[1682] | 1 | !> @file flow_statistics.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3651] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[3298] | 21 | ! ------------------ |
---|
[1961] | 22 | ! |
---|
[3042] | 23 | ! |
---|
[1739] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: flow_statistics.f90 4182 2019-08-22 15:20:23Z suehring $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 4131 2019-08-02 11:06:18Z monakurppa |
---|
[4131] | 30 | ! Allow profile output for salsa variables. |
---|
| 31 | ! |
---|
| 32 | ! 4039 2019-06-18 10:32:41Z suehring |
---|
[4039] | 33 | ! Correct conversion to kinematic scalar fluxes in case of pw-scheme and |
---|
| 34 | ! statistic regions |
---|
| 35 | ! |
---|
| 36 | ! 3828 2019-03-27 19:36:23Z raasch |
---|
[3828] | 37 | ! unused variables removed |
---|
| 38 | ! |
---|
| 39 | ! 3676 2019-01-16 15:07:05Z knoop |
---|
[3651] | 40 | ! Bugfix, terminate OMP Parallel block |
---|
[3298] | 41 | ! |
---|
[4182] | 42 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
| 43 | ! Initial revision |
---|
| 44 | ! |
---|
| 45 | ! |
---|
[1] | 46 | ! Description: |
---|
| 47 | ! ------------ |
---|
[1682] | 48 | !> Compute average profiles and further average flow quantities for the different |
---|
| 49 | !> user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
| 50 | !> |
---|
| 51 | !> @note For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
| 52 | !> lower vertical index for k-loops for all variables, although strictly |
---|
| 53 | !> speaking the k-loops would have to be split up according to the staggered |
---|
| 54 | !> grid. However, this implies no error since staggered velocity components |
---|
| 55 | !> are zero at the walls and inside buildings. |
---|
[1] | 56 | !------------------------------------------------------------------------------! |
---|
[1682] | 57 | SUBROUTINE flow_statistics |
---|
[1] | 58 | |
---|
[3298] | 59 | |
---|
[1320] | 60 | USE arrays_3d, & |
---|
[2037] | 61 | ONLY: ddzu, ddzw, e, heatflux_output_conversion, hyp, km, kh, & |
---|
[2292] | 62 | momentumflux_output_conversion, nc, nr, p, prho, prr, pt, q, & |
---|
[2232] | 63 | qc, ql, qr, rho_air, rho_air_zw, rho_ocean, s, & |
---|
[3274] | 64 | sa, u, ug, v, vg, vpt, w, w_subs, waterflux_output_conversion, & |
---|
| 65 | zw, d_exner |
---|
[3298] | 66 | |
---|
[3274] | 67 | USE basic_constants_and_equations_mod, & |
---|
[3298] | 68 | ONLY: g, lv_d_cp |
---|
| 69 | |
---|
[3637] | 70 | USE bulk_cloud_model_mod, & |
---|
| 71 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
[3298] | 72 | |
---|
| 73 | USE chem_modules, & |
---|
| 74 | ONLY: max_pr_cs |
---|
| 75 | |
---|
[1320] | 76 | USE control_parameters, & |
---|
[3298] | 77 | ONLY: air_chemistry, average_count_pr, cloud_droplets, do_sum, & |
---|
[3274] | 78 | dt_3d, humidity, initializing_actions, land_surface, & |
---|
[3003] | 79 | large_scale_forcing, large_scale_subsidence, max_pr_user, & |
---|
[3294] | 80 | message_string, neutral, ocean_mode, passive_scalar, & |
---|
| 81 | simulated_time, simulated_time_at_begin, & |
---|
| 82 | use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, & |
---|
[4131] | 83 | ws_scheme_mom, ws_scheme_sca, salsa, max_pr_salsa |
---|
[3298] | 84 | |
---|
[1320] | 85 | USE cpulog, & |
---|
[1551] | 86 | ONLY: cpu_log, log_point |
---|
[3298] | 87 | |
---|
[1320] | 88 | USE grid_variables, & |
---|
[1551] | 89 | ONLY: ddx, ddy |
---|
[1320] | 90 | |
---|
| 91 | USE indices, & |
---|
[1551] | 92 | ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, & |
---|
[2968] | 93 | ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzt, topo_min_level, & |
---|
| 94 | wall_flags_0 |
---|
[1320] | 95 | |
---|
| 96 | USE kinds |
---|
| 97 | |
---|
[1551] | 98 | USE land_surface_model_mod, & |
---|
[2232] | 99 | ONLY: m_soil_h, nzb_soil, nzt_soil, t_soil_h |
---|
[1551] | 100 | |
---|
[2320] | 101 | USE lsf_nudging_mod, & |
---|
| 102 | ONLY: td_lsa_lpt, td_lsa_q, td_sub_lpt, td_sub_q, time_vert |
---|
| 103 | |
---|
[3637] | 104 | USE module_interface, & |
---|
| 105 | ONLY: module_interface_statistics |
---|
| 106 | |
---|
[1783] | 107 | USE netcdf_interface, & |
---|
