[1] | 1 | SUBROUTINE flow_statistics |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[254] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[392] | 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: flow_statistics.f90 392 2009-09-24 10:39:14Z raasch $ |
---|
| 11 | ! |
---|
| 12 | ! 388 2009-09-23 09:40:33Z raasch |
---|
[388] | 13 | ! Vertical profiles of potential density and hydrostatic pressure are |
---|
| 14 | ! calculated. |
---|
[343] | 15 | ! Added missing timeseries calculation of w"q"(0), moved timeseries q* to the |
---|
| 16 | ! end. |
---|
[291] | 17 | ! Temperature gradient criterion for estimating the boundary layer height |
---|
| 18 | ! replaced by the gradient criterion of Sullivan et al. (1998). |
---|
[254] | 19 | ! Output of messages replaced by message handling routine. |
---|
[1] | 20 | ! |
---|
[198] | 21 | ! 197 2008-09-16 15:29:03Z raasch |
---|
| 22 | ! Spline timeseries splptx etc. removed, timeseries w'u', w'v', w'q' (k=0) |
---|
| 23 | ! added, |
---|
| 24 | ! bugfix: divide sums(k,8) (e) and sums(k,34) (e*) by ngp_2dh_s_inner(k,sr) |
---|
| 25 | ! (like other scalars) |
---|
| 26 | ! |
---|
[139] | 27 | ! 133 2007-11-20 10:10:53Z letzel |
---|
| 28 | ! Vertical profiles now based on nzb_s_inner; they are divided by |
---|
| 29 | ! ngp_2dh_s_inner (scalars, procucts of scalars) and ngp_2dh (staggered |
---|
| 30 | ! velocity components and their products, procucts of scalars and velocity |
---|
| 31 | ! components), respectively. |
---|
| 32 | ! |
---|
[110] | 33 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 34 | ! Prescribed momentum fluxes at the top surface are used, |
---|
| 35 | ! profiles for w*p* and w"e are calculated |
---|
| 36 | ! |
---|
[98] | 37 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 38 | ! Statistics for ocean version (salinity, density) added, |
---|
| 39 | ! calculation of z_i and Deardorff velocity scale adjusted to be used with |
---|
| 40 | ! the ocean version |
---|
| 41 | ! |
---|
[90] | 42 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 43 | ! Two more arguments added to user_statistics, which is now also called for |
---|
| 44 | ! user-defined profiles, |
---|
| 45 | ! var_hom and var_sum renamed pr_palm |
---|
| 46 | ! |
---|
[83] | 47 | ! 82 2007-04-16 15:40:52Z raasch |
---|
| 48 | ! Cpp-directive lcmuk changed to intel_openmp_bug |
---|
| 49 | ! |
---|
[77] | 50 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 51 | ! Collection of time series quantities moved from routine flow_statistics to |
---|
| 52 | ! here, routine user_statistics is called for each statistic region, |
---|
| 53 | ! moisture renamed humidity |
---|
| 54 | ! |
---|
[39] | 55 | ! 19 2007-02-23 04:53:48Z raasch |
---|
[77] | 56 | ! fluxes at top modified (tswst, qswst) |
---|
[39] | 57 | ! |
---|
[3] | 58 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 59 | ! |
---|
[1] | 60 | ! Revision 1.41 2006/08/04 14:37:50 raasch |
---|
| 61 | ! Error removed in non-parallel part (sums_l) |
---|
| 62 | ! |
---|
| 63 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
| 64 | ! Initial revision |
---|
| 65 | ! |
---|
| 66 | ! |
---|
| 67 | ! Description: |
---|
| 68 | ! ------------ |
---|
| 69 | ! Compute average profiles and further average flow quantities for the different |
---|
| 70 | ! user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
| 71 | ! |
---|
[132] | 72 | ! NOTE: For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
| 73 | ! ---- lower vertical index for k-loops for all variables, although strictly |
---|
| 74 | ! speaking the k-loops would have to be split up according to the staggered |
---|
| 75 | ! grid. However, this implies no error since staggered velocity components are |
---|
| 76 | ! zero at the walls and inside buildings. |
---|
[1] | 77 | !------------------------------------------------------------------------------! |
---|
| 78 | |
---|
| 79 | USE arrays_3d |
---|
| 80 | USE cloud_parameters |
---|
| 81 | USE cpulog |
---|
| 82 | USE grid_variables |
---|
| 83 | USE indices |
---|
| 84 | USE interfaces |
---|
| 85 | USE pegrid |
---|
| 86 | USE statistics |
---|
| 87 | USE control_parameters |
---|
| 88 | |
---|
| 89 | IMPLICIT NONE |
---|
| 90 | |
---|
| 91 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
| 92 | LOGICAL :: first |
---|
[291] | 93 | REAL :: dptdz_threshold, height, pts, sums_l_eper, sums_l_etot, ust, & |
---|
| 94 | ust2, u2, vst, vst2, v2, w2, z_i(2) |
---|
| 95 | REAL :: dptdz(nzb+1:nzt+1) |
---|
[1] | 96 | REAL :: sums_ll(nzb:nzt+1,2) |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 100 | |
---|
| 101 | ! |
---|
| 102 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 103 | !-- called once after the current time step |
---|
| 104 | IF ( flow_statistics_called ) THEN |
---|
[254] | 105 | |
---|
[274] | 106 | message_string = 'flow_statistics is called two times within one ' // & |
---|
| 107 | 'timestep' |
---|
[254] | 108 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
| 109 | |
---|
[1] | 110 | ENDIF |
---|
| 111 | |
---|
| 112 | ! |
---|
| 113 | !-- Compute statistics for each (sub-)region |
---|
| 114 | DO sr = 0, statistic_regions |
---|
| 115 | |
---|
| 116 | ! |
---|
| 117 | !-- Initialize (local) summation array |
---|
| 118 | sums_l = 0.0 |
---|
| 119 | |
---|
| 120 | ! |
---|
| 121 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 122 | !-- array |
---|
| 123 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 124 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
| 125 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
[87] | 126 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 127 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
[1] | 128 | |
---|
[305] | 129 | ! |
---|
[1] | 130 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 131 | !-- They must have been computed before, because they are already required |
---|
| 132 | !-- for other horizontal averages. |
---|
| 133 | tn = 0 |
---|
