1 | !> @file flow_statistics.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: flow_statistics.f90 2038 2016-10-26 11:16:56Z raasch $ |
---|
27 | ! |
---|
28 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
29 | ! Anelastic approximation implemented |
---|
30 | ! |
---|
31 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
32 | ! renamed variable rho to rho_ocean |
---|
33 | ! |
---|
34 | ! 2026 2016-10-18 10:27:02Z suehring |
---|
35 | ! Bugfix, enable output of s*2. |
---|
36 | ! Change, calculation of domain-averaged perturbation energy. |
---|
37 | ! Some formatting adjustments. |
---|
38 | ! |
---|
39 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
40 | ! Forced header and separation lines into 80 columns |
---|
41 | ! |
---|
42 | ! 1976 2016-07-27 13:28:04Z maronga |
---|
43 | ! Removed some unneeded __rrtmg preprocessor directives |
---|
44 | ! |
---|
45 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
46 | ! Separate humidity and passive scalar |
---|
47 | ! |
---|
48 | ! 1918 2016-05-27 14:35:57Z raasch |
---|
49 | ! in case of Wicker-Skamarock scheme, calculate disturbance kinetic energy here, |
---|
50 | ! if flow_statistics is called before the first initial time step |
---|
51 | ! |
---|
52 | ! 1853 2016-04-11 09:00:35Z maronga |
---|
53 | ! Adjusted for use with radiation_scheme = constant |
---|
54 | ! |
---|
55 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
56 | ! prr moved to arrays_3d |
---|
57 | ! |
---|
58 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
59 | ! Output of bulk microphysics simplified. |
---|
60 | ! |
---|
61 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
62 | ! cpp-directives for intel openmp bug removed |
---|
63 | ! |
---|
64 | ! 1783 2016-03-06 18:36:17Z raasch |
---|
65 | ! +module netcdf_interface |
---|
66 | ! |
---|
67 | ! 1747 2016-02-08 12:25:53Z raasch |
---|
68 | ! small bugfixes for accelerator version |
---|
69 | ! |
---|
70 | ! 1738 2015-12-18 13:56:05Z raasch |
---|
71 | ! bugfixes for calculations in statistical regions which do not contain grid |
---|
72 | ! points in the lowest vertical levels, mean surface level height considered |
---|
73 | ! in the calculation of the characteristic vertical velocity, |
---|
74 | ! old upstream parts removed |
---|
75 | ! |
---|
76 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
77 | ! Updated output of Obukhov length |
---|
78 | ! |
---|
79 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
80 | ! Revised calculation of Obukhov length. Added output of radiative heating > |
---|
81 | ! rates for RRTMG. |
---|
82 | ! |
---|
83 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
84 | ! Code annotations made doxygen readable |
---|
85 | ! |
---|
86 | ! 1658 2015-09-18 10:52:53Z raasch |
---|
87 | ! bugfix: temporary reduction variables in the openacc branch are now |
---|
88 | ! initialized to zero |
---|
89 | ! |
---|
90 | ! 1654 2015-09-17 09:20:17Z raasch |
---|
91 | ! FORTRAN bugfix of r1652 |
---|
92 | ! |
---|
93 | ! 1652 2015-09-17 08:12:24Z raasch |
---|
94 | ! bugfix in calculation of energy production by turbulent transport of TKE |
---|
95 | ! |
---|
96 | ! 1593 2015-05-16 13:58:02Z raasch |
---|
97 | ! FORTRAN errors removed from openacc branch |
---|
98 | ! |
---|
99 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
100 | ! Added output of timeseries and profiles for RRTMG |
---|
101 | ! |
---|
102 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
103 | ! Bugfix: output of rad_net and rad_sw_in |
---|
104 | ! |
---|
105 | ! 1567 2015-03-10 17:57:55Z suehring |
---|
106 | ! Reverse modifications made for monotonic limiter. |
---|
107 | ! |
---|
108 | ! 1557 2015-03-05 16:43:04Z suehring |
---|
109 | ! Adjustments for monotonic limiter |
---|
110 | ! |
---|
111 | ! 1555 2015-03-04 17:44:27Z maronga |
---|
112 | ! Added output of r_a and r_s. |
---|
113 | ! |
---|
114 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
115 | ! Added suppport for land surface model and radiation model output. |
---|
116 | ! |
---|
117 | ! 1498 2014-12-03 14:09:51Z suehring |
---|
118 | ! Comments added |
---|
119 | ! |
---|
120 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
121 | ! missing ngp_sums_ls added in accelerator version |
---|
122 | ! |
---|
123 | ! 1450 2014-08-21 07:31:51Z heinze |
---|
124 | ! bugfix: calculate fac only for simulated_time >= 0.0 |
---|
125 | ! |
---|
126 | ! 1396 2014-05-06 13:37:41Z raasch |
---|
127 | ! bugfix: "copyin" replaced by "update device" in openacc-branch |
---|
128 | ! |
---|
129 | ! 1386 2014-05-05 13:55:30Z boeske |
---|
130 | ! bugfix: simulated time before the last timestep is needed for the correct |
---|
131 | ! calculation of the profiles of large scale forcing tendencies |
---|
132 | ! |
---|
133 | ! 1382 2014-04-30 12:15:41Z boeske |
---|
134 | ! Renamed variables which store large scale forcing tendencies |
---|
135 | ! pt_lsa -> td_lsa_lpt, pt_subs -> td_sub_lpt, |
---|
136 | ! q_lsa -> td_lsa_q, q_subs -> td_sub_q, |
---|
137 | ! added Neumann boundary conditions for profile data output of large scale |
---|
138 | ! advection and subsidence terms at nzt+1 |
---|
139 | ! |
---|
140 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
141 | ! bugfix: syntax errors removed from openacc-branch |
---|
142 | ! missing variables added to ONLY-lists |
---|
143 | ! |
---|
144 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
145 | ! Output of large scale advection, large scale subsidence and nudging tendencies |
---|
146 | ! +sums_ls_l, ngp_sums_ls, use_subsidence_tendencies |
---|
147 | ! |
---|
148 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
149 | ! REAL constants provided with KIND-attribute |
---|
150 | ! |
---|
151 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
152 | ! REAL constants defined as wp-kind |
---|
153 | ! |
---|
154 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
155 | ! ONLY-attribute added to USE-statements, |
---|
156 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
157 | ! kinds are defined in new module kinds, |
---|
158 | ! revision history before 2012 removed, |
---|
159 | ! comment fields (!:) to be used for variable explanations added to |
---|
160 | ! all variable declaration statements |
---|
161 | ! |
---|
162 | ! 1299 2014-03-06 13:15:21Z heinze |
---|
163 | ! Output of large scale vertical velocity w_subs |
---|
164 | ! |
---|
165 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
166 | ! openacc "end parallel" replaced by "end parallel loop" |
---|
167 | ! |
---|
168 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
169 | ! Output of ug and vg |
---|
170 | ! |
---|
171 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
172 | ! ported for openACC in separate #else branch |
---|
173 | ! |
---|
174 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
175 | ! comment for profile 77 added |
---|
176 | ! |
---|
177 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
178 | ! ql is calculated by calc_liquid_water_content |
---|
179 | ! |
---|
180 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
181 | ! openACC directive added |
---|
182 | ! |
---|
183 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
184 | ! additions for two-moment cloud physics scheme: |
---|
185 | ! +nr, qr, qc, prr |
---|
186 | ! |
---|
187 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
188 | ! code put under GPL (PALM 3.9) |
---|
189 | ! |
---|
190 | ! 1007 2012-09-19 14:30:36Z franke |
---|
191 | ! Calculation of buoyancy flux for humidity in case of WS-scheme is now using |
---|
192 | ! turbulent fluxes of WS-scheme |
---|
193 | ! Bugfix: Calculation of subgridscale buoyancy flux for humidity and cloud |
---|
194 | ! droplets at nzb and nzt added |
---|
195 | ! |
---|
196 | ! 801 2012-01-10 17:30:36Z suehring |
---|
197 | ! Calculation of turbulent fluxes in advec_ws is now thread-safe. |
---|
198 | ! |
---|
199 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
200 | ! Initial revision |
---|
201 | ! |
---|
202 | ! |
---|
203 | ! Description: |
---|
204 | ! ------------ |
---|
205 | !> Compute average profiles and further average flow quantities for the different |
---|
206 | !> user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
207 | !> |
---|
208 | !> @note For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
209 | !> lower vertical index for k-loops for all variables, although strictly |
---|
210 | !> speaking the k-loops would have to be split up according to the staggered |
---|
211 | !> grid. However, this implies no error since staggered velocity components |
---|
212 | !> are zero at the walls and inside buildings. |
---|
213 | !------------------------------------------------------------------------------! |
---|
214 | #if ! defined( __openacc ) |
---|
215 | SUBROUTINE flow_statistics |
---|
216 | |
---|
217 | |
---|
218 | USE arrays_3d, & |
---|
219 | ONLY: ddzu, ddzw, e, heatflux_output_conversion, hyp, km, kh, & |
---|
220 | momentumflux_output_conversion, nr, ol, p, prho, prr, pt, q, & |
---|
221 | qc, ql, qr, qs, qsws, qswst, rho_air, rho_air_zw, rho_ocean, s, & |
---|
222 | sa, ss, ssws, sswst, saswsb, saswst, shf, td_lsa_lpt, td_lsa_q, & |
---|
223 | td_sub_lpt, td_sub_q, time_vert, ts, tswst, u, ug, us, usws, & |
---|
224 | uswst, vsws, v, vg, vpt, vswst, w, w_subs, & |
---|
225 | waterflux_output_conversion, zw |
---|
226 | |
---|
227 | USE cloud_parameters, & |
---|
228 | ONLY: l_d_cp, pt_d_t |
---|
229 | |
---|
230 | USE control_parameters, & |
---|
231 | ONLY: average_count_pr, cloud_droplets, cloud_physics, do_sum, & |
---|
232 | dt_3d, g, humidity, kappa, large_scale_forcing, & |
---|
233 | large_scale_subsidence, max_pr_user, message_string, neutral, & |
---|
234 | microphysics_seifert, ocean, passive_scalar, simulated_time, & |
---|
235 | use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, & |
---|
236 | ws_scheme_mom, ws_scheme_sca |
---|
237 | |
---|
238 | USE cpulog, & |
---|
239 | ONLY: cpu_log, log_point |
---|
240 | |
---|
241 | USE grid_variables, & |
---|
242 | ONLY: ddx, ddy |
---|
243 | |
---|
244 | USE indices, & |
---|
245 | ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, & |
---|
246 | ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzb_diff_s_inner, & |
---|
247 | nzb_s_inner, nzt, nzt_diff |
---|
248 | |
---|
249 | USE kinds |
---|
250 | |
---|
251 | USE land_surface_model_mod, & |
---|
252 | ONLY: ghf_eb, land_surface, m_soil, nzb_soil, nzt_soil, & |
---|
253 | qsws_eb, qsws_liq_eb, qsws_soil_eb, qsws_veg_eb, r_a, r_s, & |
---|
254 | shf_eb, t_soil |
---|
255 | |
---|
256 | USE netcdf_interface, & |
---|
257 | ONLY: dots_rad, dots_soil |
---|
258 | |
---|
259 | USE pegrid |
---|
260 | |
---|
261 | USE radiation_model_mod, & |
---|
262 | ONLY: radiation, radiation_scheme, rad_net, & |
---|
263 | rad_lw_in, rad_lw_out, rad_lw_cs_hr, rad_lw_hr, & |
---|
264 | rad_sw_in, rad_sw_out, rad_sw_cs_hr, rad_sw_hr |
---|
265 | |
---|
266 | #if defined ( __rrtmg ) |
---|
267 | USE radiation_model_mod, & |
---|
268 | ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir |
---|
269 | #endif |
---|
270 | |
---|
271 | USE statistics |
---|
272 | |
---|
273 | |
---|
274 | IMPLICIT NONE |
---|
275 | |
---|
276 | INTEGER(iwp) :: i !< |
---|
277 | INTEGER(iwp) :: j !< |
---|
278 | INTEGER(iwp) :: k !< |
---|
279 | INTEGER(iwp) :: k_surface_level !< |
---|
280 | INTEGER(iwp) :: nt !< |
---|
281 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
282 | INTEGER(iwp) :: sr !< |
---|
283 | INTEGER(iwp) :: tn !< |
---|
284 | |
---|
285 | LOGICAL :: first !< |
---|
286 | |
---|
287 | REAL(wp) :: dptdz_threshold !< |
---|
288 | REAL(wp) :: fac !< |
---|
289 | REAL(wp) :: height !< |
---|
290 | REAL(wp) :: pts !< |
---|
291 | REAL(wp) :: sums_l_eper !< |
---|
292 | REAL(wp) :: sums_l_etot !< |
---|
293 | REAL(wp) :: ust !< |
---|
294 | REAL(wp) :: ust2 !< |
---|
295 | REAL(wp) :: u2 !< |
---|
296 | REAL(wp) :: vst !< |
---|
297 | REAL(wp) :: vst2 !< |
---|
298 | REAL(wp) :: v2 !< |
---|
299 | REAL(wp) :: w2 !< |
---|
300 | REAL(wp) :: z_i(2) !< |
---|
301 | |
---|
302 | REAL(wp) :: dptdz(nzb+1:nzt+1) !< |
---|
303 | REAL(wp) :: sums_ll(nzb:nzt+1,2) !< |
---|
304 | |
---|
305 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
306 | |
---|
307 | !$acc update host( km, kh, e, ol, pt, qs, qsws, shf, ts, u, usws, v, vsws, w ) |
---|
308 | |
---|
309 | ! |
---|
310 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
311 | !-- called once after the current time step |
---|
312 | IF ( flow_statistics_called ) THEN |
---|
313 | |
---|
314 | message_string = 'flow_statistics is called two times within one ' // & |
---|
315 | 'timestep' |
---|
316 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
317 | |
---|
318 | ENDIF |
---|
319 | |
---|
320 | ! |
---|
321 | !-- Compute statistics for each (sub-)region |
---|
322 | DO sr = 0, statistic_regions |
---|
323 | |
---|
324 | ! |
---|
325 | !-- Initialize (local) summation array |
---|
326 | sums_l = 0.0_wp |
---|
327 | |
---|
328 | ! |
---|
329 | !-- Store sums that have been computed in other subroutines in summation |
---|
330 | !-- array |
---|
331 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
332 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
333 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) * & |
---|
334 | heatflux_output_conversion ! heat flux from advec_s_bc |
---|
335 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
336 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
337 | |
---|
338 | ! |
---|
339 | !-- When calcuating horizontally-averaged total (resolved- plus subgrid- |
---|
340 | !-- scale) vertical fluxes and velocity variances by using commonly- |
---|
341 | !-- applied Reynolds-based methods ( e.g. <w'pt'> = (w-<w>)*(pt-<pt>) ) |
---|
342 | !-- in combination with the 5th order advection scheme, pronounced |
---|
343 | !-- artificial kinks could be observed in the vertical profiles near the |
---|
344 | !-- surface. Please note: these kinks were not related to the model truth, |
---|
345 | !-- i.e. these kinks are just related to an evaluation problem. |
---|
346 | !-- In order avoid these kinks, vertical fluxes and horizontal as well |
---|
347 | !-- vertical velocity variances are calculated directly within the advection |
---|
348 | !-- routines, according to the numerical discretization, to evaluate the |
---|
349 | !-- statistical quantities as they will appear within the prognostic |
---|
350 | !-- equations. |
---|
351 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
352 | !-- the local array sums_l() for further computations. |
---|
353 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
354 | |
---|
355 | ! |
---|
356 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
357 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
358 | IF ( ocean ) THEN |
---|
359 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
360 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
361 | ENDIF |
---|
362 | |
---|
363 | DO i = 0, threads_per_task-1 |
---|
364 | ! |
---|
365 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
366 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) & |
---|
367 | * momentumflux_output_conversion ! w*u* |
---|
368 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) & |
---|
369 | * momentumflux_output_conversion ! w*v* |
---|
370 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
371 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
372 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
373 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & |
---|
374 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
375 | sums_ws2_ws_l(:,i) ) ! e* |
---|
376 | ENDDO |
---|
377 | |
---|
378 | ENDIF |
---|
379 | |
---|
380 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
381 | |
---|
382 | DO i = 0, threads_per_task-1 |
---|
383 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) & |
---|
384 | * heatflux_output_conversion ! w*pt* |
---|
385 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
386 | IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) & |
---|
387 | * waterflux_output_conversion ! w*q* |
---|
388 | IF ( passive_scalar ) sums_l(:,116,i) = sums_wsss_ws_l(:,i) ! w*s* |
---|
389 | ENDDO |
---|
390 | |
---|
391 | ENDIF |
---|
392 | ! |
---|
393 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
394 | !-- They must have been computed before, because they are already required |
---|
395 | !-- for other horizontal averages. |
---|
396 | tn = 0 |
---|
397 | |
---|
398 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
399 | !$ tn = omp_get_thread_num() |
---|
400 | |
---|
401 | !$OMP DO |
---|
402 | DO i = nxl, nxr |
---|
403 | DO j = nys, nyn |
---|
404 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
405 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
406 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
407 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
408 | ENDDO |
---|
409 | ENDDO |
---|
410 | ENDDO |
---|
411 | |
---|
412 | ! |
---|
413 | !-- Horizontally averaged profile of salinity |
---|
414 | IF ( ocean ) THEN |
---|
415 | !$OMP DO |
---|
416 | DO i = nxl, nxr |
---|
417 | DO j = nys, nyn |
---|
418 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
419 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
420 | sa(k,j,i) * rmask(j,i,sr) |
---|
421 | ENDDO |
---|
422 | ENDDO |
---|
423 | ENDDO |
---|
424 | ENDIF |
---|
425 | |
---|
426 | ! |
---|
427 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
428 | !-- total water content, specific humidity and liquid water potential |
---|
429 | !-- temperature |
---|
430 | IF ( humidity ) THEN |
---|
431 | !$OMP DO |
---|
432 | DO i = nxl, nxr |
---|
433 | DO j = nys, nyn |
---|
434 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
435 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
436 | vpt(k,j,i) * rmask(j,i,sr) |
---|
437 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
438 | q(k,j,i) * rmask(j,i,sr) |
---|
439 | ENDDO |
---|
440 | ENDDO |
---|
441 | ENDDO |
---|
442 | IF ( cloud_physics ) THEN |
---|
443 | !$OMP DO |
---|
444 | DO i = nxl, nxr |
---|
445 | DO j = nys, nyn |
---|
446 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
447 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
448 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
449 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
450 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
451 | ) * rmask(j,i,sr) |
---|
452 | ENDDO |
---|
453 | ENDDO |
---|
454 | ENDDO |
---|
455 | ENDIF |
---|
456 | ENDIF |
---|
457 | |
---|
458 | ! |
---|
459 | !-- Horizontally averaged profiles of passive scalar |
---|
460 | IF ( passive_scalar ) THEN |
---|
461 | !$OMP DO |
---|
462 | DO i = nxl, nxr |
---|
463 | DO j = nys, nyn |
---|
464 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
465 | sums_l(k,117,tn) = sums_l(k,117,tn) + s(k,j,i) * rmask(j,i,sr) |
---|
466 | ENDDO |
---|
467 | ENDDO |
---|
468 | ENDDO |
---|
469 | ENDIF |
---|
470 | !$OMP END PARALLEL |
---|
471 | ! |
---|
472 | !-- Summation of thread sums |
---|
473 | IF ( threads_per_task > 1 ) THEN |
---|
474 | DO i = 1, threads_per_task-1 |
---|
475 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
476 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
477 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
478 | IF ( ocean ) THEN |
---|
479 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
480 | ENDIF |
---|
481 | IF ( humidity ) THEN |
---|
482 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
483 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
484 | IF ( cloud_physics ) THEN |
---|
485 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
486 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
