[1] | 1 | SUBROUTINE flow_statistics |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[254] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[743] | 6 | ! Calculation of turbulent fluxes with WS-scheme only for the whole model |
---|
| 7 | ! domain, not for user-defined subregions. |
---|
[700] | 8 | ! |
---|
| 9 | ! Former revisions: |
---|
| 10 | ! ----------------- |
---|
| 11 | ! $Id: flow_statistics.f90 744 2011-08-18 16:12:51Z suehring $ |
---|
| 12 | ! |
---|
[744] | 13 | ! 743 2011-08-18 16:10:16Z suehring |
---|
| 14 | ! Calculation of turbulent fluxes with WS-scheme only for the whole model |
---|
| 15 | ! domain, not for user-defined subregions. |
---|
| 16 | ! |
---|
[710] | 17 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 18 | ! formatting adjustments |
---|
| 19 | ! |
---|
[700] | 20 | ! 699 2011-03-22 17:52:22Z suehring |
---|
[699] | 21 | ! Bugfix in calculation of vertical velocity skewness. The added absolute value |
---|
| 22 | ! avoid negative values in the root. Negative values of w'w' can occur at the |
---|
| 23 | ! top or bottom of the model domain due to degrading the order of advection |
---|
| 24 | ! scheme. Furthermore the calculation will be the same for all advection |
---|
| 25 | ! schemes. |
---|
[392] | 26 | ! |
---|
[697] | 27 | ! 696 2011-03-18 07:03:49Z raasch |
---|
| 28 | ! Bugfix: Summation of Wicker-Skamarock scheme fluxes and variances for all |
---|
| 29 | ! threads |
---|
| 30 | ! |
---|
[679] | 31 | ! 678 2011-02-02 14:31:56Z raasch |
---|
| 32 | ! Bugfix in calculation of the divergence of vertical flux of resolved scale |
---|
| 33 | ! energy, pressure fluctuations, and flux of pressure fluctuation itself |
---|
| 34 | ! |
---|
[674] | 35 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 36 | ! Top bc for the horizontal velocity variances added for ocean runs. |
---|
| 37 | ! Setting the corresponding bottom bc moved to advec_ws. |
---|
| 38 | ! |
---|
[668] | 39 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 40 | ! When advection is computed with ws-scheme, turbulent fluxes are already |
---|
| 41 | ! computed in the respective advection routines and buffered in arrays |
---|
| 42 | ! sums_xx_ws_l(). This is due to a consistent treatment of statistics with the |
---|
| 43 | ! numerics and to avoid unphysical kinks near the surface. |
---|
| 44 | ! So some if requests has to be done to dicern between fluxes from ws-scheme |
---|
| 45 | ! other advection schemes. |
---|
| 46 | ! Furthermore the computation of z_i is only done if the heat flux exceeds a |
---|
| 47 | ! minimum value. This affects only simulations of a neutral boundary layer and |
---|
| 48 | ! is due to reasons of computations in the advection scheme. |
---|
| 49 | ! |
---|
[625] | 50 | ! 624 2010-12-10 11:46:30Z heinze |
---|
| 51 | ! Calculation of q*2 added |
---|
| 52 | ! |
---|
[623] | 53 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 54 | ! optional barriers included in order to speed up collective operations |
---|
| 55 | ! |
---|
[392] | 56 | ! 388 2009-09-23 09:40:33Z raasch |
---|
[388] | 57 | ! Vertical profiles of potential density and hydrostatic pressure are |
---|
| 58 | ! calculated. |
---|
[343] | 59 | ! Added missing timeseries calculation of w"q"(0), moved timeseries q* to the |
---|
| 60 | ! end. |
---|
[291] | 61 | ! Temperature gradient criterion for estimating the boundary layer height |
---|
| 62 | ! replaced by the gradient criterion of Sullivan et al. (1998). |
---|
[254] | 63 | ! Output of messages replaced by message handling routine. |
---|
[1] | 64 | ! |
---|
[198] | 65 | ! 197 2008-09-16 15:29:03Z raasch |
---|
| 66 | ! Spline timeseries splptx etc. removed, timeseries w'u', w'v', w'q' (k=0) |
---|
| 67 | ! added, |
---|
| 68 | ! bugfix: divide sums(k,8) (e) and sums(k,34) (e*) by ngp_2dh_s_inner(k,sr) |
---|
| 69 | ! (like other scalars) |
---|
| 70 | ! |
---|
[139] | 71 | ! 133 2007-11-20 10:10:53Z letzel |
---|
| 72 | ! Vertical profiles now based on nzb_s_inner; they are divided by |
---|
| 73 | ! ngp_2dh_s_inner (scalars, procucts of scalars) and ngp_2dh (staggered |
---|
| 74 | ! velocity components and their products, procucts of scalars and velocity |
---|
| 75 | ! components), respectively. |
---|
| 76 | ! |
---|
[110] | 77 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 78 | ! Prescribed momentum fluxes at the top surface are used, |
---|
| 79 | ! profiles for w*p* and w"e are calculated |
---|
| 80 | ! |
---|
[98] | 81 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 82 | ! Statistics for ocean version (salinity, density) added, |
---|
| 83 | ! calculation of z_i and Deardorff velocity scale adjusted to be used with |
---|
| 84 | ! the ocean version |
---|
| 85 | ! |
---|
[90] | 86 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 87 | ! Two more arguments added to user_statistics, which is now also called for |
---|
| 88 | ! user-defined profiles, |
---|
| 89 | ! var_hom and var_sum renamed pr_palm |
---|
| 90 | ! |
---|
[83] | 91 | ! 82 2007-04-16 15:40:52Z raasch |
---|
| 92 | ! Cpp-directive lcmuk changed to intel_openmp_bug |
---|
| 93 | ! |
---|
[77] | 94 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 95 | ! Collection of time series quantities moved from routine flow_statistics to |
---|
| 96 | ! here, routine user_statistics is called for each statistic region, |
---|
| 97 | ! moisture renamed humidity |
---|
| 98 | ! |
---|
[39] | 99 | ! 19 2007-02-23 04:53:48Z raasch |
---|
[77] | 100 | ! fluxes at top modified (tswst, qswst) |
---|
[39] | 101 | ! |
---|
[3] | 102 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 103 | ! |
---|
[1] | 104 | ! Revision 1.41 2006/08/04 14:37:50 raasch |
---|
| 105 | ! Error removed in non-parallel part (sums_l) |
---|
| 106 | ! |
---|
| 107 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
| 108 | ! Initial revision |
---|
| 109 | ! |
---|
| 110 | ! |
---|
| 111 | ! Description: |
---|
| 112 | ! ------------ |
---|
| 113 | ! Compute average profiles and further average flow quantities for the different |
---|
| 114 | ! user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
| 115 | ! |
---|
[132] | 116 | ! NOTE: For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
| 117 | ! ---- lower vertical index for k-loops for all variables, although strictly |
---|
| 118 | ! speaking the k-loops would have to be split up according to the staggered |
---|
| 119 | ! grid. However, this implies no error since staggered velocity components are |
---|
| 120 | ! zero at the walls and inside buildings. |
---|
[1] | 121 | !------------------------------------------------------------------------------! |
---|
| 122 | |
---|
| 123 | USE arrays_3d |
---|
| 124 | USE cloud_parameters |
---|
[709] | 125 | USE control_parameters |
---|
[1] | 126 | USE cpulog |
---|
| 127 | USE grid_variables |
---|
| 128 | USE indices |
---|
| 129 | USE interfaces |
---|
| 130 | USE pegrid |
---|
| 131 | USE statistics |
---|
| 132 | |
---|
| 133 | IMPLICIT NONE |
---|
