1 | #if ! defined( __openacc ) |
---|
2 | SUBROUTINE flow_statistics |
---|
3 | |
---|
4 | !--------------------------------------------------------------------------------! |
---|
5 | ! This file is part of PALM. |
---|
6 | ! |
---|
7 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
8 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
9 | ! either version 3 of the License, or (at your option) any later version. |
---|
10 | ! |
---|
11 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
12 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
13 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
14 | ! |
---|
15 | ! You should have received a copy of the GNU General Public License along with |
---|
16 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
17 | ! |
---|
18 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
19 | !--------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: flow_statistics.f90 1258 2013-11-08 16:09:09Z raasch $ |
---|
28 | ! |
---|
29 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
30 | ! openacc "end parallel" replaced by "end parallel loop" |
---|
31 | ! |
---|
32 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
33 | ! Output of ug and vg |
---|
34 | ! |
---|
35 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
36 | ! ported for openACC in separate #else branch |
---|
37 | ! |
---|
38 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
39 | ! comment for profile 77 added |
---|
40 | ! |
---|
41 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
42 | ! ql is calculated by calc_liquid_water_content |
---|
43 | ! |
---|
44 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
45 | ! openACC directive added |
---|
46 | ! |
---|
47 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
48 | ! additions for two-moment cloud physics scheme: |
---|
49 | ! +nr, qr, qc, prr |
---|
50 | ! |
---|
51 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
52 | ! code put under GPL (PALM 3.9) |
---|
53 | ! |
---|
54 | ! 1007 2012-09-19 14:30:36Z franke |
---|
55 | ! Calculation of buoyancy flux for humidity in case of WS-scheme is now using |
---|
56 | ! turbulent fluxes of WS-scheme |
---|
57 | ! Bugfix: Calculation of subgridscale buoyancy flux for humidity and cloud |
---|
58 | ! droplets at nzb and nzt added |
---|
59 | ! |
---|
60 | ! 801 2012-01-10 17:30:36Z suehring |
---|
61 | ! Calculation of turbulent fluxes in advec_ws is now thread-safe. |
---|
62 | ! |
---|
63 | ! 743 2011-08-18 16:10:16Z suehring |
---|
64 | ! Calculation of turbulent fluxes with WS-scheme only for the whole model |
---|
65 | ! domain, not for user-defined subregions. |
---|
66 | ! |
---|
67 | ! 709 2011-03-30 09:31:40Z raasch |
---|
68 | ! formatting adjustments |
---|
69 | ! |
---|
70 | ! 699 2011-03-22 17:52:22Z suehring |
---|
71 | ! Bugfix in calculation of vertical velocity skewness. The added absolute value |
---|
72 | ! avoid negative values in the root. Negative values of w'w' can occur at the |
---|
73 | ! top or bottom of the model domain due to degrading the order of advection |
---|
74 | ! scheme. Furthermore the calculation will be the same for all advection |
---|
75 | ! schemes. |
---|
76 | !, tend |
---|
77 | ! 696 2011-03-18 07:03:49Z raasch |
---|
78 | ! Bugfix: Summation of Wicker-Skamarock scheme fluxes and variances for all |
---|
79 | ! threads |
---|
80 | ! |
---|
81 | ! 678 2011-02-02 14:31:56Z raasch |
---|
82 | ! Bugfix in calculation of the divergence of vertical flux of resolved scale |
---|
83 | ! energy, pressure fluctuations, and flux of pressure fluctuation itself |
---|
84 | ! |
---|
85 | ! 673 2011-01-18 16:19:48Z suehring |
---|
86 | ! Top bc for the horizontal velocity variances added for ocean runs. |
---|
87 | ! Setting the corresponding bottom bc moved to advec_ws. |
---|
88 | ! |
---|
89 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
90 | ! When advection is computed with ws-scheme, turbulent fluxes are already |
---|
91 | ! computed in the respective advection routines and buffered in arrays |
---|
92 | ! sums_xx_ws_l(). This is due to a consistent treatment of statistics with the |
---|
93 | ! numerics and to avoid unphysical kinks near the surface. |
---|
94 | ! So some if requests has to be done to dicern between fluxes from ws-scheme |
---|
95 | ! other advection schemes. |
---|
96 | ! Furthermore the computation of z_i is only done if the heat flux exceeds a |
---|
97 | ! minimum value. This affects only simulations of a neutral boundary layer and |
---|
98 | ! is due to reasons of computations in the advection scheme. |
---|
99 | ! |
---|
100 | ! 624 2010-12-10 11:46:30Z heinze |
---|
101 | ! Calculation of q*2 added |
---|
102 | ! |
---|
103 | ! 622 2010-12-10 08:08:13Z raasch |
---|
104 | ! optional barriers included in order to speed up collective operations |
---|
105 | ! |
---|
106 | ! 388 2009-09-23 09:40:33Z raasch |
---|
107 | ! Vertical profiles of potential density and hydrostatic pressure are |
---|
108 | ! calculated. |
---|
109 | ! Added missing timeseries calculation of w"q"(0), moved timeseries q* to the |
---|
110 | ! end. |
---|
111 | ! Temperature gradient criterion for estimating the boundary layer height |
---|
112 | ! replaced by the gradient criterion of Sullivan et al. (1998). |
---|
113 | ! Output of messages replaced by message handling routine. |
---|
114 | ! |
---|
115 | ! 197 2008-09-16 15:29:03Z raasch |
---|
116 | ! Spline timeseries splptx etc. removed, timeseries w'u', w'v', w'q' (k=0) |
---|
117 | ! added, |
---|
118 | ! bugfix: divide sums(k,8) (e) and sums(k,34) (e*) by ngp_2dh_s_inner(k,sr) |
---|
119 | ! (like other scalars) |
---|
120 | ! |
---|
121 | ! 133 2007-11-20 10:10:53Z letzel |
---|
122 | ! Vertical profiles now based on nzb_s_inner; they are divided by |
---|
123 | ! ngp_2dh_s_inner (scalars, procucts of scalars) and ngp_2dh (staggered |
---|
124 | ! velocity components and their products, procucts of scalars and velocity |
---|
125 | ! components), respectively. |
---|
126 | ! |
---|
127 | ! 106 2007-08-16 14:30:26Z raasch |
---|
128 | ! Prescribed momentum fluxes at the top surface are used, |
---|
129 | ! profiles for w*p* and w"e are calculated |
---|
130 | ! |
---|
131 | ! 97 2007-06-21 08:23:15Z raasch |
---|
132 | ! Statistics for ocean version (salinity, density) added, |
---|
133 | ! calculation of z_i and Deardorff velocity scale adjusted to be used with |
---|
134 | ! the ocean version |
---|
135 | ! |
---|
136 | ! 87 2007-05-22 15:46:47Z raasch |
---|
137 | ! Two more arguments added to user_statistics, which is now also called for |
---|
138 | ! user-defined profiles, |
---|
139 | ! var_hom and var_sum renamed pr_palm |
---|
140 | ! |
---|
141 | ! 82 2007-04-16 15:40:52Z raasch |
---|
142 | ! Cpp-directive lcmuk changed to intel_openmp_bug |
---|
143 | ! |
---|
144 | ! 75 2007-03-22 09:54:05Z raasch |
---|
145 | ! Collection of time series quantities moved from routine flow_statistics to |
---|
146 | ! here, routine user_statistics is called for each statistic region, |
---|
147 | ! moisture renamed humidity |
---|
148 | ! |
---|
149 | ! 19 2007-02-23 04:53:48Z raasch |
---|
150 | ! fluxes at top modified (tswst, qswst) |
---|
151 | ! |
---|
152 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
153 | ! |
---|
154 | ! Revision 1.41 2006/08/04 14:37:50 raasch |
---|
155 | ! Error removed in non-parallel part (sums_l) |
---|
156 | ! |
---|
157 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
158 | ! Initial revision |
---|
159 | ! |
---|
160 | ! |
---|
161 | ! Description: |
---|
162 | ! ------------ |
---|
163 | ! Compute average profiles and further average flow quantities for the different |
---|
164 | ! user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
165 | ! |
---|
166 | ! NOTE: For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
167 | ! ---- lower vertical index for k-loops for all variables, although strictly |
---|
168 | ! speaking the k-loops would have to be split up according to the staggered |
---|
169 | ! grid. However, this implies no error since staggered velocity components are |
---|
170 | ! zero at the walls and inside buildings. |
---|
171 | !------------------------------------------------------------------------------! |
---|
172 | |
---|
173 | USE arrays_3d |
---|
174 | USE cloud_parameters |
---|
175 | USE control_parameters |
---|
176 | USE cpulog |
---|
177 | USE grid_variables |
---|
178 | USE indices |
---|
179 | USE interfaces |
---|
180 | USE pegrid |
---|
181 | USE statistics |
---|
182 | |
---|
183 | IMPLICIT NONE |
---|
184 | |
---|
185 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
186 | LOGICAL :: first |
---|
187 | REAL :: dptdz_threshold, height, pts, sums_l_eper, sums_l_etot, ust, & |
---|
188 | ust2, u2, vst, vst2, v2, w2, z_i(2) |
---|
189 | REAL :: dptdz(nzb+1:nzt+1) |
---|
190 | REAL :: sums_ll(nzb:nzt+1,2) |
---|
191 | |
---|
192 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
193 | |
---|
194 | !$acc update host( km, kh, e, pt, qs, qsws, rif, shf, ts, u, usws, v, vsws, w ) |
---|
195 | |
---|
196 | ! |
---|
197 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
198 | !-- called once after the current time step |
---|
199 | IF ( flow_statistics_called ) THEN |
---|
200 | |
---|
201 | message_string = 'flow_statistics is called two times within one ' // & |
---|
202 | 'timestep' |
---|
203 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
204 | |
---|
205 | ENDIF |
---|
206 | |
---|
207 | ! |
---|
208 | !-- Compute statistics for each (sub-)region |
---|
209 | DO sr = 0, statistic_regions |
---|
210 | |
---|
211 | ! |
---|
212 | !-- Initialize (local) summation array |
---|
213 | sums_l = 0.0 |
---|
214 | |
---|
215 | ! |
---|
216 | !-- Store sums that have been computed in other subroutines in summation |
---|
217 | !-- array |
---|
218 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
219 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
220 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
221 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
222 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
223 | |
---|
224 | ! |
---|
225 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
226 | !-- the local array sums_l() for further computations |
---|
227 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
228 | |
---|
229 | ! |
---|
230 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
231 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
232 | IF ( ocean ) THEN |
---|
233 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
234 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
235 | ENDIF |
---|
236 | |
---|
237 | DO i = 0, threads_per_task-1 |
---|
238 | ! |
---|
239 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
240 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u* |
---|
241 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v* |
---|
242 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
243 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
244 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
245 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5 * & |
---|
246 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
247 | sums_ws2_ws_l(:,i) ) ! e* |
---|
248 | DO k = nzb, nzt |
---|
249 | sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5 * ( & |
---|
250 | sums_us2_ws_l(k,i) + & |
---|
251 | sums_vs2_ws_l(k,i) + & |
---|
252 | sums_ws2_ws_l(k,i) ) |
---|
253 | ENDDO |
---|
254 | ENDDO |
---|
255 | |
---|
256 | ENDIF |
---|
257 | |
---|
258 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
259 | |
---|
260 | DO i = 0, threads_per_task-1 |
---|
261 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* from advec_s_ws |
---|
262 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
263 | IF ( humidity .OR. passive_scalar ) sums_l(:,49,i) = & |
---|
264 | sums_wsqs_ws_l(:,i) !w*q* |
---|
265 | ENDDO |
---|
266 | |
---|
267 | ENDIF |
---|
268 | ! |
---|
269 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
270 | !-- They must have been computed before, because they are already required |
---|
271 | !-- for other horizontal averages. |
---|
272 | tn = 0 |
---|
273 | |
---|
274 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
275 | #if defined( __intel_openmp_bug ) |
---|
276 | tn = omp_get_thread_num() |
---|
277 | #else |
---|
278 | !$ tn = omp_get_thread_num() |
---|
279 | #endif |
---|
280 | |
---|
281 | !$OMP DO |
---|
282 | DO i = nxl, nxr |
---|
283 | DO j = nys, nyn |
---|
284 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
285 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
286 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
287 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
288 | ENDDO |
---|
289 | ENDDO |
---|
290 | ENDDO |
---|
291 | |
---|
292 | ! |
---|
293 | !-- Horizontally averaged profile of salinity |
---|
294 | IF ( ocean ) THEN |
---|
295 | !$OMP DO |
---|
296 | DO i = nxl, nxr |
---|
297 | DO j = nys, nyn |
---|
298 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
299 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
300 | sa(k,j,i) * rmask(j,i,sr) |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | ENDDO |
---|
304 | ENDIF |
---|
305 | |
---|
306 | ! |
---|
307 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
308 | !-- total water content, specific humidity and liquid water potential |
---|
309 | !-- temperature |
---|
310 | IF ( humidity ) THEN |
---|
311 | !$OMP DO |
---|
312 | DO i = nxl, nxr |
---|
313 | DO j = nys, nyn |
---|
314 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
315 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
316 | vpt(k,j,i) * rmask(j,i,sr) |
---|
317 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
318 | q(k,j,i) * rmask(j,i,sr) |
---|
319 | ENDDO |
---|
320 | ENDDO |
---|
321 | ENDDO |
---|
322 | IF ( cloud_physics ) THEN |
---|
323 | !$OMP DO |
---|
324 | DO i = nxl, nxr |
---|
325 | DO j = nys, nyn |
---|
326 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
327 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
328 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
329 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
330 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
331 | ) * rmask(j,i,sr) |
---|
332 | ENDDO |
---|
333 | ENDDO |
---|
334 | ENDDO |
---|
335 | ENDIF |
---|
336 | ENDIF |
---|
337 | |
---|
338 | ! |
---|
339 | !-- Horizontally averaged profiles of passive scalar |
---|
340 | IF ( passive_scalar ) THEN |
---|
341 | !$OMP DO |
---|
342 | DO i = nxl, nxr |
---|
343 | DO j = nys, nyn |
---|
344 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
345 | sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) |
---|
346 | ENDDO |
---|
347 | ENDDO |
---|
348 | ENDDO |
---|
349 | ENDIF |
---|
350 | !$OMP END PARALLEL |
---|
351 | ! |
---|
352 | !-- Summation of thread sums |
---|
353 | IF ( threads_per_task > 1 ) THEN |
---|
354 | DO i = 1, threads_per_task-1 |
---|
355 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
356 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
357 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
358 | IF ( ocean ) THEN |
---|
359 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
360 | ENDIF |
---|
361 | IF ( humidity ) THEN |
---|
362 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