487 | ENDIF |
---|
488 | ENDIF |
---|
489 | IF ( passive_scalar ) THEN |
---|
490 | sums_l(:,117,0) = sums_l(:,117,0) + sums_l(:,117,i) |
---|
491 | ENDIF |
---|
492 | ENDDO |
---|
493 | ENDIF |
---|
494 | |
---|
495 | #if defined( __parallel ) |
---|
496 | ! |
---|
497 | !-- Compute total sum from local sums |
---|
498 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
499 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
500 | MPI_SUM, comm2d, ierr ) |
---|
501 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
502 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
503 | MPI_SUM, comm2d, ierr ) |
---|
504 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
505 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
506 | MPI_SUM, comm2d, ierr ) |
---|
507 | IF ( ocean ) THEN |
---|
508 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
509 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
510 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
511 | ENDIF |
---|
512 | IF ( humidity ) THEN |
---|
513 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
514 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
515 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
516 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
517 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
518 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
519 | IF ( cloud_physics ) THEN |
---|
520 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
521 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
522 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
523 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
524 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
525 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
526 | ENDIF |
---|
527 | ENDIF |
---|
528 | |
---|
529 | IF ( passive_scalar ) THEN |
---|
530 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
531 | CALL MPI_ALLREDUCE( sums_l(nzb,117,0), sums(nzb,117), nzt+2-nzb, & |
---|
532 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
533 | ENDIF |
---|
534 | #else |
---|
535 | sums(:,1) = sums_l(:,1,0) |
---|
536 | sums(:,2) = sums_l(:,2,0) |
---|
537 | sums(:,4) = sums_l(:,4,0) |
---|
538 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
539 | IF ( humidity ) THEN |
---|
540 | sums(:,44) = sums_l(:,44,0) |
---|
541 | sums(:,41) = sums_l(:,41,0) |
---|
542 | IF ( cloud_physics ) THEN |
---|
543 | sums(:,42) = sums_l(:,42,0) |
---|
544 | sums(:,43) = sums_l(:,43,0) |
---|
545 | ENDIF |
---|
546 | ENDIF |
---|
547 | IF ( passive_scalar ) sums(:,117) = sums_l(:,117,0) |
---|
548 | #endif |
---|
549 | |
---|
550 | ! |
---|
551 | !-- Final values are obtained by division by the total number of grid points |
---|
552 | !-- used for summation. After that store profiles. |
---|
553 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
554 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
555 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
556 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
557 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
558 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
559 | |
---|
560 | |
---|
561 | ! |
---|
562 | !-- Salinity |
---|
563 | IF ( ocean ) THEN |
---|
564 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
565 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
566 | ENDIF |
---|
567 | |
---|
568 | ! |
---|
569 | !-- Humidity and cloud parameters |
---|
570 | IF ( humidity ) THEN |
---|
571 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
572 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
573 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
574 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
575 | IF ( cloud_physics ) THEN |
---|
576 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
577 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
578 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
579 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
580 | ENDIF |
---|
581 | ENDIF |
---|
582 | |
---|
583 | ! |
---|
584 | !-- Passive scalar |
---|
585 | IF ( passive_scalar ) hom(:,1,117,sr) = sums(:,117) / & |
---|
586 | ngp_2dh_s_inner(:,sr) ! s |
---|
587 | |
---|
588 | ! |
---|
589 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
590 | !-- variances, the total and the perturbation energy (single values in last |
---|
591 | !-- column of sums_l) and some diagnostic quantities. |
---|
592 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
593 | !-- ---- speaking the following k-loop would have to be split up and |
---|
594 | !-- rearranged according to the staggered grid. |
---|
595 | !-- However, this implies no error since staggered velocity components |
---|
596 | !-- are zero at the walls and inside buildings. |
---|
597 | tn = 0 |
---|
598 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, & |
---|
599 | !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & |
---|
600 | !$OMP w2 ) |
---|
601 | !$ tn = omp_get_thread_num() |
---|
602 | |
---|
603 | !$OMP DO |
---|
604 | DO i = nxl, nxr |
---|
605 | DO j = nys, nyn |
---|
606 | sums_l_etot = 0.0_wp |
---|
607 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
608 | ! |
---|
609 | !-- Prognostic and diagnostic variables |
---|
610 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
611 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
612 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
613 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
614 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
615 | |
---|
616 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
617 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
618 | |
---|
619 | IF ( humidity ) THEN |
---|
620 | sums_l(k,70,tn) = sums_l(k,70,tn) + & |
---|
621 | ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) |
---|
622 | ENDIF |
---|
623 | IF ( passive_scalar ) THEN |
---|
624 | sums_l(k,118,tn) = sums_l(k,118,tn) + & |
---|
625 | ( s(k,j,i)-hom(k,1,117,sr) )**2 * rmask(j,i,sr) |
---|
626 | ENDIF |
---|
627 | ! |
---|
628 | !-- Higher moments |
---|
629 | !-- (Computation of the skewness of w further below) |
---|
630 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) |
---|
631 | |
---|
632 | sums_l_etot = sums_l_etot + & |
---|
633 | 0.5_wp * ( u(k,j,i)**2 + v(k,j,i)**2 + & |
---|
634 | w(k,j,i)**2 ) * rmask(j,i,sr) |
---|
635 | ENDDO |
---|
636 | ! |
---|
637 | !-- Total and perturbation energy for the total domain (being |
---|
638 | !-- collected in the last column of sums_l). Summation of these |
---|
639 | !-- quantities is seperated from the previous loop in order to |
---|
640 | !-- allow vectorization of that loop. |
---|
641 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
642 | ! |
---|
643 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
644 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
645 | us(j,i) * rmask(j,i,sr) |
---|
646 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
647 | usws(j,i) * rmask(j,i,sr) |
---|
648 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
649 | vsws(j,i) * rmask(j,i,sr) |
---|
650 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
651 | ts(j,i) * rmask(j,i,sr) |
---|
652 | IF ( humidity ) THEN |
---|
653 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
654 | qs(j,i) * rmask(j,i,sr) |
---|
655 | ENDIF |
---|
656 | IF ( passive_scalar ) THEN |
---|
657 | sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & |
---|
658 | ss(j,i) * rmask(j,i,sr) |
---|
659 | ENDIF |
---|
660 | ENDDO |
---|
661 | ENDDO |
---|
662 | |
---|
663 | ! |
---|
664 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
665 | !-- quantities are evaluated in the advection routines. |
---|
666 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) & |
---|
667 | THEN |
---|
668 | !$OMP DO |
---|
669 | DO i = nxl, nxr |
---|
670 | DO j = nys, nyn |
---|
671 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
672 | u2 = u(k,j,i)**2 |
---|
673 | v2 = v(k,j,i)**2 |
---|
674 | w2 = w(k,j,i)**2 |
---|
675 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
676 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
677 | |
---|
678 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
679 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
680 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
681 | ! |
---|
682 | !-- Perturbation energy |
---|
683 | |
---|
684 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5_wp * & |
---|
685 | ( ust2 + vst2 + w2 ) * rmask(j,i,sr) |
---|
686 | ENDDO |
---|
687 | ENDDO |
---|
688 | ENDDO |
---|
689 | ENDIF |
---|
690 | ! |
---|
691 | !-- Computaion of domain-averaged perturbation energy. Please note, |
---|
692 | !-- to prevent that perturbation energy is larger (even if only slightly) |
---|
693 | !-- than the total kinetic energy, calculation is based on deviations from |
---|
694 | !-- the horizontal mean, instead of spatial descretization of the advection |
---|
695 | !-- term. |
---|
696 | !$OMP DO |
---|
697 | DO i = nxl, nxr |
---|
698 | DO j = nys, nyn |
---|
699 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
700 | w2 = w(k,j,i)**2 |
---|
701 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
702 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
703 | w2 = w(k,j,i)**2 |
---|
704 | |
---|
705 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & |
---|
706 | + 0.5_wp * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) |
---|
707 | ENDDO |
---|
708 | ENDDO |
---|
709 | ENDDO |
---|
710 | |
---|
711 | ! |
---|
712 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
713 | |
---|
714 | !$OMP DO |
---|
715 | DO i = nxl, nxr |
---|
716 | DO j = nys, nyn |
---|
717 | ! |
---|
718 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
719 | !-- oterwise from k=nzb+1) |
---|
720 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
721 | !-- ---- strictly speaking the following k-loop would have to be |
---|
722 | !-- split up according to the staggered grid. |
---|
723 | !-- However, this implies no error since staggered velocity |
---|
724 | !-- components are zero at the walls and inside buildings. |
---|
725 | |
---|
726 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
727 | ! |
---|
728 | !-- Momentum flux w"u" |
---|
729 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25_wp * ( & |
---|
730 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
731 | ) * ( & |
---|
732 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
733 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
734 | ) * rmask(j,i,sr) & |
---|
735 | * rho_air_zw(k) & |
---|
736 | * momentumflux_output_conversion(k) |
---|
737 | ! |
---|
738 | !-- Momentum flux w"v" |
---|
739 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25_wp * ( & |
---|
740 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
741 | ) * ( & |
---|
742 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
743 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
744 | ) * rmask(j,i,sr) & |
---|
745 | * rho_air_zw(k) & |
---|
746 | * momentumflux_output_conversion(k) |
---|
747 | ! |
---|
748 | !-- Heat flux w"pt" |
---|
749 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
750 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
751 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
752 | * rho_air_zw(k) & |
---|
753 | * heatflux_output_conversion(k) & |
---|
754 | * ddzu(k+1) * rmask(j,i,sr) |
---|
755 | |
---|
756 | |
---|
757 | ! |
---|
758 | !-- Salinity flux w"sa" |
---|
759 | IF ( ocean ) THEN |
---|
760 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
761 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
762 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
763 | * ddzu(k+1) * rmask(j,i,sr) |
---|
764 | ENDIF |
---|
765 | |
---|
766 | ! |
---|
767 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
768 | IF ( humidity ) THEN |
---|
769 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
770 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
771 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
772 | * rho_air_zw(k) & |
---|
773 | * heatflux_output_conversion(k) & |
---|
774 | * ddzu(k+1) * rmask(j,i,sr) |
---|
775 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
776 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
777 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
778 | * rho_air_zw(k) & |
---|
779 | * waterflux_output_conversion(k)& |
---|
780 | * ddzu(k+1) * rmask(j,i,sr) |
---|
781 | |
---|
782 | IF ( cloud_physics ) THEN |
---|
783 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
784 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
785 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
786 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
787 | * rho_air_zw(k) & |
---|
788 | * waterflux_output_conversion(k)& |
---|
789 | * ddzu(k+1) * rmask(j,i,sr) |
---|
790 | ENDIF |
---|
791 | ENDIF |
---|
792 | |
---|
793 | ! |
---|
794 | !-- Passive scalar flux |
---|
795 | IF ( passive_scalar ) THEN |
---|
796 | sums_l(k,119,tn) = sums_l(k,119,tn) & |
---|
797 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
798 | * ( s(k+1,j,i) - s(k,j,i) ) & |
---|
799 | * ddzu(k+1) * rmask(j,i,sr) |
---|
800 | ENDIF |
---|
801 | |
---|
802 | ENDDO |
---|
803 | |
---|
804 | ! |
---|
805 | !-- Subgridscale fluxes in the Prandtl layer |
---|
806 | IF ( use_surface_fluxes ) THEN |
---|
807 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
808 | momentumflux_output_conversion(nzb) * & |
---|
809 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
810 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
811 | momentumflux_output_conversion(nzb) * & |
---|
812 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
813 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
814 | heatflux_output_conversion(nzb) * & |
---|
815 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
816 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
817 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
818 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
819 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
820 | IF ( ocean ) THEN |
---|
821 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
822 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
823 | ENDIF |
---|
824 | IF ( humidity ) THEN |
---|
825 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
826 | waterflux_output_conversion(nzb) * & |
---|
827 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
828 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
829 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * & |
---|
830 | shf(j,i) + 0.61_wp * pt(nzb,j,i) * & |
---|
831 | qsws(j,i) ) & |
---|
832 | * heatflux_output_conversion(nzb) |
---|
833 | IF ( cloud_droplets ) THEN |
---|
834 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
835 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) - & |
---|
836 | ql(nzb,j,i) ) * shf(j,i) + & |
---|
837 | 0.61_wp * pt(nzb,j,i) * qsws(j,i) ) & |
---|
838 | * heatflux_output_conversion(nzb) |
---|
839 | ENDIF |
---|
840 | IF ( cloud_physics ) THEN |
---|
841 | ! |
---|
842 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
843 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & |
---|
844 | waterflux_output_conversion(nzb) * & |
---|
845 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
846 | ENDIF |
---|
847 | ENDIF |
---|
848 | IF ( passive_scalar ) THEN |
---|
849 | sums_l(nzb,119,tn) = sums_l(nzb,119,tn) + & |
---|
850 | ssws(j,i) * rmask(j,i,sr) ! w"s" |
---|
851 | ENDIF |
---|
852 | ENDIF |
---|
853 | |
---|
854 | IF ( .NOT. neutral ) THEN |
---|
855 | sums_l(nzb,114,tn) = sums_l(nzb,114,tn) + & |
---|
856 | ol(j,i) * rmask(j,i,sr) ! L |
---|
857 | ENDIF |
---|
858 | |
---|
859 | |
---|
860 | IF ( land_surface ) THEN |
---|
861 | sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + ghf_eb(j,i) |
---|
862 | sums_l(nzb,94,tn) = sums_l(nzb,94,tn) + shf_eb(j,i) |
---|
863 | sums_l(nzb,95,tn) = sums_l(nzb,95,tn) + qsws_eb(j,i) |
---|
864 | sums_l(nzb,96,tn) = sums_l(nzb,96,tn) + qsws_liq_eb(j,i) |
---|
865 | sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + qsws_soil_eb(j,i) |
---|
866 | sums_l(nzb,98,tn) = sums_l(nzb,98,tn) + qsws_veg_eb(j,i) |
---|
867 | sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + r_a(j,i) |
---|
868 | sums_l(nzb,100,tn) = sums_l(nzb,100,tn)+ r_s(j,i) |
---|
869 | ENDIF |
---|
870 | |
---|
871 | IF ( radiation .AND. radiation_scheme /= 'constant' ) THEN |
---|
872 | sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + rad_net(j,i) |
---|
873 | sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + rad_lw_in(nzb,j,i) |
---|
874 | sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + rad_lw_out(nzb,j,i) |
---|
875 | sums_l(nzb,104,tn) = sums_l(nzb,104,tn) + rad_sw_in(nzb,j,i) |
---|
876 | sums_l(nzb,105,tn) = sums_l(nzb,105,tn) + rad_sw_out(nzb,j,i) |
---|
877 | |
---|
878 | #if defined ( __rrtmg ) |
---|
879 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
880 | sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + rrtm_aldif(0,j,i) |
---|
881 | sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + rrtm_aldir(0,j,i) |
---|
882 | sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + rrtm_asdif(0,j,i) |
---|
883 | sums_l(nzb,113,tn) = sums_l(nzb,113,tn) + rrtm_asdir(0,j,i) |
---|
884 | ENDIF |
---|
885 | #endif |
---|
886 | ENDIF |
---|
887 | ! |
---|
888 | !-- Subgridscale fluxes at the top surface |
---|
889 | IF ( use_top_fluxes ) THEN |
---|
890 | sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + & |
---|
891 | momentumflux_output_conversion(nzt:nzt+1) * & |
---|
892 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
893 | sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + & |
---|
894 | momentumflux_output_conversion(nzt:nzt+1) * & |
---|
895 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
896 | sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + & |
---|
897 | heatflux_output_conversion(nzt:nzt+1) * & |
---|
898 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
899 | sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & |
---|
900 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
901 | sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & |
---|
902 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
903 | |
---|
904 | IF ( ocean ) THEN |
---|
905 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
906 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
907 | ENDIF |
---|
908 | IF ( humidity ) THEN |
---|
909 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
910 | waterflux_output_conversion(nzt) * & |
---|
911 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
912 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
913 | ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * & |
---|
914 | tswst(j,i) + 0.61_wp * pt(nzt,j,i) * & |
---|
915 | qswst(j,i) ) & |
---|
916 | * heatflux_output_conversion(nzt) |
---|
917 | IF ( cloud_droplets ) THEN |
---|
918 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
919 | ( 1.0_wp + 0.61_wp * q(nzt,j,i) - & |
---|
920 | ql(nzt,j,i) ) * tswst(j,i) + & |
---|
921 | 0.61_wp * pt(nzt,j,i) * qswst(j,i) )& |
---|
922 | * heatflux_output_conversion(nzt) |
---|
923 | ENDIF |
---|
924 | IF ( cloud_physics ) THEN |
---|
925 | ! |
---|
926 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
927 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
928 | waterflux_output_conversion(nzt) * & |
---|
929 | qswst(j,i) * rmask(j,i,sr) |
---|
930 | ENDIF |
---|
931 | ENDIF |
---|
932 | IF ( passive_scalar ) THEN |
---|
933 | sums_l(nzt,119,tn) = sums_l(nzt,119,tn) + & |
---|
934 | sswst(j,i) * rmask(j,i,sr) ! w"s" |
---|
935 | ENDIF |
---|
936 | ENDIF |
---|