[2817] | 108 | ONLY: dots_rad, dots_soil, dots_max |
---|
[1783] | 109 | |
---|
[1] | 110 | USE pegrid |
---|
[1551] | 111 | |
---|
| 112 | USE radiation_model_mod, & |
---|
[2696] | 113 | ONLY: radiation, radiation_scheme, & |
---|
[1691] | 114 | rad_lw_in, rad_lw_out, rad_lw_cs_hr, rad_lw_hr, & |
---|
| 115 | rad_sw_in, rad_sw_out, rad_sw_cs_hr, rad_sw_hr |
---|
[1585] | 116 | |
---|
[1] | 117 | USE statistics |
---|
| 118 | |
---|
[3828] | 119 | USE surface_mod, & |
---|
| 120 | ONLY : surf_def_h, surf_lsm_h, surf_usm_h |
---|
[1691] | 121 | |
---|
[2232] | 122 | |
---|
[1] | 123 | IMPLICIT NONE |
---|
| 124 | |
---|
[1682] | 125 | INTEGER(iwp) :: i !< |
---|
| 126 | INTEGER(iwp) :: j !< |
---|
| 127 | INTEGER(iwp) :: k !< |
---|
[2232] | 128 | INTEGER(iwp) :: ki !< |
---|
[1738] | 129 | INTEGER(iwp) :: k_surface_level !< |
---|
[2232] | 130 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
| 131 | INTEGER(iwp) :: l !< loop variable over surface facing -- up- or downward-facing |
---|
[1682] | 132 | INTEGER(iwp) :: nt !< |
---|
[3241] | 133 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[1682] | 134 | INTEGER(iwp) :: sr !< |
---|
| 135 | INTEGER(iwp) :: tn !< |
---|
[2232] | 136 | |
---|
[1682] | 137 | LOGICAL :: first !< |
---|
[1320] | 138 | |
---|
[1682] | 139 | REAL(wp) :: dptdz_threshold !< |
---|
| 140 | REAL(wp) :: fac !< |
---|
[2232] | 141 | REAL(wp) :: flag !< |
---|
[1682] | 142 | REAL(wp) :: height !< |
---|
| 143 | REAL(wp) :: pts !< |
---|
| 144 | REAL(wp) :: sums_l_etot !< |
---|
| 145 | REAL(wp) :: ust !< |
---|
| 146 | REAL(wp) :: ust2 !< |
---|
| 147 | REAL(wp) :: u2 !< |
---|
| 148 | REAL(wp) :: vst !< |
---|
| 149 | REAL(wp) :: vst2 !< |
---|
| 150 | REAL(wp) :: v2 !< |
---|
| 151 | REAL(wp) :: w2 !< |
---|
[1320] | 152 | |
---|
[1682] | 153 | REAL(wp) :: dptdz(nzb+1:nzt+1) !< |
---|
| 154 | REAL(wp) :: sums_ll(nzb:nzt+1,2) !< |
---|
[1] | 155 | |
---|
| 156 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 157 | |
---|
[1221] | 158 | |
---|
[1] | 159 | ! |
---|
| 160 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 161 | !-- called once after the current time step |
---|
| 162 | IF ( flow_statistics_called ) THEN |
---|
[254] | 163 | |
---|
[274] | 164 | message_string = 'flow_statistics is called two times within one ' // & |
---|
| 165 | 'timestep' |
---|
[254] | 166 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
[1007] | 167 | |
---|
[1] | 168 | ENDIF |
---|
| 169 | |
---|
| 170 | ! |
---|
| 171 | !-- Compute statistics for each (sub-)region |
---|
| 172 | DO sr = 0, statistic_regions |
---|
| 173 | |
---|
| 174 | ! |
---|
| 175 | !-- Initialize (local) summation array |
---|
[1353] | 176 | sums_l = 0.0_wp |
---|
[3658] | 177 | #ifdef _OPENACC |
---|
| 178 | !$ACC KERNELS PRESENT(sums_l) |
---|
| 179 | sums_l = 0.0_wp |
---|
| 180 | !$ACC END KERNELS |
---|
| 181 | #endif |
---|
[1] | 182 | |
---|
| 183 | ! |
---|
| 184 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 185 | !-- array |
---|
| 186 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 187 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
[2037] | 188 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) * & |
---|
| 189 | heatflux_output_conversion ! heat flux from advec_s_bc |
---|
[87] | 190 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 191 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
[1] | 192 | |
---|
[667] | 193 | ! |
---|
[1498] | 194 | !-- When calcuating horizontally-averaged total (resolved- plus subgrid- |
---|
| 195 | !-- scale) vertical fluxes and velocity variances by using commonly- |
---|
| 196 | !-- applied Reynolds-based methods ( e.g. <w'pt'> = (w-<w>)*(pt-<pt>) ) |
---|
| 197 | !-- in combination with the 5th order advection scheme, pronounced |
---|
| 198 | !-- artificial kinks could be observed in the vertical profiles near the |
---|
| 199 | !-- surface. Please note: these kinks were not related to the model truth, |
---|
| 200 | !-- i.e. these kinks are just related to an evaluation problem. |
---|
| 201 | !-- In order avoid these kinks, vertical fluxes and horizontal as well |
---|
| 202 | !-- vertical velocity variances are calculated directly within the advection |