363 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
364 | IF ( cloud_physics ) THEN |
---|
365 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
366 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
367 | ENDIF |
---|
368 | ENDIF |
---|
369 | IF ( passive_scalar ) THEN |
---|
370 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
371 | ENDIF |
---|
372 | ENDDO |
---|
373 | ENDIF |
---|
374 | |
---|
375 | #if defined( __parallel ) |
---|
376 | ! |
---|
377 | !-- Compute total sum from local sums |
---|
378 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
379 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
380 | MPI_SUM, comm2d, ierr ) |
---|
381 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
382 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
383 | MPI_SUM, comm2d, ierr ) |
---|
384 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
385 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
386 | MPI_SUM, comm2d, ierr ) |
---|
387 | IF ( ocean ) THEN |
---|
388 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
389 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
390 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
391 | ENDIF |
---|
392 | IF ( humidity ) THEN |
---|
393 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
394 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
395 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
396 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
397 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
398 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
399 | IF ( cloud_physics ) THEN |
---|
400 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
401 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
402 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
403 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
404 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
405 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
406 | ENDIF |
---|
407 | ENDIF |
---|
408 | |
---|
409 | IF ( passive_scalar ) THEN |
---|
410 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
411 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
412 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
413 | ENDIF |
---|
414 | #else |
---|
415 | sums(:,1) = sums_l(:,1,0) |
---|
416 | sums(:,2) = sums_l(:,2,0) |
---|
417 | sums(:,4) = sums_l(:,4,0) |
---|
418 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
419 | IF ( humidity ) THEN |
---|
420 | sums(:,44) = sums_l(:,44,0) |
---|
421 | sums(:,41) = sums_l(:,41,0) |
---|
422 | IF ( cloud_physics ) THEN |
---|
423 | sums(:,42) = sums_l(:,42,0) |
---|
424 | sums(:,43) = sums_l(:,43,0) |
---|
425 | ENDIF |
---|
426 | ENDIF |
---|
427 | IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0) |
---|
428 | #endif |
---|
429 | |
---|
430 | ! |
---|
431 | !-- Final values are obtained by division by the total number of grid points |
---|
432 | !-- used for summation. After that store profiles. |
---|
433 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
434 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
435 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
436 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
437 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
438 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
439 | |
---|
440 | |
---|
441 | ! |
---|
442 | !-- Salinity |
---|
443 | IF ( ocean ) THEN |
---|
444 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
445 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
446 | ENDIF |
---|
447 | |
---|
448 | ! |
---|
449 | !-- Humidity and cloud parameters |
---|
450 | IF ( humidity ) THEN |
---|
451 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
452 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
453 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
454 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
455 | IF ( cloud_physics ) THEN |
---|
456 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
457 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
458 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
459 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
460 | ENDIF |
---|
461 | ENDIF |
---|
462 | |
---|
463 | ! |
---|
464 | !-- Passive scalar |
---|
465 | IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / & |
---|
466 | ngp_2dh_s_inner(:,sr) ! s (q) |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
470 | !-- variances, the total and the perturbation energy (single values in last |
---|
471 | !-- column of sums_l) and some diagnostic quantities. |
---|
472 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
473 | !-- ---- speaking the following k-loop would have to be split up and |
---|
474 | !-- rearranged according to the staggered grid. |
---|
475 | !-- However, this implies no error since staggered velocity components |
---|
476 | !-- are zero at the walls and inside buildings. |
---|
477 | tn = 0 |
---|
478 | #if defined( __intel_openmp_bug ) |
---|
479 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
480 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
481 | tn = omp_get_thread_num() |
---|
482 | #else |
---|
483 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
484 | !$ tn = omp_get_thread_num() |
---|
485 | #endif |
---|
486 | !$OMP DO |
---|
487 | DO i = nxl, nxr |
---|
488 | DO j = nys, nyn |
---|
489 | sums_l_etot = 0.0 |
---|
490 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
491 | ! |
---|
492 | !-- Prognostic and diagnostic variables |
---|
493 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
494 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
495 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
496 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
497 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
498 | |
---|
499 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
500 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
501 | |
---|
502 | IF ( humidity ) THEN |
---|
503 | sums_l(k,70,tn) = sums_l(k,70,tn) + & |
---|
504 | ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) |
---|
505 | ENDIF |
---|
506 | |
---|
507 | ! |
---|
508 | !-- Higher moments |
---|
509 | !-- (Computation of the skewness of w further below) |
---|
510 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) |
---|
511 | |
---|
512 | sums_l_etot = sums_l_etot + & |
---|
513 | 0.5 * ( u(k,j,i)**2 + v(k,j,i)**2 + & |
---|
514 | w(k,j,i)**2 ) * rmask(j,i,sr) |
---|
515 | ENDDO |
---|
516 | ! |
---|
517 | !-- Total and perturbation energy for the total domain (being |
---|
518 | !-- collected in the last column of sums_l). Summation of these |
---|
519 | !-- quantities is seperated from the previous loop in order to |
---|
520 | !-- allow vectorization of that loop. |
---|
521 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
522 | ! |
---|
523 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
524 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
525 | us(j,i) * rmask(j,i,sr) |
---|
526 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
527 | usws(j,i) * rmask(j,i,sr) |
---|
528 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
529 | vsws(j,i) * rmask(j,i,sr) |
---|
530 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
531 | ts(j,i) * rmask(j,i,sr) |
---|
532 | IF ( humidity ) THEN |
---|
533 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
534 | qs(j,i) * rmask(j,i,sr) |
---|
535 | ENDIF |
---|
536 | ENDDO |
---|
537 | ENDDO |
---|
538 | |
---|
539 | ! |
---|
540 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
541 | !-- quantities are evaluated in the advection routines. |
---|
542 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
543 | !$OMP DO |
---|
544 | DO i = nxl, nxr |
---|
545 | DO j = nys, nyn |
---|
546 | sums_l_eper = 0.0 |
---|
547 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
548 | u2 = u(k,j,i)**2 |
---|
549 | v2 = v(k,j,i)**2 |
---|
550 | w2 = w(k,j,i)**2 |
---|
551 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
552 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
553 | |
---|
554 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
555 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
556 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
557 | ! |
---|
558 | !-- Perturbation energy |
---|
559 | |
---|
560 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5 * & |
---|
561 | ( ust2 + vst2 + w2 ) * rmask(j,i,sr) |
---|
562 | sums_l_eper = sums_l_eper + & |
---|
563 | 0.5 * ( ust2+vst2+w2 ) * rmask(j,i,sr) |
---|
564 | |
---|
565 | ENDDO |
---|
566 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & |
---|
567 | + sums_l_eper |
---|
568 | ENDDO |
---|
569 | ENDDO |
---|
570 | ENDIF |
---|
571 | |
---|
572 | ! |
---|
573 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
574 | |
---|
575 | !$OMP DO |
---|
576 | DO i = nxl, nxr |
---|
577 | DO j = nys, nyn |
---|
578 | ! |
---|
579 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
580 | !-- oterwise from k=nzb+1) |
---|
581 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
582 | !-- ---- strictly speaking the following k-loop would have to be |
---|
583 | !-- split up according to the staggered grid. |
---|
584 | !-- However, this implies no error since staggered velocity |
---|
585 | !-- components are zero at the walls and inside buildings. |
---|
586 | |
---|
587 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
588 | ! |
---|
589 | !-- Momentum flux w"u" |
---|
590 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25 * ( & |
---|
591 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
592 | ) * ( & |
---|
593 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
594 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
595 | ) * rmask(j,i,sr) |
---|
596 | ! |
---|
597 | !-- Momentum flux w"v" |
---|
598 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25 * ( & |
---|
599 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
600 | ) * ( & |
---|
601 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
602 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
603 | ) * rmask(j,i,sr) |
---|
604 | ! |
---|
605 | !-- Heat flux w"pt" |
---|
606 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
607 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
608 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
609 | * ddzu(k+1) * rmask(j,i,sr) |
---|
610 | |
---|
611 | |
---|
612 | ! |
---|
613 | !-- Salinity flux w"sa" |
---|
614 | IF ( ocean ) THEN |
---|
615 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
616 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
617 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
618 | * ddzu(k+1) * rmask(j,i,sr) |
---|
619 | ENDIF |
---|
620 | |
---|
621 | ! |
---|
622 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
623 | IF ( humidity ) THEN |
---|
624 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
625 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
626 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
627 | * ddzu(k+1) * rmask(j,i,sr) |
---|
628 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
629 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
630 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
631 | * ddzu(k+1) * rmask(j,i,sr) |
---|
632 | |
---|
633 | IF ( cloud_physics ) THEN |
---|
634 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
635 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
636 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
637 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
638 | * ddzu(k+1) * rmask(j,i,sr) |
---|
639 | ENDIF |
---|
640 | ENDIF |
---|
641 | |
---|
642 | ! |
---|
643 | !-- Passive scalar flux |
---|
644 | IF ( passive_scalar ) THEN |
---|
645 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
646 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
647 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
648 | * ddzu(k+1) * rmask(j,i,sr) |
---|
649 | ENDIF |
---|
650 | |
---|
651 | ENDDO |
---|
652 | |
---|
653 | ! |
---|
654 | !-- Subgridscale fluxes in the Prandtl layer |
---|
655 | IF ( use_surface_fluxes ) THEN |
---|
656 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
657 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
658 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
659 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
660 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
661 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
662 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
663 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
664 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
665 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
666 | IF ( ocean ) THEN |
---|
667 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
668 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
669 | ENDIF |
---|
670 | IF ( humidity ) THEN |
---|
671 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
672 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
673 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
674 | ( 1.0 + 0.61 * q(nzb,j,i) ) * & |
---|
675 | shf(j,i) + 0.61 * pt(nzb,j,i) * & |
---|
676 | qsws(j,i) ) |
---|
677 | IF ( cloud_droplets ) THEN |
---|
678 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
679 | ( 1.0 + 0.61 * q(nzb,j,i) - & |
---|
680 | ql(nzb,j,i) ) * shf(j,i) + & |
---|
681 | 0.61 * pt(nzb,j,i) * qsws(j,i) ) |
---|
682 | ENDIF |
---|
683 | IF ( cloud_physics ) THEN |
---|
684 | ! |
---|
685 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
686 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & ! w"q" (w"qv") |
---|
687 | qsws(j,i) * rmask(j,i,sr) |
---|
688 | ENDIF |
---|
689 | ENDIF |
---|
690 | IF ( passive_scalar ) THEN |
---|
691 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
692 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
693 | ENDIF |
---|
694 | ENDIF |
---|
695 | |
---|
696 | ! |
---|
697 | !-- Subgridscale fluxes at the top surface |
---|
698 | IF ( use_top_fluxes ) THEN |
---|
699 | sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + & |
---|
700 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
701 | sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + & |
---|
702 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
703 | sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + & |
---|
704 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
705 | sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & |
---|
706 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
707 | sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & |
---|
708 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
709 | |
---|
710 | IF ( ocean ) THEN |
---|
711 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
712 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
713 | ENDIF |
---|
714 | IF ( humidity ) THEN |
---|
715 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
716 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
717 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
718 | ( 1.0 + 0.61 * q(nzt,j,i) ) * & |
---|
719 | tswst(j,i) + 0.61 * pt(nzt,j,i) * & |
---|
720 | qswst(j,i) ) |
---|
721 | IF ( cloud_droplets ) THEN |
---|
722 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