937 | |
---|
938 | ! |
---|
939 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
940 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
941 | !-- ---- speaking the following k-loop would have to be split up and |
---|
942 | !-- rearranged according to the staggered grid. |
---|
943 | DO k = nzb_s_inner(j,i), nzt |
---|
944 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
945 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
946 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
947 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
948 | pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
949 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
950 | |
---|
951 | !-- Higher moments |
---|
952 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
953 | rmask(j,i,sr) |
---|
954 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
955 | rmask(j,i,sr) |
---|
956 | |
---|
957 | ! |
---|
958 | !-- Salinity flux and density (density does not belong to here, |
---|
959 | !-- but so far there is no other suitable place to calculate) |
---|
960 | IF ( ocean ) THEN |
---|
961 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
962 | pts = 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
963 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
964 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
965 | rmask(j,i,sr) |
---|
966 | ENDIF |
---|
967 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho_ocean(k,j,i) * & |
---|
968 | rmask(j,i,sr) |
---|
969 | sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & |
---|
970 | rmask(j,i,sr) |
---|
971 | ENDIF |
---|
972 | |
---|
973 | ! |
---|
974 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
975 | !-- content, rain drop concentration and rain water content |
---|
976 | IF ( humidity ) THEN |
---|
977 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
978 | pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
979 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
980 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
981 | heatflux_output_conversion(k) * & |
---|
982 | rmask(j,i,sr) |
---|
983 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * rmask(j,i,sr) |
---|
984 | |
---|
985 | IF ( .NOT. cloud_droplets ) THEN |
---|
986 | pts = 0.5_wp * & |
---|
987 | ( ( q(k,j,i) - ql(k,j,i) ) - & |
---|
988 | hom(k,1,42,sr) + & |
---|
989 | ( q(k+1,j,i) - ql(k+1,j,i) ) - & |
---|
990 | hom(k+1,1,42,sr) ) |
---|
991 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
992 | waterflux_output_conversion(k) * & |
---|
993 | rmask(j,i,sr) |
---|
994 | sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * & |
---|
995 | rmask(j,i,sr) |
---|
996 | sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) * & |
---|
997 | rmask(j,i,sr) |
---|
998 | IF ( microphysics_seifert ) THEN |
---|
999 | sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * & |
---|
1000 | rmask(j,i,sr) |
---|
1001 | sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * & |
---|
1002 | rmask(j,i,sr) |
---|
1003 | ENDIF |
---|
1004 | ENDIF |
---|
1005 | |
---|
1006 | ELSE |
---|
1007 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
1008 | pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
1009 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
1010 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
1011 | heatflux_output_conversion(k) * & |
---|
1012 | rmask(j,i,sr) |
---|
1013 | ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
1014 | sums_l(k,46,tn) = ( ( 1.0_wp + 0.61_wp * & |
---|
1015 | hom(k,1,41,sr) ) * & |
---|
1016 | sums_l(k,17,tn) + & |
---|
1017 | 0.61_wp * hom(k,1,4,sr) * & |
---|
1018 | sums_l(k,49,tn) & |
---|
1019 | ) * heatflux_output_conversion(k) |
---|
1020 | END IF |
---|
1021 | END IF |
---|
1022 | ENDIF |
---|
1023 | ! |
---|
1024 | !-- Passive scalar flux |
---|
1025 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & |
---|
1026 | .OR. sr /= 0 ) ) THEN |
---|
1027 | pts = 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & |
---|
1028 | s(k+1,j,i) - hom(k+1,1,117,sr) ) |
---|
1029 | sums_l(k,116,tn) = sums_l(k,116,tn) + pts * w(k,j,i) * & |
---|
1030 | rmask(j,i,sr) |
---|
1031 | ENDIF |
---|
1032 | |
---|
1033 | ! |
---|
1034 | !-- Energy flux w*e* |
---|
1035 | !-- has to be adjusted |
---|
1036 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5_wp * & |
---|
1037 | ( ust**2 + vst**2 + w(k,j,i)**2 ) & |
---|
1038 | * momentumflux_output_conversion(k) & |
---|
1039 | * rmask(j,i,sr) |
---|
1040 | ENDDO |
---|
1041 | ENDDO |
---|
1042 | ENDDO |
---|
1043 | ! |
---|
1044 | !-- For speed optimization fluxes which have been computed in part directly |
---|
1045 | !-- inside the WS advection routines are treated seperatly |
---|
1046 | !-- Momentum fluxes first: |
---|
1047 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
1048 | !$OMP DO |
---|
1049 | DO i = nxl, nxr |
---|
1050 | DO j = nys, nyn |
---|
1051 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
1052 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
1053 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
1054 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
1055 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
1056 | ! |
---|
1057 | !-- Momentum flux w*u* |
---|
1058 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5_wp * & |
---|
1059 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
1060 | * momentumflux_output_conversion(k) & |
---|
1061 | * ust * rmask(j,i,sr) |
---|
1062 | ! |
---|
1063 | !-- Momentum flux w*v* |
---|
1064 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5_wp * & |
---|
1065 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
1066 | * momentumflux_output_conversion(k) & |
---|
1067 | * vst * rmask(j,i,sr) |
---|
1068 | ENDDO |
---|
1069 | ENDDO |
---|
1070 | ENDDO |
---|
1071 | |
---|
1072 | ENDIF |
---|
1073 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
1074 | !$OMP DO |
---|
1075 | DO i = nxl, nxr |
---|
1076 | DO j = nys, nyn |
---|
1077 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
1078 | ! |
---|
1079 | !-- Vertical heat flux |
---|
1080 | sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5_wp * & |
---|
1081 | ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
1082 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
1083 | * heatflux_output_conversion(k) & |
---|
1084 | * w(k,j,i) * rmask(j,i,sr) |
---|
1085 | IF ( humidity ) THEN |
---|
1086 | pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
1087 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
1088 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
1089 | waterflux_output_conversion(k) * & |
---|
1090 | rmask(j,i,sr) |
---|
1091 | ENDIF |
---|
1092 | IF ( passive_scalar ) THEN |
---|
1093 | pts = 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & |
---|
1094 | s(k+1,j,i) - hom(k+1,1,117,sr) ) |
---|
1095 | sums_l(k,116,tn) = sums_l(k,116,tn) + pts * w(k,j,i) * & |
---|
1096 | rmask(j,i,sr) |
---|
1097 | ENDIF |
---|
1098 | ENDDO |
---|
1099 | ENDDO |
---|
1100 | ENDDO |
---|
1101 | |
---|
1102 | ENDIF |
---|
1103 | |
---|
1104 | ! |
---|
1105 | !-- Density at top follows Neumann condition |
---|
1106 | IF ( ocean ) THEN |
---|
1107 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
1108 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
1109 | ENDIF |
---|
1110 | |
---|
1111 | ! |
---|
1112 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
1113 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
1114 | !-- First calculate the products, then the divergence. |
---|
1115 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
1116 | IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) & |
---|
1117 | THEN |
---|
1118 | sums_ll = 0.0_wp ! local array |
---|
1119 | |
---|
1120 | !$OMP DO |
---|
1121 | DO i = nxl, nxr |
---|
1122 | DO j = nys, nyn |
---|
1123 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1124 | |
---|
1125 | sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & |
---|
1126 | ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & |
---|
1127 | - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2& |
---|
1128 | + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & |
---|
1129 | - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2& |
---|
1130 | + w(k,j,i)**2 ) |
---|
1131 | |
---|
1132 | sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & |
---|
1133 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
1134 | |
---|
1135 | ENDDO |
---|
1136 | ENDDO |
---|
1137 | ENDDO |
---|
1138 | sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom |
---|
1139 | sums_ll(nzt+1,1) = 0.0_wp |
---|
1140 | sums_ll(0,2) = 0.0_wp |
---|
1141 | sums_ll(nzt+1,2) = 0.0_wp |
---|
1142 | |
---|
1143 | DO k = nzb+1, nzt |
---|
1144 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
1145 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
1146 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
1147 | ENDDO |
---|
1148 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
1149 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
1150 | sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb |
---|
1151 | |
---|
1152 | ENDIF |
---|
1153 | |
---|
1154 | ! |
---|
1155 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
1156 | IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) & |
---|
1157 | THEN |
---|
1158 | !$OMP DO |
---|
1159 | DO i = nxl, nxr |
---|
1160 | DO j = nys, nyn |
---|
1161 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1162 | |
---|
1163 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & |
---|
1164 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
1165 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
1166 | ) * ddzw(k) |
---|
1167 | |
---|
1168 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & |
---|
1169 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
1170 | ) |
---|
1171 | |
---|
1172 | ENDDO |
---|
1173 | ENDDO |
---|
1174 | ENDDO |
---|
1175 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
1176 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
1177 | |
---|
1178 | ENDIF |
---|
1179 | |
---|
1180 | ! |
---|
1181 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
1182 | !-- Do it only, if profiles shall be plotted. |
---|
1183 | IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN |
---|
1184 | |
---|
1185 | !$OMP DO |
---|
1186 | DO i = nxl, nxr |
---|
1187 | DO j = nys, nyn |
---|
1188 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1189 | ! |
---|
1190 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
1191 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & |
---|
1192 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
1193 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
1194 | * rho_air_zw(k) & |
---|
1195 | * heatflux_output_conversion(k) & |
---|
1196 | * ddx * rmask(j,i,sr) |
---|
1197 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & |
---|
1198 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
1199 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
1200 | * rho_air_zw(k) & |
---|
1201 | * heatflux_output_conversion(k) & |
---|
1202 | * ddy * rmask(j,i,sr) |
---|
1203 | ! |
---|
1204 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
1205 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
1206 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
1207 | * 0.5_wp * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
1208 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
1209 | * heatflux_output_conversion(k) |
---|
1210 | pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
1211 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
1212 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
1213 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
1214 | * 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
1215 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
1216 | * heatflux_output_conversion(k) |
---|
1217 | ENDDO |
---|
1218 | ENDDO |
---|
1219 | ENDDO |
---|
1220 | ! |
---|
1221 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
1222 | sums_l(nzb,58,tn) = 0.0_wp |
---|
1223 | sums_l(nzb,59,tn) = 0.0_wp |
---|
1224 | sums_l(nzb,60,tn) = 0.0_wp |
---|
1225 | sums_l(nzb,61,tn) = 0.0_wp |
---|
1226 | sums_l(nzb,62,tn) = 0.0_wp |
---|
1227 | sums_l(nzb,63,tn) = 0.0_wp |
---|
1228 | |
---|
1229 | ENDIF |
---|
1230 | |
---|
1231 | ! |
---|
1232 | !-- Collect current large scale advection and subsidence tendencies for |
---|
1233 | !-- data output |
---|
1234 | IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN |
---|
1235 | ! |
---|
1236 | !-- Interpolation in time of LSF_DATA |
---|
1237 | nt = 1 |
---|
1238 | DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) |
---|
1239 | nt = nt + 1 |
---|
1240 | ENDDO |
---|
1241 | IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN |
---|
1242 | nt = nt - 1 |
---|
1243 | ENDIF |
---|
1244 | |
---|
1245 | fac = ( simulated_time - dt_3d - time_vert(nt) ) & |
---|
1246 | / ( time_vert(nt+1)-time_vert(nt) ) |
---|
1247 | |
---|
1248 | |
---|
1249 | DO k = nzb, nzt |
---|
1250 | sums_ls_l(k,0) = td_lsa_lpt(k,nt) & |
---|
1251 | + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) |
---|
1252 | sums_ls_l(k,1) = td_lsa_q(k,nt) & |
---|
1253 | + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) |
---|
1254 | ENDDO |
---|
1255 | |
---|
1256 | sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) |
---|
1257 | sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) |
---|
1258 | |
---|
1259 | IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN |
---|
1260 | |
---|
1261 | DO k = nzb, nzt |
---|
1262 | sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * & |
---|
1263 | ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) |
---|
1264 | sums_ls_l(k,3) = td_sub_q(k,nt) + fac * & |
---|
1265 | ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) |
---|
1266 | ENDDO |
---|
1267 | |
---|
1268 | sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) |
---|
1269 | sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) |
---|
1270 | |
---|
1271 | ENDIF |
---|
1272 | |
---|
1273 | ENDIF |
---|
1274 | |
---|
1275 | |
---|
1276 | IF ( land_surface ) THEN |
---|
1277 | !$OMP DO |
---|
1278 | DO i = nxl, nxr |
---|
1279 | DO j = nys, nyn |
---|
1280 | DO k = nzb_soil, nzt_soil |
---|
1281 | sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil(k,j,i) & |
---|
1282 | * rmask(j,i,sr) |
---|
1283 | sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil(k,j,i) & |
---|
1284 | * rmask(j,i,sr) |
---|
1285 | ENDDO |
---|
1286 | ENDDO |
---|
1287 | ENDDO |
---|
1288 | ENDIF |
---|
1289 | |
---|
1290 | IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN |
---|
1291 | !$OMP DO |
---|
1292 | DO i = nxl, nxr |
---|
1293 | DO j = nys, nyn |
---|
1294 | DO k = nzb_s_inner(j,i)+1, nzt+1 |
---|
1295 | sums_l(k,102,tn) = sums_l(k,102,tn) + rad_lw_in(k,j,i) & |
---|
1296 | * rmask(j,i,sr) |
---|
1297 | sums_l(k,103,tn) = sums_l(k,103,tn) + rad_lw_out(k,j,i) & |
---|
1298 | * rmask(j,i,sr) |
---|
1299 | sums_l(k,104,tn) = sums_l(k,104,tn) + rad_sw_in(k,j,i) & |
---|
1300 | * rmask(j,i,sr) |
---|
1301 | sums_l(k,105,tn) = sums_l(k,105,tn) + rad_sw_out(k,j,i) & |
---|
1302 | * rmask(j,i,sr) |
---|
1303 | sums_l(k,106,tn) = sums_l(k,106,tn) + rad_lw_cs_hr(k,j,i) & |
---|
1304 | * rmask(j,i,sr) |
---|
1305 | sums_l(k,107,tn) = sums_l(k,107,tn) + rad_lw_hr(k,j,i) & |
---|
1306 | * rmask(j,i,sr) |
---|
1307 | sums_l(k,108,tn) = sums_l(k,108,tn) + rad_sw_cs_hr(k,j,i) & |
---|
1308 | * rmask(j,i,sr) |
---|
1309 | sums_l(k,109,tn) = sums_l(k,109,tn) + rad_sw_hr(k,j,i) & |
---|
1310 | * rmask(j,i,sr) |
---|
1311 | ENDDO |
---|
1312 | ENDDO |
---|
1313 | ENDDO |
---|
1314 | ENDIF |
---|
1315 | ! |
---|
1316 | !-- Calculate the user-defined profiles |
---|
1317 | CALL user_statistics( 'profiles', sr, tn ) |
---|
1318 | !$OMP END PARALLEL |
---|
1319 | |
---|
1320 | ! |
---|
1321 | !-- Summation of thread sums |
---|
1322 | IF ( threads_per_task > 1 ) THEN |
---|
1323 | DO i = 1, threads_per_task-1 |
---|
1324 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
1325 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
1326 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
1327 | sums_l(:,45:pr_palm,i) |
---|
1328 | IF ( max_pr_user > 0 ) THEN |
---|
1329 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
1330 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
1331 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
1332 | ENDIF |
---|
1333 | ENDDO |
---|
1334 | ENDIF |
---|
1335 | |
---|
1336 | #if defined( __parallel ) |
---|
1337 | |
---|
1338 | ! |
---|
1339 | !-- Compute total sum from local sums |
---|
1340 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1341 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
1342 | MPI_SUM, comm2d, ierr ) |
---|
1343 | IF ( large_scale_forcing ) THEN |
---|
1344 | CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, & |
---|
1345 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1346 | ENDIF |
---|
1347 | #else |
---|
1348 | sums = sums_l(:,:,0) |
---|
1349 | IF ( large_scale_forcing ) THEN |
---|
1350 | sums(:,81:88) = sums_ls_l |
---|
1351 | ENDIF |
---|
1352 | #endif |
---|
1353 | |
---|
1354 | ! |
---|
1355 | !-- Final values are obtained by division by the total number of grid points |
---|
1356 | !-- used for summation. After that store profiles. |
---|
1357 | !-- Check, if statistical regions do contain at least one grid point at the |
---|
1358 | !-- respective k-level, otherwise division by zero will lead to undefined |
---|
1359 | !-- values, which may cause e.g. problems with NetCDF output |
---|
1360 | !-- Profiles: |
---|
1361 | DO k = nzb, nzt+1 |
---|
1362 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
1363 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
1364 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
1365 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
1366 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
1367 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
1368 | sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) |
---|
1369 | sums(k,89:114) = sums(k,89:114) / ngp_2dh(sr) |
---|
1370 | sums(k,116) = sums(k,116) / ngp_2dh(sr) |
---|
1371 | sums(k,119) = sums(k,119) / ngp_2dh(sr) |
---|
1372 | IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN |
---|
1373 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
1374 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
1375 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
1376 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
1377 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
1378 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
1379 | sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) |
---|
1380 | sums(k,118) = sums(k,118) / ngp_2dh_s_inner(k,sr) |
---|
1381 | sums(k,120:pr_palm-2) = sums(k,120:pr_palm-2) / ngp_2dh_s_inner(k,sr) |
---|
1382 | ENDIF |
---|
1383 | ENDDO |
---|
1384 | |
---|
1385 | !-- u* and so on |
---|
1386 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
1387 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
1388 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
1389 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
1390 | ngp_2dh(sr) |
---|
1391 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
1392 | ngp_2dh(sr) |
---|
1393 | sums(nzb+13,pr_palm) = sums(nzb+13,pr_palm) / & ! ss |
---|
1394 | ngp_2dh(sr) |
---|
1395 | !-- eges, e* |
---|
1396 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
1397 | ngp_3d(sr) |
---|
1398 | !-- Old and new divergence |
---|
1399 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
1400 | ngp_3d_inner(sr) |
---|
1401 | |
---|
1402 | !-- User-defined profiles |
---|
1403 | IF ( max_pr_user > 0 ) THEN |
