ids_final(num_build) = build_ids(n) |
---|
| 476 | DEALLOCATE( build_ids_final_tmp ) |
---|
| 477 | ENDIF |
---|
| 478 | ELSE |
---|
| 479 | num_build = num_build + 1 |
---|
| 480 | ALLOCATE( build_ids_final(1:num_build) ) |
---|
| 481 | build_ids_final(num_build) = build_ids(n) |
---|
| 482 | ENDIF |
---|
| 483 | ENDDO |
---|
| 484 | |
---|
| 485 | ! |
---|
| 486 | !-- Allocate building-data structure array. Note, this is a global array |
---|
| 487 | !-- and all building IDs on domain are known by each PE. Further attributes, |
---|
| 488 | !-- e.g. height-dependent arrays, however, are only allocated on PEs where |
---|
| 489 | !-- the respective building is present (in order to reduce memory demands). |
---|
| 490 | ALLOCATE( buildings(1:num_build) ) |
---|
| 491 | ! |
---|
| 492 | !-- Store building IDs and check if building with certain ID is present on |
---|
| 493 | !-- subdomain. |
---|
| 494 | DO nb = 1, num_build |
---|
| 495 | buildings(nb)%id = build_ids_final(nb) |
---|
| 496 | |
---|
| 497 | IF ( ANY( building_id_f%var == buildings(nb)%id ) ) & |
---|
| 498 | buildings(nb)%on_pe = .TRUE. |
---|
| 499 | ENDDO |
---|
| 500 | ! |
---|
| 501 | !-- Determine the maximum vertical dimension occupied by each building. |
---|
| 502 | ALLOCATE( k_min_l(1:num_build) ) |
---|
| 503 | ALLOCATE( k_max_l(1:num_build) ) |
---|
| 504 | k_min_l = nzt + 1 |
---|
| 505 | k_max_l = 0 |
---|
| 506 | |
---|
| 507 | DO i = nxl, nxr |
---|
| 508 | DO j = nys, nyn |
---|
| 509 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) THEN |
---|
| 510 | nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), & |
---|
| 511 | DIM = 1 ) |
---|
| 512 | DO k = nzb+1, nzt+1 |
---|
| 513 | ! |
---|
| 514 | !-- Check if grid point belongs to a building. |
---|
| 515 | IF ( BTEST( wall_flags_0(k,j,i), 6 ) ) THEN |
---|
| 516 | k_min_l(nb) = MIN( k_min_l(nb), k ) |
---|
| 517 | k_max_l(nb) = MAX( k_max_l(nb), k ) |
---|
| 518 | ENDIF |
---|
| 519 | |
---|
| 520 | ENDDO |
---|
| 521 | ENDIF |
---|
| 522 | ENDDO |
---|
| 523 | ENDDO |
---|
| 524 | |
---|
| 525 | DO nb = 1, num_build |
---|
| 526 | #if defined( __parallel ) |
---|
| 527 | CALL MPI_ALLREDUCE( k_min_l(nb), buildings(nb)%kb_min, 1, MPI_INTEGER, & |
---|
| 528 | MPI_MIN, comm2d, ierr ) |
---|
| 529 | CALL MPI_ALLREDUCE( k_max_l(nb), buildings(nb)%kb_max, 1, MPI_INTEGER, & |
---|
| 530 | MPI_MAX, comm2d, ierr ) |
---|
| 531 | #else |
---|
| 532 | buildings(nb)%kb_min = k_min_l(nb) |
---|
| 533 | buildings(nb)%kb_max = k_max_l(nb) |
---|
| 534 | #endif |
---|
| 535 | |
---|
| 536 | ENDDO |
---|
| 537 | |
---|
| 538 | DEALLOCATE( k_min_l ) |
---|
| 539 | DEALLOCATE( k_max_l ) |
---|
| 540 | ! |
---|
| 541 | !-- Calculate building volume |
---|
| 542 | DO nb = 1, num_build |
---|
| 543 | ! |
---|
| 544 | !-- Allocate temporary array for summing-up building volume |
---|
| 545 | ALLOCATE( volume(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 546 | ALLOCATE( volume_l(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 547 | volume = 0.0_wp |
---|
| 548 | volume_l = 0.0_wp |
---|
| 549 | ! |
---|
| 550 | !-- Calculate building volume per height level on each PE where |
---|
| 551 | !-- these building is present. |
---|
| 552 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 553 | ALLOCATE( buildings(nb)%volume(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 554 | ALLOCATE( buildings(nb)%vol_frac(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 555 | buildings(nb)%volume = 0.0_wp |
---|
| 556 | buildings(nb)%vol_frac = 0.0_wp |
---|
| 557 | |
---|
| 558 | IF ( ANY( building_id_f%var == buildings(nb)%id ) ) THEN |
---|
| 559 | DO i = nxl, nxr |
---|
| 560 | DO j = nys, nyn |
---|
| 561 | DO k = buildings(nb)%kb_min, buildings(nb)%kb_max |
---|
| 562 | IF ( building_id_f%var(j,i) /= building_id_f%fill ) & |
---|
| 563 | volume_l(k) = dx * dy * dzw(k) |
---|
| 564 | ENDDO |
---|
| 565 | ENDDO |
---|
| 566 | ENDDO |
---|
| 567 | ENDIF |
---|
| 568 | ENDIF |
---|
| 569 | ! |
---|
| 570 | !-- Sum-up building volume from all subdomains |
---|
| 571 | #if defined( __parallel ) |
---|
| 572 | CALL MPI_ALLREDUCE( volume_l, volume, SIZE(volume), MPI_REAL, MPI_SUM, & |
---|
| 573 | comm2d, ierr ) |
---|
| 574 | #else |
---|
| 575 | volume = volume_l |
---|
| 576 | #endif |
---|
| 577 | ! |
---|
| 578 | !-- Save total building volume as well as local fraction on volume on |
---|
| 579 | !-- building data structure. |
---|
| 580 | IF ( ALLOCATED( buildings(nb)%volume ) ) buildings(nb)%volume = volume |
---|
| 581 | ! |
---|
| 582 | !-- Determine fraction of local on total building volume |
---|
| 583 | IF ( buildings(nb)%on_pe ) buildings(nb)%vol_frac = volume_l / volume |
---|
| 584 | |
---|
| 585 | DEALLOCATE( volume ) |
---|
| 586 | DEALLOCATE( volume_l ) |
---|
| 587 | |
---|
| 588 | ENDDO |
---|
| 589 | |
---|
| 590 | ! |
---|
| 591 | !-- Allocate arrays for indoor temperature. |
---|
| 592 | DO nb = 1, num_build |
---|
| 593 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 594 | ALLOCATE( buildings(nb)%t_in(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 595 | ALLOCATE( buildings(nb)%t_in_l(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 596 | buildings(nb)%t_in = 0.0_wp |
---|
| 597 | buildings(nb)%t_in_l = 0.0_wp |
---|
| 598 | ENDIF |
---|
| 599 | ENDDO |
---|
| 600 | ! |
---|
| 601 | !-- Allocate arrays for number of facades per height level. Distinguish between |
---|
| 602 | !-- horizontal and vertical facades. |
---|
| 603 | DO nb = 1, num_build |
---|
| 604 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 605 | ALLOCATE( buildings(nb)%num_facade_h(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 606 | ALLOCATE( buildings(nb)%num_facade_v(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 607 | |
---|
| 608 | buildings(nb)%num_facade_h = 0 |
---|