---|
| 203 | !-- routines, according to the numerical discretization, to evaluate the |
---|
| 204 | !-- statistical quantities as they will appear within the prognostic |
---|
| 205 | !-- equations. |
---|
[667] | 206 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
[1498] | 207 | !-- the local array sums_l() for further computations. |
---|
[743] | 208 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
[696] | 209 | |
---|
[1007] | 210 | ! |
---|
[673] | 211 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
| 212 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
[3294] | 213 | IF ( ocean_mode ) THEN |
---|
[801] | 214 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
[1007] | 215 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
[673] | 216 | ENDIF |
---|
[696] | 217 | |
---|
| 218 | DO i = 0, threads_per_task-1 |
---|
[1007] | 219 | ! |
---|
[696] | 220 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
[2037] | 221 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) & |
---|
| 222 | * momentumflux_output_conversion ! w*u* |
---|
| 223 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) & |
---|
| 224 | * momentumflux_output_conversion ! w*v* |
---|
[801] | 225 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
| 226 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
| 227 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
[1353] | 228 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & |
---|
[1320] | 229 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
[801] | 230 | sums_ws2_ws_l(:,i) ) ! e* |
---|
[667] | 231 | ENDDO |
---|
[696] | 232 | |
---|
[667] | 233 | ENDIF |
---|
[696] | 234 | |
---|
[1567] | 235 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
[696] | 236 | |
---|
| 237 | DO i = 0, threads_per_task-1 |
---|
[2037] | 238 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) & |
---|
| 239 | * heatflux_output_conversion ! w*pt* |
---|
[3294] | 240 | IF ( ocean_mode ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
[2037] | 241 | IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) & |
---|
| 242 | * waterflux_output_conversion ! w*q* |
---|
[2270] | 243 | IF ( passive_scalar ) sums_l(:,114,i) = sums_wsss_ws_l(:,i) ! w*s* |
---|
[696] | 244 | ENDDO |
---|
| 245 | |
---|
[667] | 246 | ENDIF |
---|
[305] | 247 | ! |
---|
[1] | 248 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 249 | !-- They must have been computed before, because they are already required |
---|
| 250 | !-- for other horizontal averages. |
---|
| 251 | tn = 0 |
---|
[2232] | 252 | !$OMP PARALLEL PRIVATE( i, j, k, tn, flag ) |
---|
| 253 | !$ tn = omp_get_thread_num() |
---|
[1] | 254 | !$OMP DO |
---|
[3658] | 255 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k, flag) & |
---|
| 256 | !$ACC PRESENT(wall_flags_0, u, v, pt, rmask, sums_l) |
---|
[1] | 257 | DO i = nxl, nxr |
---|
| 258 | DO j = nys, nyn |
---|
[2232] | 259 | DO k = nzb, nzt+1 |
---|
| 260 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
[3658] | 261 | !$ACC ATOMIC |
---|
[2232] | 262 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) & |
---|
| 263 | * flag |
---|
[3658] | 264 | !$ACC ATOMIC |
---|
[2232] | 265 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) & |
---|
| 266 | * flag |
---|
[3658] | 267 | !$ACC ATOMIC |
---|
[2232] | 268 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) & |
---|
| 269 | * flag |
---|
[1] | 270 | ENDDO |
---|
| 271 | ENDDO |
---|
| 272 | ENDDO |
---|
[3658] | 273 | !$ACC UPDATE HOST(sums_l(:,1,tn), sums_l(:,2,tn), sums_l(:,4,tn)) |
---|
[1] | 274 | |
---|
| 275 | ! |
---|
[96] | 276 | !-- Horizontally averaged profile of salinity |
---|
[3294] | 277 | IF ( ocean_mode ) THEN |
---|
[96] | 278 | !$OMP DO |
---|
| 279 | DO i = nxl, nxr |
---|
| 280 | DO j = nys, nyn |
---|
[2232] | 281 | DO k = nzb, nzt+1 |
---|
| 282 | sums_l(k,23,tn) = sums_l(k,23,tn) + sa(k,j,i) & |
---|
| 283 | * rmask(j,i,sr) & |
---|
| 284 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 285 | BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
[96] | 286 | ENDDO |
---|
| 287 | ENDDO |
---|
| 288 | ENDDO |
---|
| 289 | ENDIF |
---|
| 290 | |
---|
| 291 | ! |
---|