723 | ( 1.0 + 0.61 * q(nzt,j,i) - & |
---|
724 | ql(nzt,j,i) ) * tswst(j,i) + & |
---|
725 | 0.61 * pt(nzt,j,i) * qswst(j,i) ) |
---|
726 | ENDIF |
---|
727 | IF ( cloud_physics ) THEN |
---|
728 | ! |
---|
729 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
730 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
731 | qswst(j,i) * rmask(j,i,sr) |
---|
732 | ENDIF |
---|
733 | ENDIF |
---|
734 | IF ( passive_scalar ) THEN |
---|
735 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
736 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
737 | ENDIF |
---|
738 | ENDIF |
---|
739 | |
---|
740 | ! |
---|
741 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
742 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
743 | !-- ---- speaking the following k-loop would have to be split up and |
---|
744 | !-- rearranged according to the staggered grid. |
---|
745 | DO k = nzb_s_inner(j,i), nzt |
---|
746 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
747 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
748 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
749 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
750 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
751 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
752 | |
---|
753 | !-- Higher moments |
---|
754 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
755 | rmask(j,i,sr) |
---|
756 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
757 | rmask(j,i,sr) |
---|
758 | |
---|
759 | ! |
---|
760 | !-- Salinity flux and density (density does not belong to here, |
---|
761 | !-- but so far there is no other suitable place to calculate) |
---|
762 | IF ( ocean ) THEN |
---|
763 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
764 | pts = 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
765 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
766 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
767 | rmask(j,i,sr) |
---|
768 | ENDIF |
---|
769 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * & |
---|
770 | rmask(j,i,sr) |
---|
771 | sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & |
---|
772 | rmask(j,i,sr) |
---|
773 | ENDIF |
---|
774 | |
---|
775 | ! |
---|
776 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
777 | !-- content, rain drop concentration and rain water content |
---|
778 | IF ( humidity ) THEN |
---|
779 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
780 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
781 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
782 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
783 | rmask(j,i,sr) |
---|
784 | IF ( .NOT. cloud_droplets ) THEN |
---|
785 | pts = 0.5 * & |
---|
786 | ( ( q(k,j,i) - ql(k,j,i) ) - & |
---|
787 | hom(k,1,42,sr) + & |
---|
788 | ( q(k+1,j,i) - ql(k+1,j,i) ) - & |
---|
789 | hom(k+1,1,42,sr) ) |
---|
790 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
791 | rmask(j,i,sr) |
---|
792 | IF ( icloud_scheme == 0 ) THEN |
---|
793 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
794 | rmask(j,i,sr) |
---|
795 | sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * & |
---|
796 | rmask(j,i,sr) |
---|
797 | IF ( precipitation ) THEN |
---|
798 | sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * & |
---|
799 | rmask(j,i,sr) |
---|
800 | sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * & |
---|
801 | rmask(j,i,sr) |
---|
802 | sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) *& |
---|
803 | rmask(j,i,sr) |
---|
804 | ENDIF |
---|
805 | ELSE |
---|
806 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
807 | rmask(j,i,sr) |
---|
808 | ENDIF |
---|
809 | ELSE |
---|
810 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
811 | rmask(j,i,sr) |
---|
812 | ENDIF |
---|
813 | ELSE |
---|
814 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
815 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
816 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
817 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
818 | rmask(j,i,sr) |
---|
819 | ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
820 | sums_l(k,46,tn) = ( 1.0 + 0.61 * hom(k,1,41,sr) ) * & |
---|
821 | sums_l(k,17,tn) + & |
---|
822 | 0.61 * hom(k,1,4,sr) * sums_l(k,49,tn) |
---|
823 | END IF |
---|
824 | END IF |
---|
825 | ENDIF |
---|
826 | ! |
---|
827 | !-- Passive scalar flux |
---|
828 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & |
---|
829 | .OR. sr /= 0 ) ) THEN |
---|
830 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
831 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
832 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
833 | rmask(j,i,sr) |
---|
834 | ENDIF |
---|
835 | |
---|
836 | ! |
---|
837 | !-- Energy flux w*e* |
---|
838 | !-- has to be adjusted |
---|
839 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5 * & |
---|
840 | ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
841 | * rmask(j,i,sr) |
---|
842 | ENDDO |
---|
843 | ENDDO |
---|
844 | ENDDO |
---|
845 | ! |
---|
846 | !-- For speed optimization fluxes which have been computed in part directly |
---|
847 | !-- inside the WS advection routines are treated seperatly |
---|
848 | !-- Momentum fluxes first: |
---|
849 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
850 | !$OMP DO |
---|
851 | DO i = nxl, nxr |
---|
852 | DO j = nys, nyn |
---|
853 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
854 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
855 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
856 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
857 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
858 | ! |
---|
859 | !-- Momentum flux w*u* |
---|
860 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5 * & |
---|
861 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
862 | * ust * rmask(j,i,sr) |
---|
863 | ! |
---|
864 | !-- Momentum flux w*v* |
---|
865 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5 * & |
---|
866 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
867 | * vst * rmask(j,i,sr) |
---|
868 | ENDDO |
---|
869 | ENDDO |
---|
870 | ENDDO |
---|
871 | |
---|
872 | ENDIF |
---|
873 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
874 | !$OMP DO |
---|
875 | DO i = nxl, nxr |
---|
876 | DO j = nys, nyn |
---|
877 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
878 | ! |
---|
879 | !-- Vertical heat flux |
---|
880 | sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5 * & |
---|
881 | ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
882 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
883 | * w(k,j,i) * rmask(j,i,sr) |
---|
884 | IF ( humidity ) THEN |
---|
885 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
886 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
887 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
888 | rmask(j,i,sr) |
---|
889 | ENDIF |
---|
890 | ENDDO |
---|
891 | ENDDO |
---|
892 | ENDDO |
---|
893 | |
---|
894 | ENDIF |
---|
895 | |
---|
896 | ! |
---|
897 | !-- Density at top follows Neumann condition |
---|
898 | IF ( ocean ) THEN |
---|
899 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
900 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
901 | ENDIF |
---|
902 | |
---|
903 | ! |
---|
904 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
905 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
906 | !-- First calculate the products, then the divergence. |
---|
907 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
908 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
909 | |
---|
910 | sums_ll = 0.0 ! local array |
---|
911 | |
---|
912 | !$OMP DO |
---|
913 | DO i = nxl, nxr |
---|
914 | DO j = nys, nyn |
---|
915 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
916 | |
---|
917 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
918 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
919 | - 0.5 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
920 | ) )**2 & |
---|
921 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
922 | - 0.5 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
923 | ) )**2 & |
---|
924 | + w(k,j,i)**2 ) |
---|
925 | |
---|
926 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
927 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
928 | |
---|
929 | ENDDO |
---|
930 | ENDDO |
---|
931 | ENDDO |
---|
932 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
933 | sums_ll(nzt+1,1) = 0.0 |
---|
934 | sums_ll(0,2) = 0.0 |
---|
935 | sums_ll(nzt+1,2) = 0.0 |
---|
936 | |
---|
937 | DO k = nzb+1, nzt |
---|
938 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
939 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
940 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
941 | ENDDO |
---|
942 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
943 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
944 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
945 | |
---|
946 | ENDIF |
---|
947 | |
---|
948 | ! |
---|
949 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
950 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
951 | |
---|
952 | !$OMP DO |
---|
953 | DO i = nxl, nxr |
---|
954 | DO j = nys, nyn |
---|
955 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
956 | |
---|
957 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
958 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
959 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
960 | ) * ddzw(k) |
---|
961 | |
---|
962 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
963 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
964 | ) |
---|
965 | |
---|
966 | ENDDO |
---|
967 | ENDDO |
---|
968 | ENDDO |
---|
969 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
970 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
971 | |
---|
972 | ENDIF |
---|
973 | |
---|
974 | ! |
---|
975 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
976 | !-- Do it only, if profiles shall be plotted. |
---|
977 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
978 | |
---|
979 | !$OMP DO |
---|
980 | DO i = nxl, nxr |
---|
981 | DO j = nys, nyn |
---|
982 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
983 | ! |
---|
984 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
985 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
986 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
987 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
988 | * ddx * rmask(j,i,sr) |
---|
989 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
990 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
991 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
992 | * ddy * rmask(j,i,sr) |
---|
993 | ! |
---|
994 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
995 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
996 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
997 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
998 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
999 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
1000 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
1001 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
1002 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
1003 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
1004 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
1005 | ENDDO |
---|
1006 | ENDDO |
---|
1007 | ENDDO |
---|
1008 | ! |
---|
1009 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
1010 | sums_l(nzb,58,tn) = 0.0 |
---|
1011 | sums_l(nzb,59,tn) = 0.0 |
---|
1012 | sums_l(nzb,60,tn) = 0.0 |
---|
1013 | sums_l(nzb,61,tn) = 0.0 |
---|
1014 | sums_l(nzb,62,tn) = 0.0 |
---|
1015 | sums_l(nzb,63,tn) = 0.0 |
---|
1016 | |
---|
1017 | ENDIF |
---|
1018 | |
---|
1019 | ! |
---|
1020 | !-- Calculate the user-defined profiles |
---|
1021 | CALL user_statistics( 'profiles', sr, tn ) |
---|
1022 | !$OMP END PARALLEL |
---|
1023 | |
---|
1024 | ! |
---|
1025 | !-- Summation of thread sums |
---|
1026 | IF ( threads_per_task > 1 ) THEN |
---|
1027 | DO i = 1, threads_per_task-1 |
---|
1028 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
1029 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
1030 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
1031 | sums_l(:,45:pr_palm,i) |
---|
1032 | IF ( max_pr_user > 0 ) THEN |
---|
1033 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
1034 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
1035 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
1036 | ENDIF |
---|
1037 | ENDDO |
---|
1038 | ENDIF |
---|
1039 | |
---|
1040 | #if defined( __parallel ) |
---|
1041 | |
---|
1042 | ! |
---|
1043 | !-- Compute total sum from local sums |
---|
1044 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1045 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
1046 | MPI_SUM, comm2d, ierr ) |
---|
1047 | #else |
---|
1048 | sums = sums_l(:,:,0) |
---|
1049 | #endif |
---|
1050 | |
---|
1051 | ! |
---|
1052 | !-- Final values are obtained by division by the total number of grid points |
---|
1053 | !-- used for summation. After that store profiles. |
---|
1054 | !-- Profiles: |
---|
1055 | DO k = nzb, nzt+1 |
---|
1056 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
1057 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
1058 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
1059 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
1060 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
1061 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
1062 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
1063 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
1064 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
1065 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
1066 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
1067 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
1068 | sums(k,65:69) = sums(k,65:69) / ngp_2dh(sr) |
---|
1069 | sums(k,70:pr_palm-2) = sums(k,70:pr_palm-2)/ ngp_2dh_s_inner(k,sr) |
---|
1070 | ENDDO |
---|
1071 | |
---|
1072 | !-- Upstream-parts |
---|
1073 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
1074 | !-- u* and so on |
---|
1075 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
1076 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
1077 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
1078 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
1079 | ngp_2dh(sr) |
---|
1080 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
1081 | ngp_2dh(sr) |
---|
1082 | !-- eges, e* |
---|
1083 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
1084 | ngp_3d(sr) |
---|
1085 | !-- Old and new divergence |
---|
1086 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
1087 | ngp_3d_inner(sr) |
---|
1088 | |
---|
1089 | !-- User-defined profiles |
---|
1090 | IF ( max_pr_user > 0 ) THEN |
---|
1091 | DO k = nzb, nzt+1 |
---|
1092 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
1093 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
1094 | ngp_2dh_s_inner(k,sr) |
---|
1095 | ENDDO |
---|
1096 | ENDIF |
---|
1097 | |
---|
1098 | ! |
---|
1099 | !-- Collect horizontal average in hom. |
---|
1100 | !-- Compute deduced averages (e.g. total heat flux) |
---|
1101 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
1102 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