| 609 | buildings(nb)%num_facade_v = 0 |
---|
| 610 | ENDIF |
---|
| 611 | ENDDO |
---|
| 612 | ! |
---|
| 613 | !-- Determine number of facade elements per building on local subdomain. |
---|
| 614 | !-- Distinguish between horizontal and vertical facade elements. |
---|
| 615 | ! |
---|
| 616 | !-- Horizontal facades |
---|
| 617 | buildings(:)%num_facades_per_building_h_l = 0 |
---|
| 618 | DO m = 1, surf_usm_h%ns |
---|
| 619 | ! |
---|
| 620 | !-- For the current facade element determine corresponding building index. |
---|
| 621 | !-- First, obtain j,j,k indices of the building. Please note the |
---|
| 622 | !-- offset between facade/surface element and building location (for |
---|
| 623 | !-- horizontal surface elements the horizontal offsets are zero). |
---|
| 624 | i = surf_usm_h%i(m) + surf_usm_h%ioff |
---|
| 625 | j = surf_usm_h%j(m) + surf_usm_h%joff |
---|
| 626 | k = surf_usm_h%k(m) + surf_usm_h%koff |
---|
| 627 | ! |
---|
| 628 | !-- Determine building index and check whether building is on PE |
---|
| 629 | nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 ) |
---|
| 630 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 631 | ! |
---|
| 632 | !-- Count number of facade elements at each height level. |
---|
| 633 | buildings(nb)%num_facade_h(k) = buildings(nb)%num_facade_h(k) + 1 |
---|
| 634 | ! |
---|
| 635 | !-- Moreover, sum up number of local facade elements per building. |
---|
| 636 | buildings(nb)%num_facades_per_building_h_l = & |
---|
| 637 | buildings(nb)%num_facades_per_building_h_l + 1 |
---|
| 638 | ENDIF |
---|
| 639 | ENDDO |
---|
| 640 | ! |
---|
| 641 | !-- Vertical facades |
---|
| 642 | buildings(:)%num_facades_per_building_v_l = 0 |
---|
| 643 | DO l = 0, 3 |
---|
| 644 | DO m = 1, surf_usm_v(l)%ns |
---|
| 645 | ! |
---|
| 646 | !-- For the current facade element determine corresponding building index. |
---|
| 647 | !-- First, obtain j,j,k indices of the building. Please note the |
---|
| 648 | !-- offset between facade/surface element and building location (for |
---|
| 649 | !-- vertical surface elements the vertical offsets are zero). |
---|
| 650 | i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff |
---|
| 651 | j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff |
---|
| 652 | k = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff |
---|
| 653 | |
---|
| 654 | nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), & |
---|
| 655 | DIM = 1 ) |
---|
| 656 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 657 | buildings(nb)%num_facade_v(k) = buildings(nb)%num_facade_v(k) + 1 |
---|
| 658 | buildings(nb)%num_facades_per_building_v_l = & |
---|
| 659 | buildings(nb)%num_facades_per_building_v_l + 1 |
---|
| 660 | ENDIF |
---|
| 661 | ENDDO |
---|
| 662 | ENDDO |
---|
| 663 | |
---|
| 664 | ! |
---|
| 665 | !-- Determine total number of facade elements per building and assign number to |
---|
| 666 | !-- building data type. |
---|
| 667 | DO nb = 1, num_build |
---|
| 668 | ! |
---|
| 669 | !-- Allocate dummy array used for summing-up facade elements. |
---|
| 670 | !-- Please note, dummy arguments are necessary as building-date type |
---|
| 671 | !-- arrays are not necessarily allocated on all PEs. |
---|
| 672 | ALLOCATE( num_facades_h(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 673 | ALLOCATE( num_facades_v(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 674 | ALLOCATE( receive_dum_h(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 675 | ALLOCATE( receive_dum_v(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 676 | num_facades_h = 0 |
---|
| 677 | num_facades_v = 0 |
---|
| 678 | receive_dum_h = 0 |
---|
| 679 | receive_dum_v = 0 |
---|
| 680 | |
---|
| 681 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 682 | num_facades_h = buildings(nb)%num_facade_h |
---|
| 683 | num_facades_v = buildings(nb)%num_facade_v |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
| 686 | #if defined( __parallel ) |
---|
| 687 | CALL MPI_ALLREDUCE( num_facades_h, & |
---|
| 688 | receive_dum_h, & |
---|
| 689 | buildings(nb)%kb_max - buildings(nb)%kb_min + 1, & |
---|
| 690 | MPI_INTEGER, & |
---|
| 691 | MPI_SUM, & |
---|
| 692 | comm2d, & |
---|
| 693 | ierr ) |
---|
| 694 | |
---|
| 695 | CALL MPI_ALLREDUCE( num_facades_v, & |
---|
| 696 | receive_dum_v, & |
---|
| 697 | buildings(nb)%kb_max - buildings(nb)%kb_min + 1, & |
---|
| 698 | MPI_INTEGER, & |
---|
| 699 | MPI_SUM, & |
---|
| 700 | comm2d, & |
---|
| 701 | ierr ) |
---|
| 702 | IF ( ALLOCATED( buildings(nb)%num_facade_h ) ) & !FK: Was wenn not allocated? --> s.o. |
---|
| 703 | buildings(nb)%num_facade_h = receive_dum_h |
---|
| 704 | IF ( ALLOCATED( buildings(nb)%num_facade_v ) ) & |
---|
| 705 | buildings(nb)%num_facade_v = receive_dum_v |
---|
| 706 | #else |
---|
| 707 | buildings(nb)%num_facade_h = num_facades_h |
---|
| 708 | buildings(nb)%num_facade_v = num_facades_v |
---|
| 709 | #endif |
---|
| 710 | ! |
---|
| 711 | !-- Deallocate dummy arrays |
---|
| 712 | DEALLOCATE( num_facades_h ) |
---|
| 713 | DEALLOCATE( num_facades_v ) |
---|
| 714 | DEALLOCATE( receive_dum_h ) |
---|
| 715 | DEALLOCATE( receive_dum_v ) |
---|
| 716 | ! |
---|
| 717 | !-- Allocate index arrays which link facade elements with surface-data type. |
---|
| 718 | !-- Please note, no height levels are considered here (information is stored |
---|
| 719 | !-- in surface-data type itself). |
---|
| 720 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 721 | ! |
---|
| 722 | !-- Determine number of facade elements per building. |
---|
| 723 | buildings(nb)%num_facades_per_building_h = SUM( buildings(nb)%num_facade_h ) |
---|
| 724 | buildings(nb)%num_facades_per_building_v = SUM( buildings(nb)%num_facade_v ) |
---|
| 725 | ! |
---|
| 726 | !-- Allocate arrays which link the building with the horizontal and vertical |
