[1] | 1 | SUBROUTINE flow_statistics |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[51] | 6 | ! Collection of time series quantities moved from routine flow_statistics to |
---|
| 7 | ! here, routine user_statistics is called for each statistic region |
---|
[1] | 8 | ! |
---|
| 9 | ! Former revisions: |
---|
| 10 | ! ----------------- |
---|
[3] | 11 | ! $Id: flow_statistics.f90 51 2007-03-07 08:38:00Z raasch $ |
---|
[39] | 12 | ! fluxes at top modified (tswst, qswst) |
---|
| 13 | ! |
---|
| 14 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 15 | ! |
---|
[3] | 16 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 17 | ! |
---|
[1] | 18 | ! Revision 1.41 2006/08/04 14:37:50 raasch |
---|
| 19 | ! Error removed in non-parallel part (sums_l) |
---|
| 20 | ! |
---|
| 21 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
| 22 | ! Initial revision |
---|
| 23 | ! |
---|
| 24 | ! |
---|
| 25 | ! Description: |
---|
| 26 | ! ------------ |
---|
| 27 | ! Compute average profiles and further average flow quantities for the different |
---|
| 28 | ! user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
| 29 | ! |
---|
| 30 | ! NOTE: For simplicity, nzb_s_outer and nzb_diff_s_outer are being used as a |
---|
| 31 | ! ---- lower vertical index for k-loops for all variables so that regardless |
---|
| 32 | ! of the variable and its respective staggered grid always the same number of |
---|
| 33 | ! grid points is used for 2D averages. The disadvantage: depending on the |
---|
| 34 | ! variable, up to one grid layer adjacent to the (vertical walls of the) |
---|
| 35 | ! topography is missed out by this simplification. |
---|
| 36 | !------------------------------------------------------------------------------! |
---|
| 37 | |
---|
| 38 | USE arrays_3d |
---|
| 39 | USE cloud_parameters |
---|
| 40 | USE cpulog |
---|
| 41 | USE grid_variables |
---|
| 42 | USE indices |
---|
| 43 | USE interfaces |
---|
| 44 | USE pegrid |
---|
| 45 | USE statistics |
---|
| 46 | USE control_parameters |
---|
| 47 | |
---|
| 48 | IMPLICIT NONE |
---|
| 49 | |
---|
| 50 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
| 51 | LOGICAL :: first |
---|
| 52 | REAL :: height, pts, sums_l_eper, sums_l_etot, ust, ust2, u2, vst, & |
---|
| 53 | vst2, v2, w2, z_i(2) |
---|
| 54 | REAL :: sums_ll(nzb:nzt+1,2) |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 58 | |
---|
| 59 | ! |
---|
| 60 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 61 | !-- called once after the current time step |
---|
| 62 | IF ( flow_statistics_called ) THEN |
---|
| 63 | IF ( myid == 0 ) PRINT*, '+++ WARNING: flow_statistics is called two', & |
---|
| 64 | ' times within one timestep' |
---|
| 65 | CALL local_stop |
---|
| 66 | ENDIF |
---|
| 67 | |
---|
| 68 | ! |
---|
| 69 | !-- Compute statistics for each (sub-)region |
---|
| 70 | DO sr = 0, statistic_regions |
---|
| 71 | |
---|
| 72 | ! |
---|
| 73 | !-- Initialize (local) summation array |
---|
| 74 | sums_l = 0.0 |
---|
| 75 | |
---|
| 76 | ! |
---|
| 77 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 78 | !-- array |
---|
| 79 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 80 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
| 81 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
| 82 | sums_l(nzb+9,var_sum,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 83 | sums_l(nzb+10,var_sum,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
| 84 | !-- WARNING: next four lines still may have to be adjusted for OpenMP |
---|
| 85 | sums_l(nzb:nzb+2,var_sum-1,0) = sums_up_fraction_l(1,1:3,sr)! upstream |
---|
| 86 | sums_l(nzb+3:nzb+5,var_sum-1,0) = sums_up_fraction_l(2,1:3,sr)! parts |
---|
| 87 | sums_l(nzb+6:nzb+8,var_sum-1,0) = sums_up_fraction_l(3,1:3,sr)! from |
---|
| 88 | sums_l(nzb+9:nzb+11,var_sum-1,0) = sums_up_fraction_l(4,1:3,sr)! spline |
---|
| 89 | |
---|
| 90 | ! |
---|
| 91 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 92 | !-- They must have been computed before, because they are already required |
---|
| 93 | !-- for other horizontal averages. |
---|
| 94 | tn = 0 |
---|
| 95 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
| 96 | #if defined( __lcmuk ) |
---|
| 97 | tn = omp_get_thread_num() |
---|
| 98 | #else |
---|
| 99 | !$ tn = omp_get_thread_num() |
---|
| 100 | #endif |
---|
| 101 | |
---|
| 102 | !$OMP DO |
---|
| 103 | DO i = nxl, nxr |
---|
| 104 | DO j = nys, nyn |
---|
| 105 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
| 106 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
| 107 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
| 108 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
| 109 | ENDDO |
---|
| 110 | ENDDO |
---|