| 134 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
[82] | 135 | #if defined( __intel_openmp_bug ) |
---|
[1] | 136 | tn = omp_get_thread_num() |
---|
| 137 | #else |
---|
| 138 | !$ tn = omp_get_thread_num() |
---|
| 139 | #endif |
---|
| 140 | |
---|
| 141 | !$OMP DO |
---|
| 142 | DO i = nxl, nxr |
---|
| 143 | DO j = nys, nyn |
---|
[132] | 144 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 145 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
| 146 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
| 147 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
| 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | ENDDO |
---|
| 151 | |
---|
| 152 | ! |
---|
[96] | 153 | !-- Horizontally averaged profile of salinity |
---|
| 154 | IF ( ocean ) THEN |
---|
| 155 | !$OMP DO |
---|
| 156 | DO i = nxl, nxr |
---|
| 157 | DO j = nys, nyn |
---|
[132] | 158 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[96] | 159 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
| 160 | sa(k,j,i) * rmask(j,i,sr) |
---|
| 161 | ENDDO |
---|
| 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | ENDIF |
---|
| 165 | |
---|
| 166 | ! |
---|
[1] | 167 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
| 168 | !-- total water content, specific humidity and liquid water potential |
---|
| 169 | !-- temperature |
---|
[75] | 170 | IF ( humidity ) THEN |
---|
[1] | 171 | !$OMP DO |
---|
| 172 | DO i = nxl, nxr |
---|
| 173 | DO j = nys, nyn |
---|
[132] | 174 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 175 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
| 176 | vpt(k,j,i) * rmask(j,i,sr) |
---|
| 177 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
| 178 | q(k,j,i) * rmask(j,i,sr) |
---|
| 179 | ENDDO |
---|
| 180 | ENDDO |
---|
| 181 | ENDDO |
---|
| 182 | IF ( cloud_physics ) THEN |
---|
| 183 | !$OMP DO |
---|
| 184 | DO i = nxl, nxr |
---|
| 185 | DO j = nys, nyn |
---|
[132] | 186 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 187 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
| 188 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
| 189 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
| 190 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
| 191 | ) * rmask(j,i,sr) |
---|
| 192 | ENDDO |
---|
| 193 | ENDDO |
---|
| 194 | ENDDO |
---|
| 195 | ENDIF |
---|
| 196 | ENDIF |
---|
| 197 | |
---|
| 198 | ! |
---|
| 199 | !-- Horizontally averaged profiles of passive scalar |
---|
| 200 | IF ( passive_scalar ) THEN |
---|
| 201 | !$OMP DO |
---|
| 202 | DO i = nxl, nxr |
---|
| 203 | DO j = nys, nyn |
---|
[132] | 204 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 205 | sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) |
---|
| 206 | ENDDO |
---|
| 207 | ENDDO |
---|
| 208 | ENDDO |
---|
| 209 | ENDIF |
---|
| 210 | !$OMP END PARALLEL |
---|
| 211 | |
---|
| 212 | ! |
---|
| 213 | !-- Summation of thread sums |
---|
| 214 | IF ( threads_per_task > 1 ) THEN |
---|
| 215 | DO i = 1, threads_per_task-1 |
---|
| 216 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 217 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 218 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
[96] | 219 | IF ( ocean ) THEN |
---|
| 220 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
| 221 | ENDIF |
---|
[75] | 222 | IF ( humidity ) THEN |
---|
[1] | 223 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 224 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
| 225 | IF ( cloud_physics ) THEN |
---|
| 226 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 227 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 228 | ENDIF |
---|
| 229 | ENDIF |
---|
| 230 | IF ( passive_scalar ) THEN |
---|
| 231 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 232 | ENDIF |
---|
| 233 | ENDDO |
---|
| 234 | ENDIF |
---|
| 235 | |
---|
| 236 | #if defined( __parallel ) |
---|
| 237 | ! |
---|
| 238 | !-- Compute total sum from local sums |
---|
| 239 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
| 240 | MPI_SUM, comm2d, ierr ) |
---|
| 241 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
| 242 | MPI_SUM, comm2d, ierr ) |
---|
| 243 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
| 244 | MPI_SUM, comm2d, ierr ) |
---|
[96] | 245 | IF ( ocean ) THEN |
---|
| 246 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
| 247 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 248 | ENDIF |
---|
[75] | 249 | IF ( humidity ) THEN |
---|
[1] | 250 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
| 251 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 252 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 253 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 254 | IF ( cloud_physics ) THEN |
---|
| 255 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
| 256 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 257 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
| 258 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 259 | ENDIF |
---|
| 260 | ENDIF |
---|
| 261 | |
---|
| 262 | IF ( passive_scalar ) THEN |
---|
| 263 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 264 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 265 | ENDIF |
---|
| 266 | #else |
---|
| 267 | sums(:,1) = sums_l(:,1,0) |
---|
| 268 | sums(:,2) = sums_l(:,2,0) |
---|
| 269 | sums(:,4) = sums_l(:,4,0) |
---|
[96] | 270 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
[75] | 271 | IF ( humidity ) THEN |
---|
[1] | 272 | sums(:,44) = sums_l(:,44,0) |
---|
| 273 | sums(:,41) = sums_l(:,41,0) |
---|
| 274 | IF ( cloud_physics ) THEN |
---|
| 275 | sums(:,42) = sums_l(:,42,0) |
---|
| 276 | sums(:,43) = sums_l(:,43,0) |
---|
| 277 | ENDIF |
---|
| 278 | ENDIF |
---|
| 279 | IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0) |
---|
| 280 | #endif |
---|
| 281 | |
---|
| 282 | ! |
---|
| 283 | !-- Final values are obtained by division by the total number of grid points |
---|