---|
| 727 | !-- urban-type surfaces. Please note, linking arrays are allocated over all |
---|
| 728 | !-- facade elements, which is required in case a building is located at the |
---|
| 729 | !-- subdomain boundaries, where the building and the corresponding surface |
---|
| 730 | !-- elements are located on different subdomains. |
---|
| 731 | ALLOCATE( buildings(nb)%m_h(1:buildings(nb)%num_facades_per_building_h_l) ) |
---|
| 732 | |
---|
| 733 | ALLOCATE( buildings(nb)%l_v(1:buildings(nb)%num_facades_per_building_v_l) ) |
---|
| 734 | ALLOCATE( buildings(nb)%m_v(1:buildings(nb)%num_facades_per_building_v_l) ) |
---|
| 735 | ENDIF |
---|
| 736 | ! |
---|
| 737 | !-- Determine volume per facade element (vpf) |
---|
| 738 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 739 | ALLOCATE( buildings(nb)%vpf(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 740 | |
---|
| 741 | DO k = buildings(nb)%kb_min, buildings(nb)%kb_max |
---|
| 742 | buildings(nb)%vpf(k) = buildings(nb)%volume(k) / & |
---|
| 743 | ( buildings(nb)%num_facade_h(k) + & |
---|
| 744 | buildings(nb)%num_facade_v(k) ) |
---|
| 745 | ENDDO |
---|
| 746 | ENDIF |
---|
| 747 | ENDDO |
---|
| 748 | ! |
---|
| 749 | !-- Link facade elements with surface data type. |
---|
| 750 | !-- Allocate array for counting. |
---|
| 751 | ALLOCATE( n_fa(1:num_build) ) |
---|
| 752 | n_fa = 1 |
---|
| 753 | |
---|
| 754 | DO m = 1, surf_usm_h%ns |
---|
| 755 | i = surf_usm_h%i(m) + surf_usm_h%ioff |
---|
| 756 | j = surf_usm_h%j(m) + surf_usm_h%joff |
---|
| 757 | |
---|
| 758 | nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 ) |
---|
| 759 | |
---|
| 760 | buildings(nb)%m_h(n_fa(nb)) = m |
---|
| 761 | n_fa(nb) = n_fa(nb) + 1 |
---|
| 762 | ENDDO |
---|
| 763 | |
---|
| 764 | n_fa = 1 |
---|
| 765 | DO l = 0, 3 |
---|
| 766 | DO m = 1, surf_usm_v(l)%ns |
---|
| 767 | i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff |
---|
| 768 | j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff |
---|
| 769 | |
---|
| 770 | nb = MINLOC( ABS( buildings(:)%id - building_id_f%var(j,i) ), DIM = 1 ) |
---|
| 771 | |
---|
| 772 | buildings(nb)%l_v(n_fa(nb)) = l |
---|
| 773 | buildings(nb)%m_v(n_fa(nb)) = m |
---|
| 774 | n_fa(nb) = n_fa(nb) + 1 |
---|
| 775 | ENDDO |
---|
| 776 | ENDDO |
---|
| 777 | DEALLOCATE( n_fa ) |
---|
| 778 | |
---|
| 779 | ! |
---|
| 780 | !-- Building parameters by type of building. Assigned in urban_surface_mod.f90 |
---|
| 781 | |
---|
| 782 | lambda_layer3 = building_pars(63, building_type) |
---|
| 783 | s_layer3 = building_pars(57, building_type) |
---|
| 784 | f_c_win = building_pars(119, building_type) |
---|
| 785 | g_value_win = building_pars(120, building_type) |
---|
| 786 | u_value_win = building_pars(121, building_type) |
---|
| 787 | air_change_low = building_pars(122, building_type) |
---|
| 788 | air_change_high = building_pars(123, building_type) |
---|
| 789 | eta_ve = building_pars(124, building_type) |
---|
| 790 | factor_a = building_pars(125, building_type) |
---|
| 791 | factor_c = building_pars(126, building_type) |
---|
| 792 | lambda_at = building_pars(127, building_type) |
---|
| 793 | theta_int_h_set = building_pars(118, building_type) |
---|
| 794 | theta_int_c_set = building_pars(117, building_type) |
---|
| 795 | phi_h_max = building_pars(128, building_type) |
---|
| 796 | phi_c_max = building_pars(129, building_type) |
---|
| 797 | qint_high = building_pars(130, building_type) |
---|
| 798 | qint_low = building_pars(131, building_type) |
---|
| 799 | height_storey = building_pars(132, building_type) |
---|
| 800 | height_cei_con = building_pars(133, building_type) |
---|
| 801 | |
---|
| 802 | ! |
---|
| 803 | !-- Setting of initial room temperature [K] |
---|
| 804 | !-- (after first loop, use theta_m_t as theta_m_t_prev) |
---|
| 805 | theta_m_t_prev = initial_indoor_temperature |
---|
| 806 | |
---|
| 807 | |
---|
| 808 | END SUBROUTINE im_init |
---|
| 809 | |
---|
| 810 | |
---|
| 811 | !------------------------------------------------------------------------------! |
---|
| 812 | ! Description: |
---|
| 813 | ! ------------ |
---|
| 814 | !> Main part of the indoor model. |
---|
| 815 | !> Calculation of .... (kanani: Please describe) |
---|
| 816 | !------------------------------------------------------------------------------! |
---|
| 817 | SUBROUTINE im_main_heatcool |
---|
| 818 | |
---|
| 819 | USE arrays_3d, & |
---|
| 820 | ONLY: ddzw, dzw |
---|
| 821 | |
---|
| 822 | USE basic_constants_and_equations_mod, & |
---|
| 823 | ONLY: c_p |
---|
| 824 | |
---|
| 825 | USE control_parameters, & |
---|
| 826 | ONLY: rho_surface |
---|
| 827 | |
---|
| 828 | USE date_and_time_mod, & |
---|
| 829 | ONLY: time_utc |
---|
| 830 | |
---|
| 831 | USE grid_variables, & |
---|
| 832 | ONLY: dx, dy |
---|
| 833 | |
---|
| 834 | USE pegrid |
---|
| 835 | |
---|
| 836 | USE surface_mod, & |
---|
| 837 | ONLY: ind_veg_wall, ind_wat_win, surf_usm_h, surf_usm_v |
---|
| 838 | |
---|
| 839 | USE urban_surface_mod, & |
---|
| 840 | ONLY: nzt_wall, t_surf_10cm_h, t_surf_10cm_v, t_wall_h, t_wall_v, & |
---|
| 841 | t_window_h, t_window_v, building_type |
---|
| 842 | |
---|
| 843 | |
---|
| 844 | IMPLICIT NONE |
---|
| 845 | |
---|
| 846 | INTEGER(iwp) :: i !< index of facade-adjacent atmosphere grid point in x-direction |
---|
| 847 | INTEGER(iwp) :: j !< index of facade-adjacent atmosphere grid point in y-direction |
---|
| 848 | INTEGER(iwp) :: k !< index of facade-adjacent atmosphere grid point in z-direction |
---|
| 849 | INTEGER(iwp) :: kk !< vertical index of indoor grid point adjacent to facade |
---|
| 850 | INTEGER(iwp) :: l !< running index for surface-element orientation |
---|
| 851 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 852 | INTEGER(iwp) :: nb !< running index for buildings |
---|