| 111 | ENDDO |
---|
| 112 | |
---|
| 113 | ! |
---|
| 114 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
| 115 | !-- total water content, specific humidity and liquid water potential |
---|
| 116 | !-- temperature |
---|
| 117 | IF ( moisture ) THEN |
---|
| 118 | !$OMP DO |
---|
| 119 | DO i = nxl, nxr |
---|
| 120 | DO j = nys, nyn |
---|
| 121 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
| 122 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
| 123 | vpt(k,j,i) * rmask(j,i,sr) |
---|
| 124 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
| 125 | q(k,j,i) * rmask(j,i,sr) |
---|
| 126 | ENDDO |
---|
| 127 | ENDDO |
---|
| 128 | ENDDO |
---|
| 129 | IF ( cloud_physics ) THEN |
---|
| 130 | !$OMP DO |
---|
| 131 | DO i = nxl, nxr |
---|
| 132 | DO j = nys, nyn |
---|
| 133 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
| 134 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
| 135 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
| 136 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
| 137 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
| 138 | ) * rmask(j,i,sr) |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | ENDDO |
---|
| 142 | ENDIF |
---|
| 143 | ENDIF |
---|
| 144 | |
---|
| 145 | ! |
---|
| 146 | !-- Horizontally averaged profiles of passive scalar |
---|
| 147 | IF ( passive_scalar ) THEN |
---|
| 148 | !$OMP DO |
---|
| 149 | DO i = nxl, nxr |
---|
| 150 | DO j = nys, nyn |
---|
| 151 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
| 152 | sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) |
---|
| 153 | ENDDO |
---|
| 154 | ENDDO |
---|
| 155 | ENDDO |
---|
| 156 | ENDIF |
---|
| 157 | !$OMP END PARALLEL |
---|
| 158 | |
---|
| 159 | ! |
---|
| 160 | !-- Summation of thread sums |
---|
| 161 | IF ( threads_per_task > 1 ) THEN |
---|
| 162 | DO i = 1, threads_per_task-1 |
---|
| 163 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 164 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 165 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
| 166 | IF ( moisture ) THEN |
---|
| 167 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 168 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
| 169 | IF ( cloud_physics ) THEN |
---|
| 170 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 171 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 172 | ENDIF |
---|
| 173 | ENDIF |
---|
| 174 | IF ( passive_scalar ) THEN |
---|
| 175 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 176 | ENDIF |
---|
| 177 | ENDDO |
---|
| 178 | ENDIF |
---|
| 179 | |
---|
| 180 | #if defined( __parallel ) |
---|
| 181 | ! |
---|
| 182 | !-- Compute total sum from local sums |
---|
| 183 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
| 184 | MPI_SUM, comm2d, ierr ) |
---|
| 185 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
| 186 | MPI_SUM, comm2d, ierr ) |
---|
| 187 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
| 188 | MPI_SUM, comm2d, ierr ) |
---|
| 189 | IF ( moisture ) THEN |
---|
| 190 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
| 191 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 192 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 193 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 194 | IF ( cloud_physics ) THEN |
---|
| 195 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
| 196 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 197 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
| 198 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 199 | ENDIF |
---|
| 200 | ENDIF |
---|
| 201 | |
---|
| 202 | IF ( passive_scalar ) THEN |
---|
| 203 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 204 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 205 | ENDIF |
---|
| 206 | #else |
---|
| 207 | sums(:,1) = sums_l(:,1,0) |
---|
| 208 | sums(:,2) = sums_l(:,2,0) |
---|
| 209 | sums(:,4) = sums_l(:,4,0) |
---|
| 210 | IF ( moisture ) THEN |
---|
| 211 | sums(:,44) = sums_l(:,44,0) |
---|
| 212 | sums(:,41) = sums_l(:,41,0) |
---|
| 213 | IF ( cloud_physics ) THEN |
---|
| 214 | sums(:,42) = sums_l(:,42,0) |
---|
| 215 | sums(:,43) = sums_l(:,43,0) |
---|
| 216 | ENDIF |
---|
| 217 | ENDIF |
---|
| 218 | IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0) |
---|
| 219 | #endif |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- Final values are obtained by division by the total number of grid points |
---|
| 223 | !-- used for summation. After that store profiles. |
---|
| 224 | sums(:,1) = sums(:,1) / ngp_2dh_outer(:,sr) |
---|
| 225 | sums(:,2) = sums(:,2) / ngp_2dh_outer(:,sr) |
---|
| 226 | sums(:,4) = sums(:,4) / ngp_2dh_outer(:,sr) |
---|