| 134 | |
---|
| 135 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
| 136 | LOGICAL :: first |
---|
[291] | 137 | REAL :: dptdz_threshold, height, pts, sums_l_eper, sums_l_etot, ust, & |
---|
| 138 | ust2, u2, vst, vst2, v2, w2, z_i(2) |
---|
| 139 | REAL :: dptdz(nzb+1:nzt+1) |
---|
[1] | 140 | REAL :: sums_ll(nzb:nzt+1,2) |
---|
| 141 | |
---|
| 142 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 146 | !-- called once after the current time step |
---|
| 147 | IF ( flow_statistics_called ) THEN |
---|
[254] | 148 | |
---|
[274] | 149 | message_string = 'flow_statistics is called two times within one ' // & |
---|
| 150 | 'timestep' |
---|
[254] | 151 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
| 152 | |
---|
[1] | 153 | ENDIF |
---|
| 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Compute statistics for each (sub-)region |
---|
| 157 | DO sr = 0, statistic_regions |
---|
| 158 | |
---|
| 159 | ! |
---|
| 160 | !-- Initialize (local) summation array |
---|
| 161 | sums_l = 0.0 |
---|
| 162 | |
---|
| 163 | ! |
---|
| 164 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 165 | !-- array |
---|
| 166 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 167 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
| 168 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
[87] | 169 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 170 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
[1] | 171 | |
---|
[667] | 172 | ! |
---|
| 173 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
| 174 | !-- the local array sums_l() for further computations |
---|
[743] | 175 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
[696] | 176 | |
---|
[667] | 177 | ! |
---|
[673] | 178 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
| 179 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
| 180 | IF ( ocean ) THEN |
---|
[743] | 181 | sums_us2_ws_l(nzt+1) = sums_us2_ws_l(nzt) |
---|
| 182 | sums_vs2_ws_l(nzt+1) = sums_vs2_ws_l(nzt) |
---|
[673] | 183 | ENDIF |
---|
[696] | 184 | |
---|
| 185 | DO i = 0, threads_per_task-1 |
---|
[667] | 186 | ! |
---|
[696] | 187 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
[743] | 188 | sums_l(:,13,i) = sums_wsus_ws_l(:) ! w*u* |
---|
| 189 | sums_l(:,15,i) = sums_wsvs_ws_l(:) ! w*v* |
---|
| 190 | sums_l(:,30,i) = sums_us2_ws_l(:) ! u*2 |
---|
| 191 | sums_l(:,31,i) = sums_vs2_ws_l(:) ! v*2 |
---|
| 192 | sums_l(:,32,i) = sums_ws2_ws_l(:) ! w*2 |
---|
[696] | 193 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5 * & |
---|
[743] | 194 | ( sums_us2_ws_l(:) + sums_vs2_ws_l(:) + & |
---|
| 195 | sums_ws2_ws_l(:) ) ! e* |
---|
[696] | 196 | DO k = nzb, nzt |
---|
| 197 | sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5 * ( & |
---|
[743] | 198 | sums_us2_ws_l(k) + & |
---|
| 199 | sums_vs2_ws_l(k) + & |
---|
| 200 | sums_ws2_ws_l(k) ) |
---|
[696] | 201 | ENDDO |
---|
[667] | 202 | ENDDO |
---|
[696] | 203 | |
---|
[667] | 204 | ENDIF |
---|
[696] | 205 | |
---|
[743] | 206 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
[696] | 207 | |
---|
| 208 | DO i = 0, threads_per_task-1 |
---|
[743] | 209 | sums_l(:,17,i) = sums_wspts_ws_l(:) ! w*pt* from advec_s_ws |
---|
| 210 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:) ! w*sa* |
---|
[696] | 211 | IF ( humidity .OR. passive_scalar ) sums_l(:,49,i) = & |
---|
[743] | 212 | sums_wsqs_ws_l(:) !w*q* |
---|
[696] | 213 | ENDDO |
---|
| 214 | |
---|
[667] | 215 | ENDIF |
---|
[305] | 216 | ! |
---|
[1] | 217 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 218 | !-- They must have been computed before, because they are already required |
---|
| 219 | !-- for other horizontal averages. |
---|
| 220 | tn = 0 |
---|
[667] | 221 | |
---|
[1] | 222 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
[82] | 223 | #if defined( __intel_openmp_bug ) |
---|
[1] | 224 | tn = omp_get_thread_num() |
---|
| 225 | #else |
---|
| 226 | !$ tn = omp_get_thread_num() |
---|
| 227 | #endif |
---|
| 228 | |
---|
| 229 | !$OMP DO |
---|
| 230 | DO i = nxl, nxr |
---|
| 231 | DO j = nys, nyn |
---|
[132] | 232 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 233 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
| 234 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
| 235 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
| 236 | ENDDO |
---|
| 237 | ENDDO |
---|
| 238 | ENDDO |
---|
| 239 | |
---|
| 240 | ! |
---|
[96] | 241 | !-- Horizontally averaged profile of salinity |
---|
| 242 | IF ( ocean ) THEN |
---|
| 243 | !$OMP DO |
---|
| 244 | DO i = nxl, nxr |
---|
| 245 | DO j = nys, nyn |
---|
[132] | 246 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[96] | 247 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
| 248 | sa(k,j,i) * rmask(j,i,sr) |
---|
| 249 | ENDDO |
---|
| 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | ENDIF |
---|
| 253 | |
---|
| 254 | ! |
---|
[1] | 255 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
| 256 | !-- total water content, specific humidity and liquid water potential |
---|
| 257 | !-- temperature |
---|
[75] | 258 | IF ( humidity ) THEN |
---|
[1] | 259 | !$OMP DO |
---|
| 260 | DO i = nxl, nxr |
---|
| 261 | DO j = nys, nyn |
---|
[132] | 262 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 263 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
| 264 | vpt(k,j,i) * rmask(j,i,sr) |
---|
| 265 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
| 266 | q(k,j,i) * rmask(j,i,sr) |
---|
| 267 | ENDDO |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
| 270 | IF ( cloud_physics ) THEN |
---|
| 271 | !$OMP DO |
---|
| 272 | DO i = nxl, nxr |
---|
| 273 | DO j = nys, nyn |
---|
[132] | 274 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 275 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
| 276 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
| 277 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
| 278 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
| 279 | ) * rmask(j,i,sr) |
---|
| 280 | ENDDO |
---|
| 281 | ENDDO |
---|
| 282 | ENDDO |
---|
| 283 | ENDIF |
---|
| 284 | ENDIF |
---|
| 285 | |
---|
| 286 | ! |
---|
| 287 | !-- Horizontally averaged profiles of passive scalar |
---|
| 288 | IF ( passive_scalar ) THEN |
---|
| 289 | !$OMP DO |
---|
| 290 | DO i = nxl, nxr |
---|
| 291 | DO j = nys, nyn |
---|
[132] | 292 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 293 | sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) |
---|
| 294 | ENDDO |
---|
| 295 | ENDDO |
---|
| 296 | ENDDO |
---|
| 297 | ENDIF |
---|
| 298 | !$OMP END PARALLEL |
---|
| 299 | ! |
---|
| 300 | !-- Summation of thread sums |
---|
| 301 | IF ( threads_per_task > 1 ) THEN |
---|
| 302 | DO i = 1, threads_per_task-1 |
---|
| 303 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 304 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 305 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
[96] | 306 | IF ( ocean ) THEN |
---|
| 307 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