| 853 | INTEGER(iwp) :: fa !< running index for facade elements of each building |
---|
| 854 | |
---|
| 855 | REAL(wp) :: indoor_wall_window_temperature !< weighted temperature of innermost wall/window layer |
---|
| 856 | REAL(wp) :: near_facade_temperature !< outside air temperature 10cm away from facade |
---|
| 857 | REAL(wp) :: time_utc_hour !< time of day (hour UTC) |
---|
| 858 | |
---|
| 859 | REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_l_send !< dummy send buffer used for summing-up indoor temperature per kk-level |
---|
| 860 | REAL(wp), DIMENSION(:), ALLOCATABLE :: t_in_recv !< dummy recv buffer used for summing-up indoor temperature per kk-level |
---|
| 861 | |
---|
| 862 | ! |
---|
| 863 | !-- Daily schedule, here for 08:00-18:00 = 1, other hours = 0. |
---|
| 864 | !-- time_utc_hour is calculated here based on time_utc [s] from |
---|
| 865 | !-- date_and_time_mod. |
---|
| 866 | !-- (kanani: Does this schedule not depend on if it's an office or resident |
---|
| 867 | !-- building?) |
---|
| 868 | time_utc_hour = time_utc / 3600.0_wp |
---|
| 869 | |
---|
| 870 | ! |
---|
| 871 | !-- Allocation of the load profiles to the building types |
---|
| 872 | !-- Residental Building, panel WBS 70 |
---|
| 873 | if (building_type == 1 .OR. & |
---|
| 874 | building_type == 2 .OR. & |
---|
| 875 | building_type == 3 .OR. & |
---|
| 876 | building_type == 10 .OR. & |
---|
| 877 | building_type == 11 .OR. & |
---|
| 878 | building_type == 12) then |
---|
| 879 | ventilation_int_loads = 1 |
---|
| 880 | !-- Office, building with large windows |
---|
| 881 | else if (building_type == 4 .OR. & |
---|
| 882 | building_type == 5 .OR. & |
---|
| 883 | building_type == 6 .OR. & |
---|
| 884 | building_type == 7 .OR. & |
---|
| 885 | building_type == 8 .OR. & |
---|
| 886 | building_type == 9) then |
---|
| 887 | ventilation_int_loads = 2 |
---|
| 888 | !-- Industry, hospitals |
---|
| 889 | else if (building_type == 13 .OR. & |
---|
| 890 | building_type == 14 .OR. & |
---|
| 891 | building_type == 15 .OR. & |
---|
| 892 | building_type == 16 .OR. & |
---|
| 893 | building_type == 17 .OR. & |
---|
| 894 | building_type == 18) then |
---|
| 895 | ventilation_int_loads = 3 |
---|
| 896 | |
---|
| 897 | end if |
---|
| 898 | |
---|
| 899 | !-- Residental Building, panel WBS 70 |
---|
| 900 | |
---|
| 901 | if (ventilation_int_loads == 1) THEN |
---|
| 902 | if ( time_utc_hour >= 6.0_wp .AND. time_utc_hour <= 8.0_wp ) THEN |
---|
| 903 | schedule_d = 1 |
---|
| 904 | else if ( time_utc_hour >= 18.0_wp .AND. time_utc_hour <= 23.0_wp ) THEN |
---|
| 905 | schedule_d = 1 |
---|
| 906 | else |
---|
| 907 | schedule_d = 0 |
---|
| 908 | end if |
---|
| 909 | end if |
---|
| 910 | |
---|
| 911 | !-- Office, building with large windows |
---|
| 912 | |
---|
| 913 | if (ventilation_int_loads == 2) THEN |
---|
| 914 | if ( time_utc_hour >= 8.0_wp .AND. time_utc_hour <= 18.0_wp ) THEN |
---|
| 915 | schedule_d = 1 |
---|
| 916 | else |
---|
| 917 | schedule_d = 0 |
---|
| 918 | end if |
---|
| 919 | end if |
---|
| 920 | |
---|
| 921 | !-- Industry, hospitals |
---|
| 922 | if (ventilation_int_loads == 3) THEN |
---|
| 923 | if ( time_utc_hour >= 6.0_wp .AND. time_utc_hour <= 22.0_wp ) THEN |
---|
| 924 | schedule_d = 1 |
---|
| 925 | else |
---|
| 926 | schedule_d = 0 |
---|
| 927 | end if |
---|
| 928 | end if |
---|
| 929 | |
---|
| 930 | |
---|
| 931 | ! |
---|
| 932 | !-- Following calculations must be done for each facade element. |
---|
| 933 | DO nb = 1, num_build |
---|
| 934 | ! |
---|
| 935 | !-- First, check whether building is present on local subdomain. |
---|
| 936 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 937 | ! |
---|
| 938 | !-- Initialize/reset indoor temperature |
---|
| 939 | buildings(nb)%t_in = 0.0_wp |
---|
| 940 | buildings(nb)%t_in_l = 0.0_wp |
---|
| 941 | ! |
---|
| 942 | !-- Horizontal surfaces |
---|
| 943 | DO fa = 1, buildings(nb)%num_facades_per_building_h_l |
---|
| 944 | ! |
---|
| 945 | !-- Determine index where corresponding surface-type information |
---|
| 946 | !-- is stored. |
---|
| 947 | m = buildings(nb)%m_h(fa) |
---|
| 948 | ! |
---|
| 949 | !-- Determine building height level index. |
---|
| 950 | kk = surf_usm_h%k(m) + surf_usm_h%koff |
---|
| 951 | ! |
---|
| 952 | !-- Building geometries --> not time-dependent |
---|
| 953 | facade_element_area = dx * dy !< [m2] surface area per facade element |
---|
| 954 | floor_area_per_facade = buildings(nb)%vpf(kk) * ddzw(kk) !< [m2] net floor area per facade element |
---|
| 955 | indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3] indoor air volume per facade element |
---|
| 956 | window_area_per_facade = surf_usm_h%frac(ind_wat_win,m) * facade_element_area !< [m2] window area per facade element |
---|
| 957 | eff_mass_area = factor_a * floor_area_per_facade !< [m2] standard values according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2) |
---|
| 958 | c_m = factor_c * floor_area_per_facade !< [J/K] standard values according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2) |
---|
| 959 | total_area = lambda_at * floor_area_per_facade !< [m2] area of all surfaces pointing to zone Eq. (9) according to section 7.2.2.2 |
---|
| 960 | |
---|
| 961 | !-- Calculation of heat transfer coefficient for transmission --> not time-dependent |
---|
| 962 | h_tr_w = window_area_per_facade * u_value_win !< [W/K] only for windows |
---|
| 963 | h_tr_is = total_area * h_is !< [W/K] with h_is = 3.45 W / (m2 K) between surface and air, Eq. (9) |
---|
| 964 | h_tr_ms = eff_mass_area * h_ms !< [W/K] with h_ms = 9.10 W / (m2 K) between component and surface, Eq. (64) |
---|
| 965 | h_tr_op = 1 / ( 1 / ( ( facade_element_area - window_area_per_facade ) & |
---|
| 966 | * lambda_layer3 / s_layer3 * 0.5 ) + 1 / h_tr_ms ) |
---|
