1 | SUBROUTINE flow_statistics |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: flow_statistics.f90 110 2007-10-05 05:13:14Z letzel $ |
---|
11 | ! |
---|
12 | ! 106 2007-08-16 14:30:26Z raasch |
---|
13 | ! Prescribed momentum fluxes at the top surface are used, |
---|
14 | ! profiles for w*p* and w"e are calculated |
---|
15 | ! |
---|
16 | ! 97 2007-06-21 08:23:15Z raasch |
---|
17 | ! Statistics for ocean version (salinity, density) added, |
---|
18 | ! calculation of z_i and Deardorff velocity scale adjusted to be used with |
---|
19 | ! the ocean version |
---|
20 | ! |
---|
21 | ! 87 2007-05-22 15:46:47Z raasch |
---|
22 | ! Two more arguments added to user_statistics, which is now also called for |
---|
23 | ! user-defined profiles, |
---|
24 | ! var_hom and var_sum renamed pr_palm |
---|
25 | ! |
---|
26 | ! 82 2007-04-16 15:40:52Z raasch |
---|
27 | ! Cpp-directive lcmuk changed to intel_openmp_bug |
---|
28 | ! |
---|
29 | ! 75 2007-03-22 09:54:05Z raasch |
---|
30 | ! Collection of time series quantities moved from routine flow_statistics to |
---|
31 | ! here, routine user_statistics is called for each statistic region, |
---|
32 | ! moisture renamed humidity |
---|
33 | ! |
---|
34 | ! 19 2007-02-23 04:53:48Z raasch |
---|
35 | ! fluxes at top modified (tswst, qswst) |
---|
36 | ! |
---|
37 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
38 | ! |
---|
39 | ! Revision 1.41 2006/08/04 14:37:50 raasch |
---|
40 | ! Error removed in non-parallel part (sums_l) |
---|
41 | ! |
---|
42 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
43 | ! Initial revision |
---|
44 | ! |
---|
45 | ! |
---|
46 | ! Description: |
---|
47 | ! ------------ |
---|
48 | ! Compute average profiles and further average flow quantities for the different |
---|
49 | ! user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
50 | ! |
---|
51 | ! NOTE: For simplicity, nzb_s_outer and nzb_diff_s_outer are being used as a |
---|
52 | ! ---- lower vertical index for k-loops for all variables so that regardless |
---|
53 | ! of the variable and its respective staggered grid always the same number of |
---|
54 | ! grid points is used for 2D averages. The disadvantage: depending on the |
---|
55 | ! variable, up to one grid layer adjacent to the (vertical walls of the) |
---|
56 | ! topography is missed out by this simplification. |
---|
57 | !------------------------------------------------------------------------------! |
---|
58 | |
---|
59 | USE arrays_3d |
---|
60 | USE cloud_parameters |
---|
61 | USE cpulog |
---|
62 | USE grid_variables |
---|
63 | USE indices |
---|
64 | USE interfaces |
---|
65 | USE pegrid |
---|
66 | USE statistics |
---|
67 | USE control_parameters |
---|
68 | |
---|
69 | IMPLICIT NONE |
---|
70 | |
---|
71 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
72 | LOGICAL :: first |
---|
73 | REAL :: height, pts, sums_l_eper, sums_l_etot, ust, ust2, u2, vst, & |
---|
74 | vst2, v2, w2, z_i(2) |
---|
75 | REAL :: sums_ll(nzb:nzt+1,2) |
---|
76 | |
---|
77 | |
---|
78 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
79 | |
---|
80 | ! |
---|
81 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
82 | !-- called once after the current time step |
---|
83 | IF ( flow_statistics_called ) THEN |
---|
84 | IF ( myid == 0 ) PRINT*, '+++ WARNING: flow_statistics is called two', & |
---|
85 | ' times within one timestep' |
---|
86 | CALL local_stop |
---|
87 | ENDIF |
---|
88 | |
---|
89 | ! |
---|
90 | !-- Compute statistics for each (sub-)region |
---|
91 | DO sr = 0, statistic_regions |
---|
92 | |
---|
93 | ! |
---|
94 | !-- Initialize (local) summation array |
---|
95 | sums_l = 0.0 |
---|
96 | |
---|
97 | ! |
---|
98 | !-- Store sums that have been computed in other subroutines in summation |
---|
99 | !-- array |
---|
100 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
101 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
102 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
103 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
104 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
105 | !-- WARNING: next four lines still may have to be adjusted for OpenMP |
---|
106 | sums_l(nzb:nzb+2,pr_palm-1,0) = sums_up_fraction_l(1,1:3,sr)! upstream |
---|
107 | sums_l(nzb+3:nzb+5,pr_palm-1,0) = sums_up_fraction_l(2,1:3,sr)! parts |
---|
108 | sums_l(nzb+6:nzb+8,pr_palm-1,0) = sums_up_fraction_l(3,1:3,sr)! from |
---|
109 | sums_l(nzb+9:nzb+11,pr_palm-1,0) = sums_up_fraction_l(4,1:3,sr)! spline |
---|
110 | |
---|
111 | ! |
---|
112 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
113 | !-- They must have been computed before, because they are already required |
---|
114 | !-- for other horizontal averages. |
---|
115 | tn = 0 |
---|
116 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
117 | #if defined( __intel_openmp_bug ) |
---|
118 | tn = omp_get_thread_num() |
---|
119 | #else |
---|
120 | !$ tn = omp_get_thread_num() |
---|
121 | #endif |
---|
122 | |
---|
123 | !$OMP DO |
---|
124 | DO i = nxl, nxr |
---|
125 | DO j = nys, nyn |
---|
126 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
127 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
128 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