| 308 | ENDIF |
---|
[75] | 309 | IF ( humidity ) THEN |
---|
[1] | 310 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 311 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
| 312 | IF ( cloud_physics ) THEN |
---|
| 313 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 314 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 315 | ENDIF |
---|
| 316 | ENDIF |
---|
| 317 | IF ( passive_scalar ) THEN |
---|
| 318 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 319 | ENDIF |
---|
| 320 | ENDDO |
---|
| 321 | ENDIF |
---|
| 322 | |
---|
| 323 | #if defined( __parallel ) |
---|
| 324 | ! |
---|
| 325 | !-- Compute total sum from local sums |
---|
[622] | 326 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 327 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
| 328 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 329 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 330 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
| 331 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 332 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 333 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
| 334 | MPI_SUM, comm2d, ierr ) |
---|
[96] | 335 | IF ( ocean ) THEN |
---|
[622] | 336 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[96] | 337 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
| 338 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 339 | ENDIF |
---|
[75] | 340 | IF ( humidity ) THEN |
---|
[622] | 341 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 342 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
| 343 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 344 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 345 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 346 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 347 | IF ( cloud_physics ) THEN |
---|
[622] | 348 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 349 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
| 350 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 351 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 352 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
| 353 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 354 | ENDIF |
---|
| 355 | ENDIF |
---|
| 356 | |
---|
| 357 | IF ( passive_scalar ) THEN |
---|
[622] | 358 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 359 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 360 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 361 | ENDIF |
---|
| 362 | #else |
---|
| 363 | sums(:,1) = sums_l(:,1,0) |
---|
| 364 | sums(:,2) = sums_l(:,2,0) |
---|
| 365 | sums(:,4) = sums_l(:,4,0) |
---|
[96] | 366 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
[75] | 367 | IF ( humidity ) THEN |
---|
[1] | 368 | sums(:,44) = sums_l(:,44,0) |
---|
| 369 | sums(:,41) = sums_l(:,41,0) |
---|
| 370 | IF ( cloud_physics ) THEN |
---|
| 371 | sums(:,42) = sums_l(:,42,0) |
---|
| 372 | sums(:,43) = sums_l(:,43,0) |
---|
| 373 | ENDIF |
---|
| 374 | ENDIF |
---|
| 375 | IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0) |
---|
| 376 | #endif |
---|
| 377 | |
---|
| 378 | ! |
---|
| 379 | !-- Final values are obtained by division by the total number of grid points |
---|
| 380 | !-- used for summation. After that store profiles. |
---|
[132] | 381 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
| 382 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
| 383 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 384 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 385 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 386 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
| 387 | |
---|
[667] | 388 | |
---|
[1] | 389 | ! |
---|
[96] | 390 | !-- Salinity |
---|
| 391 | IF ( ocean ) THEN |
---|
[132] | 392 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
[96] | 393 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
| 394 | ENDIF |
---|
| 395 | |
---|
| 396 | ! |
---|
[1] | 397 | !-- Humidity and cloud parameters |
---|
[75] | 398 | IF ( humidity ) THEN |
---|
[132] | 399 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
| 400 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 401 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 402 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
| 403 | IF ( cloud_physics ) THEN |
---|
[132] | 404 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
| 405 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 406 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 407 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 408 | ENDIF |
---|
| 409 | ENDIF |
---|
| 410 | |
---|
| 411 | ! |
---|
| 412 | !-- Passive scalar |
---|
[132] | 413 | IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / & |
---|
| 414 | ngp_2dh_s_inner(:,sr) ! s (q) |
---|
[1] | 415 | |
---|
| 416 | ! |
---|
| 417 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 418 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 419 | !-- column of sums_l) and some diagnostic quantities. |
---|
[132] | 420 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 421 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 422 | !-- rearranged according to the staggered grid. |
---|
[132] | 423 | !-- However, this implies no error since staggered velocity components |
---|
| 424 | !-- are zero at the walls and inside buildings. |
---|
[1] | 425 | tn = 0 |
---|
[82] | 426 | #if defined( __intel_openmp_bug ) |
---|
[1] | 427 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
| 428 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 429 | tn = omp_get_thread_num() |
---|
| 430 | #else |
---|
| 431 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 432 | !$ tn = omp_get_thread_num() |
---|
| 433 | #endif |
---|
| 434 | !$OMP DO |
---|
| 435 | DO i = nxl, nxr |
---|
| 436 | DO j = nys, nyn |
---|
| 437 | sums_l_etot = 0.0 |
---|
[132] | 438 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 439 | ! |
---|
| 440 | !-- Prognostic and diagnostic variables |
---|
| 441 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
| 442 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
| 443 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
| 444 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
| 445 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
| 446 | |
---|
| 447 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
| 448 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
[624] | 449 | |
---|
| 450 | IF ( humidity ) THEN |
---|
| 451 | sums_l(k,70,tn) = sums_l(k,70,tn) + & |
---|
| 452 | ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) |
---|
| 453 | ENDIF |
---|
[699] | 454 | |
---|
| 455 | ! |
---|
| 456 | !-- Higher moments |
---|
| 457 | !-- (Computation of the skewness of w further below) |
---|
| 458 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) |
---|
[667] | 459 | |
---|
[1] | 460 | sums_l_etot = sums_l_etot + & |
---|
[667] | 461 | 0.5 * ( u(k,j,i)**2 + v(k,j,i)**2 + & |
---|