| 284 | !-- used for summation. After that store profiles. |
---|
[132] | 285 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
| 286 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
| 287 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 288 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 289 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 290 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
| 291 | |
---|
| 292 | ! |
---|
[96] | 293 | !-- Salinity |
---|
| 294 | IF ( ocean ) THEN |
---|
[132] | 295 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
[96] | 296 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
| 297 | ENDIF |
---|
| 298 | |
---|
| 299 | ! |
---|
[1] | 300 | !-- Humidity and cloud parameters |
---|
[75] | 301 | IF ( humidity ) THEN |
---|
[132] | 302 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
| 303 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 304 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 305 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
| 306 | IF ( cloud_physics ) THEN |
---|
[132] | 307 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
| 308 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 309 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 310 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 311 | ENDIF |
---|
| 312 | ENDIF |
---|
| 313 | |
---|
| 314 | ! |
---|
| 315 | !-- Passive scalar |
---|
[132] | 316 | IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / & |
---|
| 317 | ngp_2dh_s_inner(:,sr) ! s (q) |
---|
[1] | 318 | |
---|
| 319 | ! |
---|
| 320 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 321 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 322 | !-- column of sums_l) and some diagnostic quantities. |
---|
[132] | 323 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 324 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 325 | !-- rearranged according to the staggered grid. |
---|
[132] | 326 | !-- However, this implies no error since staggered velocity components |
---|
| 327 | !-- are zero at the walls and inside buildings. |
---|
[1] | 328 | tn = 0 |
---|
[82] | 329 | #if defined( __intel_openmp_bug ) |
---|
[1] | 330 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
| 331 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 332 | tn = omp_get_thread_num() |
---|
| 333 | #else |
---|
| 334 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 335 | !$ tn = omp_get_thread_num() |
---|
| 336 | #endif |
---|
| 337 | !$OMP DO |
---|
| 338 | DO i = nxl, nxr |
---|
| 339 | DO j = nys, nyn |
---|
| 340 | sums_l_etot = 0.0 |
---|
| 341 | sums_l_eper = 0.0 |
---|
[132] | 342 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 343 | u2 = u(k,j,i)**2 |
---|
| 344 | v2 = v(k,j,i)**2 |
---|
| 345 | w2 = w(k,j,i)**2 |
---|
| 346 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 347 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 348 | ! |
---|
| 349 | !-- Prognostic and diagnostic variables |
---|
| 350 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
| 351 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
| 352 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
| 353 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
| 354 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
| 355 | |
---|
| 356 | ! |
---|
| 357 | !-- Variances |
---|
| 358 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
| 359 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
| 360 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
| 361 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
| 362 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
| 363 | ! |
---|
| 364 | !-- Higher moments |
---|
| 365 | !-- (Computation of the skewness of w further below) |
---|
| 366 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i) * w2 * & |
---|
| 367 | rmask(j,i,sr) |
---|
| 368 | ! |
---|
| 369 | !-- Perturbation energy |
---|
| 370 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5 * ( ust2 + vst2 + w2 ) & |
---|
| 371 | * rmask(j,i,sr) |
---|
| 372 | sums_l_etot = sums_l_etot + & |
---|
| 373 | 0.5 * ( u2 + v2 + w2 ) * rmask(j,i,sr) |
---|
| 374 | sums_l_eper = sums_l_eper + & |
---|
| 375 | 0.5 * ( ust2+vst2+w2 ) * rmask(j,i,sr) |
---|
| 376 | ENDDO |
---|
| 377 | ! |
---|
| 378 | !-- Total and perturbation energy for the total domain (being |
---|
| 379 | !-- collected in the last column of sums_l). Summation of these |
---|
| 380 | !-- quantities is seperated from the previous loop in order to |
---|
| 381 | !-- allow vectorization of that loop. |
---|
[87] | 382 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
| 383 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) + sums_l_eper |
---|
[1] | 384 | ! |
---|
| 385 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
[87] | 386 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[1] | 387 | us(j,i) * rmask(j,i,sr) |
---|
[87] | 388 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[1] | 389 | usws(j,i) * rmask(j,i,sr) |
---|
[87] | 390 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[1] | 391 | vsws(j,i) * rmask(j,i,sr) |
---|
[87] | 392 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[1] | 393 | ts(j,i) * rmask(j,i,sr) |
---|
[197] | 394 | IF ( humidity ) THEN |
---|
| 395 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
| 396 | qs(j,i) * rmask(j,i,sr) |
---|
| 397 | ENDIF |
---|
[1] | 398 | ENDDO |
---|
| 399 | ENDDO |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
| 403 | !$OMP DO |
---|
| 404 | DO i = nxl, nxr |
---|
| 405 | DO j = nys, nyn |
---|
| 406 | ! |
---|
| 407 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
| 408 | !-- oterwise from k=nzb+1) |
---|
[132] | 409 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
[1] | 410 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 411 | !-- split up according to the staggered grid. |
---|
[132] | 412 | !-- However, this implies no error since staggered velocity |
---|