---|
1404 | DO k = nzb, nzt+1 |
---|
1405 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
1406 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
1407 | ngp_2dh_s_inner(k,sr) |
---|
1408 | ENDDO |
---|
1409 | ENDIF |
---|
1410 | |
---|
1411 | ! |
---|
1412 | !-- Collect horizontal average in hom. |
---|
1413 | !-- Compute deduced averages (e.g. total heat flux) |
---|
1414 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
1415 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
1416 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
1417 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
1418 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
1419 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
1420 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
1421 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
1422 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
1423 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
1424 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
1425 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
1426 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
1427 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
1428 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
1429 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
1430 | ! profile 24 is initial profile (sa) |
---|
1431 | ! profiles 25-29 left empty for initial |
---|
1432 | ! profiles |
---|
1433 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
1434 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
1435 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
1436 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
1437 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
1438 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
1439 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
1440 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
1441 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
1442 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw |
---|
1443 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
1444 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
1445 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
1446 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
1447 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
1448 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
1449 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
1450 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
1451 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
1452 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
1453 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
1454 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
1455 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
1456 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho_ocean )/dz |
---|
1457 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
1458 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
1459 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
1460 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
1461 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
1462 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
1463 | hom(:,1,64,sr) = sums(:,64) ! rho_ocean |
---|
1464 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
1465 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
1466 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
1467 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
1468 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho_ocean |
---|
1469 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
1470 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
1471 | hom(:,1,72,sr) = hyp * 1E-4_wp ! hyp in dbar |
---|
1472 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
1473 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
1474 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
1475 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
1476 | ! 77 is initial density profile |
---|
1477 | hom(:,1,78,sr) = ug ! ug |
---|
1478 | hom(:,1,79,sr) = vg ! vg |
---|
1479 | hom(:,1,80,sr) = w_subs ! w_subs |
---|
1480 | |
---|
1481 | IF ( large_scale_forcing ) THEN |
---|
1482 | hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt |
---|
1483 | hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q |
---|
1484 | IF ( use_subsidence_tendencies ) THEN |
---|
1485 | hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt |
---|
1486 | hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q |
---|
1487 | ELSE |
---|
1488 | hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt |
---|
1489 | hom(:,1,84,sr) = sums(:,84) ! td_sub_q |
---|
1490 | ENDIF |
---|
1491 | hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt |
---|
1492 | hom(:,1,86,sr) = sums(:,86) ! td_nud_q |
---|
1493 | hom(:,1,87,sr) = sums(:,87) ! td_nud_u |
---|
1494 | hom(:,1,88,sr) = sums(:,88) ! td_nud_v |
---|
1495 | ENDIF |
---|
1496 | |
---|
1497 | IF ( land_surface ) THEN |
---|
1498 | hom(:,1,89,sr) = sums(:,89) ! t_soil |
---|
1499 | ! 90 is initial t_soil profile |
---|
1500 | hom(:,1,91,sr) = sums(:,91) ! m_soil |
---|
1501 | ! 92 is initial m_soil profile |
---|
1502 | hom(:,1,93,sr) = sums(:,93) ! ghf_eb |
---|
1503 | hom(:,1,94,sr) = sums(:,94) ! shf_eb |
---|
1504 | hom(:,1,95,sr) = sums(:,95) ! qsws_eb |
---|
1505 | hom(:,1,96,sr) = sums(:,96) ! qsws_liq_eb |
---|
1506 | hom(:,1,97,sr) = sums(:,97) ! qsws_soil_eb |
---|
1507 | hom(:,1,98,sr) = sums(:,98) ! qsws_veg_eb |
---|
1508 | hom(:,1,99,sr) = sums(:,99) ! r_a |
---|
1509 | hom(:,1,100,sr) = sums(:,100) ! r_s |
---|
1510 | |
---|
1511 | ENDIF |
---|
1512 | |
---|
1513 | IF ( radiation ) THEN |
---|
1514 | hom(:,1,101,sr) = sums(:,101) ! rad_net |
---|
1515 | hom(:,1,102,sr) = sums(:,102) ! rad_lw_in |
---|
1516 | hom(:,1,103,sr) = sums(:,103) ! rad_lw_out |
---|
1517 | hom(:,1,104,sr) = sums(:,104) ! rad_sw_in |
---|
1518 | hom(:,1,105,sr) = sums(:,105) ! rad_sw_out |
---|
1519 | |
---|
1520 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
1521 | hom(:,1,106,sr) = sums(:,106) ! rad_lw_cs_hr |
---|
1522 | hom(:,1,107,sr) = sums(:,107) ! rad_lw_hr |
---|
1523 | hom(:,1,108,sr) = sums(:,108) ! rad_sw_cs_hr |
---|
1524 | hom(:,1,109,sr) = sums(:,109) ! rad_sw_hr |
---|
1525 | |
---|
1526 | hom(:,1,110,sr) = sums(:,110) ! rrtm_aldif |
---|
1527 | hom(:,1,111,sr) = sums(:,111) ! rrtm_aldir |
---|
1528 | hom(:,1,112,sr) = sums(:,112) ! rrtm_asdif |
---|
1529 | hom(:,1,113,sr) = sums(:,113) ! rrtm_asdir |
---|
1530 | ENDIF |
---|
1531 | ENDIF |
---|
1532 | |
---|
1533 | hom(:,1,114,sr) = sums(:,114) !: L |
---|
1534 | |
---|
1535 | IF ( passive_scalar ) THEN |
---|
1536 | hom(:,1,119,sr) = sums(:,119) ! w"s" |
---|
1537 | hom(:,1,116,sr) = sums(:,116) ! w*s* |
---|
1538 | hom(:,1,120,sr) = sums(:,119) + sums(:,116) ! ws |
---|
1539 | hom(:,1,118,sr) = sums(:,118) ! s*2 |
---|
1540 | ENDIF |
---|
1541 | |
---|
1542 | hom(:,1,121,sr) = rho_air ! rho_air in Kg/m^3 |
---|
1543 | hom(:,1,122,sr) = rho_air_zw ! rho_air_zw in Kg/m^3 |
---|
1544 | |
---|
1545 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
1546 | ! u*, w'u', w'v', t* (in last profile) |
---|
1547 | |
---|
1548 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
1549 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
1550 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
1551 | ENDIF |
---|
1552 | |
---|
1553 | ! |
---|
1554 | !-- Determine the boundary layer height using two different schemes. |
---|
1555 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
1556 | !-- first relative minimum (maximum) of the total heat flux. |
---|
1557 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
1558 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
1559 | !-- (positive) for the first time. |
---|
1560 | z_i(1) = 0.0_wp |
---|
1561 | first = .TRUE. |
---|
1562 | |
---|
1563 | IF ( ocean ) THEN |
---|
1564 | DO k = nzt, nzb+1, -1 |
---|
1565 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
1566 | first = .FALSE. |
---|
1567 | height = zw(k) |
---|
1568 | ENDIF |
---|
1569 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
1570 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
1571 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
1572 | z_i(1) = zw(k) |
---|
1573 | ELSE |
---|
1574 | z_i(1) = height |
---|
1575 | ENDIF |
---|
1576 | EXIT |
---|
1577 | ENDIF |
---|
1578 | ENDDO |
---|
1579 | ELSE |
---|
1580 | DO k = nzb, nzt-1 |
---|
1581 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
1582 | first = .FALSE. |
---|
1583 | height = zw(k) |
---|
1584 | ENDIF |
---|
1585 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
1586 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
1587 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
1588 | z_i(1) = zw(k) |
---|
1589 | ELSE |
---|
1590 | z_i(1) = height |
---|
1591 | ENDIF |
---|
1592 | EXIT |
---|
1593 | ENDIF |
---|
1594 | ENDDO |
---|
1595 | ENDIF |
---|
1596 | |
---|
1597 | ! |
---|
1598 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
1599 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
1600 | !-- maximal local temperature gradient: starting from the second (the last |
---|
1601 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
1602 | !-- 0.2K/100m and greater than the next four gradients. |
---|
1603 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
1604 | !-- ocean case! |
---|
1605 | z_i(2) = 0.0_wp |
---|
1606 | DO k = nzb+1, nzt+1 |
---|
1607 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
1608 | ENDDO |
---|
1609 | dptdz_threshold = 0.2_wp / 100.0_wp |
---|
1610 | |
---|
1611 | IF ( ocean ) THEN |
---|
1612 | DO k = nzt+1, nzb+5, -1 |
---|
1613 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
1614 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
1615 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
1616 | z_i(2) = zw(k-1) |
---|
1617 | EXIT |
---|
1618 | ENDIF |
---|
1619 | ENDDO |
---|
1620 | ELSE |
---|
1621 | DO k = nzb+1, nzt-3 |
---|
1622 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
1623 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
1624 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
1625 | z_i(2) = zw(k-1) |
---|
1626 | EXIT |
---|
1627 | ENDIF |
---|
1628 | ENDDO |
---|
1629 | ENDIF |
---|
1630 | |
---|
1631 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
1632 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
1633 | |
---|
1634 | ! |
---|
1635 | !-- Determine vertical index which is nearest to the mean surface level |
---|
1636 | !-- height of the respective statistic region |
---|
1637 | DO k = nzb, nzt |
---|
1638 | IF ( zw(k) >= mean_surface_level_height(sr) ) THEN |
---|
1639 | k_surface_level = k |
---|
1640 | EXIT |
---|
1641 | ENDIF |
---|
1642 | ENDDO |
---|
1643 | ! |
---|
1644 | !-- Computation of both the characteristic vertical velocity and |
---|
1645 | !-- the characteristic convective boundary layer temperature. |
---|
1646 | !-- The inversion height entering into the equation is defined with respect |
---|
1647 | !-- to the mean surface level height of the respective statistic region. |
---|
1648 | !-- The horizontal average at surface level index + 1 is input for the |
---|
1649 | !-- average temperature. |
---|
1650 | IF ( hom(k_surface_level,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp )& |
---|
1651 | THEN |
---|
1652 | hom(nzb+8,1,pr_palm,sr) = & |
---|
1653 | ( g / hom(k_surface_level+1,1,4,sr) * & |
---|
1654 | ( hom(k_surface_level,1,18,sr) / heatflux_output_conversion(nzb) )& |
---|
1655 | * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp |
---|
1656 | ELSE |
---|
1657 | hom(nzb+8,1,pr_palm,sr) = 0.0_wp |
---|
1658 | ENDIF |
---|
1659 | |
---|
1660 | ! |
---|
1661 | !-- Collect the time series quantities |
---|
1662 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
1663 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
1664 | ts_value(3,sr) = dt_3d |
---|
1665 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
1666 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
1667 | ts_value(6,sr) = u_max |
---|
1668 | ts_value(7,sr) = v_max |
---|
1669 | ts_value(8,sr) = w_max |
---|
1670 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
1671 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
1672 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
1673 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
1674 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
1675 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
1676 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
1677 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
1678 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
1679 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
1680 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
1681 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
1682 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
1683 | |
---|
1684 | IF ( .NOT. neutral ) THEN |
---|
1685 | ts_value(22,sr) = hom(nzb,1,114,sr) ! L |
---|
1686 | ELSE |
---|
1687 | ts_value(22,sr) = 1.0E10_wp |
---|
1688 | ENDIF |
---|
1689 | |
---|
1690 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
1691 | |
---|
1692 | IF ( passive_scalar ) THEN |
---|
1693 | ts_value(24,sr) = hom(nzb+13,1,119,sr) ! w"s" ( to do ! ) |
---|
1694 | ts_value(25,sr) = hom(nzb+13,1,pr_palm,sr) ! s* |
---|
1695 | ENDIF |
---|
1696 | |
---|
1697 | ! |
---|
1698 | !-- Collect land surface model timeseries |
---|
1699 | IF ( land_surface ) THEN |
---|
1700 | ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf_eb |
---|
1701 | ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! shf_eb |
---|
1702 | ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_eb |
---|
1703 | ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_liq_eb |
---|
1704 | ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! qsws_soil_eb |
---|
1705 | ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! qsws_veg_eb |
---|
1706 | ts_value(dots_soil+6,sr) = hom(nzb,1,99,sr) ! r_a |
---|
1707 | ts_value(dots_soil+7,sr) = hom(nzb,1,100,sr) ! r_s |
---|
1708 | ENDIF |
---|
1709 | ! |
---|
1710 | !-- Collect radiation model timeseries |
---|
1711 | IF ( radiation ) THEN |
---|
1712 | ts_value(dots_rad,sr) = hom(nzb,1,101,sr) ! rad_net |
---|
1713 | ts_value(dots_rad+1,sr) = hom(nzb,1,102,sr) ! rad_lw_in |
---|
1714 | ts_value(dots_rad+2,sr) = hom(nzb,1,103,sr) ! rad_lw_out |
---|
1715 | ts_value(dots_rad+3,sr) = hom(nzb,1,104,sr) ! rad_sw_in |
---|
1716 | ts_value(dots_rad+4,sr) = hom(nzb,1,105,sr) ! rad_sw_out |
---|
1717 | |
---|
1718 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
1719 | ts_value(dots_rad+5,sr) = hom(nzb,1,110,sr) ! rrtm_aldif |
---|
1720 | ts_value(dots_rad+6,sr) = hom(nzb,1,111,sr) ! rrtm_aldir |
---|
1721 | ts_value(dots_rad+7,sr) = hom(nzb,1,112,sr) ! rrtm_asdif |
---|
1722 | ts_value(dots_rad+8,sr) = hom(nzb,1,113,sr) ! rrtm_asdir |
---|
1723 | ENDIF |
---|
1724 | |
---|
1725 | ENDIF |
---|
1726 | |
---|
1727 | ! |
---|
1728 | !-- Calculate additional statistics provided by the user interface |
---|
1729 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
1730 | |
---|
1731 | ENDDO ! loop of the subregions |
---|
1732 | |
---|
1733 | ! |
---|
1734 | !-- If required, sum up horizontal averages for subsequent time averaging. |
---|
1735 | !-- Do not sum, if flow statistics is called before the first initial time step. |
---|
1736 | IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN |
---|
1737 | IF ( average_count_pr == 0 ) hom_sum = 0.0_wp |
---|
1738 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
1739 | average_count_pr = average_count_pr + 1 |
---|
1740 | do_sum = .FALSE. |
---|
1741 | ENDIF |
---|
1742 | |
---|
1743 | ! |
---|
1744 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
1745 | !-- This flag is reset after each time step in time_integration. |
---|
1746 | flow_statistics_called = .TRUE. |
---|
1747 | |
---|
1748 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
1749 | |
---|
1750 | |
---|
1751 | END SUBROUTINE flow_statistics |
---|
1752 | |
---|
1753 | |
---|
1754 | #else |
---|
1755 | |
---|
1756 | |
---|
1757 | !------------------------------------------------------------------------------! |
---|
1758 | ! Description: |
---|
1759 | ! ------------ |
---|
1760 | !> flow statistics - accelerator version |
---|
1761 | !------------------------------------------------------------------------------! |
---|
1762 | SUBROUTINE flow_statistics |
---|
1763 | |
---|
1764 | USE arrays_3d, & |
---|
1765 | ONLY: ddzu, ddzw, e, heatflux_output_conversion, hyp, km, kh, & |
---|
1766 | momentumflux_output_conversion, nr, p, prho, pt, q, qc, ql, qr, & |
---|
1767 | qs, qsws, qswst, rho_air, rho_air_zw, rho_ocean, s, sa, saswsb, & |
---|
1768 | saswst, shf, ss, ssws, sswst, td_lsa_lpt, td_lsa_q, td_sub_lpt, & |
---|
1769 | td_sub_q, time_vert, ts, tswst, u, ug, us, usws, uswst, vsws, & |
---|
1770 | v, vg, vpt, vswst, w, w_subs, waterflux_output_conversion, zw |
---|
1771 | |
---|
1772 | |
---|
1773 | USE cloud_parameters, & |
---|
1774 | ONLY: l_d_cp, prr, pt_d_t |
---|
1775 | |
---|
1776 | USE control_parameters, & |
---|
1777 | ONLY : average_count_pr, cloud_droplets, cloud_physics, do_sum, & |
---|
1778 | dt_3d, g, humidity, kappa, large_scale_forcing, & |
---|
1779 | large_scale_subsidence, max_pr_user, message_string, & |
---|
1780 | microphysics_seifert, neutral, ocean, passive_scalar, & |
---|
1781 | simulated_time, use_subsidence_tendencies, use_surface_fluxes, & |
---|
1782 | use_top_fluxes, ws_scheme_mom, ws_scheme_sca |
---|
1783 | |
---|
1784 | USE cpulog, & |
---|
1785 | ONLY: cpu_log, log_point |
---|
1786 | |
---|
1787 | USE grid_variables, & |
---|
1788 | ONLY: ddx, ddy |
---|
1789 | |
---|
1790 | USE indices, & |
---|
1791 | ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, & |
---|
1792 | ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzb_diff_s_inner, & |
---|
1793 | nzb_s_inner, nzt, nzt_diff, rflags_invers |
---|
1794 | |
---|
1795 | USE kinds |
---|
1796 | |
---|
1797 | USE land_surface_model_mod, & |
---|
1798 | ONLY: ghf_eb, land_surface, m_soil, nzb_soil, nzt_soil, & |
---|
1799 | qsws_eb, qsws_liq_eb, qsws_soil_eb, qsws_veg_eb, r_a, r_s, & |
---|
1800 | shf_eb, t_soil |
---|
1801 | |
---|
1802 | USE netcdf_interface, & |
---|
1803 | ONLY: dots_rad, dots_soil |
---|
1804 | |
---|
1805 | USE pegrid |
---|
1806 | |
---|
1807 | USE radiation_model_mod, & |
---|
1808 | ONLY: radiation, radiation_scheme, rad_net, & |
---|
1809 | rad_lw_in, rad_lw_out, rad_sw_in, rad_sw_out |
---|
1810 | |
---|
1811 | #if defined ( __rrtmg ) |
---|
1812 | USE radiation_model_mod, & |
---|
1813 | ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir, rad_lw_cs_hr, & |
---|
1814 | rad_lw_hr, rad_sw_cs_hr, rad_sw_hr |
---|
1815 | #endif |
---|
1816 | |
---|
1817 | USE statistics |
---|
1818 | |
---|
1819 | IMPLICIT NONE |
---|
1820 | |
---|
1821 | INTEGER(iwp) :: i !< |
---|
1822 | INTEGER(iwp) :: j !< |
---|
1823 | INTEGER(iwp) :: k !< |
---|
1824 | INTEGER(iwp) :: k_surface_level !< |
---|
1825 | INTEGER(iwp) :: nt !< |
---|
1826 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
1827 | INTEGER(iwp) :: sr !< |
---|
1828 | INTEGER(iwp) :: tn !< |
---|
1829 | |
---|
1830 | LOGICAL :: first !< |
---|
1831 | |
---|
1832 | REAL(wp) :: dptdz_threshold !< |
---|
1833 | REAL(wp) :: fac !< |
---|
1834 | REAL(wp) :: height !< |
---|
1835 | REAL(wp) :: pts !< |
---|
1836 | REAL(wp) :: sums_l_eper !< |
---|
1837 | REAL(wp) :: sums_l_etot !< |
---|
1838 | REAL(wp) :: s1 !< |
---|
1839 | REAL(wp) :: s2 !< |
---|
1840 | REAL(wp) :: s3 !< |
---|
1841 | REAL(wp) :: s4 !< |