| 227 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 228 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 229 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
| 230 | |
---|
| 231 | ! |
---|
| 232 | !-- Humidity and cloud parameters |
---|
| 233 | IF ( moisture ) THEN |
---|
| 234 | sums(:,44) = sums(:,44) / ngp_2dh_outer(:,sr) |
---|
| 235 | sums(:,41) = sums(:,41) / ngp_2dh_outer(:,sr) |
---|
| 236 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 237 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
| 238 | IF ( cloud_physics ) THEN |
---|
| 239 | sums(:,42) = sums(:,42) / ngp_2dh_outer(:,sr) |
---|
| 240 | sums(:,43) = sums(:,43) / ngp_2dh_outer(:,sr) |
---|
| 241 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 242 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 243 | ENDIF |
---|
| 244 | ENDIF |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- Passive scalar |
---|
| 248 | IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / ngp_2dh_outer(:,sr) |
---|
| 249 | |
---|
| 250 | ! |
---|
| 251 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 252 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 253 | !-- column of sums_l) and some diagnostic quantities. |
---|
| 254 | !-- NOTE: for simplicity, nzb_s_outer is used below, although strictly |
---|
| 255 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 256 | !-- rearranged according to the staggered grid. |
---|
| 257 | tn = 0 |
---|
| 258 | #if defined( __lcmuk ) |
---|
| 259 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
| 260 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 261 | tn = omp_get_thread_num() |
---|
| 262 | #else |
---|
| 263 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 264 | !$ tn = omp_get_thread_num() |
---|
| 265 | #endif |
---|
| 266 | !$OMP DO |
---|
| 267 | DO i = nxl, nxr |
---|
| 268 | DO j = nys, nyn |
---|
| 269 | sums_l_etot = 0.0 |
---|
| 270 | sums_l_eper = 0.0 |
---|
| 271 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
| 272 | u2 = u(k,j,i)**2 |
---|
| 273 | v2 = v(k,j,i)**2 |
---|
| 274 | w2 = w(k,j,i)**2 |
---|
| 275 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 276 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 277 | ! |
---|
| 278 | !-- Prognostic and diagnostic variables |
---|
| 279 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
| 280 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
| 281 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
| 282 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
| 283 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
| 284 | |
---|
| 285 | ! |
---|
| 286 | !-- Variances |
---|
| 287 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
| 288 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
| 289 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
| 290 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
| 291 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
| 292 | ! |
---|
| 293 | !-- Higher moments |
---|
| 294 | !-- (Computation of the skewness of w further below) |
---|
| 295 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i) * w2 * & |
---|
| 296 | rmask(j,i,sr) |
---|
| 297 | ! |
---|
| 298 | !-- Perturbation energy |
---|
| 299 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5 * ( ust2 + vst2 + w2 ) & |
---|
| 300 | * rmask(j,i,sr) |
---|
| 301 | sums_l_etot = sums_l_etot + & |
---|
| 302 | 0.5 * ( u2 + v2 + w2 ) * rmask(j,i,sr) |
---|
| 303 | sums_l_eper = sums_l_eper + & |
---|
| 304 | 0.5 * ( ust2+vst2+w2 ) * rmask(j,i,sr) |
---|
| 305 | ENDDO |
---|
| 306 | ! |
---|
| 307 | !-- Total and perturbation energy for the total domain (being |
---|
| 308 | !-- collected in the last column of sums_l). Summation of these |
---|
| 309 | !-- quantities is seperated from the previous loop in order to |
---|
| 310 | !-- allow vectorization of that loop. |
---|
| 311 | sums_l(nzb+4,var_sum,tn) = sums_l(nzb+4,var_sum,tn) + sums_l_etot |
---|
| 312 | sums_l(nzb+5,var_sum,tn) = sums_l(nzb+5,var_sum,tn) + sums_l_eper |
---|
| 313 | ! |
---|
| 314 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
| 315 | sums_l(nzb,var_sum,tn) = sums_l(nzb,var_sum,tn) + & |
---|
| 316 | us(j,i) * rmask(j,i,sr) |
---|
| 317 | sums_l(nzb+1,var_sum,tn) = sums_l(nzb+1,var_sum,tn) + & |
---|
| 318 | usws(j,i) * rmask(j,i,sr) |
---|
| 319 | sums_l(nzb+2,var_sum,tn) = sums_l(nzb+2,var_sum,tn) + & |
---|
| 320 | vsws(j,i) * rmask(j,i,sr) |
---|
| 321 | sums_l(nzb+3,var_sum,tn) = sums_l(nzb+3,var_sum,tn) + & |
---|
| 322 | ts(j,i) * rmask(j,i,sr) |
---|
| 323 | ENDDO |
---|
| 324 | ENDDO |
---|
| 325 | |
---|
| 326 | ! |
---|
| 327 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
| 328 | !$OMP DO |
---|
| 329 | DO i = nxl, nxr |
---|
| 330 | DO j = nys, nyn |
---|