129 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
130 | ENDDO |
---|
131 | ENDDO |
---|
132 | ENDDO |
---|
133 | |
---|
134 | ! |
---|
135 | !-- Horizontally averaged profile of salinity |
---|
136 | IF ( ocean ) THEN |
---|
137 | !$OMP DO |
---|
138 | DO i = nxl, nxr |
---|
139 | DO j = nys, nyn |
---|
140 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
141 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
142 | sa(k,j,i) * rmask(j,i,sr) |
---|
143 | ENDDO |
---|
144 | ENDDO |
---|
145 | ENDDO |
---|
146 | ENDIF |
---|
147 | |
---|
148 | ! |
---|
149 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
150 | !-- total water content, specific humidity and liquid water potential |
---|
151 | !-- temperature |
---|
152 | IF ( humidity ) THEN |
---|
153 | !$OMP DO |
---|
154 | DO i = nxl, nxr |
---|
155 | DO j = nys, nyn |
---|
156 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
157 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
158 | vpt(k,j,i) * rmask(j,i,sr) |
---|
159 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
160 | q(k,j,i) * rmask(j,i,sr) |
---|
161 | ENDDO |
---|
162 | ENDDO |
---|
163 | ENDDO |
---|
164 | IF ( cloud_physics ) THEN |
---|
165 | !$OMP DO |
---|
166 | DO i = nxl, nxr |
---|
167 | DO j = nys, nyn |
---|
168 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
169 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
170 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
171 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
172 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
173 | ) * rmask(j,i,sr) |
---|
174 | ENDDO |
---|
175 | ENDDO |
---|
176 | ENDDO |
---|
177 | ENDIF |
---|
178 | ENDIF |
---|
179 | |
---|
180 | ! |
---|
181 | !-- Horizontally averaged profiles of passive scalar |
---|
182 | IF ( passive_scalar ) THEN |
---|
183 | !$OMP DO |
---|
184 | DO i = nxl, nxr |
---|
185 | DO j = nys, nyn |
---|
186 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
187 | sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) |
---|
188 | ENDDO |
---|
189 | ENDDO |
---|
190 | ENDDO |
---|
191 | ENDIF |
---|
192 | !$OMP END PARALLEL |
---|
193 | |
---|
194 | ! |
---|
195 | !-- Summation of thread sums |
---|
196 | IF ( threads_per_task > 1 ) THEN |
---|
197 | DO i = 1, threads_per_task-1 |
---|
198 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
199 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
200 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
201 | IF ( ocean ) THEN |
---|
202 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
203 | ENDIF |
---|
204 | IF ( humidity ) THEN |
---|
205 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
206 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
207 | IF ( cloud_physics ) THEN |
---|
208 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
209 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
210 | ENDIF |
---|
211 | ENDIF |
---|
212 | IF ( passive_scalar ) THEN |
---|
213 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
214 | ENDIF |
---|
215 | ENDDO |
---|
216 | ENDIF |
---|
217 | |
---|
218 | #if defined( __parallel ) |
---|
219 | ! |
---|
220 | !-- Compute total sum from local sums |
---|
221 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
222 | MPI_SUM, comm2d, ierr ) |
---|
223 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
224 | MPI_SUM, comm2d, ierr ) |
---|
225 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
226 | MPI_SUM, comm2d, ierr ) |
---|
227 | IF ( ocean ) THEN |
---|
228 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
229 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
230 | ENDIF |
---|
231 | IF ( humidity ) THEN |
---|
232 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
233 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
234 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
235 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
236 | IF ( cloud_physics ) THEN |
---|
237 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
238 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
239 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
240 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
241 | ENDIF |
---|
242 | ENDIF |
---|
243 | |
---|
244 | IF ( passive_scalar ) THEN |
---|
245 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
246 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
247 | ENDIF |
---|
248 | #else |
---|
249 | sums(:,1) = sums_l(:,1,0) |
---|
250 | sums(:,2) = sums_l(:,2,0) |
---|
251 | sums(:,4) = sums_l(:,4,0) |
---|
252 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
253 | IF ( humidity ) THEN |
---|
254 | sums(:,44) = sums_l(:,44,0) |
---|
255 | sums(:,41) = sums_l(:,41,0) |
---|
256 | IF ( cloud_physics ) THEN |
---|
257 | sums(:,42) = sums_l(:,42,0) |
---|
258 | sums(:,43) = sums_l(:,43,0) |
---|
259 | ENDIF |
---|
260 | ENDIF |
---|
261 | IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0) |
---|
262 | #endif |
---|
263 | |
---|
264 | ! |
---|
265 | !-- Final values are obtained by division by the total number of grid points |
---|
266 | !-- used for summation. After that store profiles. |
---|
267 | sums(:,1) = sums(:,1) / ngp_2dh_outer(:,sr) |
---|
268 | sums(:,2) = sums(:,2) / ngp_2dh_outer(:,sr) |
---|