| 413 | !-- components are zero at the walls and inside buildings. |
---|
| 414 | |
---|
| 415 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
[1] | 416 | ! |
---|
| 417 | !-- Momentum flux w"u" |
---|
| 418 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25 * ( & |
---|
| 419 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 420 | ) * ( & |
---|
| 421 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 422 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 423 | ) * rmask(j,i,sr) |
---|
| 424 | ! |
---|
| 425 | !-- Momentum flux w"v" |
---|
| 426 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25 * ( & |
---|
| 427 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 428 | ) * ( & |
---|
| 429 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 430 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 431 | ) * rmask(j,i,sr) |
---|
| 432 | ! |
---|
| 433 | !-- Heat flux w"pt" |
---|
| 434 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
| 435 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 436 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 437 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 438 | |
---|
| 439 | |
---|
| 440 | ! |
---|
[96] | 441 | !-- Salinity flux w"sa" |
---|
| 442 | IF ( ocean ) THEN |
---|
| 443 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
| 444 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 445 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
| 446 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 447 | ENDIF |
---|
| 448 | |
---|
| 449 | ! |
---|
[1] | 450 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
[75] | 451 | IF ( humidity ) THEN |
---|
[1] | 452 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
| 453 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 454 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
| 455 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 456 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 457 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 458 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 459 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 460 | IF ( cloud_physics ) THEN |
---|
| 461 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
| 462 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 463 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
| 464 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
| 465 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 466 | ENDIF |
---|
| 467 | ENDIF |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Passive scalar flux |
---|
| 471 | IF ( passive_scalar ) THEN |
---|
| 472 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 473 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 474 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 475 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 476 | ENDIF |
---|
| 477 | |
---|
| 478 | ENDDO |
---|
| 479 | |
---|
| 480 | ! |
---|
| 481 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 482 | IF ( use_surface_fluxes ) THEN |
---|
| 483 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
| 484 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 485 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
| 486 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 487 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
| 488 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 489 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
| 490 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 491 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
| 492 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
[96] | 493 | IF ( ocean ) THEN |
---|
| 494 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
| 495 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 496 | ENDIF |
---|
[75] | 497 | IF ( humidity ) THEN |
---|
[1] | 498 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 499 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 500 | IF ( cloud_physics ) THEN |
---|
| 501 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 502 | ( 1.0 + 0.61 * q(nzb,j,i) ) * & |
---|
| 503 | shf(j,i) + 0.61 * pt(nzb,j,i) * & |
---|
| 504 | qsws(j,i) & |
---|
| 505 | ) |
---|
| 506 | ! |
---|
| 507 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 508 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & ! w"q" (w"qv") |
---|
| 509 | qsws(j,i) * rmask(j,i,sr) |
---|
| 510 | ENDIF |
---|
| 511 | ENDIF |
---|
| 512 | IF ( passive_scalar ) THEN |
---|
| 513 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 514 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 515 | ENDIF |
---|
| 516 | ENDIF |
---|
| 517 | |
---|
| 518 | ! |
---|
[19] | 519 | !-- Subgridscale fluxes at the top surface |
---|
| 520 | IF ( use_top_fluxes ) THEN |
---|
[102] | 521 | sums_l(nzt,12,tn) = sums_l(nzt,12,tn) + & |
---|
| 522 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 523 | sums_l(nzt,14,tn) = sums_l(nzt,14,tn) + & |
---|
| 524 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
[19] | 525 | sums_l(nzt,16,tn) = sums_l(nzt,16,tn) + & |
---|
| 526 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 527 | sums_l(nzt,58,tn) = sums_l(nzt,58,tn) + & |
---|
| 528 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 529 | sums_l(nzt,61,tn) = sums_l(nzt,61,tn) + & |
---|
| 530 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
[96] | 531 | IF ( ocean ) THEN |
---|
| 532 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
| 533 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 534 | ENDIF |
---|
[75] | 535 | IF ( humidity ) THEN |
---|
[19] | 536 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[388] | 537 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[19] | 538 | IF ( cloud_physics ) THEN |
---|
| 539 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 540 | ( 1.0 + 0.61 * q(nzt,j,i) ) * & |
---|
| 541 | tswst(j,i) + 0.61 * pt(nzt,j,i) * & |
---|
| 542 | qsws(j,i) & |
---|
| 543 | ) |
---|