| 331 | ! |
---|
| 332 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
| 333 | !-- oterwise from k=nzb+1) |
---|
| 334 | !-- NOTE: for simplicity, nzb_diff_s_outer is used below, although |
---|
| 335 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 336 | !-- split up according to the staggered grid. |
---|
| 337 | DO k = nzb_diff_s_outer(j,i)-1, nzt |
---|
| 338 | ! |
---|
| 339 | !-- Momentum flux w"u" |
---|
| 340 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25 * ( & |
---|
| 341 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 342 | ) * ( & |
---|
| 343 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 344 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 345 | ) * rmask(j,i,sr) |
---|
| 346 | ! |
---|
| 347 | !-- Momentum flux w"v" |
---|
| 348 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25 * ( & |
---|
| 349 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 350 | ) * ( & |
---|
| 351 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 352 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 353 | ) * rmask(j,i,sr) |
---|
[19] | 354 | ENDDO |
---|
| 355 | |
---|
| 356 | DO k = nzb_diff_s_outer(j,i)-1, nzt_diff |
---|
[1] | 357 | ! |
---|
| 358 | !-- Heat flux w"pt" |
---|
| 359 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
| 360 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 361 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 362 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 363 | |
---|
| 364 | |
---|
| 365 | ! |
---|
| 366 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
| 367 | IF ( moisture ) THEN |
---|
| 368 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
| 369 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 370 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
| 371 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 372 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 373 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 374 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 375 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 376 | IF ( cloud_physics ) THEN |
---|
| 377 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
| 378 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 379 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
| 380 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
| 381 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 382 | ENDIF |
---|
| 383 | ENDIF |
---|
| 384 | |
---|
| 385 | ! |
---|
| 386 | !-- Passive scalar flux |
---|
| 387 | IF ( passive_scalar ) THEN |
---|
| 388 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 389 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 390 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 391 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 392 | ENDIF |
---|
| 393 | |
---|
| 394 | ENDDO |
---|
| 395 | |
---|
| 396 | ! |
---|
| 397 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 398 | IF ( use_surface_fluxes ) THEN |
---|
| 399 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
| 400 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 401 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
| 402 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 403 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
| 404 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 405 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
| 406 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 407 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
| 408 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
| 409 | IF ( moisture ) THEN |
---|
| 410 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 411 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 412 | IF ( cloud_physics ) THEN |
---|
| 413 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 414 | ( 1.0 + 0.61 * q(nzb,j,i) ) * & |
---|
| 415 | shf(j,i) + 0.61 * pt(nzb,j,i) * & |
---|
| 416 | qsws(j,i) & |
---|
| 417 | ) |
---|
| 418 | ! |
---|
| 419 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 420 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & ! w"q" (w"qv") |
---|
| 421 | qsws(j,i) * rmask(j,i,sr) |
---|
| 422 | ENDIF |
---|
| 423 | ENDIF |
---|
| 424 | IF ( passive_scalar ) THEN |
---|
| 425 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 426 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 427 | ENDIF |
---|
| 428 | ENDIF |
---|
| 429 | |
---|
| 430 | ! |
---|
[19] | 431 | !-- Subgridscale fluxes at the top surface |
---|
| 432 | IF ( use_top_fluxes ) THEN |
---|
| 433 | sums_l(nzt,16,tn) = sums_l(nzt,16,tn) + & |
---|
| 434 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 435 | sums_l(nzt,58,tn) = sums_l(nzt,58,tn) + & |
---|
