source: palm/trunk/SOURCE/global_min_max.f90 @ 667

Last change on this file since 667 was 667, checked in by suehring, 14 years ago

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

  • Property svn:keywords set to Id
File size: 6.9 KB
Line 
1 SUBROUTINE global_min_max( i1, i2, j1, j2, k1, k2, ar, mode, value, &
2                            value_ijk, value1, value1_ijk )
3
4!------------------------------------------------------------------------------!
5! Current revisions:
6! -----------------
7! Adapting of the index arrays, because MINLOC assumes lowerbound at 1 and not
8! at nbgp.
9!
10! Former revisions:
11! -----------------
12! $Id: global_min_max.f90 667 2010-12-23 12:06:00Z suehring $
13!
14! 622 2010-12-10 08:08:13Z raasch
15! optional barriers included in order to speed up collective operations
16!
17! Feb. 2007
18! RCS Log replace by Id keyword, revision history cleaned up
19!
20! Revision 1.11  2003/04/16 12:56:58  raasch
21! Index values of the extrema are limited to the range 0..nx, 0..ny
22!
23! Revision 1.1  1997/07/24 11:14:03  raasch
24! Initial revision
25!
26!
27! Description:
28! ------------
29! Determine the array minimum/maximum and the corresponding indices.
30!------------------------------------------------------------------------------!
31
32    USE indices
33    USE pegrid
34
35    IMPLICIT NONE
36
37    CHARACTER (LEN=*) ::  mode
38
39    INTEGER           ::  i, i1, i2, id_fmax, id_fmin, j, j1, j2, k, k1, k2, &
40                          fmax_ijk(3), fmax_ijk_l(3), fmin_ijk(3), &
41                          fmin_ijk_l(3), value_ijk(3)
42    INTEGER, OPTIONAL ::  value1_ijk(3)
43    REAL              ::  value, &
44                          ar(i1:i2,j1:j2,k1:k2)
45#if defined( __ibm )
46    REAL (KIND=4)     ::  fmax(2), fmax_l(2), fmin(2), fmin_l(2)  ! on 32bit-
47                          ! machines MPI_2REAL must not be replaced by
48                          ! MPI_2DOUBLE_PRECISION
49#else
50    REAL              ::  fmax(2), fmax_l(2), fmin(2), fmin_l(2)
51#endif
52    REAL, OPTIONAL    ::  value1
53
54
55!
56!-- Determine array minimum
57    IF ( mode == 'min'  .OR.  mode == 'minmax' )  THEN
58
59!
60!--    Determine the local minimum
61       fmin_ijk_l = MINLOC( ar )
62       fmin_ijk_l(1) = i1 + fmin_ijk_l(1) - nbgp    ! MINLOC assumes lowerbound = 1
63       fmin_ijk_l(2) = j1 + fmin_ijk_l(2) - nbgp
64       fmin_ijk_l(3) = k1 + fmin_ijk_l(3) - 1
65       fmin_l(1)  = ar(fmin_ijk_l(1),fmin_ijk_l(2),fmin_ijk_l(3))
66
67#if defined( __parallel )
68       fmin_l(2)  = myid
69       IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
70       CALL MPI_ALLREDUCE( fmin_l, fmin, 1, MPI_2REAL, MPI_MINLOC, comm2d, &
71                           ierr )
72
73!
74!--    Determine the global minimum. Result stored on PE0.
75       id_fmin = fmin(2)
76       IF ( id_fmin /= 0 )  THEN
77          IF ( myid == 0 )  THEN
78             CALL MPI_RECV( fmin_ijk, 3, MPI_INTEGER, id_fmin, 0, comm2d, &
79                            status, ierr )
80          ELSEIF ( myid == id_fmin )  THEN
81             CALL MPI_SEND( fmin_ijk_l, 3, MPI_INTEGER, 0, 0, comm2d, ierr )
82          ENDIF
83       ELSE
84          fmin_ijk = fmin_ijk_l
85       ENDIF
86!
87!--    Send the indices of the just determined array minimum to other PEs
88       CALL MPI_BCAST( fmin_ijk, 3, MPI_INTEGER, 0, comm2d, ierr )
89#else
90       fmin(1)  = fmin_l(1)
91       fmin_ijk = fmin_ijk_l
92#endif
93
94    ENDIF
95
96!
97!-- Determine array maximum
98    IF ( mode == 'max'  .OR.  mode == 'minmax' )  THEN
99
100!
101!--    Determine the local maximum
102       fmax_ijk_l = MAXLOC( ar )
103       fmax_ijk_l(1) = i1 + fmax_ijk_l(1) - nbgp    ! MAXLOC assumes lowerbound = 1
104       fmax_ijk_l(2) = j1 + fmax_ijk_l(2) - nbgp
105       fmax_ijk_l(3) = k1 + fmax_ijk_l(3) - 1
106       fmax_l(1) = ar(fmax_ijk_l(1),fmax_ijk_l(2),fmax_ijk_l(3))
107
108#if defined( __parallel )
109       fmax_l(2)  = myid
110       IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