269 | sums(:,4) = sums(:,4) / ngp_2dh_outer(:,sr) |
---|
270 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
271 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
272 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
273 | |
---|
274 | ! |
---|
275 | !-- Salinity |
---|
276 | IF ( ocean ) THEN |
---|
277 | sums(:,23) = sums(:,23) / ngp_2dh_outer(:,sr) |
---|
278 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
279 | ENDIF |
---|
280 | |
---|
281 | ! |
---|
282 | !-- Humidity and cloud parameters |
---|
283 | IF ( humidity ) THEN |
---|
284 | sums(:,44) = sums(:,44) / ngp_2dh_outer(:,sr) |
---|
285 | sums(:,41) = sums(:,41) / ngp_2dh_outer(:,sr) |
---|
286 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
287 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
288 | IF ( cloud_physics ) THEN |
---|
289 | sums(:,42) = sums(:,42) / ngp_2dh_outer(:,sr) |
---|
290 | sums(:,43) = sums(:,43) / ngp_2dh_outer(:,sr) |
---|
291 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
292 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
293 | ENDIF |
---|
294 | ENDIF |
---|
295 | |
---|
296 | ! |
---|
297 | !-- Passive scalar |
---|
298 | IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / ngp_2dh_outer(:,sr) |
---|
299 | |
---|
300 | ! |
---|
301 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
302 | !-- variances, the total and the perturbation energy (single values in last |
---|
303 | !-- column of sums_l) and some diagnostic quantities. |
---|
304 | !-- NOTE: for simplicity, nzb_s_outer is used below, although strictly |
---|
305 | !-- ---- speaking the following k-loop would have to be split up and |
---|
306 | !-- rearranged according to the staggered grid. |
---|
307 | tn = 0 |
---|
308 | #if defined( __intel_openmp_bug ) |
---|
309 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
310 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
311 | tn = omp_get_thread_num() |
---|
312 | #else |
---|
313 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
314 | !$ tn = omp_get_thread_num() |
---|
315 | #endif |
---|
316 | !$OMP DO |
---|
317 | DO i = nxl, nxr |
---|
318 | DO j = nys, nyn |
---|
319 | sums_l_etot = 0.0 |
---|
320 | sums_l_eper = 0.0 |
---|
321 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
322 | u2 = u(k,j,i)**2 |
---|
323 | v2 = v(k,j,i)**2 |
---|
324 | w2 = w(k,j,i)**2 |
---|
325 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
326 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
327 | ! |
---|
328 | !-- Prognostic and diagnostic variables |
---|
329 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
330 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
331 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
332 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
333 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
334 | |
---|
335 | ! |
---|
336 | !-- Variances |
---|
337 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
338 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
339 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
340 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
341 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
342 | ! |
---|
343 | !-- Higher moments |
---|
344 | !-- (Computation of the skewness of w further below) |
---|
345 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i) * w2 * & |
---|
346 | rmask(j,i,sr) |
---|
347 | ! |
---|
348 | !-- Perturbation energy |
---|
349 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5 * ( ust2 + vst2 + w2 ) & |
---|
350 | * rmask(j,i,sr) |
---|
351 | sums_l_etot = sums_l_etot + & |
---|
352 | 0.5 * ( u2 + v2 + w2 ) * rmask(j,i,sr) |
---|
353 | sums_l_eper = sums_l_eper + & |
---|
354 | 0.5 * ( ust2+vst2+w2 ) * rmask(j,i,sr) |
---|
355 | ENDDO |
---|
356 | ! |
---|
357 | !-- Total and perturbation energy for the total domain (being |
---|
358 | !-- collected in the last column of sums_l). Summation of these |
---|
359 | !-- quantities is seperated from the previous loop in order to |
---|
360 | !-- allow vectorization of that loop. |
---|
361 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
362 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) + sums_l_eper |
---|
363 | ! |
---|
364 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
365 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
366 | us(j,i) * rmask(j,i,sr) |
---|
367 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
368 | usws(j,i) * rmask(j,i,sr) |
---|
369 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
370 | vsws(j,i) * rmask(j,i,sr) |
---|
371 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
372 | ts(j,i) * rmask(j,i,sr) |
---|
373 | ENDDO |
---|
374 | ENDDO |
---|
375 | |
---|
376 | ! |
---|
377 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
378 | !$OMP DO |
---|
379 | DO i = nxl, nxr |
---|
380 | DO j = nys, nyn |
---|
381 | ! |
---|
382 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
383 | !-- oterwise from k=nzb+1) |
---|
384 | !-- NOTE: for simplicity, nzb_diff_s_outer is used below, although |
---|
385 | !-- ---- strictly speaking the following k-loop would have to be |
---|
386 | !-- split up according to the staggered grid. |
---|
387 | DO k = nzb_diff_s_outer(j,i)-1, nzt_diff |
---|
388 | ! |
---|