[1] | 292 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
[3040] | 293 | !-- total water content, water vapor mixing ratio and liquid water potential |
---|
[1] | 294 | !-- temperature |
---|
[75] | 295 | IF ( humidity ) THEN |
---|
[1] | 296 | !$OMP DO |
---|
| 297 | DO i = nxl, nxr |
---|
| 298 | DO j = nys, nyn |
---|
[2232] | 299 | DO k = nzb, nzt+1 |
---|
| 300 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
| 301 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
| 302 | vpt(k,j,i) * rmask(j,i,sr) * flag |
---|
| 303 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
| 304 | q(k,j,i) * rmask(j,i,sr) * flag |
---|
[1] | 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
[3274] | 308 | IF ( bulk_cloud_model ) THEN |
---|
[1] | 309 | !$OMP DO |
---|
| 310 | DO i = nxl, nxr |
---|
| 311 | DO j = nys, nyn |
---|
[2232] | 312 | DO k = nzb, nzt+1 |
---|
| 313 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
| 314 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
| 315 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) & |
---|
| 316 | * flag |
---|
| 317 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
[3274] | 318 | pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) & |
---|
[2232] | 319 | ) * rmask(j,i,sr) & |
---|
| 320 | * flag |
---|
[1] | 321 | ENDDO |
---|
| 322 | ENDDO |
---|
| 323 | ENDDO |
---|
| 324 | ENDIF |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Horizontally averaged profiles of passive scalar |
---|
| 329 | IF ( passive_scalar ) THEN |
---|
| 330 | !$OMP DO |
---|
| 331 | DO i = nxl, nxr |
---|
| 332 | DO j = nys, nyn |
---|
[2232] | 333 | DO k = nzb, nzt+1 |
---|
[2270] | 334 | sums_l(k,115,tn) = sums_l(k,115,tn) + s(k,j,i) & |
---|
[2232] | 335 | * rmask(j,i,sr) & |
---|
| 336 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 337 | BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
[1] | 338 | ENDDO |
---|
| 339 | ENDDO |
---|
| 340 | ENDDO |
---|
| 341 | ENDIF |
---|
| 342 | !$OMP END PARALLEL |
---|
| 343 | ! |
---|
| 344 | !-- Summation of thread sums |
---|
| 345 | IF ( threads_per_task > 1 ) THEN |
---|
| 346 | DO i = 1, threads_per_task-1 |
---|
| 347 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 348 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 349 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
[3294] | 350 | IF ( ocean_mode ) THEN |
---|
[96] | 351 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
| 352 | ENDIF |
---|
[75] | 353 | IF ( humidity ) THEN |
---|
[1] | 354 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 355 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
[3274] | 356 | IF ( bulk_cloud_model ) THEN |
---|
[1] | 357 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 358 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 359 | ENDIF |
---|
| 360 | ENDIF |
---|
| 361 | IF ( passive_scalar ) THEN |
---|
[2270] | 362 | sums_l(:,115,0) = sums_l(:,115,0) + sums_l(:,115,i) |
---|
[1] | 363 | ENDIF |
---|
| 364 | ENDDO |
---|
| 365 | ENDIF |
---|
| 366 | |
---|
| 367 | #if defined( __parallel ) |
---|
| 368 | ! |
---|
| 369 | !-- Compute total sum from local sums |
---|
[622] | 370 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 371 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 372 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 373 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 374 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 375 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 376 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 377 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 378 | MPI_SUM, comm2d, ierr ) |
---|
[3294] | 379 | IF ( ocean_mode ) THEN |
---|
[622] | 380 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 381 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
[96] | 382 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 383 | ENDIF |
---|
[75] | 384 | IF ( humidity ) THEN |
---|
[622] | 385 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 386 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
[1] | 387 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 388 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 389 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