111       CALL MPI_ALLREDUCE( fmax_l, fmax, 1, MPI_2REAL, MPI_MAXLOC, comm2d, &
112                           ierr )
113
114!
115!--    Determine the global maximum. Result stored on PE0.
116       id_fmax = fmax(2)
117       IF ( id_fmax /= 0 )  THEN
118          IF ( myid == 0 )  THEN
119             CALL MPI_RECV( fmax_ijk, 3, MPI_INTEGER, id_fmax, 0, comm2d, &
120                            status, ierr )
121          ELSEIF ( myid == id_fmax )  THEN
122             CALL MPI_SEND( fmax_ijk_l, 3, MPI_INTEGER, 0, 0, comm2d, ierr )
123          ENDIF
124       ELSE
125          fmax_ijk = fmax_ijk_l
126       ENDIF
127!
128!--    send the indices of the just determined array maximum to other PEs
129       CALL MPI_BCAST( fmax_ijk, 3, MPI_INTEGER, 0, comm2d, ierr )
130#else
131       fmax(1)  = fmax_l(1)
132       fmax_ijk = fmax_ijk_l
133#endif
134
135    ENDIF
136
137!
138!-- Determine absolute array maximum
139    IF ( mode == 'abs' )  THEN
140
141!
142!--    Determine the local absolut maximum
143       fmax_l(1)     = 0.0
144       fmax_ijk_l(1) =  i1
145       fmax_ijk_l(2) =  j1
146       fmax_ijk_l(3) =  k1
147       DO  k = k1, k2
148          DO  j = j1, j2
149             DO  i = i1, i2
150                IF ( ABS( ar(i,j,k) ) > fmax_l(1) )  THEN
151                   fmax_l(1) = ABS( ar(i,j,k) )
152                   fmax_ijk_l(1) = i
153                   fmax_ijk_l(2) = j
154                   fmax_ijk_l(3) = k
155                ENDIF
156             ENDDO
157          ENDDO
158       ENDDO
159
160!
161!--    Set a flag in case that the determined value is negative.
162!--    A constant offset has to be subtracted in order to handle the special
163!--    case i=0 correctly
164       IF ( ar(fmax_ijk_l(1),fmax_ijk_l(2),fmax_ijk_l(3)) < 0.0 )  THEN
165          fmax_ijk_l(1) = -fmax_ijk_l(1) - 10
166       ENDIF
167
168#if defined( __parallel )
169       fmax_l(2)  = myid
170       IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
171       CALL MPI_ALLREDUCE( fmax_l, fmax, 1, MPI_2REAL, MPI_MAXLOC, comm2d, &
172                           ierr )
173
174!
175!--    Determine the global absolut maximum. Result stored on PE0.
176       id_fmax = fmax(2)
177       IF ( id_fmax /= 0 )  THEN
178          IF ( myid == 0 )  THEN
179             CALL MPI_RECV( fmax_ijk, 3, MPI_INTEGER, id_fmax, 0, comm2d, &
180                            status, ierr )
181          ELSEIF ( myid == id_fmax )  THEN
182             CALL MPI_SEND( fmax_ijk_l, 3, MPI_INTEGER, 0, 0, comm2d, ierr )
183          ENDIF
184       ELSE
185          fmax_ijk = fmax_ijk_l
186       ENDIF
187!
188!--    Send the indices of the just determined absolut maximum to other PEs
189       CALL MPI_BCAST( fmax_ijk, 3, MPI_INTEGER, 0, comm2d, ierr )
190#else
191       fmax(1)  = fmax_l(1)
192       fmax_ijk = fmax_ijk_l
193#endif
194
195    ENDIF
196
197!
198!-- Determine output parameters
199    SELECT CASE( mode )
200
201       CASE( 'min' )
202
203          value     = fmin(1)
204          value_ijk = fmin_ijk
205
206       CASE( 'max' )
207
208          value     = fmax(1)
209          value_ijk = fmax_ijk
210
211       CASE( 'minmax' )
212
213          value      = fmin(1)
214          value_ijk  = fmin_ijk
215          value1     = fmax(1)
216          value1_ijk = fmax_ijk
217
218       CASE( 'abs' )
219
220          value     = fmax(1)
221          value_ijk = fmax_ijk
222          IF ( fmax_ijk(1) < 0 )  THEN
223             value        = -value
224             value_ijk(1) = -value_ijk(1) - 10         !???
225          ENDIF
226
227    END SELECT
228
229!
230!-- Limit index values to the range 0..nx, 0..ny
231    IF ( value_ijk(3) < 0  ) value_ijk(3) = nx +1 + value_ijk(3)
232    IF ( value_ijk(3) > nx ) value_ijk(3) = value_ijk(3) - (nx+1)
233    IF ( value_ijk(2) < 0  ) value_ijk(2) = ny +1 + value_ijk(2)
234    IF ( value_ijk(2) > ny ) value_ijk(2) = value_ijk(2) - (ny+1)
235
236
237 END SUBROUTINE global_min_max
Note: See TracBrowser for help on using the repository browser.