| 436 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 437 | sums_l(nzt,61,tn) = sums_l(nzt,61,tn) + & |
---|
| 438 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
| 439 | IF ( moisture ) THEN |
---|
| 440 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
| 441 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 442 | IF ( cloud_physics ) THEN |
---|
| 443 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 444 | ( 1.0 + 0.61 * q(nzt,j,i) ) * & |
---|
| 445 | tswst(j,i) + 0.61 * pt(nzt,j,i) * & |
---|
| 446 | qsws(j,i) & |
---|
| 447 | ) |
---|
| 448 | ! |
---|
| 449 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 450 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
| 451 | qswst(j,i) * rmask(j,i,sr) |
---|
| 452 | ENDIF |
---|
| 453 | ENDIF |
---|
| 454 | IF ( passive_scalar ) THEN |
---|
| 455 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
| 456 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 457 | ENDIF |
---|
| 458 | ENDIF |
---|
| 459 | |
---|
| 460 | ! |
---|
[1] | 461 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
| 462 | !-- NOTE: for simplicity, nzb_s_outer is used below, although strictly |
---|
| 463 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 464 | !-- rearranged according to the staggered grid. |
---|
| 465 | DO k = nzb_s_outer(j,i), nzt |
---|
| 466 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 467 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 468 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 469 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 470 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 471 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
| 472 | ! |
---|
| 473 | !-- Momentum flux w*u* |
---|
| 474 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5 * & |
---|
| 475 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
| 476 | * ust * rmask(j,i,sr) |
---|
| 477 | ! |
---|
| 478 | !-- Momentum flux w*v* |
---|
| 479 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5 * & |
---|
| 480 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
| 481 | * vst * rmask(j,i,sr) |
---|
| 482 | ! |
---|
| 483 | !-- Heat flux w*pt* |
---|
| 484 | !-- The following formula (comment line, not executed) does not |
---|
| 485 | !-- work if applied to subregions |
---|
| 486 | ! sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5 * & |
---|
| 487 | ! ( pt(k,j,i)+pt(k+1,j,i) ) & |
---|
| 488 | ! * w(k,j,i) * rmask(j,i,sr) |
---|
| 489 | sums_l(k,17,tn) = sums_l(k,17,tn) + pts * w(k,j,i) * & |
---|
| 490 | rmask(j,i,sr) |
---|
| 491 | ! |
---|
| 492 | !-- Higher moments |
---|
| 493 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
| 494 | rmask(j,i,sr) |
---|
| 495 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
| 496 | rmask(j,i,sr) |
---|
| 497 | |
---|
| 498 | ! |
---|
| 499 | !-- Buoyancy flux, water flux, humidity flux and liquid water |
---|
| 500 | !-- content |
---|
| 501 | IF ( moisture ) THEN |
---|
| 502 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 503 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 504 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
| 505 | rmask(j,i,sr) |
---|
| 506 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 507 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 508 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 509 | rmask(j,i,sr) |
---|
| 510 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 511 | pts = 0.5 * & |
---|
| 512 | ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) & |
---|
| 513 | + ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) |
---|
| 514 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
| 515 | rmask(j,i,sr) |
---|
| 516 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
| 517 | rmask(j,i,sr) |
---|
| 518 | ENDIF |
---|
| 519 | ENDIF |
---|
| 520 | |
---|
| 521 | ! |
---|
| 522 | !-- Passive scalar flux |
---|
| 523 | IF ( passive_scalar ) THEN |
---|
| 524 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 525 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 526 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 527 | rmask(j,i,sr) |
---|
| 528 | ENDIF |
---|
| 529 | |
---|
| 530 | ! |
---|
| 531 | !-- Energy flux w*e* |
---|
| 532 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5 * & |
---|
| 533 | ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
| 534 | * rmask(j,i,sr) |
---|
| 535 | |
---|
| 536 | ENDDO |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | |
---|
| 540 | ! |
---|
| 541 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
| 542 | !-- fluctuations. First calculate the products, then the divergence. |
---|
| 543 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