1103 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
1104 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
1105 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
1106 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
1107 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
1108 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
1109 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
1110 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
1111 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
1112 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
1113 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
1114 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
1115 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
1116 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
1117 | ! profile 24 is initial profile (sa) |
---|
1118 | ! profiles 25-29 left empty for initial |
---|
1119 | ! profiles |
---|
1120 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
1121 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
1122 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
1123 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
1124 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
1125 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
1126 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
1127 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
1128 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
1129 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20 )**1.5 ! Sw |
---|
1130 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
1131 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
1132 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
1133 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
1134 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
1135 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
1136 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
1137 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
1138 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
1139 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
1140 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
1141 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
1142 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
1143 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
1144 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
1145 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
1146 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
1147 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
1148 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
1149 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
1150 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
1151 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
1152 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
1153 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
1154 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
1155 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
1156 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
1157 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
1158 | hom(:,1,72,sr) = hyp * 1E-4 ! hyp in dbar |
---|
1159 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
1160 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
1161 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
1162 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
1163 | ! 77 is initial density profile |
---|
1164 | hom(:,1,78,sr) = ug ! ug |
---|
1165 | hom(:,1,79,sr) = vg ! vg |
---|
1166 | |
---|
1167 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
1168 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
1169 | ! v_y, usw. (in last but one profile) |
---|
1170 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
1171 | ! u*, w'u', w'v', t* (in last profile) |
---|
1172 | |
---|
1173 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
1174 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
1175 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
1176 | ENDIF |
---|
1177 | |
---|
1178 | ! |
---|
1179 | !-- Determine the boundary layer height using two different schemes. |
---|
1180 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
1181 | !-- first relative minimum (maximum) of the total heat flux. |
---|
1182 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
1183 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
1184 | !-- (positive) for the first time. |
---|
1185 | z_i(1) = 0.0 |
---|
1186 | first = .TRUE. |
---|
1187 | |
---|
1188 | IF ( ocean ) THEN |
---|
1189 | DO k = nzt, nzb+1, -1 |
---|
1190 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
1191 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8) THEN |
---|
1192 | first = .FALSE. |
---|
1193 | height = zw(k) |
---|
1194 | ENDIF |
---|
1195 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
1196 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
1197 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
1198 | IF ( zw(k) < 1.5 * height ) THEN |
---|
1199 | z_i(1) = zw(k) |
---|
1200 | ELSE |
---|
1201 | z_i(1) = height |
---|
1202 | ENDIF |
---|
1203 | EXIT |
---|
1204 | ENDIF |
---|
1205 | ENDDO |
---|
1206 | ELSE |
---|
1207 | DO k = nzb, nzt-1 |
---|
1208 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
1209 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8 ) THEN |
---|
1210 | first = .FALSE. |
---|
1211 | height = zw(k) |
---|
1212 | ENDIF |
---|
1213 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
1214 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
1215 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
1216 | IF ( zw(k) < 1.5 * height ) THEN |
---|
1217 | z_i(1) = zw(k) |
---|
1218 | ELSE |
---|
1219 | z_i(1) = height |
---|
1220 | ENDIF |
---|
1221 | EXIT |
---|
1222 | ENDIF |
---|
1223 | ENDDO |
---|
1224 | ENDIF |
---|
1225 | |
---|
1226 | ! |
---|
1227 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
1228 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
1229 | !-- maximal local temperature gradient: starting from the second (the last |
---|
1230 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
1231 | !-- 0.2K/100m and greater than the next four gradients. |
---|
1232 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
1233 | !-- ocean case! |
---|
1234 | z_i(2) = 0.0 |
---|
1235 | DO k = nzb+1, nzt+1 |
---|
1236 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
1237 | ENDDO |
---|
1238 | dptdz_threshold = 0.2 / 100.0 |
---|
1239 | |
---|
1240 | IF ( ocean ) THEN |
---|
1241 | DO k = nzt+1, nzb+5, -1 |
---|
1242 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
1243 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
1244 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
1245 | z_i(2) = zw(k-1) |
---|
1246 | EXIT |
---|
1247 | ENDIF |
---|
1248 | ENDDO |
---|
1249 | ELSE |
---|
1250 | DO k = nzb+1, nzt-3 |
---|
1251 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
1252 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
1253 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
1254 | z_i(2) = zw(k-1) |
---|
1255 | EXIT |
---|
1256 | ENDIF |
---|
1257 | ENDDO |
---|
1258 | ENDIF |
---|
1259 | |
---|
1260 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
1261 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
1262 | |
---|
1263 | ! |
---|
1264 | !-- Computation of both the characteristic vertical velocity and |
---|
1265 | !-- the characteristic convective boundary layer temperature. |
---|
1266 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
1267 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. abs(hom(nzb,1,18,sr)) > 1.0E-8 & |
---|
1268 | .AND. z_i(1) /= 0.0 ) THEN |
---|
1269 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
1270 | hom(nzb,1,18,sr) * & |
---|
1271 | ABS( z_i(1) ) )**0.333333333 |
---|
1272 | !-- so far this only works if Prandtl layer is used |
---|
1273 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
1274 | ELSE |
---|
1275 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
1276 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
1277 | ENDIF |
---|
1278 | |
---|
1279 | ! |
---|
1280 | !-- Collect the time series quantities |
---|
1281 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
1282 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
1283 | ts_value(3,sr) = dt_3d |
---|
1284 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
1285 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
1286 | ts_value(6,sr) = u_max |
---|
1287 | ts_value(7,sr) = v_max |
---|
1288 | ts_value(8,sr) = w_max |
---|
1289 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
1290 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
1291 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
1292 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
1293 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
1294 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
1295 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
1296 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
1297 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
1298 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
1299 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
1300 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
1301 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
1302 | |
---|
1303 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
1304 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
1305 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
1306 | ELSE |
---|
1307 | ts_value(22,sr) = 10000.0 |
---|
1308 | ENDIF |
---|
1309 | |
---|
1310 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
1311 | ! |
---|
1312 | !-- Calculate additional statistics provided by the user interface |
---|
1313 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
1314 | |
---|
1315 | ENDDO ! loop of the subregions |
---|
1316 | |
---|
1317 | ! |
---|
1318 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
1319 | IF ( do_sum ) THEN |
---|
1320 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
1321 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
1322 | average_count_pr = average_count_pr + 1 |
---|
1323 | do_sum = .FALSE. |
---|
1324 | ENDIF |
---|
1325 | |
---|
1326 | ! |
---|
1327 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
1328 | !-- This flag is reset after each time step in time_integration. |
---|
1329 | flow_statistics_called = .TRUE. |
---|
1330 | |
---|
1331 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
1332 | |
---|
1333 | |
---|
1334 | END SUBROUTINE flow_statistics |
---|
1335 | |
---|
1336 | |
---|
1337 | #else |
---|
1338 | |
---|
1339 | |
---|
1340 | !------------------------------------------------------------------------------! |
---|
1341 | ! flow statistics - accelerator version |
---|
1342 | !------------------------------------------------------------------------------! |
---|
1343 | SUBROUTINE flow_statistics |
---|
1344 | |
---|
1345 | USE arrays_3d |
---|
1346 | USE cloud_parameters |
---|
1347 | USE control_parameters |
---|
1348 | USE cpulog |
---|
1349 | USE grid_variables |
---|
1350 | USE indices |
---|
1351 | USE interfaces |
---|
1352 | USE pegrid |
---|
1353 | USE statistics |
---|
1354 | |
---|
1355 | IMPLICIT NONE |
---|
1356 | |
---|
1357 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
1358 | LOGICAL :: first |
---|
1359 | REAL :: dptdz_threshold, height, pts, sums_l_eper, sums_l_etot, ust, & |
---|
1360 | ust2, u2, vst, vst2, v2, w2, z_i(2) |
---|
1361 | REAL :: s1, s2, s3, s4, s5, s6, s7 |
---|
1362 | REAL :: dptdz(nzb+1:nzt+1) |
---|
1363 | REAL :: sums_ll(nzb:nzt+1,2) |
---|
1364 | |
---|
1365 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
1366 | |
---|
1367 | ! |
---|
1368 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
1369 | !-- called once after the current time step |
---|
1370 | IF ( flow_statistics_called ) THEN |
---|
1371 | |
---|
1372 | message_string = 'flow_statistics is called two times within one ' // & |
---|
1373 | 'timestep' |
---|
1374 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
1375 | |
---|
1376 | ENDIF |
---|
1377 | |
---|
1378 | !$acc data copyin( hom ) create( sums, sums_l ) |
---|
1379 | |
---|
1380 | ! |
---|
1381 | !-- Compute statistics for each (sub-)region |
---|
1382 | DO sr = 0, statistic_regions |
---|
1383 | |
---|
1384 | ! |
---|
1385 | !-- Initialize (local) summation array |
---|
1386 | sums_l = 0.0 |
---|
1387 | |
---|
1388 | ! |
---|
1389 | !-- Store sums that have been computed in other subroutines in summation |
---|
1390 | !-- array |
---|
1391 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
1392 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
1393 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
1394 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
1395 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
1396 | |
---|
1397 | ! |
---|
1398 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
1399 | !-- the local array sums_l() for further computations |
---|
1400 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
1401 | |
---|
1402 | ! |
---|
1403 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
1404 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
1405 | IF ( ocean ) THEN |
---|
1406 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
1407 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
1408 | ENDIF |
---|
1409 | |
---|
1410 | DO i = 0, threads_per_task-1 |
---|
1411 | ! |
---|
1412 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
1413 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u* |
---|
1414 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v* |
---|
1415 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
1416 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
1417 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
1418 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5 * & |
---|
1419 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
1420 | sums_ws2_ws_l(:,i) ) ! e* |
---|
1421 | DO k = nzb, nzt |
---|
1422 | sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5 * ( & |
---|
1423 | sums_us2_ws_l(k,i) + & |
---|
1424 | sums_vs2_ws_l(k,i) + & |
---|
1425 | sums_ws2_ws_l(k,i) ) |
---|
1426 | ENDDO |
---|
1427 | ENDDO |
---|
1428 | |
---|
1429 | ENDIF |
---|
1430 | |
---|
1431 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
1432 | |
---|
1433 | DO i = 0, threads_per_task-1 |
---|
1434 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* from advec_s_ws |
---|
1435 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
1436 | IF ( humidity .OR. passive_scalar ) sums_l(:,49,i) = & |
---|
1437 | sums_wsqs_ws_l(:,i) !w*q* |
---|
1438 | ENDDO |
---|
1439 | |
---|
1440 | ENDIF |
---|
1441 | ! |
---|
1442 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
1443 | !-- They must have been computed before, because they are already required |
---|
1444 | !-- for other horizontal averages. |
---|
1445 | tn = 0 |
---|
1446 | |
---|
1447 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
1448 | #if defined( __intel_openmp_bug ) |
---|
1449 | tn = omp_get_thread_num() |
---|
1450 | #else |
---|
1451 | !$ tn = omp_get_thread_num() |
---|