| 462 | w(k,j,i)**2 ) * rmask(j,i,sr) |
---|
[1] | 463 | ENDDO |
---|
| 464 | ! |
---|
| 465 | !-- Total and perturbation energy for the total domain (being |
---|
| 466 | !-- collected in the last column of sums_l). Summation of these |
---|
| 467 | !-- quantities is seperated from the previous loop in order to |
---|
| 468 | !-- allow vectorization of that loop. |
---|
[87] | 469 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
[1] | 470 | ! |
---|
| 471 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
[87] | 472 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[1] | 473 | us(j,i) * rmask(j,i,sr) |
---|
[87] | 474 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[1] | 475 | usws(j,i) * rmask(j,i,sr) |
---|
[87] | 476 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[1] | 477 | vsws(j,i) * rmask(j,i,sr) |
---|
[87] | 478 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[1] | 479 | ts(j,i) * rmask(j,i,sr) |
---|
[197] | 480 | IF ( humidity ) THEN |
---|
| 481 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
| 482 | qs(j,i) * rmask(j,i,sr) |
---|
| 483 | ENDIF |
---|
[1] | 484 | ENDDO |
---|
| 485 | ENDDO |
---|
| 486 | |
---|
| 487 | ! |
---|
[667] | 488 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
| 489 | !-- quantities are evaluated in the advection routines. |
---|
[743] | 490 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
[667] | 491 | !$OMP DO |
---|
| 492 | DO i = nxl, nxr |
---|
| 493 | DO j = nys, nyn |
---|
| 494 | sums_l_eper = 0.0 |
---|
| 495 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
| 496 | u2 = u(k,j,i)**2 |
---|
| 497 | v2 = v(k,j,i)**2 |
---|
| 498 | w2 = w(k,j,i)**2 |
---|
| 499 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 500 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 501 | |
---|
| 502 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
| 503 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
| 504 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
| 505 | ! |
---|
| 506 | !-- Perturbation energy |
---|
| 507 | |
---|
| 508 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5 * & |
---|
| 509 | ( ust2 + vst2 + w2 ) * rmask(j,i,sr) |
---|
| 510 | sums_l_eper = sums_l_eper + & |
---|
| 511 | 0.5 * ( ust2+vst2+w2 ) * rmask(j,i,sr) |
---|
| 512 | |
---|
| 513 | ENDDO |
---|
| 514 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & |
---|
| 515 | + sums_l_eper |
---|
| 516 | ENDDO |
---|
| 517 | ENDDO |
---|
| 518 | ENDIF |
---|
| 519 | ! |
---|
[1] | 520 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
[667] | 521 | |
---|
[1] | 522 | !$OMP DO |
---|
| 523 | DO i = nxl, nxr |
---|
| 524 | DO j = nys, nyn |
---|
| 525 | ! |
---|
| 526 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
| 527 | !-- oterwise from k=nzb+1) |
---|
[132] | 528 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
[1] | 529 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 530 | !-- split up according to the staggered grid. |
---|
[132] | 531 | !-- However, this implies no error since staggered velocity |
---|
| 532 | !-- components are zero at the walls and inside buildings. |
---|
| 533 | |
---|
| 534 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
[1] | 535 | ! |
---|
| 536 | !-- Momentum flux w"u" |
---|
| 537 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25 * ( & |
---|
| 538 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 539 | ) * ( & |
---|
| 540 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 541 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 542 | ) * rmask(j,i,sr) |
---|
| 543 | ! |
---|
| 544 | !-- Momentum flux w"v" |
---|
| 545 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25 * ( & |
---|
| 546 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 547 | ) * ( & |
---|
| 548 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 549 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 550 | ) * rmask(j,i,sr) |
---|
| 551 | ! |
---|
| 552 | !-- Heat flux w"pt" |
---|
| 553 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
| 554 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 555 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 556 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | ! |
---|
[96] | 560 | !-- Salinity flux w"sa" |
---|
| 561 | IF ( ocean ) THEN |
---|
| 562 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
| 563 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 564 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
| 565 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 566 | ENDIF |
---|
| 567 | |
---|
| 568 | ! |
---|
[1] | 569 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
[75] | 570 | IF ( humidity ) THEN |
---|
[1] | 571 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
| 572 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 573 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
| 574 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 575 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 576 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 577 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 578 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 579 | IF ( cloud_physics ) THEN |
---|
| 580 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
| 581 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 582 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
| 583 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
| 584 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 585 | ENDIF |
---|
| 586 | ENDIF |
---|
| 587 | |
---|
| 588 | ! |
---|
| 589 | !-- Passive scalar flux |
---|
| 590 | IF ( passive_scalar ) THEN |
---|
| 591 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 592 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 593 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 594 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 595 | ENDIF |
---|
| 596 | |
---|
| 597 | ENDDO |
---|
| 598 | |
---|
| 599 | ! |
---|
| 600 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 601 | IF ( use_surface_fluxes ) THEN |
---|
| 602 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
| 603 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 604 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
| 605 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 606 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
| 607 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 608 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
| 609 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 610 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
| 611 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
[96] | 612 | IF ( ocean ) THEN |
---|
| 613 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
| 614 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 615 | ENDIF |
---|
[75] | 616 | IF ( humidity ) THEN |
---|
[1] | 617 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 618 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 619 | IF ( cloud_physics ) THEN |