---|
1842 | REAL(wp) :: s5 !< |
---|
1843 | REAL(wp) :: s6 !< |
---|
1844 | REAL(wp) :: s7 !< |
---|
1845 | REAL(wp) :: ust !< |
---|
1846 | REAL(wp) :: ust2 !< |
---|
1847 | REAL(wp) :: u2 !< |
---|
1848 | REAL(wp) :: vst !< |
---|
1849 | REAL(wp) :: vst2 !< |
---|
1850 | REAL(wp) :: v2 !< |
---|
1851 | REAL(wp) :: w2 !< |
---|
1852 | REAL(wp) :: z_i(2) !< |
---|
1853 | |
---|
1854 | REAL(wp) :: dptdz(nzb+1:nzt+1) !< |
---|
1855 | REAL(wp) :: sums_ll(nzb:nzt+1,2) !< |
---|
1856 | |
---|
1857 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
1858 | |
---|
1859 | ! |
---|
1860 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
1861 | !-- called once after the current time step |
---|
1862 | IF ( flow_statistics_called ) THEN |
---|
1863 | |
---|
1864 | message_string = 'flow_statistics is called two times within one ' // & |
---|
1865 | 'timestep' |
---|
1866 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
1867 | |
---|
1868 | ENDIF |
---|
1869 | |
---|
1870 | !$acc data create( sums, sums_l ) |
---|
1871 | !$acc update device( hom ) |
---|
1872 | |
---|
1873 | ! |
---|
1874 | !-- Compute statistics for each (sub-)region |
---|
1875 | DO sr = 0, statistic_regions |
---|
1876 | |
---|
1877 | ! |
---|
1878 | !-- Initialize (local) summation array |
---|
1879 | sums_l = 0.0_wp |
---|
1880 | |
---|
1881 | ! |
---|
1882 | !-- Store sums that have been computed in other subroutines in summation |
---|
1883 | !-- array |
---|
1884 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
1885 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
1886 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) * & |
---|
1887 | heatflux_output_conversion ! heat flux from advec_s_bc |
---|
1888 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
1889 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
1890 | |
---|
1891 | ! |
---|
1892 | !-- When calcuating horizontally-averaged total (resolved- plus subgrid- |
---|
1893 | !-- scale) vertical fluxes and velocity variances by using commonly- |
---|
1894 | !-- applied Reynolds-based methods ( e.g. <w'pt'> = (w-<w>)*(pt-<pt>) ) |
---|
1895 | !-- in combination with the 5th order advection scheme, pronounced |
---|
1896 | !-- artificial kinks could be observed in the vertical profiles near the |
---|
1897 | !-- surface. Please note: these kinks were not related to the model truth, |
---|
1898 | !-- i.e. these kinks are just related to an evaluation problem. |
---|
1899 | !-- In order avoid these kinks, vertical fluxes and horizontal as well |
---|
1900 | !-- vertical velocity variances are calculated directly within the advection |
---|
1901 | !-- routines, according to the numerical discretization, to evaluate the |
---|
1902 | !-- statistical quantities as they will appear within the prognostic |
---|
1903 | !-- equations. |
---|
1904 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
1905 | !-- the local array sums_l() for further computations. |
---|
1906 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
1907 | |
---|
1908 | ! |
---|
1909 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
1910 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
1911 | IF ( ocean ) THEN |
---|
1912 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
1913 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
1914 | ENDIF |
---|
1915 | |
---|
1916 | DO i = 0, threads_per_task-1 |
---|
1917 | ! |
---|
1918 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
1919 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) & |
---|
1920 | * momentumflux_output_conversion ! w*u* |
---|
1921 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) & |
---|
1922 | * momentumflux_output_conversion ! w*v* |
---|
1923 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
1924 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
1925 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
1926 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & |
---|
1927 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
1928 | sums_ws2_ws_l(:,i) ) ! e* |
---|
1929 | DO k = nzb, nzt |
---|
1930 | sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5_wp * ( & |
---|
1931 | sums_us2_ws_l(k,i) + & |
---|
1932 | sums_vs2_ws_l(k,i) + & |
---|
1933 | sums_ws2_ws_l(k,i) ) |
---|
1934 | ENDDO |
---|
1935 | ENDDO |
---|
1936 | |
---|
1937 | ENDIF |
---|
1938 | |
---|
1939 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
1940 | |
---|
1941 | DO i = 0, threads_per_task-1 |
---|
1942 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) & |
---|
1943 | * heatflux_output_conversion ! w*pt* from advec_s_ws |
---|
1944 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
1945 | IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) & |
---|
1946 | * waterflux_output_conversion !w*q* |
---|
1947 | IF ( passive_scalar ) sums_l(:,116,i) = sums_wsss_ws_l(:,i) !w*s* |
---|
1948 | ENDDO |
---|
1949 | |
---|
1950 | ENDIF |
---|
1951 | ! |
---|
1952 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
1953 | !-- They must have been computed before, because they are already required |
---|
1954 | !-- for other horizontal averages. |
---|
1955 | tn = 0 |
---|
1956 | |
---|
1957 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
1958 | !$ tn = omp_get_thread_num() |
---|
1959 | |
---|
1960 | !$acc update device( sums_l ) |
---|
1961 | |
---|
1962 | !$OMP DO |
---|
1963 | !$acc parallel loop gang present( pt, rflags_invers, rmask, sums_l, u, v ) create( s1, s2, s3 ) |
---|
1964 | DO k = nzb, nzt+1 |
---|
1965 | s1 = 0 |
---|
1966 | s2 = 0 |
---|
1967 | s3 = 0 |
---|
1968 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
1969 | DO i = nxl, nxr |
---|
1970 | DO j = nys, nyn |
---|
1971 | ! |
---|
1972 | !-- k+1 is used in rflags since rflags is set 0 at surface points |
---|
1973 | s1 = s1 + u(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1974 | s2 = s2 + v(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1975 | s3 = s3 + pt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1976 | ENDDO |
---|
1977 | ENDDO |
---|
1978 | sums_l(k,1,tn) = s1 |
---|
1979 | sums_l(k,2,tn) = s2 |
---|
1980 | sums_l(k,4,tn) = s3 |
---|
1981 | ENDDO |
---|
1982 | !$acc end parallel loop |
---|
1983 | |
---|
1984 | ! |
---|
1985 | !-- Horizontally averaged profile of salinity |
---|
1986 | IF ( ocean ) THEN |
---|
1987 | !$OMP DO |
---|
1988 | !$acc parallel loop gang present( rflags_invers, rmask, sums_l, sa ) create( s1 ) |
---|
1989 | DO k = nzb, nzt+1 |
---|
1990 | s1 = 0 |
---|
1991 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
1992 | DO i = nxl, nxr |
---|
1993 | DO j = nys, nyn |
---|
1994 | s1 = s1 + sa(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
1995 | ENDDO |
---|
1996 | ENDDO |
---|
1997 | sums_l(k,23,tn) = s1 |
---|
1998 | ENDDO |
---|
1999 | !$acc end parallel loop |
---|
2000 | ENDIF |
---|
2001 | |
---|
2002 | ! |
---|
2003 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
2004 | !-- total water content, specific humidity and liquid water potential |
---|
2005 | !-- temperature |
---|
2006 | IF ( humidity ) THEN |
---|
2007 | |
---|
2008 | !$OMP DO |
---|
2009 | !$acc parallel loop gang present( q, rflags_invers, rmask, sums_l, vpt ) create( s1, s2 ) |
---|
2010 | DO k = nzb, nzt+1 |
---|
2011 | s1 = 0 |
---|
2012 | s2 = 0 |
---|
2013 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2014 | DO i = nxl, nxr |
---|
2015 | DO j = nys, nyn |
---|
2016 | s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2017 | s2 = s2 + vpt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2018 | ENDDO |
---|
2019 | ENDDO |
---|
2020 | sums_l(k,41,tn) = s1 |
---|
2021 | sums_l(k,44,tn) = s2 |
---|
2022 | ENDDO |
---|
2023 | !$acc end parallel loop |
---|
2024 | |
---|
2025 | IF ( cloud_physics ) THEN |
---|
2026 | !$OMP DO |
---|
2027 | !$acc parallel loop gang present( pt, q, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
2028 | DO k = nzb, nzt+1 |
---|
2029 | s1 = 0 |
---|
2030 | s2 = 0 |
---|
2031 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2032 | DO i = nxl, nxr |
---|
2033 | DO j = nys, nyn |
---|
2034 | s1 = s1 + ( q(k,j,i) - ql(k,j,i) ) * & |
---|
2035 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2036 | s2 = s2 + ( pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) ) * & |
---|
2037 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2038 | ENDDO |
---|
2039 | ENDDO |
---|
2040 | sums_l(k,42,tn) = s1 |
---|
2041 | sums_l(k,43,tn) = s2 |
---|
2042 | ENDDO |
---|
2043 | !$acc end parallel loop |
---|
2044 | ENDIF |
---|
2045 | ENDIF |
---|
2046 | |
---|
2047 | ! |
---|
2048 | !-- Horizontally averaged profiles of passive scalar |
---|
2049 | IF ( passive_scalar ) THEN |
---|
2050 | !$OMP DO |
---|
2051 | !$acc parallel loop gang present( s, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2052 | DO k = nzb, nzt+1 |
---|
2053 | s1 = 0 |
---|
2054 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2055 | DO i = nxl, nxr |
---|
2056 | DO j = nys, nyn |
---|
2057 | s1 = s1 + s(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2058 | ENDDO |
---|
2059 | ENDDO |
---|
2060 | sums_l(k,117,tn) = s1 |
---|
2061 | ENDDO |
---|
2062 | !$acc end parallel loop |
---|
2063 | ENDIF |
---|
2064 | !$OMP END PARALLEL |
---|
2065 | |
---|
2066 | ! |
---|
2067 | !-- Summation of thread sums |
---|
2068 | IF ( threads_per_task > 1 ) THEN |
---|
2069 | DO i = 1, threads_per_task-1 |
---|
2070 | !$acc parallel present( sums_l ) |
---|
2071 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
2072 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
2073 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
2074 | !$acc end parallel |
---|
2075 | IF ( ocean ) THEN |
---|
2076 | !$acc parallel present( sums_l ) |
---|
2077 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
2078 | !$acc end parallel |
---|
2079 | ENDIF |
---|
2080 | IF ( humidity ) THEN |
---|
2081 | !$acc parallel present( sums_l ) |
---|
2082 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
2083 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
2084 | !$acc end parallel |
---|
2085 | IF ( cloud_physics ) THEN |
---|
2086 | !$acc parallel present( sums_l ) |
---|
2087 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
2088 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
2089 | !$acc end parallel |
---|
2090 | ENDIF |
---|
2091 | ENDIF |
---|
2092 | IF ( passive_scalar ) THEN |
---|
2093 | !$acc parallel present( sums_l ) |
---|
2094 | sums_l(:,117,0) = sums_l(:,117,0) + sums_l(:,117,i) |
---|
2095 | !$acc end parallel |
---|
2096 | ENDIF |
---|
2097 | ENDDO |
---|
2098 | ENDIF |
---|
2099 | |
---|
2100 | #if defined( __parallel ) |
---|
2101 | ! |
---|
2102 | !-- Compute total sum from local sums |
---|
2103 | !$acc update host( sums_l ) |
---|
2104 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2105 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
2106 | MPI_SUM, comm2d, ierr ) |
---|
2107 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2108 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
2109 | MPI_SUM, comm2d, ierr ) |
---|
2110 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2111 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
2112 | MPI_SUM, comm2d, ierr ) |
---|
2113 | IF ( ocean ) THEN |
---|
2114 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2115 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
2116 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2117 | ENDIF |
---|
2118 | IF ( humidity ) THEN |
---|
2119 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2120 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
2121 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2122 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2123 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
2124 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2125 | IF ( cloud_physics ) THEN |
---|
2126 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2127 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
2128 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2129 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2130 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
2131 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2132 | ENDIF |
---|
2133 | ENDIF |
---|
2134 | |
---|
2135 | IF ( passive_scalar ) THEN |
---|
2136 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2137 | CALL MPI_ALLREDUCE( sums_l(nzb,117,0), sums(nzb,117), nzt+2-nzb, & |
---|
2138 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2139 | ENDIF |
---|
2140 | !$acc update device( sums ) |
---|
2141 | #else |
---|
2142 | !$acc parallel present( sums, sums_l ) |
---|
2143 | sums(:,1) = sums_l(:,1,0) |
---|
2144 | sums(:,2) = sums_l(:,2,0) |
---|
2145 | sums(:,4) = sums_l(:,4,0) |
---|
2146 | !$acc end parallel |
---|
2147 | IF ( ocean ) THEN |
---|
2148 | !$acc parallel present( sums, sums_l ) |
---|
2149 | sums(:,23) = sums_l(:,23,0) |
---|
2150 | !$acc end parallel |
---|
2151 | ENDIF |
---|
2152 | IF ( humidity ) THEN |
---|
2153 | !$acc parallel present( sums, sums_l ) |
---|
2154 | sums(:,44) = sums_l(:,44,0) |
---|
2155 | sums(:,41) = sums_l(:,41,0) |
---|
2156 | !$acc end parallel |
---|
2157 | IF ( cloud_physics ) THEN |
---|
2158 | !$acc parallel present( sums, sums_l ) |
---|
2159 | sums(:,42) = sums_l(:,42,0) |
---|
2160 | sums(:,43) = sums_l(:,43,0) |
---|
2161 | !$acc end parallel |
---|
2162 | ENDIF |
---|
2163 | ENDIF |
---|
2164 | IF ( passive_scalar ) THEN |
---|
2165 | !$acc parallel present( sums, sums_l ) |
---|
2166 | sums(:,117) = sums_l(:,117,0) |
---|
2167 | !$acc end parallel |
---|
2168 | ENDIF |
---|
2169 | #endif |
---|
2170 | |
---|
2171 | ! |
---|
2172 | !-- Final values are obtained by division by the total number of grid points |
---|
2173 | !-- used for summation. After that store profiles. |
---|
2174 | !$acc parallel present( hom, ngp_2dh, ngp_2dh_s_inner, sums ) |
---|
2175 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
2176 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
2177 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
2178 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
2179 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
2180 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
2181 | !$acc end parallel |
---|
2182 | |
---|
2183 | ! |
---|
2184 | !-- Salinity |
---|
2185 | IF ( ocean ) THEN |
---|
2186 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
2187 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
2188 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
2189 | !$acc end parallel |
---|
2190 | ENDIF |
---|
2191 | |
---|
2192 | ! |
---|
2193 | !-- Humidity and cloud parameters |
---|
2194 | IF ( humidity ) THEN |
---|
2195 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
2196 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
2197 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
2198 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
2199 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
2200 | !$acc end parallel |
---|
2201 | IF ( cloud_physics ) THEN |
---|
2202 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
2203 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
2204 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
2205 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
2206 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
2207 | !$acc end parallel |
---|
2208 | ENDIF |
---|
2209 | ENDIF |
---|
2210 | |
---|
2211 | ! |
---|
2212 | !-- Passive scalar |
---|
2213 | IF ( passive_scalar ) THEN |
---|
2214 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
2215 | sums(:,117) = sums(:,117) / ngp_2dh_s_inner(:,sr) |
---|
2216 | hom(:,1,117,sr) = sums(:,117) ! s |
---|
2217 | !$acc end parallel |
---|
2218 | ENDIF |
---|
2219 | |
---|
2220 | ! |
---|
2221 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
2222 | !-- variances, the total and the perturbation energy (single values in last |
---|
2223 | !-- column of sums_l) and some diagnostic quantities. |
---|
2224 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
2225 | !-- ---- speaking the following k-loop would have to be split up and |
---|
2226 | !-- rearranged according to the staggered grid. |
---|
2227 | !-- However, this implies no error since staggered velocity components |
---|
2228 | !-- are zero at the walls and inside buildings. |
---|
2229 | tn = 0 |
---|
2230 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, & |
---|
2231 | !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & |
---|
2232 | !$OMP w2 ) |
---|
2233 | !$ tn = omp_get_thread_num() |
---|
2234 | |
---|
2235 | !$OMP DO |
---|
2236 | !$acc parallel loop gang present( e, hom, kh, km, p, pt, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, s5, s6, s7 ) |
---|
2237 | DO k = nzb, nzt+1 |
---|
2238 | s1 = 0 |
---|
2239 | s2 = 0 |
---|
2240 | s3 = 0 |
---|
2241 | s4 = 0 |
---|
2242 | s5 = 0 |
---|
2243 | s6 = 0 |
---|
2244 | s7 = 0 |
---|
2245 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5, s6, s7 ) |
---|
2246 | DO i = nxl, nxr |
---|
2247 | DO j = nys, nyn |
---|
2248 | ! |
---|
2249 | !-- Prognostic and diagnostic variables |
---|
2250 | s1 = s1 + w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2251 | s2 = s2 + e(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2252 | s3 = s3 + km(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2253 | s4 = s4 + kh(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2254 | s5 = s5 + p(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2255 | s6 = s6 + ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) * & |
---|
2256 | rflags_invers(j,i,k+1) |
---|
2257 | ! |
---|
2258 | !-- Higher moments |
---|
2259 | !-- (Computation of the skewness of w further below) |
---|
2260 | s7 = s7 + w(k,j,i)**3 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2261 | ENDDO |
---|
2262 | ENDDO |
---|
2263 | sums_l(k,3,tn) = s1 |
---|
2264 | sums_l(k,8,tn) = s2 |
---|
2265 | sums_l(k,9,tn) = s3 |
---|
2266 | sums_l(k,10,tn) = s4 |
---|
2267 | sums_l(k,40,tn) = s5 |
---|
2268 | sums_l(k,33,tn) = s6 |
---|
2269 | sums_l(k,38,tn) = s7 |
---|
2270 | ENDDO |
---|
2271 | !$acc end parallel loop |
---|
2272 | |
---|
2273 | IF ( humidity ) THEN |
---|
2274 | !$OMP DO |
---|
2275 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2276 | DO k = nzb, nzt+1 |
---|
2277 | s1 = 0 |
---|
2278 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2279 | DO i = nxl, nxr |
---|
2280 | DO j = nys, nyn |
---|
2281 | s1 = s1 + ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) * & |
---|
2282 | rflags_invers(j,i,k+1) |
---|
2283 | ENDDO |
---|
2284 | ENDDO |
---|
2285 | sums_l(k,70,tn) = s1 |
---|
2286 | ENDDO |
---|
2287 | !$acc end parallel loop |
---|
2288 | ENDIF |
---|
2289 | |
---|
2290 | ! |
---|
2291 | !-- Total and perturbation energy for the total domain (being |
---|
2292 | !-- collected in the last column of sums_l). |
---|
2293 | s1 = 0 |
---|
2294 | !$OMP DO |
---|
2295 | !$acc parallel loop collapse(3) present( rflags_invers, rmask, u, v, w ) reduction(+:s1) |
---|
2296 | DO i = nxl, nxr |
---|
2297 | DO j = nys, nyn |
---|
2298 | DO k = nzb, nzt+1 |
---|
2299 | s1 = s1 + 0.5_wp * & |
---|
2300 | ( u(k,j,i)**2 + v(k,j,i)**2 + w(k,j,i)**2 ) * & |
---|
2301 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2302 | ENDDO |
---|
2303 | ENDDO |
---|
2304 | ENDDO |
---|
2305 | !$acc end parallel loop |
---|
2306 | !$acc parallel present( sums_l ) |
---|
2307 | sums_l(nzb+4,pr_palm,tn) = s1 |
---|
2308 | !$acc end parallel |
---|
2309 | |
---|
2310 | !$OMP DO |
---|
2311 | !$acc parallel present( rmask, sums_l, us, usws, vsws, ts ) create( s1, s2, s3, s4 ) |
---|
2312 | s1 = 0 |
---|
2313 | s2 = 0 |
---|
2314 | s3 = 0 |