[1] | 390 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3274] | 391 | IF ( bulk_cloud_model ) THEN |
---|
[622] | 392 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 393 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
[1] | 394 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 395 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 396 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
[1] | 397 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 398 | ENDIF |
---|
| 399 | ENDIF |
---|
| 400 | |
---|
| 401 | IF ( passive_scalar ) THEN |
---|
[622] | 402 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[2270] | 403 | CALL MPI_ALLREDUCE( sums_l(nzb,115,0), sums(nzb,115), nzt+2-nzb, & |
---|
[1] | 404 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 405 | ENDIF |
---|
| 406 | #else |
---|
| 407 | sums(:,1) = sums_l(:,1,0) |
---|
| 408 | sums(:,2) = sums_l(:,2,0) |
---|
| 409 | sums(:,4) = sums_l(:,4,0) |
---|
[3294] | 410 | IF ( ocean_mode ) sums(:,23) = sums_l(:,23,0) |
---|
[75] | 411 | IF ( humidity ) THEN |
---|
[1] | 412 | sums(:,44) = sums_l(:,44,0) |
---|
| 413 | sums(:,41) = sums_l(:,41,0) |
---|
[3274] | 414 | IF ( bulk_cloud_model ) THEN |
---|
[1] | 415 | sums(:,42) = sums_l(:,42,0) |
---|
| 416 | sums(:,43) = sums_l(:,43,0) |
---|
| 417 | ENDIF |
---|
| 418 | ENDIF |
---|
[2270] | 419 | IF ( passive_scalar ) sums(:,115) = sums_l(:,115,0) |
---|
[1] | 420 | #endif |
---|
| 421 | |
---|
| 422 | ! |
---|
| 423 | !-- Final values are obtained by division by the total number of grid points |
---|
| 424 | !-- used for summation. After that store profiles. |
---|
[132] | 425 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
| 426 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
| 427 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 428 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 429 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 430 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
[3658] | 431 | !$ACC UPDATE DEVICE(hom(:,1,1,sr), hom(:,1,2,sr), hom(:,1,4,sr)) |
---|
[1] | 432 | |
---|
[667] | 433 | |
---|
[1] | 434 | ! |
---|
[96] | 435 | !-- Salinity |
---|
[3294] | 436 | IF ( ocean_mode ) THEN |
---|
[132] | 437 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
[96] | 438 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
| 439 | ENDIF |
---|
| 440 | |
---|
| 441 | ! |
---|
[1] | 442 | !-- Humidity and cloud parameters |
---|
[75] | 443 | IF ( humidity ) THEN |
---|
[132] | 444 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
| 445 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 446 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 447 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
[3274] | 448 | IF ( bulk_cloud_model ) THEN |
---|
[132] | 449 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
| 450 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 451 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 452 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 453 | ENDIF |
---|
| 454 | ENDIF |
---|
| 455 | |
---|
| 456 | ! |
---|
| 457 | !-- Passive scalar |
---|
[2270] | 458 | IF ( passive_scalar ) hom(:,1,115,sr) = sums(:,115) / & |
---|
[1960] | 459 | ngp_2dh_s_inner(:,sr) ! s |
---|
[1] | 460 | |
---|
| 461 | ! |
---|
| 462 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 463 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 464 | !-- column of sums_l) and some diagnostic quantities. |
---|
[132] | 465 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 466 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 467 | !-- rearranged according to the staggered grid. |
---|
[132] | 468 | !-- However, this implies no error since staggered velocity components |
---|
| 469 | !-- are zero at the walls and inside buildings. |
---|
[1] | 470 | tn = 0 |
---|
[3241] | 471 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, & |
---|
[1815] | 472 | !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & |
---|
[2232] | 473 | !$OMP w2, flag, m, ki, l ) |
---|
| 474 | !$ tn = omp_get_thread_num() |
---|
[1] | 475 | !$OMP DO |