389 | !-- Momentum flux w"u" |
---|
390 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25 * ( & |
---|
391 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
392 | ) * ( & |
---|
393 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
394 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
395 | ) * rmask(j,i,sr) |
---|
396 | ! |
---|
397 | !-- Momentum flux w"v" |
---|
398 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25 * ( & |
---|
399 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
400 | ) * ( & |
---|
401 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
402 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
403 | ) * rmask(j,i,sr) |
---|
404 | ! |
---|
405 | !-- Heat flux w"pt" |
---|
406 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
407 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
408 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
409 | * ddzu(k+1) * rmask(j,i,sr) |
---|
410 | |
---|
411 | |
---|
412 | ! |
---|
413 | !-- Salinity flux w"sa" |
---|
414 | IF ( ocean ) THEN |
---|
415 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
416 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
417 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
418 | * ddzu(k+1) * rmask(j,i,sr) |
---|
419 | ENDIF |
---|
420 | |
---|
421 | ! |
---|
422 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
423 | IF ( humidity ) THEN |
---|
424 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
425 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
426 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
427 | * ddzu(k+1) * rmask(j,i,sr) |
---|
428 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
429 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
430 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
431 | * ddzu(k+1) * rmask(j,i,sr) |
---|
432 | IF ( cloud_physics ) THEN |
---|
433 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
434 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
435 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
436 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
437 | * ddzu(k+1) * rmask(j,i,sr) |
---|
438 | ENDIF |
---|
439 | ENDIF |
---|
440 | |
---|
441 | ! |
---|
442 | !-- Passive scalar flux |
---|
443 | IF ( passive_scalar ) THEN |
---|
444 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
445 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
446 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
447 | * ddzu(k+1) * rmask(j,i,sr) |
---|
448 | ENDIF |
---|
449 | |
---|
450 | ENDDO |
---|
451 | |
---|
452 | ! |
---|
453 | !-- Subgridscale fluxes in the Prandtl layer |
---|
454 | IF ( use_surface_fluxes ) THEN |
---|
455 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
456 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
457 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
458 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
459 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
460 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
461 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
462 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
463 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
464 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
465 | IF ( ocean ) THEN |
---|
466 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
467 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
468 | ENDIF |
---|
469 | IF ( humidity ) THEN |
---|
470 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
471 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
472 | IF ( cloud_physics ) THEN |
---|
473 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
474 | ( 1.0 + 0.61 * q(nzb,j,i) ) * & |
---|
475 | shf(j,i) + 0.61 * pt(nzb,j,i) * & |
---|
476 | qsws(j,i) & |
---|
477 | ) |
---|
478 | ! |
---|
479 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
480 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & ! w"q" (w"qv") |
---|
481 | qsws(j,i) * rmask(j,i,sr) |
---|
482 | ENDIF |
---|
483 | ENDIF |
---|
484 | IF ( passive_scalar ) THEN |
---|
485 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
486 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
487 | ENDIF |
---|
488 | ENDIF |
---|
489 | |
---|
490 | ! |
---|
491 | !-- Subgridscale fluxes at the top surface |
---|
492 | IF ( use_top_fluxes ) THEN |
---|
493 | sums_l(nzt,12,tn) = sums_l(nzt,12,tn) + & |
---|
494 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
495 | sums_l(nzt,14,tn) = sums_l(nzt,14,tn) + & |
---|
496 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
497 | sums_l(nzt,16,tn) = sums_l(nzt,16,tn) + & |
---|
498 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
499 | sums_l(nzt,58,tn) = sums_l(nzt,58,tn) + & |
---|
500 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
501 | sums_l(nzt,61,tn) = sums_l(nzt,61,tn) + & |
---|
502 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
503 | IF ( ocean ) THEN |
---|
504 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
505 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
506 | ENDIF |
---|
507 | IF ( humidity ) THEN |
---|
508 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
509 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
510 | IF ( cloud_physics ) THEN |