1452 | #endif |
---|
1453 | |
---|
1454 | !$acc update device( sums_l ) |
---|
1455 | |
---|
1456 | !$OMP DO |
---|
1457 | !$acc parallel loop gang present( pt, rflags_invers, rmask, sums_l, u, v ) create( s1, s2, s3 ) |
---|
1458 | DO k = nzb, nzt+1 |
---|
1459 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
1460 | DO i = nxl, nxr |
---|
1461 | DO j = nys, nyn |
---|
1462 | ! |
---|
1463 | !-- k+1 is used in rflags since rflags is set 0 at surface points |
---|
1464 | s1 = s1 + u(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1465 | s2 = s2 + v(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1466 | s3 = s3 + pt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1467 | ENDDO |
---|
1468 | ENDDO |
---|
1469 | sums_l(k,1,tn) = s1 |
---|
1470 | sums_l(k,2,tn) = s2 |
---|
1471 | sums_l(k,4,tn) = s3 |
---|
1472 | ENDDO |
---|
1473 | !$acc end parallel loop |
---|
1474 | |
---|
1475 | ! |
---|
1476 | !-- Horizontally averaged profile of salinity |
---|
1477 | IF ( ocean ) THEN |
---|
1478 | !$OMP DO |
---|
1479 | !$acc parallel loop gang present( rflags_invers, rmask, sums_l, sa ) create( s1 ) |
---|
1480 | DO k = nzb, nzt+1 |
---|
1481 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1482 | DO i = nxl, nxr |
---|
1483 | DO j = nys, nyn |
---|
1484 | s1 = s1 + sa(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1485 | ENDDO |
---|
1486 | ENDDO |
---|
1487 | sums_l(k,23,tn) = s1 |
---|
1488 | ENDDO |
---|
1489 | !$acc end parallel loop |
---|
1490 | ENDIF |
---|
1491 | |
---|
1492 | ! |
---|
1493 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
1494 | !-- total water content, specific humidity and liquid water potential |
---|
1495 | !-- temperature |
---|
1496 | IF ( humidity ) THEN |
---|
1497 | |
---|
1498 | !$OMP DO |
---|
1499 | !$acc parallel loop gang present( q, rflags_invers, rmask, sums_l, vpt ) create( s1, s2 ) |
---|
1500 | DO k = nzb, nzt+1 |
---|
1501 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
1502 | DO i = nxl, nxr |
---|
1503 | DO j = nys, nyn |
---|
1504 | s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1505 | s2 = s2 + vpt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1506 | ENDDO |
---|
1507 | ENDDO |
---|
1508 | sums_l(k,41,tn) = s1 |
---|
1509 | sums_l(k,44,tn) = s2 |
---|
1510 | ENDDO |
---|
1511 | !$acc end parallel loop |
---|
1512 | |
---|
1513 | IF ( cloud_physics ) THEN |
---|
1514 | !$OMP DO |
---|
1515 | !$acc parallel loop gang present( pt, q, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
1516 | DO k = nzb, nzt+1 |
---|
1517 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
1518 | DO i = nxl, nxr |
---|
1519 | DO j = nys, nyn |
---|
1520 | s1 = s1 + ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1521 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1522 | s2 = s2 + ( pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) ) * & |
---|
1523 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1524 | ENDDO |
---|
1525 | ENDDO |
---|
1526 | sums_l(k,42,tn) = s1 |
---|
1527 | sums_l(k,43,tn) = s2 |
---|
1528 | ENDDO |
---|
1529 | !$acc end parallel loop |
---|
1530 | ENDIF |
---|
1531 | ENDIF |
---|
1532 | |
---|
1533 | ! |
---|
1534 | !-- Horizontally averaged profiles of passive scalar |
---|
1535 | IF ( passive_scalar ) THEN |
---|
1536 | !$OMP DO |
---|
1537 | !$acc parallel loop gang present( q, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
1538 | DO k = nzb, nzt+1 |
---|
1539 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1540 | DO i = nxl, nxr |
---|
1541 | DO j = nys, nyn |
---|
1542 | s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1543 | ENDDO |
---|
1544 | ENDDO |
---|
1545 | sums_l(k,41,tn) = s1 |
---|
1546 | ENDDO |
---|
1547 | !$acc end parallel loop |
---|
1548 | ENDIF |
---|
1549 | !$OMP END PARALLEL |
---|
1550 | |
---|
1551 | ! |
---|
1552 | !-- Summation of thread sums |
---|
1553 | IF ( threads_per_task > 1 ) THEN |
---|
1554 | DO i = 1, threads_per_task-1 |
---|
1555 | !$acc parallel present( sums_l ) |
---|
1556 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
1557 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
1558 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
1559 | !$acc end parallel |
---|
1560 | IF ( ocean ) THEN |
---|
1561 | !$acc parallel present( sums_l ) |
---|
1562 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
1563 | !$acc end parallel |
---|
1564 | ENDIF |
---|
1565 | IF ( humidity ) THEN |
---|
1566 | !$acc parallel present( sums_l ) |
---|
1567 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
1568 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
1569 | !$acc end parallel |
---|
1570 | IF ( cloud_physics ) THEN |
---|
1571 | !$acc parallel present( sums_l ) |
---|
1572 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
1573 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
1574 | !$acc end parallel |
---|
1575 | ENDIF |
---|
1576 | ENDIF |
---|
1577 | IF ( passive_scalar ) THEN |
---|
1578 | !$acc parallel present( sums_l ) |
---|
1579 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
1580 | !$acc end parallel |
---|
1581 | ENDIF |
---|
1582 | ENDDO |
---|
1583 | ENDIF |
---|
1584 | |
---|
1585 | #if defined( __parallel ) |
---|
1586 | ! |
---|
1587 | !-- Compute total sum from local sums |
---|
1588 | !$acc update host( sums_l ) |
---|
1589 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1590 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
1591 | MPI_SUM, comm2d, ierr ) |
---|
1592 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1593 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
1594 | MPI_SUM, comm2d, ierr ) |
---|
1595 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1596 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
1597 | MPI_SUM, comm2d, ierr ) |
---|
1598 | IF ( ocean ) THEN |
---|
1599 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1600 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
1601 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1602 | ENDIF |
---|
1603 | IF ( humidity ) THEN |
---|
1604 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1605 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
1606 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1607 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1608 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
1609 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1610 | IF ( cloud_physics ) THEN |
---|
1611 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1612 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
1613 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1614 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1615 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
1616 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1617 | ENDIF |
---|
1618 | ENDIF |
---|
1619 | |
---|
1620 | IF ( passive_scalar ) THEN |
---|
1621 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1622 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
1623 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1624 | ENDIF |
---|
1625 | !$acc update device( sums ) |
---|
1626 | #else |
---|
1627 | !$acc parallel present( sums, sums_l ) |
---|
1628 | sums(:,1) = sums_l(:,1,0) |
---|
1629 | sums(:,2) = sums_l(:,2,0) |
---|
1630 | sums(:,4) = sums_l(:,4,0) |
---|
1631 | !$acc end parallel |
---|
1632 | IF ( ocean ) THEN |
---|
1633 | !$acc parallel present( sums, sums_l ) |
---|
1634 | sums(:,23) = sums_l(:,23,0) |
---|
1635 | !$acc end parallel |
---|
1636 | ENDIF |
---|
1637 | IF ( humidity ) THEN |
---|
1638 | !$acc parallel present( sums, sums_l ) |
---|
1639 | sums(:,44) = sums_l(:,44,0) |
---|
1640 | sums(:,41) = sums_l(:,41,0) |
---|
1641 | !$acc end parallel |
---|
1642 | IF ( cloud_physics ) THEN |
---|
1643 | !$acc parallel present( sums, sums_l ) |
---|
1644 | sums(:,42) = sums_l(:,42,0) |
---|
1645 | sums(:,43) = sums_l(:,43,0) |
---|
1646 | !$acc end parallel |
---|
1647 | ENDIF |
---|
1648 | ENDIF |
---|
1649 | IF ( passive_scalar ) THEN |
---|
1650 | !$acc parallel present( sums, sums_l ) |
---|
1651 | sums(:,41) = sums_l(:,41,0) |
---|
1652 | !$acc end parallel |
---|
1653 | ENDIF |
---|
1654 | #endif |
---|
1655 | |
---|
1656 | ! |
---|
1657 | !-- Final values are obtained by division by the total number of grid points |
---|
1658 | !-- used for summation. After that store profiles. |
---|
1659 | !$acc parallel present( hom, ngp_2dh, ngp_2dh_s_inner, sums ) |
---|
1660 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
1661 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
1662 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
1663 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
1664 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
1665 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
1666 | !$acc end parallel |
---|
1667 | |
---|
1668 | ! |
---|
1669 | !-- Salinity |
---|
1670 | IF ( ocean ) THEN |
---|
1671 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
1672 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
1673 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
1674 | !$acc end parallel |
---|
1675 | ENDIF |
---|
1676 | |
---|
1677 | ! |
---|
1678 | !-- Humidity and cloud parameters |
---|
1679 | IF ( humidity ) THEN |
---|
1680 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
1681 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
1682 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
1683 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
1684 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
1685 | !$acc end parallel |
---|
1686 | IF ( cloud_physics ) THEN |
---|
1687 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
1688 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
1689 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
1690 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
1691 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
1692 | !$acc end parallel |
---|
1693 | ENDIF |
---|
1694 | ENDIF |
---|
1695 | |
---|
1696 | ! |
---|
1697 | !-- Passive scalar |
---|
1698 | IF ( passive_scalar ) THEN |
---|
1699 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
1700 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
1701 | hom(:,1,41,sr) = sums(:,41) ! s (q) |
---|
1702 | !$acc end parallel |
---|
1703 | ENDIF |
---|
1704 | |
---|
1705 | ! |
---|
1706 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
1707 | !-- variances, the total and the perturbation energy (single values in last |
---|
1708 | !-- column of sums_l) and some diagnostic quantities. |
---|
1709 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
1710 | !-- ---- speaking the following k-loop would have to be split up and |
---|
1711 | !-- rearranged according to the staggered grid. |
---|
1712 | !-- However, this implies no error since staggered velocity components |
---|
1713 | !-- are zero at the walls and inside buildings. |
---|
1714 | tn = 0 |
---|
1715 | #if defined( __intel_openmp_bug ) |
---|
1716 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
1717 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
1718 | tn = omp_get_thread_num() |
---|
1719 | #else |
---|
1720 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
1721 | !$ tn = omp_get_thread_num() |
---|
1722 | #endif |
---|
1723 | !$OMP DO |
---|
1724 | !$acc parallel loop gang present( e, hom, kh, km, p, pt, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, s5, s6, s7 ) |
---|
1725 | DO k = nzb, nzt+1 |
---|
1726 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5, s6, s7 ) |
---|
1727 | DO i = nxl, nxr |
---|
1728 | DO j = nys, nyn |
---|
1729 | ! |
---|
1730 | !-- Prognostic and diagnostic variables |
---|
1731 | s1 = s1 + w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1732 | s2 = s2 + e(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1733 | s3 = s3 + km(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1734 | s4 = s4 + kh(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1735 | s5 = s5 + p(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1736 | s6 = s6 + ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) * & |
---|
1737 | rflags_invers(j,i,k+1) |
---|
1738 | ! |
---|
1739 | !-- Higher moments |
---|
1740 | !-- (Computation of the skewness of w further below) |
---|
1741 | s7 = s7 + w(k,j,i)**3 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1742 | ENDDO |
---|
1743 | ENDDO |
---|
1744 | sums_l(k,3,tn) = s1 |
---|
1745 | sums_l(k,8,tn) = s2 |
---|
1746 | sums_l(k,9,tn) = s3 |
---|
1747 | sums_l(k,10,tn) = s4 |
---|
1748 | sums_l(k,40,tn) = s5 |
---|
1749 | sums_l(k,33,tn) = s6 |
---|
1750 | sums_l(k,38,tn) = s7 |
---|
1751 | ENDDO |
---|
1752 | !$acc end parallel loop |
---|
1753 | |
---|
1754 | IF ( humidity ) THEN |
---|
1755 | !$OMP DO |
---|
1756 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
1757 | DO k = nzb, nzt+1 |
---|
1758 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1759 | DO i = nxl, nxr |
---|
1760 | DO j = nys, nyn |
---|
1761 | s1 = s1 + ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) * & |
---|
1762 | rflags_invers(j,i,k+1) |
---|
1763 | ENDDO |
---|
1764 | ENDDO |
---|
1765 | sums_l(k,70,tn) = s1 |
---|
1766 | ENDDO |
---|
1767 | !$acc end parallel loop |
---|
1768 | ENDIF |
---|
1769 | |
---|
1770 | ! |
---|
1771 | !-- Total and perturbation energy for the total domain (being |
---|
1772 | !-- collected in the last column of sums_l). |
---|
1773 | !$OMP DO |
---|
1774 | !$acc parallel loop collapse(3) present( rflags_invers, rmask, u, v, w ) reduction(+:s1) |
---|
1775 | DO i = nxl, nxr |
---|
1776 | DO j = nys, nyn |
---|
1777 | DO k = nzb, nzt+1 |
---|
1778 | s1 = s1 + 0.5 * ( u(k,j,i)**2 + v(k,j,i)**2 + w(k,j,i)**2 ) * & |
---|
1779 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1780 | ENDDO |
---|
1781 | ENDDO |
---|
1782 | ENDDO |
---|
1783 | !$acc end parallel loop |
---|
1784 | !$acc parallel present( sums_l ) |
---|
1785 | sums_l(nzb+4,pr_palm,tn) = s1 |
---|
1786 | !$acc end parallel |
---|
1787 | |
---|
1788 | !$OMP DO |
---|
1789 | !$acc parallel present( rmask, sums_l, us, usws, vsws, ts ) create( s1, s2, s3, s4 ) |
---|
1790 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) |
---|
1791 | DO i = nxl, nxr |
---|
1792 | DO j = nys, nyn |
---|
1793 | ! |
---|
1794 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
1795 | s1 = s1 + us(j,i) * rmask(j,i,sr) |
---|
1796 | s2 = s2 + usws(j,i) * rmask(j,i,sr) |
---|
1797 | s3 = s3 + vsws(j,i) * rmask(j,i,sr) |
---|
1798 | s4 = s4 + ts(j,i) * rmask(j,i,sr) |
---|
1799 | ENDDO |
---|
1800 | ENDDO |
---|
1801 | sums_l(nzb,pr_palm,tn) = s1 |
---|
1802 | sums_l(nzb+1,pr_palm,tn) = s2 |
---|
1803 | sums_l(nzb+2,pr_palm,tn) = s3 |
---|
1804 | sums_l(nzb+3,pr_palm,tn) = s4 |
---|
1805 | !$acc end parallel |
---|
1806 | |
---|
1807 | IF ( humidity ) THEN |
---|
1808 | !$acc parallel present( qs, rmask, sums_l ) create( s1 ) |
---|
1809 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1810 | DO i = nxl, nxr |
---|
1811 | DO j = nys, nyn |
---|
1812 | s1 = s1 + qs(j,i) * rmask(j,i,sr) |
---|
1813 | ENDDO |
---|
1814 | ENDDO |
---|
1815 | sums_l(nzb+12,pr_palm,tn) = s1 |
---|
1816 | !$acc end parallel |
---|
1817 | ENDIF |
---|
1818 | |
---|
1819 | ! |
---|
1820 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
1821 | !-- quantities are evaluated in the advection routines. |