| 967 | h_tr_em = 1 / ( 1 / h_tr_op - 1 / h_tr_ms ) !< [W/K] Eq. (63), Section 12.2.2 |
---|
| 968 | ! |
---|
| 969 | !-- internal air loads dependent on the occupacy of the room |
---|
| 970 | !-- basical internal heat gains (qint_low) with additional internal heat gains by occupancy (qint_high) (0,5*phi_int) |
---|
| 971 | phi_ia = 0.5 * ( ( qint_high * schedule_d + qint_low ) & |
---|
| 972 | * floor_area_per_facade ) !< [W] Eq. (C.1) |
---|
| 973 | ! |
---|
| 974 | !-- Airflow dependent on the occupacy of the room |
---|
| 975 | !-- basical airflow (air_change_low) with additional airflow gains by occupancy (air_change_high) |
---|
| 976 | air_change = ( air_change_high * schedule_d + air_change_low ) !< [1/h]? |
---|
| 977 | ! |
---|
| 978 | !-- Heat transfer of ventilation |
---|
| 979 | !-- not less than 0.01 W/K to provide division by 0 in further calculations |
---|
| 980 | !-- with heat capacity of air 0.33 Wh/m2K |
---|
| 981 | h_ve = MAX( 0.01 , ( air_change * indoor_volume_per_facade * & |
---|
| 982 | 0.33 * (1 - eta_ve ) ) ) !< [W/K] from ISO 13789 Eq.(10) |
---|
| 983 | |
---|
| 984 | !-- Heat transfer coefficient auxiliary variables |
---|
| 985 | h_tr_1 = 1 / ( ( 1 / h_ve ) + ( 1 / h_tr_is ) ) !< [W/K] Eq. (C.6) |
---|
| 986 | h_tr_2 = h_tr_1 + h_tr_w !< [W/K] Eq. (C.7) |
---|
| 987 | h_tr_3 = 1 / ( ( 1 / h_tr_2 ) + ( 1 / h_tr_ms ) ) !< [W/K] Eq. (C.8) |
---|
| 988 | ! |
---|
| 989 | !-- Net short-wave radiation through window area (was i_global) |
---|
| 990 | net_sw_in = surf_usm_h%rad_sw_in(m) - surf_usm_h%rad_sw_out(m) |
---|
| 991 | ! |
---|
| 992 | !-- Quantities needed for im_calc_temperatures |
---|
| 993 | i = surf_usm_h%i(m) |
---|
| 994 | j = surf_usm_h%j(m) |
---|
| 995 | k = surf_usm_h%k(m) |
---|
| 996 | near_facade_temperature = t_surf_10cm_h(m) |
---|
| 997 | indoor_wall_window_temperature = & |
---|
| 998 | surf_usm_h%frac(ind_veg_wall,m) * t_wall_h(nzt_wall,m) & |
---|
| 999 | + surf_usm_h%frac(ind_wat_win,m) * t_window_h(nzt_wall,m) |
---|
| 1000 | ! |
---|
| 1001 | !-- Solar thermal gains. If net_sw_in larger than sun-protection |
---|
| 1002 | !-- threshold parameter (params_solar_protection), sun protection will |
---|
| 1003 | !-- be activated |
---|
| 1004 | IF ( net_sw_in <= params_solar_protection ) THEN |
---|
| 1005 | solar_protection_off = 1 |
---|
| 1006 | solar_protection_on = 0 |
---|
| 1007 | ELSE |
---|
| 1008 | solar_protection_off = 0 |
---|
| 1009 | solar_protection_on = 1 |
---|
| 1010 | ENDIF |
---|
| 1011 | ! |
---|
| 1012 | !-- Calculation of total heat gains from net_sw_in through windows [W] in respect on automatic sun protection |
---|
| 1013 | !-- DIN 4108 - 2 chap.8 |
---|
| 1014 | phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off & |
---|
| 1015 | + window_area_per_facade * net_sw_in * f_c_win * solar_protection_on ) & |
---|
| 1016 | * g_value_win * ( 1 - params_f_f ) * params_f_w !< [W] |
---|
| 1017 | ! |
---|
| 1018 | !-- Calculation of the mass specific thermal load for internal and external heatsources of the inner node |
---|
| 1019 | phi_m = (eff_mass_area / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with phi_ia=0,5*phi_int |
---|
| 1020 | ! |
---|
| 1021 | !-- Calculation mass specific thermal load implied non thermal mass |
---|
| 1022 | phi_st = ( 1 - ( eff_mass_area / total_area ) - ( h_tr_w / ( 9.1 * total_area ) ) ) & |
---|
| 1023 | * ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with phi_ia=0,5*phi_int |
---|
| 1024 | ! |
---|
| 1025 | !-- Calculations for deriving indoor temperature and heat flux into the wall |
---|
| 1026 | !-- Step 1: Indoor temperature without heating and cooling |
---|
| 1027 | !-- section C.4.1 Picture C.2 zone 3) |
---|
| 1028 | phi_hc_nd = 0 |
---|
| 1029 | |
---|
| 1030 | CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, & |
---|
| 1031 | near_facade_temperature, phi_hc_nd ) |
---|
| 1032 | ! |
---|
| 1033 | !-- If air temperature between border temperatures of heating and cooling, assign output variable, then ready |
---|
| 1034 | IF ( theta_int_h_set <= theta_air .AND. theta_air <= theta_int_c_set ) THEN |
---|
| 1035 | phi_hc_nd_ac = 0 |
---|
| 1036 | phi_hc_nd = phi_hc_nd_ac |
---|
| 1037 | theta_air_ac = theta_air |
---|
| 1038 | ! |
---|
| 1039 | !-- Step 2: Else, apply 10 W/m² heating/cooling power and calculate indoor temperature |
---|
| 1040 | !-- again. |
---|
| 1041 | ELSE |
---|
| 1042 | ! |
---|
| 1043 | !-- Temperature not correct, calculation method according to section C4.2 |
---|
| 1044 | theta_air_0 = theta_air !< Note temperature without heating/cooling |
---|
| 1045 | |
---|
| 1046 | !-- Heating or cooling? |
---|
| 1047 | IF ( theta_air > theta_int_c_set ) THEN |
---|
| 1048 | theta_air_set = theta_int_c_set |
---|
| 1049 | ELSE |
---|
| 1050 | theta_air_set = theta_int_h_set |
---|
| 1051 | ENDIF |
---|
| 1052 | |
---|
| 1053 | !-- Calculate the temperature with phi_hc_nd_10 |
---|
| 1054 | phi_hc_nd_10 = 10.0_wp * floor_area_per_facade |
---|
| 1055 | phi_hc_nd = phi_hc_nd_10 |
---|
| 1056 | |
---|
| 1057 | CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, & |
---|
| 1058 | near_facade_temperature, phi_hc_nd ) |
---|
| 1059 | |
---|
| 1060 | theta_air_10 = theta_air !< Note the temperature with 10 W/m2 of heating |
---|
| 1061 | ! |
---|
| 1062 | |
---|
| 1063 | phi_hc_nd_un = phi_hc_nd_10 * (theta_air_set - theta_air_0) & |
---|
| 1064 | / (theta_air_10 - theta_air_0) !< Eq. (C.13) |
---|
| 1065 | |
---|
| 1066 | |
---|
| 1067 | |
---|
| 1068 | !-- Step 3: With temperature ratio to determine the heating or cooling capacity |
---|
| 1069 | !-- If necessary, limit the power to maximum power |
---|
| 1070 | !-- section C.4.1 Picture C.2 zone 2) and 4) |
---|
| 1071 | IF ( phi_c_max < phi_hc_nd_un .AND. phi_hc_nd_un < phi_h_max ) THEN |
---|
| 1072 | phi_hc_nd_ac = phi_hc_nd_un |
---|
| 1073 | phi_hc_nd = phi_hc_nd_un |