---|
2315 | s4 = 0 |
---|
2316 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) |
---|
2317 | DO i = nxl, nxr |
---|
2318 | DO j = nys, nyn |
---|
2319 | ! |
---|
2320 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
2321 | s1 = s1 + us(j,i) * rmask(j,i,sr) |
---|
2322 | s2 = s2 + usws(j,i) * rmask(j,i,sr) |
---|
2323 | s3 = s3 + vsws(j,i) * rmask(j,i,sr) |
---|
2324 | s4 = s4 + ts(j,i) * rmask(j,i,sr) |
---|
2325 | ENDDO |
---|
2326 | ENDDO |
---|
2327 | sums_l(nzb,pr_palm,tn) = s1 |
---|
2328 | sums_l(nzb+1,pr_palm,tn) = s2 |
---|
2329 | sums_l(nzb+2,pr_palm,tn) = s3 |
---|
2330 | sums_l(nzb+3,pr_palm,tn) = s4 |
---|
2331 | !$acc end parallel |
---|
2332 | |
---|
2333 | IF ( humidity ) THEN |
---|
2334 | !$acc parallel present( qs, rmask, sums_l ) create( s1 ) |
---|
2335 | s1 = 0 |
---|
2336 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2337 | DO i = nxl, nxr |
---|
2338 | DO j = nys, nyn |
---|
2339 | s1 = s1 + qs(j,i) * rmask(j,i,sr) |
---|
2340 | ENDDO |
---|
2341 | ENDDO |
---|
2342 | sums_l(nzb+12,pr_palm,tn) = s1 |
---|
2343 | !$acc end parallel |
---|
2344 | ENDIF |
---|
2345 | |
---|
2346 | IF ( passive_scalar ) THEN |
---|
2347 | !$acc parallel present( ss, rmask, sums_l ) create( s1 ) |
---|
2348 | s1 = 0 |
---|
2349 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2350 | DO i = nxl, nxr |
---|
2351 | DO j = nys, nyn |
---|
2352 | s1 = s1 + ss(j,i) * rmask(j,i,sr) |
---|
2353 | ENDDO |
---|
2354 | ENDDO |
---|
2355 | sums_l(nzb+13,pr_palm,tn) = s1 |
---|
2356 | !$acc end parallel |
---|
2357 | ENDIF |
---|
2358 | |
---|
2359 | ! |
---|
2360 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
2361 | !-- quantities are evaluated in the advection routines. |
---|
2362 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) & |
---|
2363 | THEN |
---|
2364 | |
---|
2365 | !$OMP DO |
---|
2366 | !$acc parallel loop gang present( u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, ust2, vst2, w2 ) |
---|
2367 | DO k = nzb, nzt+1 |
---|
2368 | s1 = 0 |
---|
2369 | s2 = 0 |
---|
2370 | s3 = 0 |
---|
2371 | s4 = 0 |
---|
2372 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) |
---|
2373 | DO i = nxl, nxr |
---|
2374 | DO j = nys, nyn |
---|
2375 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
2376 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
2377 | w2 = w(k,j,i)**2 |
---|
2378 | |
---|
2379 | s1 = s1 + ust2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2380 | s2 = s2 + vst2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2381 | s3 = s3 + w2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2382 | ! |
---|
2383 | !-- Perturbation energy |
---|
2384 | s4 = s4 + 0.5_wp * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) * & |
---|
2385 | rflags_invers(j,i,k+1) |
---|
2386 | ENDDO |
---|
2387 | ENDDO |
---|
2388 | sums_l(k,30,tn) = s1 |
---|
2389 | sums_l(k,31,tn) = s2 |
---|
2390 | sums_l(k,32,tn) = s3 |
---|
2391 | sums_l(k,34,tn) = s4 |
---|
2392 | ENDDO |
---|
2393 | !$acc end parallel loop |
---|
2394 | ! |
---|
2395 | !-- Total perturbation TKE |
---|
2396 | !$OMP DO |
---|
2397 | !$acc parallel present( sums_l ) create( s1 ) |
---|
2398 | s1 = 0 |
---|
2399 | !$acc loop reduction( +: s1 ) |
---|
2400 | DO k = nzb, nzt+1 |
---|
2401 | s1 = s1 + sums_l(k,34,tn) |
---|
2402 | ENDDO |
---|
2403 | sums_l(nzb+5,pr_palm,tn) = s1 |
---|
2404 | !$acc end parallel |
---|
2405 | |
---|
2406 | ENDIF |
---|
2407 | |
---|
2408 | ! |
---|
2409 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
2410 | |
---|
2411 | ! |
---|
2412 | !-- Subgridscale fluxes. |
---|
2413 | !-- WARNING: If a Prandtl-layer is used (k=nzb for flat terrain), the fluxes |
---|
2414 | !-- ------- should be calculated there in a different way. This is done |
---|
2415 | !-- in the next loop further below, where results from this loop are |
---|
2416 | !-- overwritten. However, THIS WORKS IN CASE OF FLAT TERRAIN ONLY! |
---|
2417 | !-- The non-flat case still has to be handled. |
---|
2418 | !-- NOTE: for simplicity, nzb_s_inner is used below, although |
---|
2419 | !-- ---- strictly speaking the following k-loop would have to be |
---|
2420 | !-- split up according to the staggered grid. |
---|
2421 | !-- However, this implies no error since staggered velocity |
---|
2422 | !-- components are zero at the walls and inside buildings. |
---|
2423 | !$OMP DO |
---|
2424 | !$acc parallel loop gang present( ddzu, kh, km, pt, u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) |
---|
2425 | DO k = nzb, nzt_diff |
---|
2426 | s1 = 0 |
---|
2427 | s2 = 0 |
---|
2428 | s3 = 0 |
---|
2429 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
2430 | DO i = nxl, nxr |
---|
2431 | DO j = nys, nyn |
---|
2432 | |
---|
2433 | ! |
---|
2434 | !-- Momentum flux w"u" |
---|
2435 | s1 = s1 - 0.25_wp * ( & |
---|
2436 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
2437 | ) * ( & |
---|
2438 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
2439 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
2440 | ) & |
---|
2441 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) & |
---|
2442 | * rho_air_zw(k) & |
---|
2443 | * momentumflux_output_conversion(k) |
---|
2444 | ! |
---|
2445 | !-- Momentum flux w"v" |
---|
2446 | s2 = s2 - 0.25_wp * ( & |
---|
2447 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
2448 | ) * ( & |
---|
2449 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
2450 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
2451 | ) & |
---|
2452 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) & |
---|
2453 | * rho_air_zw(k) & |
---|
2454 | * momentumflux_output_conversion(k) |
---|
2455 | ! |
---|
2456 | !-- Heat flux w"pt" |
---|
2457 | s3 = s3 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
2458 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
2459 | * rho_air_zw(k) & |
---|
2460 | * heatflux_output_conversion(k) & |
---|
2461 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
2462 | * rflags_invers(j,i,k+1) |
---|
2463 | ENDDO |
---|
2464 | ENDDO |
---|
2465 | sums_l(k,12,tn) = s1 |
---|
2466 | sums_l(k,14,tn) = s2 |
---|
2467 | sums_l(k,16,tn) = s3 |
---|
2468 | ENDDO |
---|
2469 | !$acc end parallel loop |
---|
2470 | |
---|
2471 | ! |
---|
2472 | !-- Salinity flux w"sa" |
---|
2473 | IF ( ocean ) THEN |
---|
2474 | !$acc parallel loop gang present( ddzu, kh, sa, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2475 | DO k = nzb, nzt_diff |
---|
2476 | s1 = 0 |
---|
2477 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2478 | DO i = nxl, nxr |
---|
2479 | DO j = nys, nyn |
---|
2480 | s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
2481 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
2482 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
2483 | * rflags_invers(j,i,k+1) |
---|
2484 | ENDDO |
---|
2485 | ENDDO |
---|
2486 | sums_l(k,65,tn) = s1 |
---|
2487 | ENDDO |
---|
2488 | !$acc end parallel loop |
---|
2489 | ENDIF |
---|
2490 | |
---|
2491 | ! |
---|
2492 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
2493 | IF ( humidity ) THEN |
---|
2494 | |
---|
2495 | !$acc parallel loop gang present( ddzu, kh, q, vpt, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
2496 | DO k = nzb, nzt_diff |
---|
2497 | s1 = 0 |
---|
2498 | s2 = 0 |
---|
2499 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2500 | DO i = nxl, nxr |
---|
2501 | DO j = nys, nyn |
---|
2502 | s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
2503 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
2504 | * rho_air_zw(k) & |
---|
2505 | * heatflux_output_conversion(k) & |
---|
2506 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
2507 | * rflags_invers(j,i,k+1) |
---|
2508 | s2 = s2 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
2509 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
2510 | * rho_air_zw(k) & |
---|
2511 | * waterflux_output_conversion(k) & |
---|
2512 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
2513 | * rflags_invers(j,i,k+1) |
---|
2514 | ENDDO |
---|
2515 | ENDDO |
---|
2516 | sums_l(k,45,tn) = s1 |
---|
2517 | sums_l(k,48,tn) = s2 |
---|
2518 | ENDDO |
---|
2519 | !$acc end parallel loop |
---|
2520 | |
---|
2521 | IF ( cloud_physics ) THEN |
---|
2522 | |
---|
2523 | !$acc parallel loop gang present( ddzu, kh, q, ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2524 | DO k = nzb, nzt_diff |
---|
2525 | s1 = 0 |
---|
2526 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2527 | DO i = nxl, nxr |
---|
2528 | DO j = nys, nyn |
---|
2529 | s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
2530 | * ( ( q(k+1,j,i) - ql(k+1,j,i) ) & |
---|
2531 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
2532 | * rho_air_zw(k) & |
---|
2533 | * waterflux_output_conversion(k) & |
---|
2534 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
2535 | * rflags_invers(j,i,k+1) |
---|
2536 | ENDDO |
---|
2537 | ENDDO |
---|
2538 | sums_l(k,51,tn) = s1 |
---|
2539 | ENDDO |
---|
2540 | !$acc end parallel loop |
---|
2541 | |
---|
2542 | ENDIF |
---|
2543 | |
---|
2544 | ENDIF |
---|
2545 | ! |
---|
2546 | !-- Passive scalar flux |
---|
2547 | IF ( passive_scalar ) THEN |
---|
2548 | |
---|
2549 | !$acc parallel loop gang present( ddzu, kh, s, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2550 | DO k = nzb, nzt_diff |
---|
2551 | s1 = 0 |
---|
2552 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2553 | DO i = nxl, nxr |
---|
2554 | DO j = nys, nyn |
---|
2555 | s1 = s1 - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
2556 | * ( s(k+1,j,i) - s(k,j,i) ) & |
---|
2557 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
2558 | * rflags_invers(j,i,k+1) |
---|
2559 | ENDDO |
---|
2560 | ENDDO |
---|
2561 | sums_l(k,119,tn) = s1 |
---|
2562 | ENDDO |
---|
2563 | !$acc end parallel loop |
---|
2564 | |
---|
2565 | ENDIF |
---|
2566 | |
---|
2567 | IF ( use_surface_fluxes ) THEN |
---|
2568 | |
---|
2569 | !$OMP DO |
---|
2570 | !$acc parallel present( rmask, shf, sums_l, usws, vsws ) create( s1, s2, s3, s4, s5 ) |
---|
2571 | s1 = 0 |
---|
2572 | s2 = 0 |
---|
2573 | s3 = 0 |
---|
2574 | s4 = 0 |
---|
2575 | s5 = 0 |
---|
2576 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) |
---|
2577 | DO i = nxl, nxr |
---|
2578 | DO j = nys, nyn |
---|
2579 | ! |
---|
2580 | !-- Subgridscale fluxes in the Prandtl layer |
---|
2581 | s1 = s1 + usws(j,i) * momentumflux_output_conversion(nzb) & |
---|
2582 | * rmask(j,i,sr) ! w"u" |
---|
2583 | s2 = s2 + vsws(j,i) * momentumflux_output_conversion(nzb) & |
---|
2584 | * rmask(j,i,sr) ! w"v" |
---|
2585 | s3 = s3 + shf(j,i) * heatflux_output_conversion(nzb) & |
---|
2586 | * rmask(j,i,sr) ! w"pt" |
---|
2587 | s4 = s4 + 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
2588 | s5 = s5 + 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
2589 | ENDDO |
---|
2590 | ENDDO |
---|
2591 | sums_l(nzb,12,tn) = s1 |
---|
2592 | sums_l(nzb,14,tn) = s2 |
---|
2593 | sums_l(nzb,16,tn) = s3 |
---|
2594 | sums_l(nzb,58,tn) = s4 |
---|
2595 | sums_l(nzb,61,tn) = s5 |
---|
2596 | !$acc end parallel |
---|
2597 | |
---|
2598 | IF ( ocean ) THEN |
---|
2599 | |
---|
2600 | !$OMP DO |
---|
2601 | !$acc parallel present( rmask, saswsb, sums_l ) create( s1 ) |
---|
2602 | s1 = 0 |
---|
2603 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2604 | DO i = nxl, nxr |
---|
2605 | DO j = nys, nyn |
---|
2606 | s1 = s1 + saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
2607 | ENDDO |
---|
2608 | ENDDO |
---|
2609 | sums_l(nzb,65,tn) = s1 |
---|
2610 | !$acc end parallel |
---|
2611 | |
---|
2612 | ENDIF |
---|
2613 | |
---|
2614 | IF ( humidity ) THEN |
---|
2615 | |
---|
2616 | !$OMP DO |
---|
2617 | !$acc parallel present( pt, q, qsws, rmask, shf, sums_l ) create( s1, s2 ) |
---|
2618 | s1 = 0 |
---|
2619 | s2 = 0 |
---|
2620 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2621 | DO i = nxl, nxr |
---|
2622 | DO j = nys, nyn |
---|
2623 | s1 = s1 + qsws(j,i) * waterflux_output_conversion(nzb) & |
---|
2624 | * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2625 | s2 = s2 + ( ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * shf(j,i) & |
---|
2626 | + 0.61_wp * pt(nzb,j,i) * qsws(j,i) ) & |
---|
2627 | * heatflux_output_conversion(nzb) |
---|
2628 | ENDDO |
---|
2629 | ENDDO |
---|
2630 | sums_l(nzb,48,tn) = s1 |
---|
2631 | sums_l(nzb,45,tn) = s2 |
---|
2632 | !$acc end parallel |
---|
2633 | |
---|
2634 | IF ( cloud_droplets ) THEN |
---|
2635 | |
---|
2636 | !$OMP DO |
---|
2637 | !$acc parallel present( pt, q, ql, qsws, rmask, shf, sums_l ) create( s1 ) |
---|
2638 | s1 = 0 |
---|
2639 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2640 | DO i = nxl, nxr |
---|
2641 | DO j = nys, nyn |
---|
2642 | s1 = s1 + ( ( 1.0_wp + & |
---|
2643 | 0.61_wp * q(nzb,j,i) - ql(nzb,j,i) ) * & |
---|
2644 | shf(j,i) + 0.61_wp * pt(nzb,j,i) * qsws(j,i) )& |
---|
2645 | * heatflux_output_conversion(nzb) |
---|
2646 | ENDDO |
---|
2647 | ENDDO |
---|
2648 | sums_l(nzb,45,tn) = s1 |
---|
2649 | !$acc end parallel |
---|
2650 | |
---|
2651 | ENDIF |
---|
2652 | |
---|
2653 | IF ( cloud_physics ) THEN |
---|
2654 | |
---|
2655 | !$OMP DO |
---|
2656 | !$acc parallel present( qsws, rmask, sums_l ) create( s1 ) |
---|
2657 | s1 = 0 |
---|
2658 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2659 | DO i = nxl, nxr |
---|
2660 | DO j = nys, nyn |
---|
2661 | ! |
---|
2662 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
2663 | s1 = s1 + qsws(j,i) * waterflux_output_conversion(nzb) & |
---|
2664 | * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2665 | ENDDO |
---|
2666 | ENDDO |
---|
2667 | sums_l(nzb,51,tn) = s1 |
---|
2668 | !$acc end parallel |
---|
2669 | |
---|
2670 | ENDIF |
---|
2671 | |
---|
2672 | ENDIF |
---|
2673 | |
---|
2674 | IF ( passive_scalar ) THEN |
---|
2675 | |
---|
2676 | !$OMP DO |
---|
2677 | !$acc parallel present( ssws, rmask, sums_l ) create( s1 ) |
---|
2678 | s1 = 0 |
---|
2679 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2680 | DO i = nxl, nxr |
---|
2681 | DO j = nys, nyn |
---|
2682 | s1 = s1 + ssws(j,i) * rmask(j,i,sr) ! w"s" |
---|
2683 | ENDDO |
---|
2684 | ENDDO |
---|
2685 | sums_l(nzb,119,tn) = s1 |
---|
2686 | !$acc end parallel |
---|
2687 | |
---|
2688 | ENDIF |
---|
2689 | |
---|
2690 | ENDIF |
---|
2691 | |
---|
2692 | ! |
---|
2693 | !-- Subgridscale fluxes at the top surface |
---|
2694 | IF ( use_top_fluxes ) THEN |
---|
2695 | |
---|
2696 | !$OMP DO |
---|
2697 | !$acc parallel present( rmask, sums_l, tswst, uswst, vswst ) create( s1, s2, s3, s4, s5 ) |
---|
2698 | s1 = 0 |
---|
2699 | s2 = 0 |
---|
2700 | s3 = 0 |
---|
2701 | s4 = 0 |
---|
2702 | s5 = 0 |
---|
2703 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) |
---|
2704 | DO i = nxl, nxr |
---|
2705 | DO j = nys, nyn |
---|
2706 | s1 = s1 + uswst(j,i) * momentumflux_output_conversion(nzt:nzt+1) & |
---|
2707 | * rmask(j,i,sr) ! w"u" |
---|
2708 | s2 = s2 + vswst(j,i) * momentumflux_output_conversion(nzt:nzt+1) & |
---|
2709 | * rmask(j,i,sr) ! w"v" |
---|
2710 | s3 = s3 + tswst(j,i) * heatflux_output_conversion(nzt:nzt+1) & |
---|
2711 | * rmask(j,i,sr) ! w"pt" |
---|
2712 | s4 = s4 + 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
2713 | s5 = s5 + 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
2714 | ENDDO |
---|
2715 | ENDDO |
---|
2716 | sums_l(nzt:nzt+1,12,tn) = s1 |
---|
2717 | sums_l(nzt:nzt+1,14,tn) = s2 |
---|
2718 | sums_l(nzt:nzt+1,16,tn) = s3 |
---|
2719 | sums_l(nzt:nzt+1,58,tn) = s4 |
---|
2720 | sums_l(nzt:nzt+1,61,tn) = s5 |
---|
2721 | !$acc end parallel |
---|
2722 | |
---|
2723 | IF ( ocean ) THEN |
---|
2724 | |
---|
2725 | !$OMP DO |
---|
2726 | !$acc parallel present( rmask, saswst, sums_l ) create( s1 ) |
---|
2727 | s1 = 0 |
---|
2728 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2729 | DO i = nxl, nxr |
---|
2730 | DO j = nys, nyn |
---|
2731 | s1 = s1 + saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
2732 | ENDDO |
---|
2733 | ENDDO |
---|
2734 | sums_l(nzt,65,tn) = s1 |
---|
2735 | !$acc end parallel |
---|
2736 | |
---|
2737 | ENDIF |
---|
2738 | |
---|
2739 | IF ( humidity ) THEN |
---|
2740 | |
---|
2741 | !$OMP DO |
---|
2742 | !$acc parallel present( pt, q, qswst, rmask, tswst, sums_l ) create( s1, s2 ) |
---|
2743 | s1 = 0 |
---|
2744 | s2 = 0 |
---|
2745 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2746 | DO i = nxl, nxr |
---|
2747 | DO j = nys, nyn |
---|
2748 | s1 = s1 + qswst(j,i) * waterflux_output_conversion(nzt) & |
---|
2749 | * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2750 | s2 = s2 + ( ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * tswst(j,i) +& |
---|
2751 | 0.61_wp * pt(nzt,j,i) * qswst(j,i) ) & |
---|
2752 | * heatflux_output_conversion(nzt) |
---|
2753 | ENDDO |
---|
2754 | ENDDO |
---|
2755 | sums_l(nzt,48,tn) = s1 |
---|
2756 | sums_l(nzt,45,tn) = s2 |
---|
2757 | !$acc end parallel |
---|
2758 | |
---|
2759 | IF ( cloud_droplets ) THEN |
---|
2760 | |
---|
2761 | !$OMP DO |
---|
2762 | !$acc parallel present( pt, q, ql, qswst, rmask, tswst, sums_l ) create( s1 ) |
---|
2763 | s1 = 0 |
---|
2764 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2765 | DO i = nxl, nxr |
---|
2766 | DO j = nys, nyn |
---|
2767 | s1 = s1 + ( ( 1.0_wp + & |
---|
2768 | 0.61_wp * q(nzt,j,i) - ql(nzt,j,i) ) * & |
---|
2769 | tswst(j,i) + & |
---|
2770 | 0.61_wp * pt(nzt,j,i) * qswst(j,i) ) & |
---|
2771 | * heatflux_output_conversion(nzt) |
---|
2772 | ENDDO |
---|
2773 | ENDDO |
---|
2774 | sums_l(nzt,45,tn) = s1 |
---|
2775 | !$acc end parallel |
---|
2776 | |
---|
2777 | ENDIF |
---|
2778 | |
---|
2779 | IF ( cloud_physics ) THEN |
---|
2780 | |
---|
2781 | !$OMP DO |
---|
2782 | !$acc parallel present( qswst, rmask, sums_l ) create( s1 ) |
---|
2783 | s1 = 0 |
---|
2784 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2785 | DO i = nxl, nxr |
---|
2786 | DO j = nys, nyn |
---|
2787 | ! |
---|
2788 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
2789 | s1 = s1 + qswst(j,i) * waterflux_output_conversion(nzt) & |
---|
2790 | * rmask(j,i,sr) ! w"q" (w"qv") |
---|
2791 | ENDDO |
---|
2792 | ENDDO |
---|
2793 | sums_l(nzt,51,tn) = s1 |
---|
2794 | !$acc end parallel |
---|
2795 | |
---|
2796 | ENDIF |
---|
2797 | |
---|
2798 | ENDIF |
---|
2799 | |
---|
2800 | IF ( passive_scalar ) THEN |
---|
2801 | |
---|
2802 | !$OMP DO |
---|
2803 | !$acc parallel present( sswst, rmask, sums_l ) create( s1 ) |
---|
2804 | s1 = 0 |
---|
2805 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2806 | DO i = nxl, nxr |
---|
2807 | DO j = nys, nyn |
---|
2808 | s1 = s1 + sswst(j,i) * rmask(j,i,sr) ! w"s" |
---|
2809 | ENDDO |
---|
2810 | ENDDO |
---|
2811 | sums_l(nzt,119,tn) = s1 |
---|
2812 | !$acc end parallel |
---|
2813 | |
---|
2814 | ENDIF |
---|
2815 | |
---|
2816 | ENDIF |
---|
2817 | |
---|
2818 | ! |
---|
2819 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
2820 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
2821 | !-- ---- speaking the following k-loop would have to be split up and |
---|
2822 | !-- rearranged according to the staggered grid. |
---|
2823 | !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2, s3 ) |
---|
2824 | DO k = nzb, nzt_diff |
---|
2825 | s1 = 0 |
---|
2826 | s2 = 0 |
---|
2827 | s3 = 0 |
---|
2828 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
2829 | DO i = nxl, nxr |
---|
2830 | DO j = nys, nyn |
---|
2831 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
2832 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
2833 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
2834 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
2835 | pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
2836 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
2837 | ! |
---|