---|
[3658] | 476 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j, k, m) & |
---|
| 477 | !$ACC PRIVATE(sums_l_etot, flag) & |
---|
| 478 | !$ACC PRESENT(wall_flags_0, rmask, momentumflux_output_conversion) & |
---|
| 479 | !$ACC PRESENT(hom(:,1,4,sr)) & |
---|
| 480 | !$ACC PRESENT(e, u, v, w, km, kh, p, pt) & |
---|
| 481 | !$ACC PRESENT(surf_def_h(0), surf_lsm_h, surf_usm_h) & |
---|
| 482 | !$ACC PRESENT(sums_l) |
---|
[1] | 483 | DO i = nxl, nxr |
---|
| 484 | DO j = nys, nyn |
---|
[1353] | 485 | sums_l_etot = 0.0_wp |
---|
[2232] | 486 | DO k = nzb, nzt+1 |
---|
| 487 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
[1] | 488 | ! |
---|
| 489 | !-- Prognostic and diagnostic variables |
---|
[3658] | 490 | !$ACC ATOMIC |
---|
[2232] | 491 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) & |
---|
| 492 | * flag |
---|
[3658] | 493 | !$ACC ATOMIC |
---|
[2232] | 494 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) & |
---|
| 495 | * flag |
---|
[3658] | 496 | !$ACC ATOMIC |
---|
[2232] | 497 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) & |
---|
| 498 | * flag |
---|
[3658] | 499 | !$ACC ATOMIC |
---|
[2232] | 500 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) & |
---|
| 501 | * flag |
---|
[3658] | 502 | !$ACC ATOMIC |
---|
[2252] | 503 | sums_l(k,40,tn) = sums_l(k,40,tn) + ( p(k,j,i) & |
---|
| 504 | / momentumflux_output_conversion(k) ) & |
---|
| 505 | * flag |
---|
[1] | 506 | |
---|
[3658] | 507 | !$ACC ATOMIC |
---|
[1] | 508 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
[2232] | 509 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr)& |
---|
| 510 | * flag |
---|
[3658] | 511 | #ifndef _OPENACC |
---|
[624] | 512 | IF ( humidity ) THEN |
---|
| 513 | sums_l(k,70,tn) = sums_l(k,70,tn) + & |
---|
[2232] | 514 | ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr)& |
---|
| 515 | * flag |
---|
[624] | 516 | ENDIF |
---|
[1960] | 517 | IF ( passive_scalar ) THEN |
---|
[2270] | 518 | sums_l(k,116,tn) = sums_l(k,116,tn) + & |
---|
| 519 | ( s(k,j,i)-hom(k,1,115,sr) )**2 * rmask(j,i,sr)& |
---|
[2232] | 520 | * flag |
---|
[1960] | 521 | ENDIF |
---|
[3658] | 522 | #endif |
---|
[699] | 523 | ! |
---|
| 524 | !-- Higher moments |
---|
| 525 | !-- (Computation of the skewness of w further below) |
---|
[3658] | 526 | !$ACC ATOMIC |
---|
[2232] | 527 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) & |
---|
| 528 | * flag |
---|
[667] | 529 | |
---|
[1] | 530 | sums_l_etot = sums_l_etot + & |
---|
[2232] | 531 | 0.5_wp * ( u(k,j,i)**2 + v(k,j,i)**2 + & |
---|
| 532 | w(k,j,i)**2 ) * rmask(j,i,sr)& |
---|
| 533 | * flag |
---|
[1] | 534 | ENDDO |
---|
| 535 | ! |
---|
| 536 | !-- Total and perturbation energy for the total domain (being |
---|
| 537 | !-- collected in the last column of sums_l). Summation of these |
---|
| 538 | !-- quantities is seperated from the previous loop in order to |
---|
| 539 | !-- allow vectorization of that loop. |
---|
[3658] | 540 | !$ACC ATOMIC |
---|
[87] | 541 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
[1] | 542 | ! |
---|
| 543 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
[2773] | 544 | IF ( surf_def_h(0)%end_index(j,i) >= & |
---|
[2696] | 545 | surf_def_h(0)%start_index(j,i) ) THEN |
---|
[2232] | 546 | m = surf_def_h(0)%start_index(j,i) |
---|
[3658] | 547 | !$ACC ATOMIC |
---|
[2773] | 548 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[2232] | 549 | surf_def_h(0)%us(m) * rmask(j,i,sr) |
---|
[3658] | 550 | !$ACC ATOMIC |
---|
[2773] | 551 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[2232] | 552 | surf_def_h(0)%usws(m) * rmask(j,i,sr) |
---|
[3658] | 553 | !$ACC ATOMIC |
---|
[2773] | 554 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[2232] | 555 | surf_def_h(0)%vsws(m) * rmask(j,i,sr) |
---|
[3658] | 556 | !$ACC ATOMIC |
---|
[2773] | 557 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[2232] | 558 | surf_def_h(0)%ts(m) * rmask(j,i,sr) |
---|
[3658] | 559 | #ifndef _OPENACC |
---|
[2232] | 560 | IF ( humidity ) THEN |
---|
[2773] | 561 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
[2232] | 562 | surf_def_h(0)%qs(m) * rmask(j,i,sr) |
---|
| 563 | ENDIF |