---|
| 620 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 621 | ( 1.0 + 0.61 * q(nzb,j,i) ) * & |
---|
| 622 | shf(j,i) + 0.61 * pt(nzb,j,i) * & |
---|
| 623 | qsws(j,i) & |
---|
| 624 | ) |
---|
| 625 | ! |
---|
| 626 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 627 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & ! w"q" (w"qv") |
---|
| 628 | qsws(j,i) * rmask(j,i,sr) |
---|
| 629 | ENDIF |
---|
| 630 | ENDIF |
---|
| 631 | IF ( passive_scalar ) THEN |
---|
| 632 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 633 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 634 | ENDIF |
---|
| 635 | ENDIF |
---|
| 636 | |
---|
| 637 | ! |
---|
[19] | 638 | !-- Subgridscale fluxes at the top surface |
---|
| 639 | IF ( use_top_fluxes ) THEN |
---|
[550] | 640 | sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + & |
---|
[102] | 641 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
[550] | 642 | sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + & |
---|
[102] | 643 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
[550] | 644 | sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + & |
---|
[19] | 645 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
[550] | 646 | sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & |
---|
[19] | 647 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
[550] | 648 | sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & |
---|
| 649 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
| 650 | |
---|
[96] | 651 | IF ( ocean ) THEN |
---|
| 652 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
| 653 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 654 | ENDIF |
---|
[75] | 655 | IF ( humidity ) THEN |
---|
[19] | 656 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[388] | 657 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[19] | 658 | IF ( cloud_physics ) THEN |
---|
| 659 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 660 | ( 1.0 + 0.61 * q(nzt,j,i) ) * & |
---|
| 661 | tswst(j,i) + 0.61 * pt(nzt,j,i) * & |
---|
| 662 | qsws(j,i) & |
---|
| 663 | ) |
---|
| 664 | ! |
---|
| 665 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 666 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
| 667 | qswst(j,i) * rmask(j,i,sr) |
---|
| 668 | ENDIF |
---|
| 669 | ENDIF |
---|
| 670 | IF ( passive_scalar ) THEN |
---|
| 671 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[388] | 672 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[19] | 673 | ENDIF |
---|
| 674 | ENDIF |
---|
| 675 | |
---|
| 676 | ! |
---|
[1] | 677 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
[132] | 678 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 679 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 680 | !-- rearranged according to the staggered grid. |
---|
[132] | 681 | DO k = nzb_s_inner(j,i), nzt |
---|
[1] | 682 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 683 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 684 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 685 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 686 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 687 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
[667] | 688 | |
---|
[1] | 689 | !-- Higher moments |
---|
| 690 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
| 691 | rmask(j,i,sr) |
---|
| 692 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
| 693 | rmask(j,i,sr) |
---|
| 694 | |
---|
| 695 | ! |
---|
[96] | 696 | !-- Salinity flux and density (density does not belong to here, |
---|
[97] | 697 | !-- but so far there is no other suitable place to calculate) |
---|
[96] | 698 | IF ( ocean ) THEN |
---|
[743] | 699 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[667] | 700 | pts = 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
[96] | 701 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
[667] | 702 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
[96] | 703 | rmask(j,i,sr) |
---|
[667] | 704 | ENDIF |
---|
[96] | 705 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * & |
---|
| 706 | rmask(j,i,sr) |
---|
[388] | 707 | sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & |
---|
| 708 | rmask(j,i,sr) |
---|
[96] | 709 | ENDIF |
---|
| 710 | |
---|
| 711 | ! |
---|
[1] | 712 | !-- Buoyancy flux, water flux, humidity flux and liquid water |
---|
| 713 | !-- content |
---|
[75] | 714 | IF ( humidity ) THEN |
---|
[1] | 715 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 716 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 717 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
| 718 | rmask(j,i,sr) |
---|
[667] | 719 | |
---|
[1] | 720 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 721 | pts = 0.5 * & |
---|
| 722 | ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) & |
---|
| 723 | + ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) |
---|
| 724 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
| 725 | rmask(j,i,sr) |
---|
| 726 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
| 727 | rmask(j,i,sr) |
---|
| 728 | ENDIF |
---|
| 729 | ENDIF |
---|
| 730 | |
---|
| 731 | ! |
---|
| 732 | !-- Passive scalar flux |
---|
[743] | 733 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & |
---|
| 734 | .OR. sr /= 0 ) ) THEN |
---|
[1] | 735 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 736 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 737 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 738 | rmask(j,i,sr) |
---|
| 739 | ENDIF |
---|
| 740 | |
---|
| 741 | ! |
---|
| 742 | !-- Energy flux w*e* |
---|
[667] | 743 | !-- has to be adjusted |
---|
| 744 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5 * & |
---|
| 745 | ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
| 746 | * rmask(j,i,sr) |
---|
[1] | 747 | ENDDO |
---|
| 748 | ENDDO |
---|
| 749 | ENDDO |
---|
[709] | 750 | ! |
---|
| 751 | !-- For speed optimization fluxes which have been computed in part directly |
---|
| 752 | !-- inside the WS advection routines are treated seperatly |
---|
| 753 | !-- Momentum fluxes first: |
---|
[743] | 754 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
[667] | 755 | !$OMP DO |
---|
| 756 | DO i = nxl, nxr |
---|
| 757 | DO j = nys, nyn |
---|
| 758 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
| 759 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 760 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 761 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 762 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 763 | ! |
---|
| 764 | !-- Momentum flux w*u* |
---|
| 765 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5 * & |
---|
| 766 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
| 767 | * ust * rmask(j,i,sr) |
---|
| 768 | ! |
---|
| 769 | !-- Momentum flux w*v* |
---|
| 770 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5 * & |
---|
| 771 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
| 772 | * vst * rmask(j,i,sr) |