2838 | !-- Higher moments |
---|
2839 | s1 = s1 + pts * w(k,j,i)**2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2840 | s2 = s2 + pts**2 * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2841 | ! |
---|
2842 | !-- Energy flux w*e* (has to be adjusted?) |
---|
2843 | s3 = s3 + w(k,j,i) * 0.5_wp * ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
2844 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) & |
---|
2845 | * momentumflux_output_conversion(k) |
---|
2846 | ENDDO |
---|
2847 | ENDDO |
---|
2848 | sums_l(k,35,tn) = s1 |
---|
2849 | sums_l(k,36,tn) = s2 |
---|
2850 | sums_l(k,37,tn) = s3 |
---|
2851 | ENDDO |
---|
2852 | !$acc end parallel loop |
---|
2853 | |
---|
2854 | ! |
---|
2855 | !-- Salinity flux and density (density does not belong to here, |
---|
2856 | !-- but so far there is no other suitable place to calculate) |
---|
2857 | IF ( ocean ) THEN |
---|
2858 | |
---|
2859 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
2860 | |
---|
2861 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sa, sums_l, w ) create( s1 ) |
---|
2862 | DO k = nzb, nzt_diff |
---|
2863 | s1 = 0 |
---|
2864 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2865 | DO i = nxl, nxr |
---|
2866 | DO j = nys, nyn |
---|
2867 | s1 = s1 + 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
2868 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) & |
---|
2869 | * w(k,j,i) * rmask(j,i,sr) & |
---|
2870 | * rflags_invers(j,i,k+1) |
---|
2871 | ENDDO |
---|
2872 | ENDDO |
---|
2873 | sums_l(k,66,tn) = s1 |
---|
2874 | ENDDO |
---|
2875 | !$acc end parallel loop |
---|
2876 | |
---|
2877 | ENDIF |
---|
2878 | |
---|
2879 | !$acc parallel loop gang present( rflags_invers, rho_ocean, prho, rmask, sums_l ) create( s1, s2 ) |
---|
2880 | DO k = nzb, nzt_diff |
---|
2881 | s1 = 0 |
---|
2882 | s2 = 0 |
---|
2883 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2884 | DO i = nxl, nxr |
---|
2885 | DO j = nys, nyn |
---|
2886 | s1 = s1 + rho_ocean(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2887 | s2 = s2 + prho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2888 | ENDDO |
---|
2889 | ENDDO |
---|
2890 | sums_l(k,64,tn) = s1 |
---|
2891 | sums_l(k,71,tn) = s2 |
---|
2892 | ENDDO |
---|
2893 | !$acc end parallel loop |
---|
2894 | |
---|
2895 | ENDIF |
---|
2896 | |
---|
2897 | ! |
---|
2898 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
2899 | !-- content, rain drop concentration and rain water content |
---|
2900 | IF ( humidity ) THEN |
---|
2901 | |
---|
2902 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
2903 | |
---|
2904 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) |
---|
2905 | DO k = nzb, nzt_diff |
---|
2906 | s1 = 0 |
---|
2907 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2908 | DO i = nxl, nxr |
---|
2909 | DO j = nys, nyn |
---|
2910 | s1 = s1 + 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
2911 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) * & |
---|
2912 | heatflux_output_conversion(k) * & |
---|
2913 | w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2914 | ENDDO |
---|
2915 | ENDDO |
---|
2916 | sums_l(k,46,tn) = s1 |
---|
2917 | ENDDO |
---|
2918 | !$acc end parallel loop |
---|
2919 | |
---|
2920 | IF ( .NOT. cloud_droplets ) THEN |
---|
2921 | |
---|
2922 | !$acc parallel loop gang present( hom, q, ql, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
2923 | DO k = nzb, nzt_diff |
---|
2924 | s1 = 0 |
---|
2925 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2926 | DO i = nxl, nxr |
---|
2927 | DO j = nys, nyn |
---|
2928 | s1 = s1 + 0.5_wp * ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) + & |
---|
2929 | ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) & |
---|
2930 | * waterflux_output_conversion(k) & |
---|
2931 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2932 | ENDDO |
---|
2933 | ENDDO |
---|
2934 | sums_l(k,52,tn) = s1 |
---|
2935 | ENDDO |
---|
2936 | !$acc end parallel loop |
---|
2937 | |
---|
2938 | IF ( microphysics_seifert ) THEN |
---|
2939 | |
---|
2940 | !$acc parallel loop gang present( qc, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
2941 | DO k = nzb, nzt_diff |
---|
2942 | s1 = 0 |
---|
2943 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
2944 | DO i = nxl, nxr |
---|
2945 | DO j = nys, nyn |
---|
2946 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2947 | s2 = s2 + qc(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2948 | ENDDO |
---|
2949 | ENDDO |
---|
2950 | sums_l(k,54,tn) = s1 |
---|
2951 | sums_l(k,75,tn) = s2 |
---|
2952 | ENDDO |
---|
2953 | !$acc end parallel loop |
---|
2954 | |
---|
2955 | !$acc parallel loop gang present( nr, qr, prr, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) |
---|
2956 | DO k = nzb, nzt_diff |
---|
2957 | s1 = 0 |
---|
2958 | s2 = 0 |
---|
2959 | s3 = 0 |
---|
2960 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
2961 | DO i = nxl, nxr |
---|
2962 | DO j = nys, nyn |
---|
2963 | s1 = s1 + nr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2964 | s2 = s2 + qr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2965 | s3 = s3 + prr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2966 | ENDDO |
---|
2967 | ENDDO |
---|
2968 | sums_l(k,73,tn) = s1 |
---|
2969 | sums_l(k,74,tn) = s2 |
---|
2970 | sums_l(k,76,tn) = s3 |
---|
2971 | ENDDO |
---|
2972 | !$acc end parallel loop |
---|
2973 | |
---|
2974 | ELSE |
---|
2975 | |
---|
2976 | !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2977 | DO k = nzb, nzt_diff |
---|
2978 | s1 = 0 |
---|
2979 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2980 | DO i = nxl, nxr |
---|
2981 | DO j = nys, nyn |
---|
2982 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
2983 | ENDDO |
---|
2984 | ENDDO |
---|
2985 | sums_l(k,54,tn) = s1 |
---|
2986 | ENDDO |
---|
2987 | !$acc end parallel loop |
---|
2988 | |
---|
2989 | ENDIF |
---|
2990 | |
---|
2991 | ELSE |
---|
2992 | |
---|
2993 | !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
2994 | DO k = nzb, nzt_diff |
---|
2995 | s1 = 0 |
---|
2996 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
2997 | DO i = nxl, nxr |
---|
2998 | DO j = nys, nyn |
---|
2999 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
3000 | ENDDO |
---|
3001 | ENDDO |
---|
3002 | sums_l(k,54,tn) = s1 |
---|
3003 | ENDDO |
---|
3004 | !$acc end parallel loop |
---|
3005 | |
---|
3006 | ENDIF |
---|
3007 | |
---|
3008 | ELSE |
---|
3009 | |
---|
3010 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
3011 | |
---|
3012 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) |
---|
3013 | DO k = nzb, nzt_diff |
---|
3014 | s1 = 0 |
---|
3015 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
3016 | DO i = nxl, nxr |
---|
3017 | DO j = nys, nyn |
---|
3018 | s1 = s1 + 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
3019 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) & |
---|
3020 | * heatflux_output_conversion(k) & |
---|
3021 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
3022 | ENDDO |
---|
3023 | ENDDO |
---|
3024 | sums_l(k,46,tn) = s1 |
---|
3025 | ENDDO |
---|
3026 | !$acc end parallel loop |
---|
3027 | |
---|
3028 | ELSEIF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
3029 | |
---|
3030 | !$acc parallel loop present( hom, sums_l ) |
---|
3031 | DO k = nzb, nzt_diff |
---|
3032 | sums_l(k,46,tn) = ( ( 1.0_wp + 0.61_wp * hom(k,1,41,sr) ) * & |
---|
3033 | sums_l(k,17,tn) + 0.61_wp * & |
---|
3034 | hom(k,1,4,sr) * sums_l(k,49,tn) & |
---|
3035 | ) * heatflux_output_conversion(k) |
---|
3036 | ENDDO |
---|
3037 | !$acc end parallel loop |
---|
3038 | |
---|
3039 | ENDIF |
---|
3040 | |
---|
3041 | ENDIF |
---|
3042 | |
---|
3043 | ENDIF |
---|
3044 | ! |
---|
3045 | !-- Passive scalar flux |
---|
3046 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca .OR. sr /= 0 ) ) THEN |
---|
3047 | |
---|
3048 | !$acc parallel loop gang present( hom, s, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
3049 | DO k = nzb, nzt_diff |
---|
3050 | s1 = 0 |
---|
3051 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
3052 | DO i = nxl, nxr |
---|
3053 | DO j = nys, nyn |
---|
3054 | s1 = s1 + 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & |
---|
3055 | s(k+1,j,i) - hom(k+1,1,117,sr) ) & |
---|
3056 | * w(k,j,i) * rmask(j,i,sr) & |
---|
3057 | * rflags_invers(j,i,k+1) |
---|
3058 | ENDDO |
---|
3059 | ENDDO |
---|
3060 | sums_l(k,49,tn) = s1 |
---|
3061 | ENDDO |
---|
3062 | !$acc end parallel loop |
---|
3063 | |
---|
3064 | ENDIF |
---|
3065 | |
---|
3066 | ! |
---|
3067 | !-- For speed optimization fluxes which have been computed in part directly |
---|
3068 | !-- inside the WS advection routines are treated seperatly |
---|
3069 | !-- Momentum fluxes first: |
---|
3070 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
3071 | |
---|
3072 | !$OMP DO |
---|
3073 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2 ) |
---|
3074 | DO k = nzb, nzt_diff |
---|
3075 | s1 = 0 |
---|
3076 | s2 = 0 |
---|
3077 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
3078 | DO i = nxl, nxr |
---|
3079 | DO j = nys, nyn |
---|
3080 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
3081 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
3082 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
3083 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
3084 | ! |
---|
3085 | !-- Momentum flux w*u* |
---|
3086 | s1 = s1 + 0.5_wp * ( w(k,j,i-1) + w(k,j,i) ) & |
---|
3087 | * ust * rmask(j,i,sr) & |
---|
3088 | * momentumflux_output_conversion(k) & |
---|
3089 | * rflags_invers(j,i,k+1) |
---|
3090 | ! |
---|
3091 | !-- Momentum flux w*v* |
---|
3092 | s2 = s2 + 0.5_wp * ( w(k,j-1,i) + w(k,j,i) ) & |
---|
3093 | * vst * rmask(j,i,sr) & |
---|
3094 | * momentumflux_output_conversion(k) & |
---|
3095 | * rflags_invers(j,i,k+1) |
---|
3096 | ENDDO |
---|
3097 | ENDDO |
---|
3098 | sums_l(k,13,tn) = s1 |
---|
3099 | sums_l(k,15,tn) = s2 |
---|
3100 | ENDDO |
---|
3101 | !$acc end parallel loop |
---|
3102 | |
---|
3103 | ENDIF |
---|
3104 | |
---|
3105 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
3106 | |
---|
3107 | !$OMP DO |
---|
3108 | !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
3109 | DO k = nzb, nzt_diff |
---|
3110 | s1 = 0 |
---|
3111 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
3112 | DO i = nxl, nxr |
---|
3113 | DO j = nys, nyn |
---|
3114 | ! |
---|
3115 | !-- Vertical heat flux |
---|
3116 | s1 = s1 + 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
3117 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
3118 | * heatflux_output_conversion(k) & |
---|
3119 | * w(k,j,i) * rmask(j,i,sr) & |
---|
3120 | * rflags_invers(j,i,k+1) |
---|
3121 | ENDDO |
---|
3122 | ENDDO |
---|
3123 | sums_l(k,17,tn) = s1 |
---|
3124 | ENDDO |
---|
3125 | !$acc end parallel loop |
---|
3126 | |
---|
3127 | IF ( humidity ) THEN |
---|
3128 | |
---|
3129 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
3130 | DO k = nzb, nzt_diff |
---|
3131 | s1 = 0 |
---|
3132 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
3133 | DO i = nxl, nxr |
---|
3134 | DO j = nys, nyn |
---|
3135 | s1 = s1 + 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
3136 | q(k+1,j,i) - hom(k+1,1,41,sr) ) & |
---|
3137 | * waterflux_output_conversion(k) & |
---|
3138 | * w(k,j,i) * rmask(j,i,sr) & |
---|
3139 | * rflags_invers(j,i,k+1) |
---|
3140 | ENDDO |
---|
3141 | ENDDO |
---|
3142 | sums_l(k,49,tn) = s1 |
---|
3143 | ENDDO |
---|
3144 | !$acc end parallel loop |
---|
3145 | |
---|
3146 | ENDIF |
---|
3147 | |
---|
3148 | IF ( passive_scalar ) THEN |
---|
3149 | |
---|
3150 | !$acc parallel loop gang present( hom, s, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
3151 | DO k = nzb, nzt_diff |
---|
3152 | s1 = 0 |
---|
3153 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
3154 | DO i = nxl, nxr |
---|
3155 | DO j = nys, nyn |
---|
3156 | s1 = s1 + 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & |
---|
3157 | s(k+1,j,i) - hom(k+1,1,117,sr) ) & |
---|
3158 | * w(k,j,i) * rmask(j,i,sr) & |
---|
3159 | * rflags_invers(j,i,k+1) |
---|
3160 | ENDDO |
---|
3161 | ENDDO |
---|
3162 | sums_l(k,116,tn) = s1 |
---|
3163 | ENDDO |
---|
3164 | !$acc end parallel loop |
---|
3165 | |
---|
3166 | ENDIF |
---|
3167 | |
---|
3168 | ENDIF |
---|
3169 | |
---|
3170 | |
---|
3171 | ! |
---|
3172 | !-- Density at top follows Neumann condition |
---|
3173 | IF ( ocean ) THEN |
---|
3174 | !$acc parallel present( sums_l ) |
---|
3175 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
3176 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
3177 | !$acc end parallel |
---|
3178 | ENDIF |
---|
3179 | |
---|
3180 | ! |
---|
3181 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
3182 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
3183 | !-- First calculate the products, then the divergence. |
---|
3184 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
3185 | IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) THEN |
---|
3186 | |
---|
3187 | STOP '+++ openACC porting for vertical flux div of resolved scale TKE in flow_statistics is still missing' |
---|
3188 | sums_ll = 0.0_wp ! local array |
---|
3189 | |
---|
3190 | !$OMP DO |
---|
3191 | DO i = nxl, nxr |
---|
3192 | DO j = nys, nyn |
---|
3193 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
3194 | |
---|
3195 | sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & |
---|
3196 | ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & |
---|
3197 | - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2& |
---|
3198 | + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & |
---|
3199 | - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2& |
---|
3200 | + w(k,j,i)**2 ) |
---|
3201 | |
---|
3202 | sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & |
---|
3203 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
3204 | |
---|
3205 | ENDDO |
---|
3206 | ENDDO |
---|
3207 | ENDDO |
---|
3208 | sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom |
---|
3209 | sums_ll(nzt+1,1) = 0.0_wp |
---|
3210 | sums_ll(0,2) = 0.0_wp |
---|
3211 | sums_ll(nzt+1,2) = 0.0_wp |
---|
3212 | |
---|
3213 | DO k = nzb+1, nzt |
---|
3214 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
3215 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
3216 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
3217 | ENDDO |
---|
3218 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
3219 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
3220 | sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb |
---|
3221 | |
---|
3222 | ENDIF |
---|
3223 | |
---|
3224 | ! |
---|
3225 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
3226 | IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) THEN |
---|
3227 | |
---|
3228 | STOP '+++ openACC porting for vertical flux div of SGS TKE in flow_statistics is still missing' |
---|
3229 | !$OMP DO |
---|
3230 | DO i = nxl, nxr |
---|
3231 | DO j = nys, nyn |
---|
3232 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
3233 | |
---|
3234 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & |
---|
3235 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
3236 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
3237 | ) * ddzw(k) |
---|
3238 | |
---|
3239 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & |
---|
3240 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
3241 | ) |
---|
3242 | |
---|
3243 | ENDDO |
---|
3244 | ENDDO |
---|
3245 | ENDDO |
---|
3246 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
3247 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
3248 | |
---|
3249 | ENDIF |
---|
3250 | |
---|
3251 | ! |
---|
3252 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
3253 | !-- Do it only, if profiles shall be plotted. |
---|
3254 | IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN |
---|
3255 | |
---|
3256 | STOP '+++ openACC porting for horizontal flux calculation in flow_statistics is still missing' |
---|
3257 | !$OMP DO |
---|
3258 | DO i = nxl, nxr |
---|
3259 | DO j = nys, nyn |
---|
3260 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
3261 | ! |
---|
3262 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
3263 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & |
---|
3264 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
3265 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
3266 | * rho_air_zw(k) & |
---|
3267 | * heatflux_output_conversion(k) & |
---|
3268 | * ddx * rmask(j,i,sr) |
---|
3269 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & |
---|
3270 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
3271 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
3272 | * rho_air_zw(k) & |
---|
3273 | * heatflux_output_conversion(k) & |
---|
3274 | * ddy * rmask(j,i,sr) |
---|
3275 | ! |
---|
3276 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
3277 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
3278 | ( u(k,j,i) - hom(k,1,1,sr) ) * 0.5_wp * & |
---|
3279 | ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
3280 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
3281 | * heatflux_output_conversion(k) |
---|
3282 | pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
3283 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
3284 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
3285 | ( v(k,j,i) - hom(k,1,2,sr) ) * 0.5_wp * & |
---|
3286 | ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
3287 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
3288 | * heatflux_output_conversion(k) |
---|
3289 | ENDDO |
---|
3290 | ENDDO |
---|
3291 | ENDDO |
---|
3292 | ! |
---|
3293 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
3294 | sums_l(nzb,58,tn) = 0.0_wp |
---|
3295 | sums_l(nzb,59,tn) = 0.0_wp |
---|
3296 | sums_l(nzb,60,tn) = 0.0_wp |
---|
3297 | sums_l(nzb,61,tn) = 0.0_wp |
---|
3298 | sums_l(nzb,62,tn) = 0.0_wp |
---|
3299 | sums_l(nzb,63,tn) = 0.0_wp |
---|
3300 | |
---|
3301 | ENDIF |
---|
3302 | |
---|
3303 | ! |
---|
3304 | !-- Collect current large scale advection and subsidence tendencies for |
---|
3305 | !-- data output |
---|
3306 | IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN |
---|
3307 | ! |
---|
3308 | !-- Interpolation in time of LSF_DATA |
---|
3309 | nt = 1 |
---|
3310 | DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) |
---|
3311 | nt = nt + 1 |
---|
3312 | ENDDO |
---|
3313 | IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN |
---|
3314 | nt = nt - 1 |
---|
3315 | ENDIF |
---|
3316 | |
---|
3317 | fac = ( simulated_time - dt_3d - time_vert(nt) ) & |
---|
3318 | / ( time_vert(nt+1)-time_vert(nt) ) |
---|
3319 | |
---|
3320 | |
---|
3321 | DO k = nzb, nzt |
---|
3322 | sums_ls_l(k,0) = td_lsa_lpt(k,nt) & |
---|
3323 | + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) |
---|
3324 | sums_ls_l(k,1) = td_lsa_q(k,nt) & |
---|
3325 | + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) |
---|
3326 | ENDDO |
---|
3327 | |
---|
3328 | sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) |
---|
3329 | sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) |
---|
3330 | |
---|
3331 | IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN |
---|
3332 | |
---|
3333 | DO k = nzb, nzt |
---|
3334 | sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * & |
---|
3335 | ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) |
---|
3336 | sums_ls_l(k,3) = td_sub_q(k,nt) + fac * & |
---|
3337 | ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) |
---|
3338 | ENDDO |
---|
3339 | |
---|
3340 | sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) |
---|
3341 | sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) |
---|
3342 | |
---|
3343 | ENDIF |
---|
3344 | |
---|
3345 | ENDIF |
---|