---|
| 564 | IF ( passive_scalar ) THEN |
---|
[2773] | 565 | sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & |
---|
[2232] | 566 | surf_def_h(0)%ss(m) * rmask(j,i,sr) |
---|
| 567 | ENDIF |
---|
[3658] | 568 | #endif |
---|
[2773] | 569 | ! |
---|
| 570 | !-- Summation of surface temperature. |
---|
[3658] | 571 | !$ACC ATOMIC |
---|
[2773] | 572 | sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & |
---|
| 573 | surf_def_h(0)%pt_surface(m) * & |
---|
| 574 | rmask(j,i,sr) |
---|
[197] | 575 | ENDIF |
---|
[2696] | 576 | IF ( surf_lsm_h%end_index(j,i) >= surf_lsm_h%start_index(j,i) ) THEN |
---|
[2232] | 577 | m = surf_lsm_h%start_index(j,i) |
---|
[3658] | 578 | !$ACC ATOMIC |
---|
[2773] | 579 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[2232] | 580 | surf_lsm_h%us(m) * rmask(j,i,sr) |
---|
[3658] | 581 | !$ACC ATOMIC |
---|
[2773] | 582 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[2232] | 583 | surf_lsm_h%usws(m) * rmask(j,i,sr) |
---|
[3658] | 584 | !$ACC ATOMIC |
---|
[2773] | 585 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[2232] | 586 | surf_lsm_h%vsws(m) * rmask(j,i,sr) |
---|
[3658] | 587 | !$ACC ATOMIC |
---|
[2773] | 588 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[2232] | 589 | surf_lsm_h%ts(m) * rmask(j,i,sr) |
---|
[3658] | 590 | #ifndef _OPENACC |
---|
[2232] | 591 | IF ( humidity ) THEN |
---|
[2773] | 592 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
[2232] | 593 | surf_lsm_h%qs(m) * rmask(j,i,sr) |
---|
| 594 | ENDIF |
---|
| 595 | IF ( passive_scalar ) THEN |
---|
[2773] | 596 | sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & |
---|
[2232] | 597 | surf_lsm_h%ss(m) * rmask(j,i,sr) |
---|
| 598 | ENDIF |
---|
[3658] | 599 | #endif |
---|
[2773] | 600 | ! |
---|
| 601 | !-- Summation of surface temperature. |
---|
[3658] | 602 | !$ACC ATOMIC |
---|
[2773] | 603 | sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & |
---|
| 604 | surf_lsm_h%pt_surface(m) * & |
---|
| 605 | rmask(j,i,sr) |
---|
[1960] | 606 | ENDIF |
---|
[2696] | 607 | IF ( surf_usm_h%end_index(j,i) >= surf_usm_h%start_index(j,i) ) THEN |
---|
| 608 | m = surf_usm_h%start_index(j,i) |
---|
[3658] | 609 | !$ACC ATOMIC |
---|
[2773] | 610 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[2232] | 611 | surf_usm_h%us(m) * rmask(j,i,sr) |
---|
[3658] | 612 | !$ACC ATOMIC |
---|
[2773] | 613 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[2232] | 614 | surf_usm_h%usws(m) * rmask(j,i,sr) |
---|
[3658] | 615 | !$ACC ATOMIC |
---|
[2773] | 616 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[2232] | 617 | surf_usm_h%vsws(m) * rmask(j,i,sr) |
---|
[3658] | 618 | !$ACC ATOMIC |
---|
[2773] | 619 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[2232] | 620 | surf_usm_h%ts(m) * rmask(j,i,sr) |
---|
[3658] | 621 | #ifndef _OPENACC |
---|
[2232] | 622 | IF ( humidity ) THEN |
---|
[2773] | 623 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
[2232] | 624 | surf_usm_h%qs(m) * rmask(j,i,sr) |
---|
| 625 | ENDIF |
---|
| 626 | IF ( passive_scalar ) THEN |
---|
[2773] | 627 | sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & |
---|
[2232] | 628 | surf_usm_h%ss(m) * rmask(j,i,sr) |
---|
| 629 | ENDIF |
---|
[3658] | 630 | #endif |
---|
[2773] | 631 | ! |
---|
| 632 | !-- Summation of surface temperature. |
---|
[3658] | 633 | !$ACC ATOMIC |
---|
[2773] | 634 | sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & |
---|
| 635 | surf_usm_h%pt_surface(m) * & |
---|
| 636 | rmask(j,i,sr) |
---|
[2232] | 637 | ENDIF |
---|
[1] | 638 | ENDDO |
---|
| 639 | ENDDO |
---|
[3658] | 640 | !$ACC UPDATE & |
---|
| 641 | !$ACC HOST(sums_l(:,3,tn), sums_l(:,8,tn), sums_l(:,9,tn)) & |
---|
| 642 | !$ACC HOST(sums_l(:,10,tn), sums_l(:,40,tn), sums_l(:,33,tn)) & |
---|
| 643 | !$ACC HOST(sums_l(:,38,tn)) & |
---|
| 644 | !$ACC HOST(sums_l(nzb:nzb+4,pr_palm,tn), sums_l(nzb+14:nzb+14,pr_palm,tn)) |
---|
[1] | 645 | |
---|
| 646 | ! |
---|
[667] | 647 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
| 648 | !-- quantities are evaluated in the advection routines. |
---|
[1918] | 649 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) & |
---|
| 650 | THEN |
---|