---|
511 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
512 | ( 1.0 + 0.61 * q(nzt,j,i) ) * & |
---|
513 | tswst(j,i) + 0.61 * pt(nzt,j,i) * & |
---|
514 | qsws(j,i) & |
---|
515 | ) |
---|
516 | ! |
---|
517 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
518 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
519 | qswst(j,i) * rmask(j,i,sr) |
---|
520 | ENDIF |
---|
521 | ENDIF |
---|
522 | IF ( passive_scalar ) THEN |
---|
523 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
524 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
525 | ENDIF |
---|
526 | ENDIF |
---|
527 | |
---|
528 | ! |
---|
529 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
530 | !-- NOTE: for simplicity, nzb_s_outer is used below, although strictly |
---|
531 | !-- ---- speaking the following k-loop would have to be split up and |
---|
532 | !-- rearranged according to the staggered grid. |
---|
533 | DO k = nzb_s_outer(j,i), nzt |
---|
534 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
535 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
536 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
537 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
538 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
539 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
540 | ! |
---|
541 | !-- Momentum flux w*u* |
---|
542 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5 * & |
---|
543 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
544 | * ust * rmask(j,i,sr) |
---|
545 | ! |
---|
546 | !-- Momentum flux w*v* |
---|
547 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5 * & |
---|
548 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
549 | * vst * rmask(j,i,sr) |
---|
550 | ! |
---|
551 | !-- Heat flux w*pt* |
---|
552 | !-- The following formula (comment line, not executed) does not |
---|
553 | !-- work if applied to subregions |
---|
554 | ! sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5 * & |
---|
555 | ! ( pt(k,j,i)+pt(k+1,j,i) ) & |
---|
556 | ! * w(k,j,i) * rmask(j,i,sr) |
---|
557 | sums_l(k,17,tn) = sums_l(k,17,tn) + pts * w(k,j,i) * & |
---|
558 | rmask(j,i,sr) |
---|
559 | ! |
---|
560 | !-- Higher moments |
---|
561 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
562 | rmask(j,i,sr) |
---|
563 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
564 | rmask(j,i,sr) |
---|
565 | |
---|
566 | ! |
---|
567 | !-- Salinity flux and density (density does not belong to here, |
---|
568 | !-- but so far there is no other suitable place to calculate) |
---|
569 | IF ( ocean ) THEN |
---|
570 | pts = 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
571 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
572 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
573 | rmask(j,i,sr) |
---|
574 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * & |
---|
575 | rmask(j,i,sr) |
---|
576 | ENDIF |
---|
577 | |
---|
578 | ! |
---|
579 | !-- Buoyancy flux, water flux, humidity flux and liquid water |
---|
580 | !-- content |
---|
581 | IF ( humidity ) THEN |
---|
582 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
583 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
584 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
585 | rmask(j,i,sr) |
---|
586 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
587 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
588 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
589 | rmask(j,i,sr) |
---|
590 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
591 | pts = 0.5 * & |
---|
592 | ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) & |
---|
593 | + ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) |
---|
594 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
595 | rmask(j,i,sr) |
---|
596 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
597 | rmask(j,i,sr) |
---|
598 | ENDIF |
---|
599 | ENDIF |
---|
600 | |
---|
601 | ! |
---|
602 | !-- Passive scalar flux |
---|
603 | IF ( passive_scalar ) THEN |
---|
604 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
605 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
606 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
607 | rmask(j,i,sr) |
---|
608 | ENDIF |
---|
609 | |
---|
610 | ! |
---|
611 | !-- Energy flux w*e* |
---|
612 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5 * & |
---|
613 | ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
614 | * rmask(j,i,sr) |
---|
615 | |
---|
616 | ENDDO |
---|
617 | ENDDO |
---|
618 | ENDDO |
---|
619 | |
---|
620 | ! |
---|
621 | !-- Density at top follows Neumann condition |
---|
622 | IF ( ocean ) sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
623 | |
---|
624 | ! |
---|
625 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
626 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
627 | !-- First calculate the products, then the divergence. |
---|
628 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
629 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
630 | |
---|
631 | sums_ll = 0.0 ! local array |
---|
632 | |
---|
633 | !$OMP DO |
---|
634 | DO i = nxl, nxr |
---|
635 | DO j = nys, nyn |
---|
636 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
637 | |
---|
638 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