| 544 | ! |
---|
| 545 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 546 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
| 547 | qswst(j,i) * rmask(j,i,sr) |
---|
| 548 | ENDIF |
---|
| 549 | ENDIF |
---|
| 550 | IF ( passive_scalar ) THEN |
---|
| 551 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[388] | 552 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[19] | 553 | ENDIF |
---|
| 554 | ENDIF |
---|
| 555 | |
---|
| 556 | ! |
---|
[1] | 557 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
[132] | 558 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 559 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 560 | !-- rearranged according to the staggered grid. |
---|
[132] | 561 | DO k = nzb_s_inner(j,i), nzt |
---|
[1] | 562 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 563 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 564 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 565 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 566 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 567 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
| 568 | ! |
---|
| 569 | !-- Momentum flux w*u* |
---|
| 570 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5 * & |
---|
| 571 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
| 572 | * ust * rmask(j,i,sr) |
---|
| 573 | ! |
---|
| 574 | !-- Momentum flux w*v* |
---|
| 575 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5 * & |
---|
| 576 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
| 577 | * vst * rmask(j,i,sr) |
---|
| 578 | ! |
---|
| 579 | !-- Heat flux w*pt* |
---|
| 580 | !-- The following formula (comment line, not executed) does not |
---|
| 581 | !-- work if applied to subregions |
---|
| 582 | ! sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5 * & |
---|
| 583 | ! ( pt(k,j,i)+pt(k+1,j,i) ) & |
---|
| 584 | ! * w(k,j,i) * rmask(j,i,sr) |
---|
| 585 | sums_l(k,17,tn) = sums_l(k,17,tn) + pts * w(k,j,i) * & |
---|
| 586 | rmask(j,i,sr) |
---|
| 587 | ! |
---|
| 588 | !-- Higher moments |
---|
| 589 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
| 590 | rmask(j,i,sr) |
---|
| 591 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
| 592 | rmask(j,i,sr) |
---|
| 593 | |
---|
| 594 | ! |
---|
[96] | 595 | !-- Salinity flux and density (density does not belong to here, |
---|
[97] | 596 | !-- but so far there is no other suitable place to calculate) |
---|
[96] | 597 | IF ( ocean ) THEN |
---|
| 598 | pts = 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
| 599 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
| 600 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
| 601 | rmask(j,i,sr) |
---|
| 602 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * & |
---|
| 603 | rmask(j,i,sr) |
---|
[388] | 604 | sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & |
---|
| 605 | rmask(j,i,sr) |
---|
[96] | 606 | ENDIF |
---|
| 607 | |
---|
| 608 | ! |
---|
[1] | 609 | !-- Buoyancy flux, water flux, humidity flux and liquid water |
---|
| 610 | !-- content |
---|
[75] | 611 | IF ( humidity ) THEN |
---|
[1] | 612 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 613 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 614 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
| 615 | rmask(j,i,sr) |
---|
| 616 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 617 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 618 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 619 | rmask(j,i,sr) |
---|
| 620 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 621 | pts = 0.5 * & |
---|
| 622 | ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) & |
---|
| 623 | + ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) |
---|
| 624 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
| 625 | rmask(j,i,sr) |
---|
| 626 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
| 627 | rmask(j,i,sr) |
---|
| 628 | ENDIF |
---|
| 629 | ENDIF |
---|
| 630 | |
---|
| 631 | ! |
---|
| 632 | !-- Passive scalar flux |
---|
| 633 | IF ( passive_scalar ) THEN |
---|
| 634 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 635 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 636 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 637 | rmask(j,i,sr) |
---|
| 638 | ENDIF |
---|
| 639 | |
---|
| 640 | ! |
---|
| 641 | !-- Energy flux w*e* |
---|
| 642 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5 * & |
---|
| 643 | ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
| 644 | * rmask(j,i,sr) |
---|
| 645 | |
---|
| 646 | ENDDO |
---|
| 647 | ENDDO |
---|
| 648 | ENDDO |
---|
| 649 | |
---|
| 650 | ! |
---|
[97] | 651 | !-- Density at top follows Neumann condition |
---|
[388] | 652 | IF ( ocean ) THEN |
---|
| 653 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
| 654 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
| 655 | ENDIF |
---|
[97] | 656 | |
---|
| 657 | ! |
---|
[1] | 658 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
[106] | 659 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
| 660 | !-- First calculate the products, then the divergence. |
---|
[1] | 661 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
[106] | 662 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
[1] | 663 | |
---|
| 664 | sums_ll = 0.0 ! local array |
---|
| 665 | |
---|
| 666 | !$OMP DO |
---|
| 667 | DO i = nxl, nxr |
---|
| 668 | DO j = nys, nyn |
---|
[132] | 669 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 670 | |
---|
| 671 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
| 672 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
| 673 | - 2.0 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
| 674 | ) )**2 & |
---|
| 675 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
| 676 | - 2.0 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
| 677 | ) )**2 & |
---|
| 678 | + w(k,j,i)**2 ) |
---|
| 679 | |
---|
| 680 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