| 544 | IF ( hom(nzb+1,2,55,0) /= 0.0 ) THEN |
---|
| 545 | |
---|
| 546 | sums_ll = 0.0 ! local array |
---|
| 547 | |
---|
| 548 | !$OMP DO |
---|
| 549 | DO i = nxl, nxr |
---|
| 550 | DO j = nys, nyn |
---|
| 551 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
| 552 | |
---|
| 553 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
| 554 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
| 555 | - 2.0 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
| 556 | ) )**2 & |
---|
| 557 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
| 558 | - 2.0 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
| 559 | ) )**2 & |
---|
| 560 | + w(k,j,i)**2 ) |
---|
| 561 | |
---|
| 562 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
| 563 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
| 564 | |
---|
| 565 | ENDDO |
---|
| 566 | ENDDO |
---|
| 567 | ENDDO |
---|
| 568 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
| 569 | sums_ll(nzt+1,1) = 0.0 |
---|
| 570 | sums_ll(0,2) = 0.0 |
---|
| 571 | sums_ll(nzt+1,2) = 0.0 |
---|
| 572 | |
---|
| 573 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
| 574 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 575 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
| 576 | ENDDO |
---|
| 577 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 578 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
| 579 | |
---|
| 580 | ENDIF |
---|
| 581 | |
---|
| 582 | ! |
---|
| 583 | !-- Divergence of vertical flux of SGS TKE |
---|
| 584 | IF ( hom(nzb+1,2,57,0) /= 0.0 ) THEN |
---|
| 585 | |
---|
| 586 | !$OMP DO |
---|
| 587 | DO i = nxl, nxr |
---|
| 588 | DO j = nys, nyn |
---|
| 589 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
| 590 | |
---|
| 591 | sums_l(k,57,tn) = sums_l(k,57,tn) + ( & |
---|
| 592 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 593 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
| 594 | ) * ddzw(k) |
---|
| 595 | |
---|
| 596 | ENDDO |
---|
| 597 | ENDDO |
---|
| 598 | ENDDO |
---|
| 599 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
| 600 | |
---|
| 601 | ENDIF |
---|
| 602 | |
---|
| 603 | ! |
---|
| 604 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 605 | !-- Do it only, if profiles shall be plotted. |
---|
| 606 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
| 607 | |
---|
| 608 | !$OMP DO |
---|
| 609 | DO i = nxl, nxr |
---|
| 610 | DO j = nys, nyn |
---|
| 611 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
| 612 | ! |
---|
| 613 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
| 614 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
| 615 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 616 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
| 617 | * ddx * rmask(j,i,sr) |
---|
| 618 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
| 619 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 620 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
| 621 | * ddy * rmask(j,i,sr) |
---|
| 622 | ! |
---|
| 623 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 624 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 625 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
| 626 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
| 627 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 628 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 629 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 630 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 631 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
| 632 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 633 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | ENDDO |
---|
| 637 | ! |
---|
| 638 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
| 639 | sums(nzb,58) = 0.0 |
---|
| 640 | sums(nzb,59) = 0.0 |
---|
| 641 | sums(nzb,60) = 0.0 |
---|
| 642 | sums(nzb,61) = 0.0 |
---|
| 643 | sums(nzb,62) = 0.0 |
---|
| 644 | sums(nzb,63) = 0.0 |
---|
| 645 | |
---|
| 646 | ENDIF |
---|
| 647 | !$OMP END PARALLEL |
---|
| 648 | |
---|
| 649 | ! |
---|
| 650 | !-- Summation of thread sums |
---|
| 651 | IF ( threads_per_task > 1 ) THEN |
---|
| 652 | DO i = 1, threads_per_task-1 |
---|
| 653 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 654 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
| 655 | sums_l(:,45:var_sum,0) = sums_l(:,45:var_sum,0) + & |
---|
| 656 | sums_l(:,45:var_sum,i) |
---|
| 657 | ENDDO |
---|
| 658 | ENDIF |
---|
| 659 | |
---|
| 660 | #if defined( __parallel ) |
---|
| 661 | ! |
---|
| 662 | !-- Compute total sum from local sums |
---|
| 663 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
| 664 | MPI_SUM, comm2d, ierr ) |
---|
| 665 | #else |
---|
| 666 | sums = sums_l(:,:,0) |
---|