639 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
640 | - 2.0 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
641 | ) )**2 & |
---|
642 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
643 | - 2.0 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
644 | ) )**2 & |
---|
645 | + w(k,j,i)**2 ) |
---|
646 | |
---|
647 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
648 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
649 | |
---|
650 | ENDDO |
---|
651 | ENDDO |
---|
652 | ENDDO |
---|
653 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
654 | sums_ll(nzt+1,1) = 0.0 |
---|
655 | sums_ll(0,2) = 0.0 |
---|
656 | sums_ll(nzt+1,2) = 0.0 |
---|
657 | |
---|
658 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
659 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
660 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
661 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
662 | ENDDO |
---|
663 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
664 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
665 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
666 | |
---|
667 | ENDIF |
---|
668 | |
---|
669 | ! |
---|
670 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
671 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
672 | |
---|
673 | !$OMP DO |
---|
674 | DO i = nxl, nxr |
---|
675 | DO j = nys, nyn |
---|
676 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
677 | |
---|
678 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
679 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
680 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
681 | ) * ddzw(k) |
---|
682 | |
---|
683 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
684 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
685 | ) |
---|
686 | |
---|
687 | ENDDO |
---|
688 | ENDDO |
---|
689 | ENDDO |
---|
690 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
691 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
692 | |
---|
693 | ENDIF |
---|
694 | |
---|
695 | ! |
---|
696 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
697 | !-- Do it only, if profiles shall be plotted. |
---|
698 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
699 | |
---|
700 | !$OMP DO |
---|
701 | DO i = nxl, nxr |
---|
702 | DO j = nys, nyn |
---|
703 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
704 | ! |
---|
705 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
706 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
707 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
708 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
709 | * ddx * rmask(j,i,sr) |
---|
710 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
711 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
712 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
713 | * ddy * rmask(j,i,sr) |
---|
714 | ! |
---|
715 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
716 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
717 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
718 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
719 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
720 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
721 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
722 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
723 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
724 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
725 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
726 | ENDDO |
---|
727 | ENDDO |
---|
728 | ENDDO |
---|
729 | ! |
---|
730 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
731 | sums_l(nzb,58,tn) = 0.0 |
---|
732 | sums_l(nzb,59,tn) = 0.0 |
---|
733 | sums_l(nzb,60,tn) = 0.0 |
---|
734 | sums_l(nzb,61,tn) = 0.0 |
---|
735 | sums_l(nzb,62,tn) = 0.0 |
---|
736 | sums_l(nzb,63,tn) = 0.0 |
---|
737 | |
---|
738 | ENDIF |
---|
739 | |
---|
740 | ! |
---|
741 | !-- Calculate the user-defined profiles |
---|
742 | CALL user_statistics( 'profiles', sr, tn ) |
---|
743 | !$OMP END PARALLEL |
---|
744 | |
---|
745 | ! |
---|
746 | !-- Summation of thread sums |
---|
747 | IF ( threads_per_task > 1 ) THEN |
---|
748 | DO i = 1, threads_per_task-1 |
---|
749 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
750 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
751 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
752 | sums_l(:,45:pr_palm,i) |
---|
753 | IF ( max_pr_user > 0 ) THEN |
---|
754 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
755 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
756 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
757 | ENDIF |
---|
758 | ENDDO |
---|
759 | ENDIF |
---|
760 | |
---|
761 | #if defined( __parallel ) |
---|
762 | ! |
---|
763 | !-- Compute total sum from local sums |
---|
764 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
765 | MPI_SUM, comm2d, ierr ) |
---|
766 | #else |
---|
767 | sums = sums_l(:,:,0) |
---|
768 | #endif |
---|
769 | |
---|
770 | ! |
---|
771 | !-- Final values are obtained by division by the total number of grid points |
---|
772 | !-- used for summation. After that store profiles. |
---|
773 | !-- Profiles: |
---|
774 | DO k = nzb, nzt+1 |
---|