| 681 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
| 682 | |
---|
| 683 | ENDDO |
---|
| 684 | ENDDO |
---|
| 685 | ENDDO |
---|
| 686 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
| 687 | sums_ll(nzt+1,1) = 0.0 |
---|
| 688 | sums_ll(0,2) = 0.0 |
---|
| 689 | sums_ll(nzt+1,2) = 0.0 |
---|
| 690 | |
---|
[132] | 691 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 692 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 693 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
[106] | 694 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
[1] | 695 | ENDDO |
---|
| 696 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 697 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
[106] | 698 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
[1] | 699 | |
---|
| 700 | ENDIF |
---|
| 701 | |
---|
| 702 | ! |
---|
[106] | 703 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
| 704 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
[1] | 705 | |
---|
| 706 | !$OMP DO |
---|
| 707 | DO i = nxl, nxr |
---|
| 708 | DO j = nys, nyn |
---|
[132] | 709 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 710 | |
---|
[106] | 711 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
[1] | 712 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 713 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
[106] | 714 | ) * ddzw(k) |
---|
[1] | 715 | |
---|
[106] | 716 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
| 717 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 718 | ) |
---|
| 719 | |
---|
[1] | 720 | ENDDO |
---|
| 721 | ENDDO |
---|
| 722 | ENDDO |
---|
| 723 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
[106] | 724 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
[1] | 725 | |
---|
| 726 | ENDIF |
---|
| 727 | |
---|
| 728 | ! |
---|
| 729 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 730 | !-- Do it only, if profiles shall be plotted. |
---|
| 731 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
| 732 | |
---|
| 733 | !$OMP DO |
---|
| 734 | DO i = nxl, nxr |
---|
| 735 | DO j = nys, nyn |
---|
[132] | 736 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 737 | ! |
---|
| 738 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
| 739 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
| 740 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 741 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
| 742 | * ddx * rmask(j,i,sr) |
---|
| 743 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
| 744 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 745 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
| 746 | * ddy * rmask(j,i,sr) |
---|
| 747 | ! |
---|
| 748 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 749 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 750 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
| 751 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
| 752 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 753 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 754 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 755 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 756 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
| 757 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 758 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
| 761 | ENDDO |
---|
| 762 | ! |
---|
| 763 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
[97] | 764 | sums_l(nzb,58,tn) = 0.0 |
---|
| 765 | sums_l(nzb,59,tn) = 0.0 |
---|
| 766 | sums_l(nzb,60,tn) = 0.0 |
---|
| 767 | sums_l(nzb,61,tn) = 0.0 |
---|
| 768 | sums_l(nzb,62,tn) = 0.0 |
---|
| 769 | sums_l(nzb,63,tn) = 0.0 |
---|
[1] | 770 | |
---|
| 771 | ENDIF |
---|
[87] | 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Calculate the user-defined profiles |
---|
| 775 | CALL user_statistics( 'profiles', sr, tn ) |
---|
[1] | 776 | !$OMP END PARALLEL |
---|
| 777 | |
---|
| 778 | ! |
---|
| 779 | !-- Summation of thread sums |
---|
| 780 | IF ( threads_per_task > 1 ) THEN |
---|
| 781 | DO i = 1, threads_per_task-1 |
---|
| 782 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 783 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
[87] | 784 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
| 785 | sums_l(:,45:pr_palm,i) |
---|
| 786 | IF ( max_pr_user > 0 ) THEN |
---|
| 787 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
| 788 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
| 789 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
| 790 | ENDIF |
---|
[1] | 791 | ENDDO |
---|
| 792 | ENDIF |
---|
| 793 | |
---|
| 794 | #if defined( __parallel ) |
---|
| 795 | ! |
---|
| 796 | !-- Compute total sum from local sums |
---|
| 797 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
| 798 | MPI_SUM, comm2d, ierr ) |
---|
| 799 | #else |
---|
| 800 | sums = sums_l(:,:,0) |
---|
| 801 | #endif |
---|
| 802 | |
---|
| 803 | ! |
---|
| 804 | !-- Final values are obtained by division by the total number of grid points |
---|
| 805 | !-- used for summation. After that store profiles. |
---|
| 806 | !-- Profiles: |
---|
| 807 | DO k = nzb, nzt+1 |
---|
[132] | 808 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
[142] | 809 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
[132] | 810 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
| 811 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
| 812 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
[142] | 813 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
| 814 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
[132] | 815 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
| 816 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
| 817 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
| 818 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
| 819 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
| 820 | sums(k,65:69) = sums(k,65:69) / ngp_2dh(sr) |
---|
| 821 | sums(k,70:pr_palm-2) = sums(k,70:pr_palm-2)/ ngp_2dh_s_inner(k,sr) |