---|
1822 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
1823 | |
---|
1824 | !$OMP DO |
---|
1825 | !$acc parallel loop gang present( u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, ust2, vst2, w2 ) |
---|
1826 | DO k = nzb, nzt+1 |
---|
1827 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) |
---|
1828 | DO i = nxl, nxr |
---|
1829 | DO j = nys, nyn |
---|
1830 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
1831 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
1832 | w2 = w(k,j,i)**2 |
---|
1833 | |
---|
1834 | s1 = s1 + ust2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1835 | s2 = s2 + vst2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1836 | s3 = s3 + w2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1837 | ! |
---|
1838 | !-- Perturbation energy |
---|
1839 | s4 = s4 + 0.5 * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) * & |
---|
1840 | rflags_invers(j,i,k+1) |
---|
1841 | ENDDO |
---|
1842 | ENDDO |
---|
1843 | sums_l(k,30,tn) = s1 |
---|
1844 | sums_l(k,31,tn) = s2 |
---|
1845 | sums_l(k,32,tn) = s3 |
---|
1846 | sums_l(k,34,tn) = s4 |
---|
1847 | ENDDO |
---|
1848 | !$acc end parallel loop |
---|
1849 | ! |
---|
1850 | !-- Total perturbation TKE |
---|
1851 | !$OMP DO |
---|
1852 | !$acc parallel present( sums_l ) create( s1 ) |
---|
1853 | !$acc loop reduction( +: s1 ) |
---|
1854 | DO k = nzb, nzt+1 |
---|
1855 | s1 = s1 + sums_l(k,34,tn) |
---|
1856 | ENDDO |
---|
1857 | sums_l(nzb+5,pr_palm,tn) = s1 |
---|
1858 | !$acc end parallel |
---|
1859 | |
---|
1860 | ENDIF |
---|
1861 | |
---|
1862 | ! |
---|
1863 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
1864 | |
---|
1865 | ! |
---|
1866 | !-- Subgridscale fluxes. |
---|
1867 | !-- WARNING: If a Prandtl-layer is used (k=nzb for flat terrain), the fluxes |
---|
1868 | !-- ------- should be calculated there in a different way. This is done |
---|
1869 | !-- in the next loop further below, where results from this loop are |
---|
1870 | !-- overwritten. However, THIS WORKS IN CASE OF FLAT TERRAIN ONLY! |
---|
1871 | !-- The non-flat case still has to be handled. |
---|
1872 | !-- NOTE: for simplicity, nzb_s_inner is used below, although |
---|
1873 | !-- ---- strictly speaking the following k-loop would have to be |
---|
1874 | !-- split up according to the staggered grid. |
---|
1875 | !-- However, this implies no error since staggered velocity |
---|
1876 | !-- components are zero at the walls and inside buildings. |
---|
1877 | !$OMP DO |
---|
1878 | !$acc parallel loop gang present( ddzu, kh, km, pt, u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) |
---|
1879 | DO k = nzb, nzt_diff |
---|
1880 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
1881 | DO i = nxl, nxr |
---|
1882 | DO j = nys, nyn |
---|
1883 | |
---|
1884 | ! |
---|
1885 | !-- Momentum flux w"u" |
---|
1886 | s1 = s1 - 0.25 * ( & |
---|
1887 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
1888 | ) * ( & |
---|
1889 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
1890 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
1891 | ) & |
---|
1892 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1893 | ! |
---|
1894 | !-- Momentum flux w"v" |
---|
1895 | s2 = s2 - 0.25 * ( & |
---|
1896 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
1897 | ) * ( & |
---|
1898 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
1899 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
1900 | ) & |
---|
1901 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1902 | ! |
---|
1903 | !-- Heat flux w"pt" |
---|
1904 | s3 = s3 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
1905 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
1906 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1907 | ENDDO |
---|
1908 | ENDDO |
---|
1909 | sums_l(k,12,tn) = s1 |
---|
1910 | sums_l(k,14,tn) = s2 |
---|
1911 | sums_l(k,16,tn) = s3 |
---|
1912 | ENDDO |
---|
1913 | !$acc end parallel loop |
---|
1914 | |
---|
1915 | ! |
---|
1916 | !-- Salinity flux w"sa" |
---|
1917 | IF ( ocean ) THEN |
---|
1918 | !$acc parallel loop gang present( ddzu, kh, sa, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
1919 | DO k = nzb, nzt_diff |
---|
1920 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1921 | DO i = nxl, nxr |
---|
1922 | DO j = nys, nyn |
---|
1923 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
1924 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
1925 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1926 | ENDDO |
---|
1927 | ENDDO |
---|
1928 | sums_l(k,65,tn) = s1 |
---|
1929 | ENDDO |
---|
1930 | !$acc end parallel loop |
---|
1931 | ENDIF |
---|
1932 | |
---|
1933 | ! |
---|
1934 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
1935 | IF ( humidity ) THEN |
---|
1936 | |
---|
1937 | !$acc parallel loop gang present( ddzu, kh, q, vpt, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
1938 | DO k = nzb, nzt_diff |
---|
1939 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
1940 | DO i = nxl, nxr |
---|
1941 | DO j = nys, nyn |
---|
1942 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
1943 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
1944 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1945 | s2 = s2 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
1946 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
1947 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1948 | ENDDO |
---|
1949 | ENDDO |
---|
1950 | sums_l(k,45,tn) = s1 |
---|
1951 | sums_l(k,48,tn) = s2 |
---|
1952 | ENDDO |
---|
1953 | !$acc end parallel loop |
---|
1954 | |
---|
1955 | IF ( cloud_physics ) THEN |
---|
1956 | |
---|
1957 | !$acc parallel loop gang present( ddzu, kh, q, ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
1958 | DO k = nzb, nzt_diff |
---|
1959 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1960 | DO i = nxl, nxr |
---|
1961 | DO j = nys, nyn |
---|
1962 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
1963 | * ( ( q(k+1,j,i) - ql(k+1,j,i) ) & |
---|
1964 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
1965 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1966 | ENDDO |
---|
1967 | ENDDO |
---|
1968 | sums_l(k,51,tn) = s1 |
---|
1969 | ENDDO |
---|
1970 | !$acc end parallel loop |
---|
1971 | |
---|
1972 | ENDIF |
---|
1973 | |
---|
1974 | ENDIF |
---|
1975 | ! |
---|
1976 | !-- Passive scalar flux |
---|
1977 | IF ( passive_scalar ) THEN |
---|
1978 | |
---|
1979 | !$acc parallel loop gang present( ddzu, kh, q, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
1980 | DO k = nzb, nzt_diff |
---|
1981 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1982 | DO i = nxl, nxr |
---|
1983 | DO j = nys, nyn |
---|
1984 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
1985 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
1986 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1987 | ENDDO |
---|
1988 | ENDDO |
---|
1989 | sums_l(k,48,tn) = s1 |
---|
1990 | ENDDO |
---|
1991 | !$acc end parallel loop |
---|
1992 | |
---|
1993 | ENDIF |
---|
1994 | |
---|
1995 | IF ( use_surface_fluxes ) THEN |
---|
1996 | |
---|
1997 | !$OMP DO |
---|
1998 | !$acc parallel present( rmask, shf, sums_l, usws, vsws ) create( s1, s2, s3, s4, s5 ) |
---|
1999 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) |
---|
2000 | DO i = nxl, nxr |
---|
2001 | DO j = nys, nyn |
---|
2002 | ! |
---|
2003 | !-- Subgridscale fluxes in the Prandtl layer |
---|
2004 | s1 = s1 + usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
2005 | s2 = s2 + vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
2006 | s3 = s3 + shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
2007 | s4 = s4 + 0.0 * rmask(j,i,sr) ! u"pt" |
---|
2008 | s5 = s5 + 0.0 * rmask(j,i,sr) ! v"pt" |
---|
2009 | ENDDO |
---|
2010 | ENDDO |
---|
2011 | sums_l(nzb,12,tn) = s1 |
---|
2012 | sums_l(nzb,14,tn) = s2 |
---|
2013 | sums_l(nzb,16,tn) = s3 |
---|
2014 | sums_l(nzb,58,tn) = s4 |
---|
2015 | sums_l(nzb,61,tn) = s5 |
---|
2016 | !$acc end parallel |
---|
2017 | |
---|
2018 | IF ( ocean ) THEN |
---|
2019 | |
---|
2020 | !$OMP DO |
---|
2021 | !$acc parallel present( rmask, saswsb, sums_l ) create( s1 ) |
---|
2022 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2023 | DO i = nxl, nxr |
---|
2024 | DO j = nys, nyn |
---|
2025 | s1 = s1 + saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
2026 | ENDDO |
---|
2027 | ENDDO |
---|
2028 | sums_l(nzb,65,tn) = s1 |
---|
2029 | !$acc end parallel |
---|
2030 | |
---|
2031 | ENDIF |
---|
2032 | |
---|
2033 | IF ( humidity ) THEN |
---|
2034 | |
---|
2035 | !$OMP DO |
---|
2036 | !$acc parallel present( pt, q, qsws, rmask, shf, sums_l ) create( s1, s2 ) |
---|
2037 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2038 | DO i = nxl, nxr |
---|
2039 | DO j = nys, nyn |
---|
2040 | s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2041 | s2 = s2 + ( ( 1.0 + 0.61 * q(nzb,j,i) ) * shf(j,i) & |
---|
2042 | + 0.61 * pt(nzb,j,i) * qsws(j,i) ) |
---|
2043 | ENDDO |
---|
2044 | ENDDO |
---|
2045 | sums_l(nzb,48,tn) = s1 |
---|
2046 | sums_l(nzb,45,tn) = s2 |
---|
2047 | !$acc end parallel |
---|
2048 | |
---|
2049 | IF ( cloud_droplets ) THEN |
---|
2050 | |
---|
2051 | !$OMP DO |
---|
2052 | !$acc parallel present( pt, q, ql, qsws, rmask, shf, sums_l ) create( s1 ) |
---|
2053 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2054 | DO i = nxl, nxr |
---|
2055 | DO j = nys, nyn |
---|
2056 | s1 = s1 + ( ( 1.0 + 0.61 * q(nzb,j,i) - ql(nzb,j,i) ) * & |
---|
2057 | shf(j,i) + 0.61 * pt(nzb,j,i) * qsws(j,i) ) |
---|
2058 | ENDDO |
---|
2059 | ENDDO |
---|
2060 | sums_l(nzb,45,tn) = s1 |
---|
2061 | !$acc end parallel |
---|
2062 | |
---|
2063 | ENDIF |
---|
2064 | |
---|
2065 | IF ( cloud_physics ) THEN |
---|
2066 | |
---|
2067 | !$OMP DO |
---|
2068 | !$acc parallel present( qsws, rmask, sums_l ) create( s1 ) |
---|
2069 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2070 | DO i = nxl, nxr |
---|
2071 | DO j = nys, nyn |
---|
2072 | ! |
---|
2073 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
2074 | s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2075 | ENDDO |
---|
2076 | ENDDO |
---|
2077 | sums_l(nzb,51,tn) = s1 |
---|
2078 | !$acc end parallel |
---|
2079 | |
---|
2080 | ENDIF |
---|
2081 | |
---|
2082 | ENDIF |
---|
2083 | |
---|
2084 | IF ( passive_scalar ) THEN |
---|
2085 | |
---|
2086 | !$OMP DO |
---|
2087 | !$acc parallel present( qsws, rmask, sums_l ) create( s1 ) |
---|
2088 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2089 | DO i = nxl, nxr |
---|
2090 | DO j = nys, nyn |
---|
2091 | s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2092 | ENDDO |
---|
2093 | ENDDO |
---|
2094 | sums_l(nzb,48,tn) = s1 |
---|
2095 | !$acc end parallel |
---|
2096 | |
---|
2097 | ENDIF |
---|
2098 | |
---|
2099 | ENDIF |
---|
2100 | |
---|
2101 | ! |
---|
2102 | !-- Subgridscale fluxes at the top surface |
---|
2103 | IF ( use_top_fluxes ) THEN |
---|
2104 | |
---|
2105 | !$OMP DO |
---|
2106 | !$acc parallel present( rmask, sums_l, tswst, uswst, vswst ) create( s1, s2, s3, s4, s5 ) |
---|
2107 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) |
---|
2108 | DO i = nxl, nxr |
---|
2109 | DO j = nys, nyn |
---|
2110 | s1 = s1 + uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
2111 | s2 = s2 + vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
2112 | s3 = s3 + tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
2113 | s4 = s4 + 0.0 * rmask(j,i,sr) ! u"pt" |
---|
2114 | s5 = s5 + 0.0 * rmask(j,i,sr) ! v"pt" |
---|
2115 | ENDDO |
---|
2116 | ENDDO |
---|
2117 | sums_l(nzt:nzt+1,12,tn) = s1 |
---|
2118 | sums_l(nzt:nzt+1,14,tn) = s2 |
---|
2119 | sums_l(nzt:nzt+1,16,tn) = s3 |
---|
2120 | sums_l(nzt:nzt+1,58,tn) = s4 |
---|
2121 | sums_l(nzt:nzt+1,61,tn) = s5 |
---|
2122 | !$acc end parallel |
---|
2123 | |
---|
2124 | IF ( ocean ) THEN |
---|
2125 | |
---|
2126 | !$OMP DO |
---|
2127 | !$acc parallel present( rmask, saswst, sums_l ) create( s1 ) |
---|
2128 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2129 | DO i = nxl, nxr |
---|
2130 | DO j = nys, nyn |
---|
2131 | s1 = s1 + saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
2132 | ENDDO |
---|
2133 | ENDDO |
---|
2134 | sums_l(nzt,65,tn) = s1 |
---|
2135 | !$acc end parallel |
---|
2136 | |
---|
2137 | ENDIF |
---|
2138 | |
---|
2139 | IF ( humidity ) THEN |
---|
2140 | |
---|
2141 | !$OMP DO |
---|
2142 | !$acc parallel present( pt, q, qswst, rmask, tswst, sums_l ) create( s1, s2 ) |
---|
2143 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2144 | DO i = nxl, nxr |
---|
2145 | DO j = nys, nyn |
---|
2146 | s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2147 | s2 = s2 + ( ( 1.0 + 0.61 * q(nzt,j,i) ) * tswst(j,i) + & |
---|
2148 | 0.61 * pt(nzt,j,i) * qswst(j,i) ) |
---|
2149 | ENDDO |
---|
2150 | ENDDO |
---|
2151 | sums_l(nzt,48,tn) = s1 |
---|
2152 | sums_l(nzt,45,tn) = s2 |
---|
2153 | !$acc end parallel |
---|
2154 | |
---|
2155 | IF ( cloud_droplets ) THEN |
---|
2156 | |
---|
2157 | !$OMP DO |
---|
2158 | !$acc parallel present( pt, q, ql, qswst, rmask, tswst, sums_l ) create( s1 ) |
---|
2159 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2160 | DO i = nxl, nxr |
---|
2161 | DO j = nys, nyn |
---|
2162 | s1 = s1 + ( ( 1.0 + 0.61 * q(nzt,j,i) - ql(nzt,j,i) ) * & |
---|
2163 | tswst(j,i) + 0.61 * pt(nzt,j,i) * qswst(j,i) ) |
---|
2164 | ENDDO |
---|
2165 | ENDDO |
---|
2166 | sums_l(nzt,45,tn) = s1 |
---|
2167 | !$acc end parallel |
---|
2168 | |
---|
2169 | ENDIF |
---|
2170 | |
---|
2171 | IF ( cloud_physics ) THEN |
---|
2172 | |
---|
2173 | !$OMP DO |
---|
2174 | !$acc parallel present( qswst, rmask, sums_l ) create( s1 ) |
---|
2175 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2176 | DO i = nxl, nxr |
---|
2177 | DO j = nys, nyn |
---|
2178 | ! |
---|
2179 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
2180 | s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2181 | ENDDO |
---|
2182 | ENDDO |
---|
2183 | sums_l(nzt,51,tn) = s1 |
---|
2184 | !$acc end parallel |
---|
2185 | |
---|
2186 | ENDIF |
---|
2187 | |
---|
2188 | ENDIF |
---|
2189 | |
---|
2190 | IF ( passive_scalar ) THEN |
---|
2191 | |
---|
2192 | !$OMP DO |
---|
2193 | !$acc parallel present( qswst, rmask, sums_l ) create( s1 ) |
---|
2194 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2195 | DO i = nxl, nxr |
---|
2196 | DO j = nys, nyn |
---|
2197 | s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2198 | ENDDO |
---|
2199 | ENDDO |
---|
2200 | sums_l(nzt,48,tn) = s1 |
---|
2201 | !$acc end parallel |
---|
2202 | |
---|
2203 | ENDIF |
---|
2204 | |
---|
2205 | ENDIF |
---|
2206 | |
---|
2207 | ! |
---|
2208 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
2209 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
2210 | !-- ---- speaking the following k-loop would have to be split up and |
---|
2211 | !-- rearranged according to the staggered grid. |
---|
2212 | !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2, s3 ) |
---|
2213 | DO k = nzb, nzt_diff |
---|
2214 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
2215 | DO i = nxl, nxr |
---|
2216 | DO j = nys, nyn |
---|
2217 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
2218 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