775 | sums(k,:pr_palm-2) = sums(k,:pr_palm-2) / ngp_2dh_outer(k,sr) |
---|
776 | ENDDO |
---|
777 | !-- Upstream-parts |
---|
778 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
779 | !-- u* and so on |
---|
780 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
781 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
782 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
783 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
784 | ngp_2dh(sr) |
---|
785 | !-- eges, e* |
---|
786 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
787 | ngp_3d_inner(sr) |
---|
788 | !-- Old and new divergence |
---|
789 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
790 | ngp_3d_inner(sr) |
---|
791 | |
---|
792 | !-- User-defined profiles |
---|
793 | IF ( max_pr_user > 0 ) THEN |
---|
794 | DO k = nzb, nzt+1 |
---|
795 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
796 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
797 | ngp_2dh_outer(k,sr) |
---|
798 | ENDDO |
---|
799 | ENDIF |
---|
800 | |
---|
801 | ! |
---|
802 | !-- Collect horizontal average in hom. |
---|
803 | !-- Compute deduced averages (e.g. total heat flux) |
---|
804 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
805 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
806 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
807 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
808 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
809 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
810 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
811 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
812 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
813 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
814 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
815 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
816 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
817 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
818 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
819 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
820 | ! profile 24 is initial profile (sa) |
---|
821 | ! profiles 25-29 left empty for initial |
---|
822 | ! profiles |
---|
823 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
824 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
825 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
826 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
827 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
828 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
829 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
830 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
831 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
832 | hom(:,1,39,sr) = sums(:,38) / ( sums(:,32) + 1E-20 )**1.5 ! Sw |
---|
833 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
834 | hom(:,1,45,sr) = sums(:,45) ! w"q" |
---|
835 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
836 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
837 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
838 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
839 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
840 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
841 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
842 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
843 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
844 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
845 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
846 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
847 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
848 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
849 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
850 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
851 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
852 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
853 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
854 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
855 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
856 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
857 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
858 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
859 | |
---|
860 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
861 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
862 | ! v_y, usw. (in last but one profile) |
---|
863 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
864 | ! u*, w'u', w'v', t* (in last profile) |
---|
865 | |
---|
866 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
867 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
868 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
869 | ENDIF |
---|
870 | |
---|
871 | ! |
---|
872 | !-- Determine the boundary layer height using two different schemes. |
---|
873 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
874 | !-- first relative minimum (maximum) of the total heat flux. |
---|
875 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
876 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
877 | !-- (positive) for the first time. |
---|
878 | !-- NOTE: This criterion is still capable of improving! |