---|
| 1074 | ELSE |
---|
| 1075 | !-- Step 4: Inner temperature with maximum heating (phi_hc_nd_un positive) or cooling (phi_hc_nd_un negative) |
---|
| 1076 | !-- section C.4.1 Picture C.2 zone 1) and 5) |
---|
| 1077 | IF ( phi_hc_nd_un > 0 ) THEN |
---|
| 1078 | phi_hc_nd_ac = phi_h_max !< Limit heating |
---|
| 1079 | ELSE |
---|
| 1080 | phi_hc_nd_ac = phi_c_max !< Limit cooling |
---|
| 1081 | ENDIF |
---|
| 1082 | ENDIF |
---|
| 1083 | |
---|
| 1084 | phi_hc_nd = phi_hc_nd_ac |
---|
| 1085 | ! |
---|
| 1086 | !-- Calculate the temperature with phi_hc_nd_ac (new) |
---|
| 1087 | CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, & |
---|
| 1088 | near_facade_temperature, phi_hc_nd ) |
---|
| 1089 | |
---|
| 1090 | theta_air_ac = theta_air |
---|
| 1091 | |
---|
| 1092 | ENDIF |
---|
| 1093 | ! |
---|
| 1094 | !-- Update theta_m_t_prev |
---|
| 1095 | theta_m_t_prev = theta_m_t |
---|
| 1096 | ! |
---|
| 1097 | !-- Calculate the operating temperature with weighted mean temperature of air and mean solar temperature |
---|
| 1098 | !-- Will be used for thermal comfort calculations |
---|
| 1099 | theta_op = 0.3 * theta_air_ac + 0.7 * theta_s !< [°C] operative Temperature Eq. (C.12) |
---|
| 1100 | ! |
---|
| 1101 | !-- Heat flux into the wall. Value needed in urban_surface_mod to |
---|
| 1102 | !-- calculate heat transfer through wall layers towards the facade |
---|
| 1103 | !-- (use c_p * rho_surface to convert [W/m2] into [K m/s]) |
---|
| 1104 | q_wall_win = h_tr_ms * ( theta_s - theta_m ) & |
---|
| 1105 | / ( facade_element_area & |
---|
| 1106 | - window_area_per_facade ) |
---|
| 1107 | ! |
---|
| 1108 | !-- Transfer q_wall_win back to USM (innermost wall/window layer) |
---|
| 1109 | surf_usm_h%iwghf_eb(m) = q_wall_win |
---|
| 1110 | surf_usm_h%iwghf_eb_window(m) = q_wall_win |
---|
| 1111 | ! |
---|
| 1112 | !-- Sum up operational indoor temperature per kk-level. Further below, |
---|
| 1113 | !-- this temperature is reduced by MPI to one temperature per kk-level |
---|
| 1114 | !-- and building (processor overlapping) |
---|
| 1115 | buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op |
---|
| 1116 | ! |
---|
| 1117 | !-- Calculation of waste heat |
---|
| 1118 | !-- Anthropogenic heat output |
---|
| 1119 | IF ( phi_hc_nd_ac > 0 ) THEN |
---|
| 1120 | heating_on = 1 |
---|
| 1121 | cooling_on = 0 |
---|
| 1122 | ELSE |
---|
| 1123 | heating_on = 0 |
---|
| 1124 | cooling_on = 1 |
---|
| 1125 | ENDIF |
---|
| 1126 | |
---|
| 1127 | q_waste_heat = (phi_hc_nd * (params_waste_heat_h * heating_on + params_waste_heat_c * cooling_on)) !< [W/m2] anthropogenic heat output |
---|
| 1128 | ! surf_usm_h%shf(m)=q_waste_heat |
---|
| 1129 | |
---|
| 1130 | ENDDO !< Horizontal surfaces loop |
---|
| 1131 | ! |
---|
| 1132 | !-- Vertical surfaces |
---|
| 1133 | DO fa = 1, buildings(nb)%num_facades_per_building_v_l |
---|
| 1134 | ! |
---|
| 1135 | !-- Determine indices where corresponding surface-type information |
---|
| 1136 | !-- is stored. |
---|
| 1137 | l = buildings(nb)%l_v(fa) |
---|
| 1138 | m = buildings(nb)%m_v(fa) |
---|
| 1139 | ! |
---|
| 1140 | !-- Determine building height level index. |
---|
| 1141 | kk = surf_usm_v(l)%k(m) + surf_usm_v(l)%koff |
---|
| 1142 | ! |
---|
| 1143 | !-- Building geometries --> not time-dependent |
---|
| 1144 | IF ( l == 0 .OR. l == 1 ) facade_element_area = dx * dzw(kk) !< [m2] surface area per facade element |
---|
| 1145 | IF ( l == 2 .OR. l == 3 ) facade_element_area = dy * dzw(kk) !< [m2] surface area per facade element |
---|
| 1146 | floor_area_per_facade = buildings(nb)%vpf(kk) * ddzw(kk) !< [m2] net floor area per facade element |
---|
| 1147 | indoor_volume_per_facade = buildings(nb)%vpf(kk) !< [m3] indoor air volume per facade element |
---|
| 1148 | window_area_per_facade = surf_usm_v(l)%frac(ind_wat_win,m) * facade_element_area !< [m2] window area per facade element |
---|
| 1149 | eff_mass_area = factor_a * floor_area_per_facade !< [m2] standard values according to Table 12 section 12.3.1.2 (calculate over Eq. (65) according to section 12.3.1.2) |
---|
| 1150 | c_m = factor_c * floor_area_per_facade !< [J/K] standard values according to table 12 section 12.3.1.2 (calculate over Eq. (66) according to section 12.3.1.2) |
---|
| 1151 | total_area = lambda_at * floor_area_per_facade !< [m2] area of all surfaces pointing to zone Eq. (9) according to section 7.2.2.2 |
---|
| 1152 | ! |
---|
| 1153 | !-- Calculation of heat transfer coefficient for transmission --> not time-dependent |
---|
| 1154 | h_tr_w = window_area_per_facade * u_value_win !< [W/K] only for windows |
---|
| 1155 | h_tr_is = total_area * h_is !< [W/K] with h_is = 3.45 W / (m2 K) between surface and air, Eq. (9) |
---|
| 1156 | h_tr_ms = eff_mass_area * h_ms !< [W/K] with h_ms = 9.10 W / (m2 K) between component and surface, Eq. (64) |
---|
| 1157 | h_tr_op = 1 / ( 1 / ( ( facade_element_area - window_area_per_facade ) & |
---|
| 1158 | * lambda_layer3 / s_layer3 * 0.5 ) + 1 / h_tr_ms ) |
---|
| 1159 | h_tr_em = 1 / ( 1 / h_tr_op - 1 / h_tr_ms ) !< [W/K] Eq. (63), Section 12.2.2 |
---|
| 1160 | ! |
---|
| 1161 | !-- internal air loads dependent on the occupacy of the room |
---|
| 1162 | !-- basical internal heat gains (qint_low) with additional internal heat gains by occupancy (qint_high) (0,5*phi_int) |
---|
| 1163 | phi_ia = 0.5 * ( ( qint_high * schedule_d + qint_low ) & |
---|
| 1164 | * floor_area_per_facade ) !< [W] Eq. (C.1) |
---|
| 1165 | ! |
---|
| 1166 | !-- Airflow dependent on the occupacy of the room |
---|
| 1167 | !-- basical airflow (air_change_low) with additional airflow gains by occupancy (air_change_high) |
---|
| 1168 | air_change = ( air_change_high * schedule_d + air_change_low ) |
---|
| 1169 | ! |
---|
| 1170 | !-- Heat transfer of ventilation |
---|