| 667 | #endif |
---|
| 668 | |
---|
| 669 | ! |
---|
| 670 | !-- Final values are obtained by division by the total number of grid points |
---|
| 671 | !-- used for summation. After that store profiles. |
---|
| 672 | !-- Profiles: |
---|
| 673 | DO k = nzb, nzt+1 |
---|
| 674 | sums(k,:var_sum-2) = sums(k,:var_sum-2) / ngp_2dh_outer(k,sr) |
---|
| 675 | ENDDO |
---|
| 676 | !-- Upstream-parts |
---|
| 677 | sums(nzb:nzb+11,var_sum-1) = sums(nzb:nzb+11,var_sum-1) / ngp_3d(sr) |
---|
| 678 | !-- u* and so on |
---|
| 679 | !-- As sums(nzb:nzb+3,var_sum) are full 2D arrays (us, usws, vsws, ts) whose |
---|
| 680 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 681 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
| 682 | sums(nzb:nzb+3,var_sum) = sums(nzb:nzb+3,var_sum) / & |
---|
| 683 | ngp_2dh(sr) |
---|
| 684 | !-- eges, e* |
---|
| 685 | sums(nzb+4:nzb+5,var_sum) = sums(nzb+4:nzb+5,var_sum) / & |
---|
| 686 | ngp_3d_inner(sr) |
---|
| 687 | !-- Old and new divergence |
---|
| 688 | sums(nzb+9:nzb+10,var_sum) = sums(nzb+9:nzb+10,var_sum) / & |
---|
| 689 | ngp_3d_inner(sr) |
---|
| 690 | |
---|
| 691 | ! |
---|
| 692 | !-- Collect horizontal average in hom. |
---|
| 693 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 694 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 695 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 696 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 697 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 698 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 699 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 700 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 701 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 702 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 703 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 704 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 705 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 706 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 707 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 708 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 709 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
| 710 | ! profiles 23-29 left empty for initial |
---|
| 711 | ! profiles |
---|
| 712 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 713 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 714 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 715 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 716 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 717 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 718 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 719 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 720 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
| 721 | hom(:,1,39,sr) = sums(:,38) / ( sums(:,32) + 1E-20 )**1.5 ! Sw |
---|
| 722 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
| 723 | hom(:,1,45,sr) = sums(:,45) ! w"q" |
---|
| 724 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 725 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 726 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 727 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 728 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 729 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 730 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 731 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 732 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 733 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 734 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
| 735 | hom(:,1,57,sr) = sums(:,57) ! w"e/dz |
---|
| 736 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 737 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 738 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 739 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 740 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 741 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
| 742 | |
---|
| 743 | hom(:,1,var_hom-1,sr) = sums(:,var_sum-1) |
---|
| 744 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
| 745 | ! v_y, usw. (in last but one profile) |
---|
| 746 | hom(:,1,var_hom,sr) = sums(:,var_sum) |
---|
| 747 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 748 | |
---|
| 749 | ! |
---|
| 750 | !-- Determine the boundary layer height using two different schemes. |
---|
| 751 | !-- First scheme: Starting from the Earth's surface, look for the first |
---|
| 752 | !-- relative minimum of the total heat flux. The corresponding height is |
---|
| 753 | !-- accepted as the boundary layer height, if it is less than 1.5 times the |
---|
| 754 | !-- height where the heat flux becomes negative for the first time. |