2219 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
2220 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
2221 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
2222 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
2223 | ! |
---|
2224 | !-- Higher moments |
---|
2225 | s1 = s1 + pts * w(k,j,i)**2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2226 | s2 = s2 + pts**2 * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2227 | ! |
---|
2228 | !-- Energy flux w*e* (has to be adjusted?) |
---|
2229 | s3 = s3 + w(k,j,i) * 0.5 * ( ust**2 + vst**2 + w(k,j,i)**2 ) & |
---|
2230 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2231 | ENDDO |
---|
2232 | ENDDO |
---|
2233 | sums_l(k,35,tn) = s1 |
---|
2234 | sums_l(k,36,tn) = s2 |
---|
2235 | sums_l(k,37,tn) = s3 |
---|
2236 | ENDDO |
---|
2237 | !$acc end parallel loop |
---|
2238 | |
---|
2239 | ! |
---|
2240 | !-- Salinity flux and density (density does not belong to here, |
---|
2241 | !-- but so far there is no other suitable place to calculate) |
---|
2242 | IF ( ocean ) THEN |
---|
2243 | |
---|
2244 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
2245 | |
---|
2246 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sa, sums_l, w ) create( s1 ) |
---|
2247 | DO k = nzb, nzt_diff |
---|
2248 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2249 | DO i = nxl, nxr |
---|
2250 | DO j = nys, nyn |
---|
2251 | s1 = s1 + 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
2252 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) & |
---|
2253 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2254 | ENDDO |
---|
2255 | ENDDO |
---|
2256 | sums_l(k,66,tn) = s1 |
---|
2257 | ENDDO |
---|
2258 | !$acc end parallel loop |
---|
2259 | |
---|
2260 | ENDIF |
---|
2261 | |
---|
2262 | !$acc parallel loop gang present( rflags_invers, rho, prho, rmask, sums_l ) create( s1, s2 ) |
---|
2263 | DO k = nzb, nzt_diff |
---|
2264 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2265 | DO i = nxl, nxr |
---|
2266 | DO j = nys, nyn |
---|
2267 | s1 = s1 + rho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2268 | s2 = s2 + prho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2269 | ENDDO |
---|
2270 | ENDDO |
---|
2271 | sums_l(k,64,tn) = s1 |
---|
2272 | sums_l(k,71,tn) = s2 |
---|
2273 | ENDDO |
---|
2274 | !$acc end parallel loop |
---|
2275 | |
---|
2276 | ENDIF |
---|
2277 | |
---|
2278 | ! |
---|
2279 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
2280 | !-- content, rain drop concentration and rain water content |
---|
2281 | IF ( humidity ) THEN |
---|
2282 | |
---|
2283 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
2284 | |
---|
2285 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) |
---|
2286 | DO k = nzb, nzt_diff |
---|
2287 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2288 | DO i = nxl, nxr |
---|
2289 | DO j = nys, nyn |
---|
2290 | s1 = s1 + 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
2291 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) * & |
---|
2292 | w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2293 | ENDDO |
---|
2294 | ENDDO |
---|
2295 | sums_l(k,46,tn) = s1 |
---|
2296 | ENDDO |
---|
2297 | !$acc end parallel loop |
---|
2298 | |
---|
2299 | IF ( .NOT. cloud_droplets ) THEN |
---|
2300 | |
---|
2301 | !$acc parallel loop gang present( hom, q, ql, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
2302 | DO k = nzb, nzt_diff |
---|
2303 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2304 | DO i = nxl, nxr |
---|
2305 | DO j = nys, nyn |
---|
2306 | s1 = s1 + 0.5 * ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) + & |
---|
2307 | ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) & |
---|
2308 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2309 | ENDDO |
---|
2310 | ENDDO |
---|
2311 | sums_l(k,52,tn) = s1 |
---|
2312 | ENDDO |
---|
2313 | !$acc end parallel loop |
---|
2314 | |
---|
2315 | IF ( icloud_scheme == 0 ) THEN |
---|
2316 | |
---|
2317 | !$acc parallel loop gang present( qc, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
2318 | DO k = nzb, nzt_diff |
---|
2319 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2320 | DO i = nxl, nxr |
---|
2321 | DO j = nys, nyn |
---|
2322 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2323 | s2 = s2 + qc(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2324 | ENDDO |
---|
2325 | ENDDO |
---|
2326 | sums_l(k,54,tn) = s1 |
---|
2327 | sums_l(k,75,tn) = s2 |
---|
2328 | ENDDO |
---|
2329 | !$acc end parallel loop |
---|
2330 | |
---|
2331 | IF ( precipitation ) THEN |
---|
2332 | |
---|
2333 | !$acc parallel loop gang present( nr, qr, prr, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) |
---|
2334 | DO k = nzb, nzt_diff |
---|
2335 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
2336 | DO i = nxl, nxr |
---|
2337 | DO j = nys, nyn |
---|
2338 | s1 = s1 + nr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2339 | s2 = s2 + qr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2340 | s3 = s3 + prr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2341 | ENDDO |
---|
2342 | ENDDO |
---|
2343 | sums_l(k,73,tn) = s1 |
---|
2344 | sums_l(k,74,tn) = s2 |
---|
2345 | sums_l(k,76,tn) = s3 |
---|
2346 | ENDDO |
---|
2347 | !$acc end parallel loop |
---|
2348 | |
---|
2349 | ENDIF |
---|
2350 | |
---|
2351 | ELSE |
---|
2352 | |
---|
2353 | !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2354 | DO k = nzb, nzt_diff |
---|
2355 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2356 | DO i = nxl, nxr |
---|
2357 | DO j = nys, nyn |
---|
2358 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2359 | ENDDO |
---|
2360 | ENDDO |
---|
2361 | sums_l(k,54,tn) = s1 |
---|
2362 | ENDDO |
---|
2363 | !$acc end parallel loop |
---|
2364 | |
---|
2365 | ENDIF |
---|
2366 | |
---|
2367 | ELSE |
---|
2368 | |
---|
2369 | !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2370 | DO k = nzb, nzt_diff |
---|
2371 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2372 | DO i = nxl, nxr |
---|
2373 | DO j = nys, nyn |
---|
2374 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2375 | ENDDO |
---|
2376 | ENDDO |
---|
2377 | sums_l(k,54,tn) = s1 |
---|
2378 | ENDDO |
---|
2379 | !$acc end parallel loop |
---|
2380 | |
---|
2381 | ENDIF |
---|
2382 | |
---|
2383 | ELSE |
---|
2384 | |
---|
2385 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
2386 | |
---|
2387 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) |
---|
2388 | DO k = nzb, nzt_diff |
---|
2389 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2390 | DO i = nxl, nxr |
---|
2391 | DO j = nys, nyn |
---|
2392 | s1 = s1 + 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
2393 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) & |
---|
2394 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2395 | ENDDO |
---|
2396 | ENDDO |
---|
2397 | sums_l(k,46,tn) = s1 |
---|
2398 | ENDDO |
---|
2399 | !$acc end parallel loop |
---|
2400 | |
---|
2401 | ELSEIF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
2402 | |
---|
2403 | !$acc parallel loop present( hom, sums_l ) |
---|
2404 | DO k = nzb, nzt_diff |
---|
2405 | sums_l(k,46,tn) = ( 1.0 + 0.61 * hom(k,1,41,sr) ) * sums_l(k,17,tn) + & |
---|
2406 | 0.61 * hom(k,1,4,sr) * sums_l(k,49,tn) |
---|
2407 | ENDDO |
---|
2408 | !$acc end parallel loop |
---|
2409 | |
---|
2410 | ENDIF |
---|
2411 | |
---|
2412 | ENDIF |
---|
2413 | |
---|
2414 | ENDIF |
---|
2415 | ! |
---|
2416 | !-- Passive scalar flux |
---|
2417 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca .OR. sr /= 0 ) ) THEN |
---|
2418 | |
---|
2419 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
2420 | DO k = nzb, nzt_diff |
---|
2421 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2422 | DO i = nxl, nxr |
---|
2423 | DO j = nys, nyn |
---|
2424 | s1 = s1 + 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
2425 | q(k+1,j,i) - hom(k+1,1,41,sr) ) & |
---|
2426 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2427 | ENDDO |
---|
2428 | ENDDO |
---|
2429 | sums_l(k,49,tn) = s1 |
---|
2430 | ENDDO |
---|
2431 | !$acc end parallel loop |
---|
2432 | |
---|
2433 | ENDIF |
---|
2434 | |
---|
2435 | ! |
---|
2436 | !-- For speed optimization fluxes which have been computed in part directly |
---|
2437 | !-- inside the WS advection routines are treated seperatly |
---|
2438 | !-- Momentum fluxes first: |
---|
2439 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
2440 | |
---|
2441 | !$OMP DO |
---|
2442 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2 ) |
---|
2443 | DO k = nzb, nzt_diff |
---|
2444 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2445 | DO i = nxl, nxr |
---|
2446 | DO j = nys, nyn |
---|
2447 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
2448 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
2449 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
2450 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
2451 | ! |
---|
2452 | !-- Momentum flux w*u* |
---|
2453 | s1 = s1 + 0.5 * ( w(k,j,i-1) + w(k,j,i) ) & |
---|
2454 | * ust * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2455 | ! |
---|
2456 | !-- Momentum flux w*v* |
---|
2457 | s2 = s2 + 0.5 * ( w(k,j-1,i) + w(k,j,i) ) & |
---|
2458 | * vst * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2459 | ENDDO |
---|
2460 | ENDDO |
---|
2461 | sums_l(k,13,tn) = s1 |
---|
2462 | sums_l(k,15,tn) = s1 |
---|
2463 | ENDDO |
---|
2464 | !$acc end parallel loop |
---|
2465 | |
---|
2466 | ENDIF |
---|
2467 | |
---|
2468 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
2469 | |
---|
2470 | !$OMP DO |
---|
2471 | !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
2472 | DO k = nzb, nzt_diff |
---|
2473 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2474 | DO i = nxl, nxr |
---|
2475 | DO j = nys, nyn |
---|
2476 | ! |
---|
2477 | !-- Vertical heat flux |
---|
2478 | s1 = s1 + 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
2479 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
2480 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2481 | ENDDO |
---|
2482 | ENDDO |
---|
2483 | sums_l(k,17,tn) = s1 |
---|
2484 | ENDDO |
---|
2485 | !$acc end parallel loop |
---|
2486 | |
---|
2487 | IF ( humidity ) THEN |
---|
2488 | |
---|
2489 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
2490 | DO k = nzb, nzt_diff |
---|
2491 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2492 | DO i = nxl, nxr |
---|
2493 | DO j = nys, nyn |
---|
2494 | s1 = s1 + 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
2495 | q(k+1,j,i) - hom(k+1,1,41,sr) ) & |
---|
2496 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2497 | ENDDO |
---|
2498 | ENDDO |
---|
2499 | sums_l(k,49,tn) = s1 |
---|
2500 | ENDDO |
---|
2501 | !$acc end parallel loop |
---|
2502 | |
---|
2503 | ENDIF |
---|
2504 | |
---|
2505 | ENDIF |
---|
2506 | |
---|
2507 | |
---|
2508 | ! |
---|
2509 | !-- Density at top follows Neumann condition |
---|
2510 | IF ( ocean ) THEN |
---|
2511 | !$acc parallel present( sums_l ) |
---|
2512 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
2513 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
2514 | !$acc end parallel |
---|
2515 | ENDIF |
---|
2516 | |
---|
2517 | ! |
---|
2518 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
2519 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
2520 | !-- First calculate the products, then the divergence. |
---|
2521 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
2522 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
2523 | |
---|
2524 | STOP '+++ openACC porting for vertical flux div of resolved scale TKE in flow_statistics is still missing' |
---|
2525 | sums_ll = 0.0 ! local array |
---|
2526 | |
---|
2527 | !$OMP DO |
---|
2528 | DO i = nxl, nxr |
---|
2529 | DO j = nys, nyn |
---|
2530 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2531 | |
---|
2532 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
2533 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
2534 | - 0.5 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
2535 | ) )**2 & |
---|
2536 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
2537 | - 0.5 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
2538 | ) )**2 & |
---|
2539 | + w(k,j,i)**2 ) |
---|
2540 | |
---|
2541 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
2542 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
2543 | |
---|
2544 | ENDDO |
---|
2545 | ENDDO |
---|
2546 | ENDDO |
---|
2547 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
2548 | sums_ll(nzt+1,1) = 0.0 |
---|
2549 | sums_ll(0,2) = 0.0 |
---|
2550 | sums_ll(nzt+1,2) = 0.0 |
---|
2551 | |
---|
2552 | DO k = nzb+1, nzt |
---|
2553 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
2554 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
2555 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
2556 | ENDDO |
---|
2557 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
2558 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
2559 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
2560 | |
---|
2561 | ENDIF |
---|
2562 | |
---|
2563 | ! |
---|
2564 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
2565 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
2566 | |
---|
2567 | STOP '+++ openACC porting for vertical flux div of SGS TKE in flow_statistics is still missing' |
---|
2568 | !$OMP DO |
---|
2569 | DO i = nxl, nxr |
---|
2570 | DO j = nys, nyn |
---|
2571 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2572 | |
---|
2573 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
2574 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
2575 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
2576 | ) * ddzw(k) |
---|
2577 | |
---|
2578 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
2579 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
2580 | ) |
---|
2581 | |
---|
2582 | ENDDO |
---|
2583 | ENDDO |
---|
2584 | ENDDO |
---|
2585 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
2586 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
2587 | |
---|
2588 | ENDIF |
---|
2589 | |
---|
2590 | ! |
---|
2591 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
2592 | !-- Do it only, if profiles shall be plotted. |
---|
2593 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
2594 | |
---|
2595 | STOP '+++ openACC porting for horizontal flux calculation in flow_statistics is still missing' |
---|
2596 | !$OMP DO |
---|
2597 | DO i = nxl, nxr |
---|
2598 | DO j = nys, nyn |
---|
2599 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2600 | ! |
---|
2601 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
2602 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
2603 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
2604 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
2605 | * ddx * rmask(j,i,sr) |
---|
2606 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
2607 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
2608 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
2609 | * ddy * rmask(j,i,sr) |
---|
2610 | ! |
---|
2611 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
2612 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
2613 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
2614 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