| 1171 | !-- not less than 0.01 W/K to provide division by 0 in further calculations |
---|
| 1172 | !-- with heat capacity of air 0.33 Wh/m2K |
---|
| 1173 | h_ve = MAX( 0.01 , ( air_change * indoor_volume_per_facade * & |
---|
| 1174 | 0.33 * (1 - eta_ve ) ) ) !< [W/K] from ISO 13789 Eq.(10) |
---|
| 1175 | |
---|
| 1176 | !-- Heat transfer coefficient auxiliary variables |
---|
| 1177 | h_tr_1 = 1 / ( ( 1 / h_ve ) + ( 1 / h_tr_is ) ) !< [W/K] Eq. (C.6) |
---|
| 1178 | h_tr_2 = h_tr_1 + h_tr_w !< [W/K] Eq. (C.7) |
---|
| 1179 | h_tr_3 = 1 / ( ( 1 / h_tr_2 ) + ( 1 / h_tr_ms ) ) !< [W/K] Eq. (C.8) |
---|
| 1180 | ! |
---|
| 1181 | !-- Net short-wave radiation through window area (was i_global) |
---|
| 1182 | net_sw_in = surf_usm_v(l)%rad_sw_in(m) - surf_usm_v(l)%rad_sw_out(m) |
---|
| 1183 | ! |
---|
| 1184 | !-- Quantities needed for im_calc_temperatures |
---|
| 1185 | i = surf_usm_v(l)%i(m) |
---|
| 1186 | j = surf_usm_v(l)%j(m) |
---|
| 1187 | k = surf_usm_v(l)%k(m) |
---|
| 1188 | near_facade_temperature = t_surf_10cm_v(l)%t(m) |
---|
| 1189 | indoor_wall_window_temperature = & |
---|
| 1190 | surf_usm_v(l)%frac(ind_veg_wall,m) * t_wall_v(l)%t(nzt_wall,m) & |
---|
| 1191 | + surf_usm_v(l)%frac(ind_wat_win,m) * t_window_v(l)%t(nzt_wall,m) |
---|
| 1192 | ! |
---|
| 1193 | !-- Solar thermal gains. If net_sw_in larger than sun-protection |
---|
| 1194 | !-- threshold parameter (params_solar_protection), sun protection will |
---|
| 1195 | !-- be activated |
---|
| 1196 | IF ( net_sw_in <= params_solar_protection ) THEN |
---|
| 1197 | solar_protection_off = 1 |
---|
| 1198 | solar_protection_on = 0 |
---|
| 1199 | ELSE |
---|
| 1200 | solar_protection_off = 0 |
---|
| 1201 | solar_protection_on = 1 |
---|
| 1202 | ENDIF |
---|
| 1203 | ! |
---|
| 1204 | !-- Calculation of total heat gains from net_sw_in through windows [W] in respect on automatic sun protection |
---|
| 1205 | !-- DIN 4108 - 2 chap.8 |
---|
| 1206 | phi_sol = ( window_area_per_facade * net_sw_in * solar_protection_off & |
---|
| 1207 | + window_area_per_facade * net_sw_in * f_c_win * solar_protection_on ) & |
---|
| 1208 | * g_value_win * ( 1 - params_f_f ) * params_f_w |
---|
| 1209 | ! |
---|
| 1210 | !-- Calculation of the mass specific thermal load for internal and external heatsources |
---|
| 1211 | phi_m = (eff_mass_area / total_area) * ( phi_ia + phi_sol ) !< [W] Eq. (C.2) with phi_ia=0,5*phi_int |
---|
| 1212 | ! |
---|
| 1213 | !-- Calculation mass specific thermal load implied non thermal mass |
---|
| 1214 | phi_st = ( 1 - ( eff_mass_area / total_area ) - ( h_tr_w / ( 9.1 * total_area ) ) ) & |
---|
| 1215 | * ( phi_ia + phi_sol ) !< [W] Eq. (C.3) with phi_ia=0,5*phi_int |
---|
| 1216 | ! |
---|
| 1217 | !-- Calculations for deriving indoor temperature and heat flux into the wall |
---|
| 1218 | !-- Step 1: Indoor temperature without heating and cooling |
---|
| 1219 | !-- section C.4.1 Picture C.2 zone 3) |
---|
| 1220 | phi_hc_nd = 0 |
---|
| 1221 | |
---|
| 1222 | CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, & |
---|
| 1223 | near_facade_temperature, phi_hc_nd ) |
---|
| 1224 | ! |
---|
| 1225 | !-- If air temperature between border temperatures of heating and cooling, assign output variable, then ready |
---|
| 1226 | IF ( theta_int_h_set <= theta_air .AND. theta_air <= theta_int_c_set ) THEN |
---|
| 1227 | phi_hc_nd_ac = 0 |
---|
| 1228 | phi_hc_nd = phi_hc_nd_ac |
---|
| 1229 | theta_air_ac = theta_air |
---|
| 1230 | ! |
---|
| 1231 | !-- Step 2: Else, apply 10 W/m² heating/cooling power and calculate indoor temperature |
---|
| 1232 | !-- again. |
---|
| 1233 | ELSE |
---|
| 1234 | ! |
---|
| 1235 | !-- Temperature not correct, calculation method according to section C4.2 |
---|
| 1236 | theta_air_0 = theta_air !< Note temperature without heating/cooling |
---|
| 1237 | |
---|
| 1238 | !-- Heating or cooling? |
---|
| 1239 | IF ( theta_air > theta_int_c_set ) THEN |
---|
| 1240 | theta_air_set = theta_int_c_set |
---|
| 1241 | ELSE |
---|
| 1242 | theta_air_set = theta_int_h_set |
---|
| 1243 | ENDIF |
---|
| 1244 | |
---|
| 1245 | !-- Calculate the temperature with phi_hc_nd_10 |
---|
| 1246 | phi_hc_nd_10 = 10.0_wp * floor_area_per_facade |
---|
| 1247 | phi_hc_nd = phi_hc_nd_10 |
---|
| 1248 | |
---|
| 1249 | CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, & |
---|
| 1250 | near_facade_temperature, phi_hc_nd ) |
---|
| 1251 | |
---|
| 1252 | theta_air_10 = theta_air !< Note the temperature with 10 W/m2 of heating |
---|
| 1253 | |
---|
| 1254 | |
---|
| 1255 | phi_hc_nd_un = phi_hc_nd_10 * (theta_air_set - theta_air_0) & |
---|
| 1256 | / (theta_air_10 - theta_air_0) !< Eq. (C.13) |
---|
| 1257 | ! |
---|
| 1258 | !-- Step 3: With temperature ratio to determine the heating or cooling capacity |
---|
| 1259 | !-- If necessary, limit the power to maximum power |
---|
| 1260 | !-- section C.4.1 Picture C.2 zone 2) and 4) |
---|
| 1261 | IF ( phi_c_max < phi_hc_nd_un .AND. phi_hc_nd_un < phi_h_max ) THEN |
---|
| 1262 | phi_hc_nd_ac = phi_hc_nd_un |
---|
| 1263 | phi_hc_nd = phi_hc_nd_un |
---|
| 1264 | ELSE |
---|
| 1265 | !-- Step 4: Inner temperature with maximum heating (phi_hc_nd_un positive) or cooling (phi_hc_nd_un negative) |
---|
| 1266 | !-- section C.4.1 Picture C.2 zone 1) and 5) |
---|
| 1267 | IF ( phi_hc_nd_un > 0 ) THEN |
---|
| 1268 | phi_hc_nd_ac = phi_h_max !< Limit heating |
---|
| 1269 | ELSE |
---|
| 1270 | phi_hc_nd_ac = phi_c_max !< Limit cooling |
---|
| 1271 | ENDIF |
---|
| 1272 | ENDIF |
---|
| 1273 | |
---|
| 1274 | phi_hc_nd = phi_hc_nd_ac |
---|
| 1275 | ! |
---|
| 1276 | !-- Calculate the temperature with phi_hc_nd_ac (new) |
---|
| 1277 | CALL im_calc_temperatures ( i, j, k, indoor_wall_window_temperature, & |
---|
| 1278 | near_facade_temperature, phi_hc_nd ) |
---|
| 1279 | |
---|
| 1280 | theta_air_ac = theta_air |