---|
879 | z_i(1) = 0.0 |
---|
880 | first = .TRUE. |
---|
881 | IF ( ocean ) THEN |
---|
882 | DO k = nzt, nzb+1, -1 |
---|
883 | IF ( first .AND. hom(k,1,18,sr) < 0.0 ) THEN |
---|
884 | first = .FALSE. |
---|
885 | height = zw(k) |
---|
886 | ENDIF |
---|
887 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
888 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
889 | IF ( zw(k) < 1.5 * height ) THEN |
---|
890 | z_i(1) = zw(k) |
---|
891 | ELSE |
---|
892 | z_i(1) = height |
---|
893 | ENDIF |
---|
894 | EXIT |
---|
895 | ENDIF |
---|
896 | ENDDO |
---|
897 | ELSE |
---|
898 | DO k = nzb, nzt-1 |
---|
899 | IF ( first .AND. hom(k,1,18,sr) < 0.0 ) THEN |
---|
900 | first = .FALSE. |
---|
901 | height = zw(k) |
---|
902 | ENDIF |
---|
903 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
904 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
905 | IF ( zw(k) < 1.5 * height ) THEN |
---|
906 | z_i(1) = zw(k) |
---|
907 | ELSE |
---|
908 | z_i(1) = height |
---|
909 | ENDIF |
---|
910 | EXIT |
---|
911 | ENDIF |
---|
912 | ENDDO |
---|
913 | ENDIF |
---|
914 | |
---|
915 | ! |
---|
916 | !-- Second scheme: Starting from the top/bottom model boundary, look for |
---|
917 | !-- the first characteristic kink in the temperature profile, where the |
---|
918 | !-- originally stable stratification notably weakens. |
---|
919 | z_i(2) = 0.0 |
---|
920 | IF ( ocean ) THEN |
---|
921 | DO k = nzb+1, nzt-1 |
---|
922 | IF ( ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) > & |
---|
923 | 2.0 * ( hom(k+1,1,4,sr) - hom(k,1,4,sr) ) ) THEN |
---|
924 | z_i(2) = zu(k) |
---|
925 | EXIT |
---|
926 | ENDIF |
---|
927 | ENDDO |
---|
928 | ELSE |
---|
929 | DO k = nzt-1, nzb+1, -1 |
---|
930 | IF ( ( hom(k+1,1,4,sr) - hom(k,1,4,sr) ) > & |
---|
931 | 2.0 * ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) ) THEN |
---|
932 | z_i(2) = zu(k) |
---|
933 | EXIT |
---|
934 | ENDIF |
---|
935 | ENDDO |
---|
936 | ENDIF |
---|
937 | |
---|
938 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
939 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
940 | |
---|
941 | ! |
---|
942 | !-- Computation of both the characteristic vertical velocity and |
---|
943 | !-- the characteristic convective boundary layer temperature. |
---|
944 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
945 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. z_i(1) /= 0.0 ) THEN |
---|
946 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
947 | hom(nzb,1,18,sr) * & |
---|
948 | ABS( z_i(1) ) )**0.333333333 |
---|
949 | !-- so far this only works if Prandtl layer is used |
---|
950 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
951 | ELSE |
---|
952 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
953 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
954 | ENDIF |
---|
955 | |
---|
956 | ! |
---|
957 | !-- Collect the time series quantities |
---|
958 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
959 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
960 | ts_value(3,sr) = dt_3d |
---|
961 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
962 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
963 | ts_value(6,sr) = u_max |
---|
964 | ts_value(7,sr) = v_max |
---|
965 | ts_value(8,sr) = w_max |
---|
966 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
967 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
968 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
969 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
970 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
971 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
972 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
973 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
974 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
975 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
976 | ts_value(19,sr) = hom(nzb+9,1,pr_palm-1,sr) ! splptx |
---|
977 | ts_value(20,sr) = hom(nzb+10,1,pr_palm-1,sr) ! splpty |
---|
978 | ts_value(21,sr) = hom(nzb+11,1,pr_palm-1,sr) ! splptz |
---|
979 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
980 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
981 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
982 | ELSE |
---|
983 | ts_value(22,sr) = 10000.0 |
---|
984 | ENDIF |
---|
985 | |
---|
986 | ! |
---|
987 | !-- Calculate additional statistics provided by the user interface |
---|
988 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
989 | |
---|
990 | ENDDO ! loop of the subregions |
---|
991 | |
---|
992 | ! |
---|
993 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
994 | IF ( do_sum ) THEN |
---|
995 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
996 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
997 | average_count_pr = average_count_pr + 1 |
---|
998 | do_sum = .FALSE. |
---|
999 | ENDIF |
---|
1000 | |
---|
1001 | ! |
---|
1002 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
1003 | !-- This flag is reset after each time step in time_integration. |
---|
1004 | flow_statistics_called = .TRUE. |
---|
1005 | |
---|
1006 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
1007 | |
---|
1008 | |
---|
1009 | END SUBROUTINE flow_statistics |
---|
1010 | |
---|
1011 | |
---|
1012 | |
---|