---|
| 755 | !-- NOTE: This criterion is still capable of improving! |
---|
| 756 | z_i(1) = 0.0 |
---|
| 757 | first = .TRUE. |
---|
| 758 | DO k = nzb, nzt-1 |
---|
| 759 | IF ( first .AND. hom(k,1,18,sr) < 0.0 ) THEN |
---|
| 760 | first = .FALSE. |
---|
| 761 | height = zw(k) |
---|
| 762 | ENDIF |
---|
| 763 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 764 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 765 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 766 | z_i(1) = zw(k) |
---|
| 767 | ELSE |
---|
| 768 | z_i(1) = height |
---|
| 769 | ENDIF |
---|
| 770 | EXIT |
---|
| 771 | ENDIF |
---|
| 772 | ENDDO |
---|
| 773 | |
---|
| 774 | ! |
---|
| 775 | !-- Second scheme: Starting from the top model boundary, look for the first |
---|
| 776 | !-- characteristic kink in the temperature profile, where the originally |
---|
| 777 | !-- stable stratification notably weakens. |
---|
| 778 | z_i(2) = 0.0 |
---|
| 779 | DO k = nzt-1, nzb+1, -1 |
---|
| 780 | IF ( ( hom(k+1,1,4,sr) - hom(k,1,4,sr) ) > & |
---|
| 781 | 2.0 * ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) ) THEN |
---|
| 782 | z_i(2) = zu(k) |
---|
| 783 | EXIT |
---|
| 784 | ENDIF |
---|
| 785 | ENDDO |
---|
| 786 | |
---|
| 787 | hom(nzb+6,1,var_hom,sr) = z_i(1) |
---|
| 788 | hom(nzb+7,1,var_hom,sr) = z_i(2) |
---|
| 789 | |
---|
| 790 | ! |
---|
| 791 | !-- Computation of both the characteristic vertical velocity and |
---|
| 792 | !-- the characteristic convective boundary layer temperature. |
---|
| 793 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
| 794 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. z_i(1) /= 0.0 ) THEN |
---|
| 795 | hom(nzb+8,1,var_hom,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
| 796 | hom(nzb,1,18,sr) * z_i(1) )**0.333333333 |
---|
| 797 | !-- so far this only works if Prandtl layer is used |
---|
| 798 | hom(nzb+11,1,var_hom,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,var_hom,sr) |
---|
| 799 | ELSE |
---|
| 800 | hom(nzb+8,1,var_hom,sr) = 0.0 |
---|
| 801 | hom(nzb+11,1,var_hom,sr) = 0.0 |
---|
| 802 | ENDIF |
---|
| 803 | |
---|
[48] | 804 | ! |
---|
| 805 | !-- Collect the time series quantities |
---|
| 806 | ts_value(1,sr) = hom(nzb+4,1,var_hom,sr) ! E |
---|
| 807 | ts_value(2,sr) = hom(nzb+5,1,var_hom,sr) ! E* |
---|
| 808 | ts_value(3,sr) = dt_3d |
---|
| 809 | ts_value(4,sr) = hom(nzb,1,var_hom,sr) ! u* |
---|
| 810 | ts_value(5,sr) = hom(nzb+3,1,var_hom,sr) ! th* |
---|
| 811 | ts_value(6,sr) = u_max |
---|
| 812 | ts_value(7,sr) = v_max |
---|
| 813 | ts_value(8,sr) = w_max |
---|
| 814 | ts_value(9,sr) = hom(nzb+10,1,var_sum,sr) ! new divergence |
---|
| 815 | ts_value(10,sr) = hom(nzb+9,1,var_hom,sr) ! old Divergence |
---|
| 816 | ts_value(11,sr) = hom(nzb+6,1,var_hom,sr) ! z_i(1) |
---|
| 817 | ts_value(12,sr) = hom(nzb+7,1,var_hom,sr) ! z_i(2) |
---|
| 818 | ts_value(13,sr) = hom(nzb+8,1,var_hom,sr) ! w* |
---|
| 819 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 820 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
| 821 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
| 822 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
| 823 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
| 824 | ts_value(19,sr) = hom(nzb+9,1,var_hom-1,sr) ! splptx |
---|
| 825 | ts_value(20,sr) = hom(nzb+10,1,var_hom-1,sr) ! splpty |
---|
| 826 | ts_value(21,sr) = hom(nzb+11,1,var_hom-1,sr) ! splptz |
---|
| 827 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
| 828 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
| 829 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
| 830 | ELSE |
---|
| 831 | ts_value(22,sr) = 10000.0 |
---|
| 832 | ENDIF |
---|
[1] | 833 | |
---|
| 834 | ! |
---|
[48] | 835 | !-- Calculate additional statistics provided by the user interface |
---|
| 836 | CALL user_statistics( sr ) |
---|
[1] | 837 | |
---|
[48] | 838 | ENDDO ! loop of the subregions |
---|
| 839 | |
---|
[1] | 840 | ! |
---|
| 841 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
| 842 | IF ( do_sum ) THEN |
---|
| 843 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
| 844 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 845 | average_count_pr = average_count_pr + 1 |
---|
| 846 | do_sum = .FALSE. |
---|
| 847 | ENDIF |
---|
| 848 | |
---|
| 849 | ! |
---|
| 850 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 851 | !-- This flag is reset after each time step in time_integration. |
---|
| 852 | flow_statistics_called = .TRUE. |
---|
| 853 | |
---|
| 854 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 855 | |
---|
| 856 | |
---|
| 857 | END SUBROUTINE flow_statistics |
---|
| 858 | |
---|
| 859 | |
---|
| 860 | |
---|