---|
| 1281 | |
---|
| 1282 | ENDIF |
---|
| 1283 | ! |
---|
| 1284 | !-- Update theta_m_t_prev |
---|
| 1285 | theta_m_t_prev = theta_m_t |
---|
| 1286 | ! |
---|
| 1287 | !-- Calculate the operating temperature with weighted mean of temperature of air and mean |
---|
| 1288 | !-- Will be used for thermal comfort calculations |
---|
| 1289 | theta_op = 0.3 * theta_air_ac + 0.7 * theta_s |
---|
| 1290 | ! |
---|
| 1291 | !-- Heat flux into the wall. Value needed in urban_surface_mod to |
---|
| 1292 | !-- calculate heat transfer through wall layers towards the facade |
---|
| 1293 | q_wall_win = h_tr_ms * ( theta_s - theta_m ) & |
---|
| 1294 | / ( facade_element_area & |
---|
| 1295 | - window_area_per_facade ) |
---|
| 1296 | ! |
---|
| 1297 | !-- Transfer q_wall_win back to USM (innermost wall/window layer) |
---|
| 1298 | surf_usm_v(l)%iwghf_eb(m) = q_wall_win |
---|
| 1299 | surf_usm_v(l)%iwghf_eb_window(m) = q_wall_win |
---|
| 1300 | ! |
---|
| 1301 | !-- Sum up operational indoor temperature per kk-level. Further below, |
---|
| 1302 | !-- this temperature is reduced by MPI to one temperature per kk-level |
---|
| 1303 | !-- and building (processor overlapping) |
---|
| 1304 | buildings(nb)%t_in_l(kk) = buildings(nb)%t_in_l(kk) + theta_op |
---|
| 1305 | |
---|
| 1306 | ! |
---|
| 1307 | !-- Calculation of waste heat |
---|
| 1308 | !-- Anthropogenic heat output |
---|
| 1309 | IF ( phi_hc_nd_ac > 0 ) THEN |
---|
| 1310 | heating_on = 1 |
---|
| 1311 | cooling_on = 0 |
---|
| 1312 | ELSE |
---|
| 1313 | heating_on = 0 |
---|
| 1314 | cooling_on = 1 |
---|
| 1315 | ENDIF |
---|
| 1316 | |
---|
| 1317 | q_waste_heat = (phi_hc_nd * (params_waste_heat_h * heating_on + params_waste_heat_c * cooling_on)) !< [W/m2] , anthropogenic heat output |
---|
| 1318 | ! surf_usm_v(l)%waste_heat(m)=q_waste_heat |
---|
| 1319 | |
---|
| 1320 | ENDDO !< Vertical surfaces loop |
---|
| 1321 | |
---|
| 1322 | ENDIF !< buildings(nb)%on_pe |
---|
| 1323 | ENDDO !< buildings loop |
---|
| 1324 | |
---|
| 1325 | ! |
---|
| 1326 | !-- Determine total number of facade elements per building and assign number to |
---|
| 1327 | !-- building data type. |
---|
| 1328 | DO nb = 1, num_build |
---|
| 1329 | ! |
---|
| 1330 | !-- Allocate dummy array used for summing-up facade elements. |
---|
| 1331 | !-- Please note, dummy arguments are necessary as building-date type |
---|
| 1332 | !-- arrays are not necessarily allocated on all PEs. |
---|
| 1333 | ALLOCATE( t_in_l_send(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 1334 | ALLOCATE( t_in_recv(buildings(nb)%kb_min:buildings(nb)%kb_max) ) |
---|
| 1335 | t_in_l_send = 0.0_wp |
---|
| 1336 | t_in_recv = 0.0_wp |
---|
| 1337 | |
---|
| 1338 | IF ( buildings(nb)%on_pe ) THEN |
---|
| 1339 | t_in_l_send = buildings(nb)%t_in_l |
---|
| 1340 | ENDIF |
---|
| 1341 | |
---|
| 1342 | #if defined( __parallel ) |
---|
| 1343 | CALL MPI_ALLREDUCE( t_in_l_send, & |
---|
| 1344 | t_in_recv, & |
---|
| 1345 | buildings(nb)%kb_max - buildings(nb)%kb_min + 1, & |
---|
| 1346 | MPI_REAL, & |
---|
| 1347 | MPI_SUM, & |
---|
| 1348 | comm2d, & |
---|
| 1349 | ierr ) |
---|
| 1350 | |
---|
| 1351 | IF ( ALLOCATED( buildings(nb)%t_in ) ) & |
---|
| 1352 | buildings(nb)%t_in = t_in_recv |
---|
| 1353 | #else |
---|
| 1354 | buildings(nb)%t_in = buildings(nb)%t_in_l |
---|
| 1355 | #endif |
---|
| 1356 | |
---|
| 1357 | buildings(nb)%t_in = buildings(nb)%t_in / & |
---|
| 1358 | ( buildings(nb)%num_facade_h + & |
---|
| 1359 | buildings(nb)%num_facade_v ) |
---|
| 1360 | ! |
---|
| 1361 | !-- Deallocate dummy arrays |
---|
| 1362 | DEALLOCATE( t_in_l_send ) |
---|
| 1363 | DEALLOCATE( t_in_recv ) |
---|
| 1364 | |
---|
| 1365 | ENDDO |
---|
| 1366 | |
---|
| 1367 | |
---|
| 1368 | END SUBROUTINE im_main_heatcool |
---|
| 1369 | |
---|
| 1370 | !------------------------------------------------------------------------------! |
---|
| 1371 | ! Description: |
---|
| 1372 | ! ------------ |
---|
| 1373 | !> Parin for &indoor_parameters for indoor model |
---|
| 1374 | !------------------------------------------------------------------------------! |
---|
| 1375 | SUBROUTINE im_parin |
---|
| 1376 | |
---|
| 1377 | USE control_parameters, & |
---|
| 1378 | ONLY: indoor_model |
---|
| 1379 | |
---|
| 1380 | IMPLICIT NONE |
---|
| 1381 | |
---|
| 1382 | CHARACTER (LEN=80) :: line !< string containing current line of file PARIN |
---|
| 1383 | |
---|
| 1384 | |
---|
| 1385 | |
---|
| 1386 | NAMELIST /indoor_parameters/ building_type, dt_indoor, & |
---|
| 1387 | initial_indoor_temperature |
---|
| 1388 | |
---|
| 1389 | ! line = ' ' |
---|
| 1390 | |
---|
| 1391 | ! |
---|
| 1392 | !-- Try to find indoor model package |
---|
| 1393 | REWIND ( 11 ) |
---|
| 1394 | line = ' ' |
---|
| 1395 | DO WHILE ( INDEX( line, '&indoor_parameters' ) == 0 ) |
---|
| 1396 | READ ( 11, '(A)', END=10 ) line |
---|
| 1397 | ! PRINT*, 'line: ', line |
---|
| 1398 | ENDDO |
---|
| 1399 | BACKSPACE ( 11 ) |
---|
| 1400 | |
---|
| 1401 | ! |
---|
| 1402 | !-- Read user-defined namelist |
---|
| 1403 | READ ( 11, indoor_parameters ) |
---|
| 1404 | ! |
---|
| 1405 | !-- Set flag that indicates that the indoor model is switched on |
---|
| 1406 | indoor_model = .TRUE. |
---|
| 1407 | |
---|
| 1408 | ! |
---|
| 1409 | !-- Activate spinup (maybe later |
---|
| 1410 | ! IF ( spinup_time > 0.0_wp ) THEN |
---|
| 1411 | ! coupling_start_time = spinup_time |
---|
| 1412 | ! end_time = end_time + spinup_time |
---|
| 1413 | ! IF ( spinup_pt_mean == 9999999.9_wp ) THEN |
---|
| 1414 | ! spinup_pt_mean = pt_surface |
---|
| 1415 | ! ENDIF |
---|
| 1416 | ! spinup = .TRUE. |
---|
| 1417 | ! ENDIF |
---|
| 1418 | |
---|
| 1419 | 10 CONTINUE |
---|
| 1420 | |
---|
| 1421 | END SUBROUTINE im_parin |
---|
| 1422 | |
---|
| 1423 | |
---|
| 1424 | END MODULE indoor_model_mod |
---|