2615 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
2616 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
2617 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
2618 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
2619 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
2620 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
2621 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
2622 | ENDDO |
---|
2623 | ENDDO |
---|
2624 | ENDDO |
---|
2625 | ! |
---|
2626 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
2627 | sums_l(nzb,58,tn) = 0.0 |
---|
2628 | sums_l(nzb,59,tn) = 0.0 |
---|
2629 | sums_l(nzb,60,tn) = 0.0 |
---|
2630 | sums_l(nzb,61,tn) = 0.0 |
---|
2631 | sums_l(nzb,62,tn) = 0.0 |
---|
2632 | sums_l(nzb,63,tn) = 0.0 |
---|
2633 | |
---|
2634 | ENDIF |
---|
2635 | |
---|
2636 | ! |
---|
2637 | !-- Calculate the user-defined profiles |
---|
2638 | CALL user_statistics( 'profiles', sr, tn ) |
---|
2639 | !$OMP END PARALLEL |
---|
2640 | |
---|
2641 | ! |
---|
2642 | !-- Summation of thread sums |
---|
2643 | IF ( threads_per_task > 1 ) THEN |
---|
2644 | STOP '+++ openACC porting for threads_per_task > 1 in flow_statistics is still missing' |
---|
2645 | DO i = 1, threads_per_task-1 |
---|
2646 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
2647 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
2648 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
2649 | sums_l(:,45:pr_palm,i) |
---|
2650 | IF ( max_pr_user > 0 ) THEN |
---|
2651 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
2652 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
2653 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
2654 | ENDIF |
---|
2655 | ENDDO |
---|
2656 | ENDIF |
---|
2657 | |
---|
2658 | !$acc update host( hom, sums, sums_l ) |
---|
2659 | |
---|
2660 | #if defined( __parallel ) |
---|
2661 | |
---|
2662 | ! |
---|
2663 | !-- Compute total sum from local sums |
---|
2664 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2665 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
2666 | MPI_SUM, comm2d, ierr ) |
---|
2667 | #else |
---|
2668 | sums = sums_l(:,:,0) |
---|
2669 | #endif |
---|
2670 | |
---|
2671 | ! |
---|
2672 | !-- Final values are obtained by division by the total number of grid points |
---|
2673 | !-- used for summation. After that store profiles. |
---|
2674 | !-- Profiles: |
---|
2675 | DO k = nzb, nzt+1 |
---|
2676 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
2677 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
2678 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
2679 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
2680 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
2681 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
2682 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
2683 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
2684 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
2685 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
2686 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
2687 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
2688 | sums(k,65:69) = sums(k,65:69) / ngp_2dh(sr) |
---|
2689 | sums(k,70:pr_palm-2) = sums(k,70:pr_palm-2)/ ngp_2dh_s_inner(k,sr) |
---|
2690 | ENDDO |
---|
2691 | |
---|
2692 | !-- Upstream-parts |
---|
2693 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
2694 | !-- u* and so on |
---|
2695 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
2696 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
2697 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
2698 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
2699 | ngp_2dh(sr) |
---|
2700 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
2701 | ngp_2dh(sr) |
---|
2702 | !-- eges, e* |
---|
2703 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
2704 | ngp_3d(sr) |
---|
2705 | !-- Old and new divergence |
---|
2706 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
2707 | ngp_3d_inner(sr) |
---|
2708 | |
---|
2709 | !-- User-defined profiles |
---|
2710 | IF ( max_pr_user > 0 ) THEN |
---|
2711 | DO k = nzb, nzt+1 |
---|
2712 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
2713 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
2714 | ngp_2dh_s_inner(k,sr) |
---|
2715 | ENDDO |
---|
2716 | ENDIF |
---|
2717 | |
---|
2718 | ! |
---|
2719 | !-- Collect horizontal average in hom. |
---|
2720 | !-- Compute deduced averages (e.g. total heat flux) |
---|
2721 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
2722 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
2723 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
2724 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
2725 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
2726 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
2727 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
2728 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
2729 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
2730 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
2731 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
2732 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
2733 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
2734 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
2735 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
2736 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
2737 | ! profile 24 is initial profile (sa) |
---|
2738 | ! profiles 25-29 left empty for initial |
---|
2739 | ! profiles |
---|
2740 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
2741 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
2742 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
2743 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
2744 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
2745 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
2746 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
2747 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
2748 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
2749 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20 )**1.5 ! Sw |
---|
2750 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
2751 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
2752 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
2753 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
2754 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
2755 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
2756 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
2757 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
2758 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
2759 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
2760 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
2761 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
2762 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
2763 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
2764 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
2765 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
2766 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
2767 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
2768 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
2769 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
2770 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
2771 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
2772 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
2773 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
2774 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
2775 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
2776 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
2777 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
2778 | hom(:,1,72,sr) = hyp * 1E-4 ! hyp in dbar |
---|
2779 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
2780 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
2781 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
2782 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
2783 | ! 77 is initial density profile |
---|
2784 | hom(:,1,78,sr) = ug ! ug |
---|
2785 | hom(:,1,79,sr) = vg ! vg |
---|
2786 | |
---|
2787 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
2788 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
2789 | ! v_y, usw. (in last but one profile) |
---|
2790 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
2791 | ! u*, w'u', w'v', t* (in last profile) |
---|
2792 | |
---|
2793 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
2794 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
2795 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
2796 | ENDIF |
---|
2797 | |
---|
2798 | ! |
---|
2799 | !-- Determine the boundary layer height using two different schemes. |
---|
2800 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
2801 | !-- first relative minimum (maximum) of the total heat flux. |
---|
2802 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
2803 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
2804 | !-- (positive) for the first time. |
---|
2805 | z_i(1) = 0.0 |
---|
2806 | first = .TRUE. |
---|
2807 | |
---|
2808 | IF ( ocean ) THEN |
---|
2809 | DO k = nzt, nzb+1, -1 |
---|
2810 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
2811 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8) THEN |
---|
2812 | first = .FALSE. |
---|
2813 | height = zw(k) |
---|
2814 | ENDIF |
---|
2815 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
2816 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
2817 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
2818 | IF ( zw(k) < 1.5 * height ) THEN |
---|
2819 | z_i(1) = zw(k) |
---|
2820 | ELSE |
---|
2821 | z_i(1) = height |
---|
2822 | ENDIF |
---|
2823 | EXIT |
---|
2824 | ENDIF |
---|
2825 | ENDDO |
---|
2826 | ELSE |
---|
2827 | DO k = nzb, nzt-1 |
---|
2828 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
2829 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8 ) THEN |
---|
2830 | first = .FALSE. |
---|
2831 | height = zw(k) |
---|
2832 | ENDIF |
---|
2833 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
2834 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
2835 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
2836 | IF ( zw(k) < 1.5 * height ) THEN |
---|
2837 | z_i(1) = zw(k) |
---|
2838 | ELSE |
---|
2839 | z_i(1) = height |
---|
2840 | ENDIF |
---|
2841 | EXIT |
---|
2842 | ENDIF |
---|
2843 | ENDDO |
---|
2844 | ENDIF |
---|
2845 | |
---|
2846 | ! |
---|
2847 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
2848 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
2849 | !-- maximal local temperature gradient: starting from the second (the last |
---|
2850 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
2851 | !-- 0.2K/100m and greater than the next four gradients. |
---|
2852 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
2853 | !-- ocean case! |
---|
2854 | z_i(2) = 0.0 |
---|
2855 | DO k = nzb+1, nzt+1 |
---|
2856 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
2857 | ENDDO |
---|
2858 | dptdz_threshold = 0.2 / 100.0 |
---|
2859 | |
---|
2860 | IF ( ocean ) THEN |
---|
2861 | DO k = nzt+1, nzb+5, -1 |
---|
2862 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
2863 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
2864 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
2865 | z_i(2) = zw(k-1) |
---|
2866 | EXIT |
---|
2867 | ENDIF |
---|
2868 | ENDDO |
---|
2869 | ELSE |
---|
2870 | DO k = nzb+1, nzt-3 |
---|
2871 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
2872 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
2873 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
2874 | z_i(2) = zw(k-1) |
---|
2875 | EXIT |
---|
2876 | ENDIF |
---|
2877 | ENDDO |
---|
2878 | ENDIF |
---|
2879 | |
---|
2880 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
2881 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
2882 | |
---|
2883 | ! |
---|
2884 | !-- Computation of both the characteristic vertical velocity and |
---|
2885 | !-- the characteristic convective boundary layer temperature. |
---|
2886 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
2887 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. abs(hom(nzb,1,18,sr)) > 1.0E-8 & |
---|
2888 | .AND. z_i(1) /= 0.0 ) THEN |
---|
2889 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
2890 | hom(nzb,1,18,sr) * & |
---|
2891 | ABS( z_i(1) ) )**0.333333333 |
---|
2892 | !-- so far this only works if Prandtl layer is used |
---|
2893 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
2894 | ELSE |
---|
2895 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
2896 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
2897 | ENDIF |
---|
2898 | |
---|
2899 | ! |
---|
2900 | !-- Collect the time series quantities |
---|
2901 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
2902 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
2903 | ts_value(3,sr) = dt_3d |
---|
2904 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
2905 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
2906 | ts_value(6,sr) = u_max |
---|
2907 | ts_value(7,sr) = v_max |
---|
2908 | ts_value(8,sr) = w_max |
---|
2909 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
2910 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
2911 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
2912 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
2913 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
2914 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
2915 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
2916 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
2917 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
2918 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
2919 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
2920 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
2921 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
2922 | |
---|
2923 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
2924 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
2925 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
2926 | ELSE |
---|
2927 | ts_value(22,sr) = 10000.0 |
---|
2928 | ENDIF |
---|
2929 | |
---|
2930 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
2931 | ! |
---|
2932 | !-- Calculate additional statistics provided by the user interface |
---|
2933 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
2934 | |
---|
2935 | ENDDO ! loop of the subregions |
---|
2936 | |
---|
2937 | !$acc end data |
---|
2938 | |
---|
2939 | ! |
---|
2940 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
2941 | IF ( do_sum ) THEN |
---|
2942 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
2943 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
2944 | average_count_pr = average_count_pr + 1 |
---|
2945 | do_sum = .FALSE. |
---|
2946 | ENDIF |
---|
2947 | |
---|
2948 | ! |
---|
2949 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
2950 | !-- This flag is reset after each time step in time_integration. |
---|
2951 | flow_statistics_called = .TRUE. |
---|
2952 | |
---|
2953 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
2954 | |
---|
2955 | |
---|
2956 | END SUBROUTINE flow_statistics |
---|
2957 | #endif |
---|