---|
| 773 | ENDDO |
---|
| 774 | ENDDO |
---|
| 775 | ENDDO |
---|
[1] | 776 | |
---|
[667] | 777 | ENDIF |
---|
[743] | 778 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[667] | 779 | !$OMP DO |
---|
| 780 | DO i = nxl, nxr |
---|
| 781 | DO j = nys, nyn |
---|
[709] | 782 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
| 783 | ! |
---|
| 784 | !-- Vertical heat flux |
---|
[667] | 785 | sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5 * & |
---|
| 786 | ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 787 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
| 788 | * w(k,j,i) * rmask(j,i,sr) |
---|
| 789 | IF ( humidity ) THEN |
---|
| 790 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 791 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 792 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 793 | rmask(j,i,sr) |
---|
| 794 | ENDIF |
---|
| 795 | ENDDO |
---|
| 796 | ENDDO |
---|
| 797 | ENDDO |
---|
| 798 | |
---|
| 799 | ENDIF |
---|
| 800 | |
---|
| 801 | |
---|
[1] | 802 | ! |
---|
[97] | 803 | !-- Density at top follows Neumann condition |
---|
[388] | 804 | IF ( ocean ) THEN |
---|
| 805 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
| 806 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
| 807 | ENDIF |
---|
[97] | 808 | |
---|
| 809 | ! |
---|
[1] | 810 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
[106] | 811 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
| 812 | !-- First calculate the products, then the divergence. |
---|
[1] | 813 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
[106] | 814 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
[1] | 815 | |
---|
| 816 | sums_ll = 0.0 ! local array |
---|
| 817 | |
---|
| 818 | !$OMP DO |
---|
| 819 | DO i = nxl, nxr |
---|
| 820 | DO j = nys, nyn |
---|
[132] | 821 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 822 | |
---|
| 823 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
| 824 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
[678] | 825 | - 0.5 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
[1] | 826 | ) )**2 & |
---|
| 827 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
[678] | 828 | - 0.5 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
[1] | 829 | ) )**2 & |
---|
| 830 | + w(k,j,i)**2 ) |
---|
| 831 | |
---|
| 832 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
| 833 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
| 834 | |
---|
| 835 | ENDDO |
---|
| 836 | ENDDO |
---|
| 837 | ENDDO |
---|
| 838 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
| 839 | sums_ll(nzt+1,1) = 0.0 |
---|
| 840 | sums_ll(0,2) = 0.0 |
---|
| 841 | sums_ll(nzt+1,2) = 0.0 |
---|
| 842 | |
---|
[678] | 843 | DO k = nzb+1, nzt |
---|
[1] | 844 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 845 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
[106] | 846 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
[1] | 847 | ENDDO |
---|
| 848 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 849 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
[106] | 850 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
[1] | 851 | |
---|
| 852 | ENDIF |
---|
| 853 | |
---|
| 854 | ! |
---|
[106] | 855 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
| 856 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
[1] | 857 | |
---|
| 858 | !$OMP DO |
---|
| 859 | DO i = nxl, nxr |
---|
| 860 | DO j = nys, nyn |
---|
[132] | 861 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 862 | |
---|
[106] | 863 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
[1] | 864 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 865 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
[106] | 866 | ) * ddzw(k) |
---|
[1] | 867 | |
---|
[106] | 868 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
| 869 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 870 | ) |
---|
| 871 | |
---|
[1] | 872 | ENDDO |
---|
| 873 | ENDDO |
---|
| 874 | ENDDO |
---|
| 875 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
[106] | 876 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
[1] | 877 | |
---|
| 878 | ENDIF |
---|
| 879 | |
---|
| 880 | ! |
---|
| 881 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 882 | !-- Do it only, if profiles shall be plotted. |
---|
| 883 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
| 884 | |
---|
| 885 | !$OMP DO |
---|
| 886 | DO i = nxl, nxr |
---|
| 887 | DO j = nys, nyn |
---|
[132] | 888 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 889 | ! |
---|
| 890 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
| 891 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
| 892 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 893 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
| 894 | * ddx * rmask(j,i,sr) |
---|
| 895 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
| 896 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 897 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
| 898 | * ddy * rmask(j,i,sr) |
---|
| 899 | ! |
---|
| 900 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 901 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 902 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
| 903 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
| 904 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 905 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 906 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 907 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 908 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
| 909 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 910 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 911 | ENDDO |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | ! |
---|
| 915 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
[97] | 916 | sums_l(nzb,58,tn) = 0.0 |
---|
| 917 | sums_l(nzb,59,tn) = 0.0 |
---|
| 918 | sums_l(nzb,60,tn) = 0.0 |
---|
| 919 | sums_l(nzb,61,tn) = 0.0 |
---|
| 920 | sums_l(nzb,62,tn) = 0.0 |
---|
| 921 | sums_l(nzb,63,tn) = 0.0 |
---|
[1] | 922 | |
---|
| 923 | ENDIF |
---|
[87] | 924 | |
---|
| 925 | ! |
---|
| 926 | !-- Calculate the user-defined profiles |
---|
| 927 | CALL user_statistics( 'profiles', sr, tn ) |
---|
[1] | 928 | !$OMP END PARALLEL |
---|
| 929 | |
---|
| 930 | ! |
---|
| 931 | !-- Summation of thread sums |
---|
| 932 | IF ( threads_per_task > 1 ) THEN |
---|
| 933 | DO i = 1, threads_per_task-1 |
---|
| 934 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 935 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
[87] | 936 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
| 937 | sums_l(:,45:pr_palm,i) |
---|
| 938 | IF ( max_pr_user > 0 ) THEN |
---|
| 939 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
| 940 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
| 941 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
| 942 | ENDIF |
---|
[1] | 943 | ENDDO |
---|
| 944 | ENDIF |
---|
| 945 | |
---|