---|
[1] | 822 | ENDDO |
---|
| 823 | !-- Upstream-parts |
---|
[87] | 824 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
[1] | 825 | !-- u* and so on |
---|
[87] | 826 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
[1] | 827 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 828 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
[87] | 829 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
[1] | 830 | ngp_2dh(sr) |
---|
[197] | 831 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
| 832 | ngp_2dh(sr) |
---|
[1] | 833 | !-- eges, e* |
---|
[87] | 834 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
[132] | 835 | ngp_3d(sr) |
---|
[1] | 836 | !-- Old and new divergence |
---|
[87] | 837 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
[1] | 838 | ngp_3d_inner(sr) |
---|
| 839 | |
---|
[87] | 840 | !-- User-defined profiles |
---|
| 841 | IF ( max_pr_user > 0 ) THEN |
---|
| 842 | DO k = nzb, nzt+1 |
---|
| 843 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
| 844 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
[132] | 845 | ngp_2dh_s_inner(k,sr) |
---|
[87] | 846 | ENDDO |
---|
| 847 | ENDIF |
---|
| 848 | |
---|
[1] | 849 | ! |
---|
| 850 | !-- Collect horizontal average in hom. |
---|
| 851 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 852 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 853 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 854 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 855 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 856 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 857 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 858 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 859 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 860 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 861 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 862 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 863 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 864 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 865 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 866 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 867 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
[96] | 868 | ! profile 24 is initial profile (sa) |
---|
| 869 | ! profiles 25-29 left empty for initial |
---|
[1] | 870 | ! profiles |
---|
| 871 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 872 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 873 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 874 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 875 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 876 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 877 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 878 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 879 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
| 880 | hom(:,1,39,sr) = sums(:,38) / ( sums(:,32) + 1E-20 )**1.5 ! Sw |
---|
| 881 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
| 882 | hom(:,1,45,sr) = sums(:,45) ! w"q" |
---|
| 883 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 884 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 885 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 886 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 887 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 888 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 889 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 890 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 891 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 892 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 893 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
[106] | 894 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
[1] | 895 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 896 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 897 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 898 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 899 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 900 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
[96] | 901 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
| 902 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
| 903 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
| 904 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
[106] | 905 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
| 906 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
[197] | 907 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
[388] | 908 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
| 909 | hom(:,1,72,sr) = hyp * 1E-4 ! hyp in kPa |
---|
[1] | 910 | |
---|
[87] | 911 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
[1] | 912 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
| 913 | ! v_y, usw. (in last but one profile) |
---|
[87] | 914 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
[1] | 915 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 916 | |
---|
[87] | 917 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
| 918 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
| 919 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
| 920 | ENDIF |
---|
| 921 | |
---|
[1] | 922 | ! |
---|
| 923 | !-- Determine the boundary layer height using two different schemes. |
---|
[94] | 924 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
| 925 | !-- first relative minimum (maximum) of the total heat flux. |
---|
| 926 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
| 927 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
| 928 | !-- (positive) for the first time. |
---|
[1] | 929 | z_i(1) = 0.0 |
---|
| 930 | first = .TRUE. |
---|
[97] | 931 | IF ( ocean ) THEN |
---|
| 932 | DO k = nzt, nzb+1, -1 |
---|
| 933 | IF ( first .AND. hom(k,1,18,sr) < 0.0 ) THEN |
---|
| 934 | first = .FALSE. |
---|
| 935 | height = zw(k) |