3346 | |
---|
3347 | |
---|
3348 | IF ( land_surface ) THEN |
---|
3349 | !$OMP DO |
---|
3350 | DO i = nxl, nxr |
---|
3351 | DO j = nys, nyn |
---|
3352 | DO k = nzb_soil, nzt_soil |
---|
3353 | sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil(k,j,i) & |
---|
3354 | * rmask(j,i,sr) |
---|
3355 | sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil(k,j,i) & |
---|
3356 | * rmask(j,i,sr) |
---|
3357 | ENDDO |
---|
3358 | ENDDO |
---|
3359 | ENDDO |
---|
3360 | ENDIF |
---|
3361 | |
---|
3362 | |
---|
3363 | IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN |
---|
3364 | !$OMP DO |
---|
3365 | DO i = nxl, nxr |
---|
3366 | DO j = nys, nyn |
---|
3367 | DO k = nzb_s_inner(j,i)+1, nzt+1 |
---|
3368 | sums_l(k,102,tn) = sums_l(k,102,tn) + rad_lw_in(k,j,i) & |
---|
3369 | * rmask(j,i,sr) |
---|
3370 | sums_l(k,103,tn) = sums_l(k,103,tn) + rad_lw_out(k,j,i) & |
---|
3371 | * rmask(j,i,sr) |
---|
3372 | sums_l(k,104,tn) = sums_l(k,104,tn) + rad_sw_in(k,j,i) & |
---|
3373 | * rmask(j,i,sr) |
---|
3374 | sums_l(k,105,tn) = sums_l(k,105,tn) + rad_sw_out(k,j,i) & |
---|
3375 | * rmask(j,i,sr) |
---|
3376 | #if defined ( __rrtmg ) |
---|
3377 | sums_l(k,106,tn) = sums_l(k,106,tn) + rad_lw_cs_hr(k,j,i) & |
---|
3378 | * rmask(j,i,sr) |
---|
3379 | sums_l(k,107,tn) = sums_l(k,107,tn) + rad_lw_hr(k,j,i) & |
---|
3380 | * rmask(j,i,sr) |
---|
3381 | sums_l(k,108,tn) = sums_l(k,108,tn) + rad_sw_cs_hr(k,j,i) & |
---|
3382 | * rmask(j,i,sr) |
---|
3383 | sums_l(k,109,tn) = sums_l(k,109,tn) + rad_sw_hr(k,j,i) & |
---|
3384 | * rmask(j,i,sr) |
---|
3385 | #endif |
---|
3386 | ENDDO |
---|
3387 | ENDDO |
---|
3388 | ENDDO |
---|
3389 | ENDIF |
---|
3390 | |
---|
3391 | ! |
---|
3392 | !-- Calculate the user-defined profiles |
---|
3393 | CALL user_statistics( 'profiles', sr, tn ) |
---|
3394 | !$OMP END PARALLEL |
---|
3395 | |
---|
3396 | ! |
---|
3397 | !-- Summation of thread sums |
---|
3398 | IF ( threads_per_task > 1 ) THEN |
---|
3399 | STOP '+++ openACC porting for threads_per_task > 1 in flow_statistics is still missing' |
---|
3400 | DO i = 1, threads_per_task-1 |
---|
3401 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
3402 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
3403 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
3404 | sums_l(:,45:pr_palm,i) |
---|
3405 | IF ( max_pr_user > 0 ) THEN |
---|
3406 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
3407 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
3408 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
3409 | ENDIF |
---|
3410 | ENDDO |
---|
3411 | ENDIF |
---|
3412 | |
---|
3413 | !$acc update host( hom, sums, sums_l ) |
---|
3414 | |
---|
3415 | #if defined( __parallel ) |
---|
3416 | |
---|
3417 | ! |
---|
3418 | !-- Compute total sum from local sums |
---|
3419 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
3420 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
3421 | MPI_SUM, comm2d, ierr ) |
---|
3422 | IF ( large_scale_forcing ) THEN |
---|
3423 | CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, & |
---|
3424 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
3425 | ENDIF |
---|
3426 | #else |
---|
3427 | sums = sums_l(:,:,0) |
---|
3428 | IF ( large_scale_forcing ) THEN |
---|
3429 | sums(:,81:88) = sums_ls_l |
---|
3430 | ENDIF |
---|
3431 | #endif |
---|
3432 | |
---|
3433 | ! |
---|
3434 | !-- Final values are obtained by division by the total number of grid points |
---|
3435 | !-- used for summation. After that store profiles. |
---|
3436 | !-- Check, if statistical regions do contain at least one grid point at the |
---|
3437 | !-- respective k-level, otherwise division by zero will lead to undefined |
---|
3438 | !-- values, which may cause e.g. problems with NetCDF output |
---|
3439 | !-- Profiles: |
---|
3440 | DO k = nzb, nzt+1 |
---|
3441 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
3442 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
3443 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
3444 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
3445 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
3446 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
3447 | sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) |
---|
3448 | sums(k,89:114) = sums(k,89:114) / ngp_2dh(sr) |
---|
3449 | IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN |
---|
3450 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
3451 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
3452 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
3453 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
3454 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
3455 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
3456 | sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) |
---|
3457 | sums(k,115:pr_palm-2) = sums(k,115:pr_palm-2) / ngp_2dh_s_inner(k,sr) |
---|
3458 | ENDIF |
---|
3459 | ENDDO |
---|
3460 | |
---|
3461 | !-- u* and so on |
---|
3462 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
3463 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
3464 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
3465 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
3466 | ngp_2dh(sr) |
---|
3467 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
3468 | ngp_2dh(sr) |
---|
3469 | !-- eges, e* |
---|
3470 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
3471 | ngp_3d(sr) |
---|
3472 | !-- Old and new divergence |
---|
3473 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
3474 | ngp_3d_inner(sr) |
---|
3475 | |
---|
3476 | !-- User-defined profiles |
---|
3477 | IF ( max_pr_user > 0 ) THEN |
---|
3478 | DO k = nzb, nzt+1 |
---|
3479 | IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN |
---|
3480 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
3481 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
3482 | ngp_2dh_s_inner(k,sr) |
---|
3483 | ENDIF |
---|
3484 | ENDDO |
---|
3485 | ENDIF |
---|
3486 | |
---|
3487 | ! |
---|
3488 | !-- Collect horizontal average in hom. |
---|
3489 | !-- Compute deduced averages (e.g. total heat flux) |
---|
3490 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
3491 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
3492 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
3493 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
3494 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
3495 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
3496 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
3497 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
3498 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
3499 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
3500 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
3501 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
3502 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
3503 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
3504 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
3505 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
3506 | ! profile 24 is initial profile (sa) |
---|
3507 | ! profiles 25-29 left empty for initial |
---|
3508 | ! profiles |
---|
3509 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
3510 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
3511 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
3512 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
3513 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
3514 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
3515 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
3516 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
3517 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
3518 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw |
---|
3519 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
3520 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
3521 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
3522 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
3523 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
3524 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
3525 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
3526 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
3527 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
3528 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
3529 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
3530 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
3531 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
3532 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho_ocean )/dz |
---|
3533 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
3534 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
3535 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
3536 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
3537 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
3538 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
3539 | hom(:,1,64,sr) = sums(:,64) ! rho_ocean |
---|
3540 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
3541 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
3542 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
3543 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
3544 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho_ocean |
---|
3545 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
3546 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
3547 | hom(:,1,72,sr) = hyp * 1E-4_wp ! hyp in dbar |
---|
3548 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
3549 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
3550 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
3551 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
3552 | ! 77 is initial density profile |
---|
3553 | hom(:,1,78,sr) = ug ! ug |
---|
3554 | hom(:,1,79,sr) = vg ! vg |
---|
3555 | hom(:,1,80,sr) = w_subs ! w_subs |
---|
3556 | |
---|
3557 | IF ( large_scale_forcing ) THEN |
---|
3558 | hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt |
---|
3559 | hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q |
---|
3560 | IF ( use_subsidence_tendencies ) THEN |
---|
3561 | hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt |
---|
3562 | hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q |
---|
3563 | ELSE |
---|
3564 | hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt |
---|
3565 | hom(:,1,84,sr) = sums(:,84) ! td_sub_q |
---|
3566 | ENDIF |
---|
3567 | hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt |
---|
3568 | hom(:,1,86,sr) = sums(:,86) ! td_nud_q |
---|
3569 | hom(:,1,87,sr) = sums(:,87) ! td_nud_u |
---|
3570 | hom(:,1,88,sr) = sums(:,88) ! td_nud_v |
---|
3571 | END IF |
---|
3572 | |
---|
3573 | hom(:,1,121,sr) = rho_air ! rho_air in Kg/m^3 |
---|
3574 | hom(:,1,122,sr) = rho_air_zw ! rho_air_zw in Kg/m^3 |
---|
3575 | |
---|
3576 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
3577 | ! u*, w'u', w'v', t* (in last profile) |
---|
3578 | |
---|
3579 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
3580 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
3581 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
3582 | ENDIF |
---|
3583 | |
---|
3584 | ! |
---|
3585 | !-- Determine the boundary layer height using two different schemes. |
---|
3586 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
3587 | !-- first relative minimum (maximum) of the total heat flux. |
---|
3588 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
3589 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
3590 | !-- (positive) for the first time. |
---|
3591 | z_i(1) = 0.0_wp |
---|
3592 | first = .TRUE. |
---|
3593 | |
---|
3594 | IF ( ocean ) THEN |
---|
3595 | DO k = nzt, nzb+1, -1 |
---|
3596 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
3597 | first = .FALSE. |
---|
3598 | height = zw(k) |
---|
3599 | ENDIF |
---|
3600 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
3601 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
3602 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
3603 | z_i(1) = zw(k) |
---|
3604 | ELSE |
---|
3605 | z_i(1) = height |
---|
3606 | ENDIF |
---|
3607 | EXIT |
---|
3608 | ENDIF |
---|
3609 | ENDDO |
---|
3610 | ELSE |
---|
3611 | DO k = nzb, nzt-1 |
---|
3612 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
3613 | first = .FALSE. |
---|
3614 | height = zw(k) |
---|
3615 | ENDIF |
---|
3616 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
3617 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
3618 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
3619 | z_i(1) = zw(k) |
---|
3620 | ELSE |
---|
3621 | z_i(1) = height |
---|
3622 | ENDIF |
---|
3623 | EXIT |
---|
3624 | ENDIF |
---|
3625 | ENDDO |
---|
3626 | ENDIF |
---|
3627 | |
---|
3628 | ! |
---|
3629 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
3630 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
3631 | !-- maximal local temperature gradient: starting from the second (the last |
---|
3632 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
3633 | !-- 0.2K/100m and greater than the next four gradients. |
---|
3634 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
3635 | !-- ocean case! |
---|
3636 | z_i(2) = 0.0_wp |
---|
3637 | DO k = nzb+1, nzt+1 |
---|
3638 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
3639 | ENDDO |
---|
3640 | dptdz_threshold = 0.2_wp / 100.0_wp |
---|
3641 | |
---|
3642 | IF ( ocean ) THEN |
---|
3643 | DO k = nzt+1, nzb+5, -1 |
---|
3644 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
3645 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
3646 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
3647 | z_i(2) = zw(k-1) |
---|
3648 | EXIT |
---|
3649 | ENDIF |
---|
3650 | ENDDO |
---|
3651 | ELSE |
---|
3652 | DO k = nzb+1, nzt-3 |
---|
3653 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
3654 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
3655 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
3656 | z_i(2) = zw(k-1) |
---|
3657 | EXIT |
---|
3658 | ENDIF |
---|
3659 | ENDDO |
---|
3660 | ENDIF |
---|
3661 | |
---|
3662 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
3663 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
3664 | |
---|
3665 | ! |
---|
3666 | !-- Determine vertical index which is nearest to the mean surface level |
---|
3667 | !-- height of the respective statistic region |
---|
3668 | DO k = nzb, nzt |
---|
3669 | IF ( zw(k) >= mean_surface_level_height(sr) ) THEN |
---|
3670 | k_surface_level = k |
---|
3671 | EXIT |
---|
3672 | ENDIF |
---|
3673 | ENDDO |
---|
3674 | |
---|
3675 | ! |
---|
3676 | !-- Computation of both the characteristic vertical velocity and |
---|
3677 | !-- the characteristic convective boundary layer temperature. |
---|
3678 | !-- The inversion height entering into the equation is defined with respect |
---|
3679 | !-- to the mean surface level height of the respective statistic region. |
---|
3680 | !-- The horizontal average at surface level index + 1 is input for the |
---|
3681 | !-- average temperature. |
---|
3682 | IF ( hom(nzb,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp ) THEN |
---|
3683 | hom(nzb+8,1,pr_palm,sr) = & |
---|
3684 | ( g / hom(k_surface_level+1,1,4,sr) * & |
---|
3685 | ( hom(k_surface_level,1,18,sr) / heatflux_output_conversion(nzb) )& |
---|
3686 | * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp |
---|
3687 | ELSE |
---|
3688 | hom(nzb+8,1,pr_palm,sr) = 0.0_wp |
---|
3689 | ENDIF |
---|
3690 | |
---|
3691 | ! |
---|
3692 | !-- Collect the time series quantities |
---|
3693 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
3694 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
3695 | ts_value(3,sr) = dt_3d |
---|
3696 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
3697 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
3698 | ts_value(6,sr) = u_max |
---|
3699 | ts_value(7,sr) = v_max |
---|
3700 | ts_value(8,sr) = w_max |
---|
3701 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
3702 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
3703 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
3704 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
3705 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
3706 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
3707 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
3708 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
3709 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
3710 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
3711 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
3712 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
3713 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
3714 | |
---|
3715 | IF ( .NOT. neutral ) THEN |
---|
3716 | ts_value(22,sr) = hom(nzb,1,114,sr) ! L |
---|
3717 | ELSE |
---|
3718 | ts_value(22,sr) = 1.0E10_wp |
---|
3719 | ENDIF |
---|
3720 | |
---|
3721 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
3722 | |
---|
3723 | ! |
---|
3724 | !-- Collect land surface model timeseries |
---|
3725 | IF ( land_surface ) THEN |
---|
3726 | ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf_eb |
---|
3727 | ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! shf_eb |
---|
3728 | ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_eb |
---|
3729 | ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_liq_eb |
---|
3730 | ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! qsws_soil_eb |
---|
3731 | ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! qsws_veg_eb |
---|
3732 | ts_value(dots_soil+6,sr) = hom(nzb,1,99,sr) ! r_a |
---|
3733 | ts_value(dots_soil+7,sr) = hom(nzb,1,100,sr) ! r_s |
---|
3734 | ENDIF |
---|
3735 | ! |
---|
3736 | !-- Collect radiation model timeseries |
---|
3737 | IF ( radiation ) THEN |
---|
3738 | ts_value(dots_rad,sr) = hom(nzb,1,101,sr) ! rad_net |
---|
3739 | ts_value(dots_rad+1,sr) = hom(nzb,1,102,sr) ! rad_lw_in |
---|
3740 | ts_value(dots_rad+2,sr) = hom(nzb,1,103,sr) ! rad_lw_out |
---|
3741 | ts_value(dots_rad+3,sr) = hom(nzb,1,104,sr) ! rad_sw_in |
---|
3742 | ts_value(dots_rad+4,sr) = hom(nzb,1,105,sr) ! rad_sw_out |
---|
3743 | |
---|
3744 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
3745 | ts_value(dots_rad+5,sr) = hom(nzb,1,106,sr) ! rrtm_aldif |
---|
3746 | ts_value(dots_rad+6,sr) = hom(nzb,1,107,sr) ! rrtm_aldir |
---|
3747 | ts_value(dots_rad+7,sr) = hom(nzb,1,108,sr) ! rrtm_asdif |
---|
3748 | ts_value(dots_rad+8,sr) = hom(nzb,1,109,sr) ! rrtm_asdir |
---|
3749 | ENDIF |
---|
3750 | |
---|
3751 | ENDIF |
---|
3752 | |
---|
3753 | ! |
---|
3754 | !-- Calculate additional statistics provided by the user interface |
---|
3755 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
3756 | |
---|
3757 | ENDDO ! loop of the subregions |
---|
3758 | |
---|
3759 | !$acc end data |
---|
3760 | |
---|
3761 | ! |
---|
3762 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
3763 | !-- Do not sum, if flow statistics is called before the first initial time step. |
---|
3764 | IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN |
---|
3765 | IF ( average_count_pr == 0 ) hom_sum = 0.0_wp |
---|
3766 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
3767 | average_count_pr = average_count_pr + 1 |
---|
3768 | do_sum = .FALSE. |
---|
3769 | ENDIF |
---|
3770 | |
---|
3771 | ! |
---|
3772 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
3773 | !-- This flag is reset after each time step in time_integration. |
---|
3774 | flow_statistics_called = .TRUE. |
---|
3775 | |
---|
3776 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
3777 | |
---|
3778 | |
---|
3779 | END SUBROUTINE flow_statistics |
---|
3780 | #endif |
---|