| 946 | #if defined( __parallel ) |
---|
[667] | 947 | |
---|
[1] | 948 | ! |
---|
| 949 | !-- Compute total sum from local sums |
---|
[622] | 950 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 951 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
| 952 | MPI_SUM, comm2d, ierr ) |
---|
| 953 | #else |
---|
| 954 | sums = sums_l(:,:,0) |
---|
| 955 | #endif |
---|
| 956 | |
---|
| 957 | ! |
---|
| 958 | !-- Final values are obtained by division by the total number of grid points |
---|
| 959 | !-- used for summation. After that store profiles. |
---|
| 960 | !-- Profiles: |
---|
| 961 | DO k = nzb, nzt+1 |
---|
[132] | 962 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
[142] | 963 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
[132] | 964 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
| 965 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
| 966 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
[142] | 967 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
| 968 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
[132] | 969 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
| 970 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
| 971 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
| 972 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
| 973 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
| 974 | sums(k,65:69) = sums(k,65:69) / ngp_2dh(sr) |
---|
| 975 | sums(k,70:pr_palm-2) = sums(k,70:pr_palm-2)/ ngp_2dh_s_inner(k,sr) |
---|
[1] | 976 | ENDDO |
---|
[667] | 977 | |
---|
[1] | 978 | !-- Upstream-parts |
---|
[87] | 979 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
[1] | 980 | !-- u* and so on |
---|
[87] | 981 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
[1] | 982 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 983 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
[87] | 984 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
[1] | 985 | ngp_2dh(sr) |
---|
[197] | 986 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
| 987 | ngp_2dh(sr) |
---|
[1] | 988 | !-- eges, e* |
---|
[87] | 989 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
[132] | 990 | ngp_3d(sr) |
---|
[1] | 991 | !-- Old and new divergence |
---|
[87] | 992 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
[1] | 993 | ngp_3d_inner(sr) |
---|
| 994 | |
---|
[87] | 995 | !-- User-defined profiles |
---|
| 996 | IF ( max_pr_user > 0 ) THEN |
---|
| 997 | DO k = nzb, nzt+1 |
---|
| 998 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
| 999 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
[132] | 1000 | ngp_2dh_s_inner(k,sr) |
---|
[87] | 1001 | ENDDO |
---|
| 1002 | ENDIF |
---|
[1] | 1003 | ! |
---|
| 1004 | !-- Collect horizontal average in hom. |
---|
| 1005 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 1006 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 1007 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 1008 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 1009 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 1010 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 1011 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 1012 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 1013 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 1014 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 1015 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 1016 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 1017 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 1018 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 1019 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 1020 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 1021 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
[96] | 1022 | ! profile 24 is initial profile (sa) |
---|
| 1023 | ! profiles 25-29 left empty for initial |
---|
[1] | 1024 | ! profiles |
---|
| 1025 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 1026 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 1027 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 1028 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 1029 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 1030 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 1031 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 1032 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 1033 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
[699] | 1034 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20 )**1.5 ! Sw |
---|
[1] | 1035 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
[531] | 1036 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
[1] | 1037 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 1038 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 1039 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 1040 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 1041 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 1042 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 1043 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 1044 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 1045 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 1046 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 1047 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
[106] | 1048 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
[1] | 1049 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 1050 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 1051 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 1052 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 1053 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 1054 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
[96] | 1055 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
| 1056 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
| 1057 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
| 1058 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
[106] | 1059 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
| 1060 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
[197] | 1061 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
[388] | 1062 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
[531] | 1063 | hom(:,1,72,sr) = hyp * 1E-4 ! hyp in dbar |
---|
[1] | 1064 | |
---|
[87] | 1065 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
[1] | 1066 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
| 1067 | ! v_y, usw. (in last but one profile) |
---|
[667] | 1068 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
[1] | 1069 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 1070 | |
---|
[87] | 1071 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
| 1072 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
| 1073 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
| 1074 | ENDIF |
---|
| 1075 | |
---|
[1] | 1076 | ! |
---|
| 1077 | !-- Determine the boundary layer height using two different schemes. |
---|