---|
| 936 | ENDIF |
---|
| 937 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 938 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 939 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 940 | z_i(1) = zw(k) |
---|
| 941 | ELSE |
---|
| 942 | z_i(1) = height |
---|
| 943 | ENDIF |
---|
| 944 | EXIT |
---|
| 945 | ENDIF |
---|
| 946 | ENDDO |
---|
| 947 | ELSE |
---|
[94] | 948 | DO k = nzb, nzt-1 |
---|
| 949 | IF ( first .AND. hom(k,1,18,sr) < 0.0 ) THEN |
---|
| 950 | first = .FALSE. |
---|
| 951 | height = zw(k) |
---|
[1] | 952 | ENDIF |
---|
[94] | 953 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 954 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 955 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 956 | z_i(1) = zw(k) |
---|
| 957 | ELSE |
---|
| 958 | z_i(1) = height |
---|
| 959 | ENDIF |
---|
| 960 | EXIT |
---|
| 961 | ENDIF |
---|
| 962 | ENDDO |
---|
[97] | 963 | ENDIF |
---|
[1] | 964 | |
---|
| 965 | ! |
---|
[291] | 966 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
| 967 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
| 968 | !-- maximal local temperature gradient: starting from the second (the last |
---|
| 969 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
| 970 | !-- 0.2K/100m and greater than the next four gradients. |
---|
| 971 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
| 972 | !-- ocean case! |
---|
[1] | 973 | z_i(2) = 0.0 |
---|
[291] | 974 | DO k = nzb+1, nzt+1 |
---|
| 975 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
| 976 | ENDDO |
---|
| 977 | dptdz_threshold = 0.2 / 100.0 |
---|
| 978 | |
---|
[97] | 979 | IF ( ocean ) THEN |
---|
[291] | 980 | DO k = nzt+1, nzb+5, -1 |
---|
| 981 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 982 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
| 983 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
| 984 | z_i(2) = zw(k-1) |
---|
[97] | 985 | EXIT |
---|
| 986 | ENDIF |
---|
| 987 | ENDDO |
---|
| 988 | ELSE |
---|
[291] | 989 | DO k = nzb+1, nzt-3 |
---|
| 990 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 991 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
| 992 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
| 993 | z_i(2) = zw(k-1) |
---|
[97] | 994 | EXIT |
---|
| 995 | ENDIF |
---|
| 996 | ENDDO |
---|
| 997 | ENDIF |
---|
[1] | 998 | |
---|
[87] | 999 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
| 1000 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
[1] | 1001 | |
---|
| 1002 | ! |
---|
| 1003 | !-- Computation of both the characteristic vertical velocity and |
---|
| 1004 | !-- the characteristic convective boundary layer temperature. |
---|
| 1005 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
| 1006 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. z_i(1) /= 0.0 ) THEN |
---|
[87] | 1007 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
[94] | 1008 | hom(nzb,1,18,sr) * & |
---|
| 1009 | ABS( z_i(1) ) )**0.333333333 |
---|
[1] | 1010 | !-- so far this only works if Prandtl layer is used |
---|
[87] | 1011 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
[1] | 1012 | ELSE |
---|
[87] | 1013 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
| 1014 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
[1] | 1015 | ENDIF |
---|
| 1016 | |
---|
[48] | 1017 | ! |
---|
| 1018 | !-- Collect the time series quantities |
---|
[87] | 1019 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
| 1020 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
[48] | 1021 | ts_value(3,sr) = dt_3d |
---|
[87] | 1022 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
| 1023 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
[48] | 1024 | ts_value(6,sr) = u_max |
---|
| 1025 | ts_value(7,sr) = v_max |
---|
| 1026 | ts_value(8,sr) = w_max |
---|
[87] | 1027 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
| 1028 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
| 1029 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
| 1030 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
| 1031 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
[48] | 1032 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 1033 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
| 1034 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
| 1035 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
| 1036 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
[197] | 1037 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
| 1038 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
[343] | 1039 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
[197] | 1040 | |
---|
[48] | 1041 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
| 1042 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
| 1043 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
| 1044 | ELSE |
---|
| 1045 | ts_value(22,sr) = 10000.0 |
---|
| 1046 | ENDIF |
---|
[1] | 1047 | |
---|
[343] | 1048 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
[1] | 1049 | ! |
---|
[48] | 1050 | !-- Calculate additional statistics provided by the user interface |
---|
[87] | 1051 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
[1] | 1052 | |
---|
[48] | 1053 | ENDDO ! loop of the subregions |
---|
| 1054 | |
---|
[1] | 1055 | ! |
---|
| 1056 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
| 1057 | IF ( do_sum ) THEN |
---|
| 1058 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
| 1059 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 1060 | average_count_pr = average_count_pr + 1 |
---|
| 1061 | do_sum = .FALSE. |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 1066 | !-- This flag is reset after each time step in time_integration. |
---|
| 1067 | flow_statistics_called = .TRUE. |
---|
| 1068 | |
---|
| 1069 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 1070 | |
---|
| 1071 | |
---|
| 1072 | END SUBROUTINE flow_statistics |
---|
| 1073 | |
---|
| 1074 | |
---|
| 1075 | |
---|