[94] | 1078 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
| 1079 | !-- first relative minimum (maximum) of the total heat flux. |
---|
| 1080 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
| 1081 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
| 1082 | !-- (positive) for the first time. |
---|
[1] | 1083 | z_i(1) = 0.0 |
---|
| 1084 | first = .TRUE. |
---|
[667] | 1085 | |
---|
[97] | 1086 | IF ( ocean ) THEN |
---|
| 1087 | DO k = nzt, nzb+1, -1 |
---|
[667] | 1088 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
| 1089 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8) THEN |
---|
[97] | 1090 | first = .FALSE. |
---|
| 1091 | height = zw(k) |
---|
| 1092 | ENDIF |
---|
| 1093 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
[667] | 1094 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
[97] | 1095 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 1096 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 1097 | z_i(1) = zw(k) |
---|
| 1098 | ELSE |
---|
| 1099 | z_i(1) = height |
---|
| 1100 | ENDIF |
---|
| 1101 | EXIT |
---|
| 1102 | ENDIF |
---|
| 1103 | ENDDO |
---|
| 1104 | ELSE |
---|
[94] | 1105 | DO k = nzb, nzt-1 |
---|
[667] | 1106 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
| 1107 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8 ) THEN |
---|
[94] | 1108 | first = .FALSE. |
---|
| 1109 | height = zw(k) |
---|
[1] | 1110 | ENDIF |
---|
[667] | 1111 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 1112 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
[94] | 1113 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 1114 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 1115 | z_i(1) = zw(k) |
---|
| 1116 | ELSE |
---|
| 1117 | z_i(1) = height |
---|
| 1118 | ENDIF |
---|
| 1119 | EXIT |
---|
| 1120 | ENDIF |
---|
| 1121 | ENDDO |
---|
[97] | 1122 | ENDIF |
---|
[1] | 1123 | |
---|
| 1124 | ! |
---|
[291] | 1125 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
| 1126 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
| 1127 | !-- maximal local temperature gradient: starting from the second (the last |
---|
| 1128 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
| 1129 | !-- 0.2K/100m and greater than the next four gradients. |
---|
| 1130 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
| 1131 | !-- ocean case! |
---|
[1] | 1132 | z_i(2) = 0.0 |
---|
[291] | 1133 | DO k = nzb+1, nzt+1 |
---|
| 1134 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
| 1135 | ENDDO |
---|
| 1136 | dptdz_threshold = 0.2 / 100.0 |
---|
| 1137 | |
---|
[97] | 1138 | IF ( ocean ) THEN |
---|
[291] | 1139 | DO k = nzt+1, nzb+5, -1 |
---|
| 1140 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 1141 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
| 1142 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
| 1143 | z_i(2) = zw(k-1) |
---|
[97] | 1144 | EXIT |
---|
| 1145 | ENDIF |
---|
| 1146 | ENDDO |
---|
| 1147 | ELSE |
---|
[291] | 1148 | DO k = nzb+1, nzt-3 |
---|
| 1149 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 1150 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
| 1151 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
| 1152 | z_i(2) = zw(k-1) |
---|
[97] | 1153 | EXIT |
---|
| 1154 | ENDIF |
---|
| 1155 | ENDDO |
---|
| 1156 | ENDIF |
---|
[1] | 1157 | |
---|
[87] | 1158 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
| 1159 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
[1] | 1160 | |
---|
| 1161 | ! |
---|
| 1162 | !-- Computation of both the characteristic vertical velocity and |
---|
| 1163 | !-- the characteristic convective boundary layer temperature. |
---|
| 1164 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
[667] | 1165 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. abs(hom(nzb,1,18,sr)) > 1.0E-8 & |
---|
| 1166 | .AND. z_i(1) /= 0.0 ) THEN |
---|
[87] | 1167 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
[94] | 1168 | hom(nzb,1,18,sr) * & |
---|
| 1169 | ABS( z_i(1) ) )**0.333333333 |
---|
[1] | 1170 | !-- so far this only works if Prandtl layer is used |
---|
[87] | 1171 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
[1] | 1172 | ELSE |
---|
[87] | 1173 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
| 1174 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
[1] | 1175 | ENDIF |
---|
| 1176 | |
---|
[48] | 1177 | ! |
---|
| 1178 | !-- Collect the time series quantities |
---|
[87] | 1179 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
| 1180 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
[48] | 1181 | ts_value(3,sr) = dt_3d |
---|
[87] | 1182 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
| 1183 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
[48] | 1184 | ts_value(6,sr) = u_max |
---|
| 1185 | ts_value(7,sr) = v_max |
---|
| 1186 | ts_value(8,sr) = w_max |
---|
[87] | 1187 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
| 1188 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
| 1189 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
| 1190 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
| 1191 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
[48] | 1192 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 1193 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
| 1194 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
| 1195 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
| 1196 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
[197] | 1197 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
| 1198 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
[343] | 1199 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
[197] | 1200 | |
---|
[48] | 1201 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
| 1202 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
| 1203 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
| 1204 | ELSE |
---|
| 1205 | ts_value(22,sr) = 10000.0 |
---|
| 1206 | ENDIF |
---|
[1] | 1207 | |
---|
[343] | 1208 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
[1] | 1209 | ! |
---|
[48] | 1210 | !-- Calculate additional statistics provided by the user interface |
---|
[87] | 1211 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
[1] | 1212 | |
---|
[48] | 1213 | ENDDO ! loop of the subregions |
---|
| 1214 | |
---|
[1] | 1215 | ! |
---|
| 1216 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
| 1217 | IF ( do_sum ) THEN |
---|
| 1218 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
| 1219 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 1220 | average_count_pr = average_count_pr + 1 |
---|
| 1221 | do_sum = .FALSE. |
---|
| 1222 | ENDIF |
---|
| 1223 | |
---|
| 1224 | ! |
---|
| 1225 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 1226 | !-- This flag is reset after each time step in time_integration. |
---|
| 1227 | flow_statistics_called = .TRUE. |
---|
| 1228 | |
---|
| 1229 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 1230 | |
---|
| 1231 | |
---|
| 1232 | END SUBROUTINE flow_statistics |
---|