[667] | 651 | !$OMP DO |
---|
| 652 | DO i = nxl, nxr |
---|
| 653 | DO j = nys, nyn |
---|
[2232] | 654 | DO k = nzb, nzt+1 |
---|
| 655 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
| 656 | |
---|
[667] | 657 | u2 = u(k,j,i)**2 |
---|
| 658 | v2 = v(k,j,i)**2 |
---|
| 659 | w2 = w(k,j,i)**2 |
---|
| 660 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 661 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 662 | |
---|
[2232] | 663 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) & |
---|
| 664 | * flag |
---|
| 665 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) & |
---|
| 666 | * flag |
---|
| 667 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) & |
---|
| 668 | * flag |
---|
[667] | 669 | ! |
---|
[2026] | 670 | !-- Perturbation energy |
---|
[667] | 671 | |
---|
[1353] | 672 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5_wp * & |
---|
[2232] | 673 | ( ust2 + vst2 + w2 ) * rmask(j,i,sr) & |
---|
| 674 | * flag |
---|
[667] | 675 | ENDDO |
---|
| 676 | ENDDO |
---|
| 677 | ENDDO |
---|
| 678 | ENDIF |
---|
[2026] | 679 | ! |
---|
| 680 | !-- Computaion of domain-averaged perturbation energy. Please note, |
---|
| 681 | !-- to prevent that perturbation energy is larger (even if only slightly) |
---|
| 682 | !-- than the total kinetic energy, calculation is based on deviations from |
---|
| 683 | !-- the horizontal mean, instead of spatial descretization of the advection |
---|
| 684 | !-- term. |
---|
| 685 | !$OMP DO |
---|
[3658] | 686 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k, flag, w2, ust2, vst2) & |
---|
| 687 | !$ACC PRESENT(wall_flags_0, u, v, w, rmask, hom(:,1,1:2,sr)) & |
---|
| 688 | !$ACC PRESENT(sums_l) |
---|
[2026] | 689 | DO i = nxl, nxr |
---|
| 690 | DO j = nys, nyn |
---|
[2232] | 691 | DO k = nzb, nzt+1 |
---|
| 692 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
| 693 | |
---|
[2026] | 694 | w2 = w(k,j,i)**2 |
---|
| 695 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 696 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 697 | w2 = w(k,j,i)**2 |
---|
[1241] | 698 | |
---|
[3658] | 699 | !$ACC ATOMIC |
---|
[2026] | 700 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & |
---|
[2232] | 701 | + 0.5_wp * ( ust2 + vst2 + w2 ) & |
---|
| 702 | * rmask(j,i,sr) & |
---|
| 703 | * flag |
---|
[2026] | 704 | ENDDO |
---|
| 705 | ENDDO |
---|
| 706 | ENDDO |
---|
[3658] | 707 | !$ACC UPDATE HOST(sums_l(nzb+5:nzb+5,pr_palm,tn)) |
---|
[2026] | 708 | |
---|
[667] | 709 | ! |
---|
[1] | 710 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
[667] | 711 | |
---|
[1] | 712 | !$OMP DO |
---|
[3658] | 713 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j, k, l, m) & |
---|
| 714 | !$ACC PRIVATE(ki, flag, ust, vst, pts) & |
---|
| 715 | !$ACC PRESENT(kh, km, u, v, w, pt) & |
---|
| 716 | !$ACC PRESENT(wall_flags_0, rmask, ddzu, rho_air_zw, hom(:,1,1:4,sr)) & |
---|
| 717 | !$ACC PRESENT(heatflux_output_conversion, momentumflux_output_conversion) & |
---|
| 718 | !$ACC PRESENT(surf_def_h(0:2), surf_lsm_h, surf_usm_h) & |
---|
| 719 | !$ACC PRESENT(sums_l) |
---|
[1] | 720 | DO i = nxl, nxr |
---|
| 721 | DO j = nys, nyn |
---|
| 722 | ! |
---|
| 723 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
| 724 | !-- oterwise from k=nzb+1) |
---|
[132] | 725 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
[1] | 726 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 727 | !-- split up according to the staggered grid. |
---|
[132] | 728 | !-- However, this implies no error since staggered velocity |
---|
| 729 | !-- components are zero at the walls and inside buildings. |
---|
[2232] | 730 | !-- Flag 23 is used to mask surface fluxes as well as model-top fluxes, |
---|
| 731 | !-- which are added further below. |
---|
| 732 | DO k = nzb, nzt |
---|
| 733 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
| 734 | BTEST( wall_flags_0(k,j,i), 23 ) ) * & |
---|
| 735 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 736 | BTEST( wall_flags_0(k,j,i), 9 ) ) |
---|
[1] | 737 | ! |
---|
| 738 | !-- Momentum flux w"u" |
---|
[3658] | 739 | !$ACC ATOMIC |
---|
[1353] | 740 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25_wp * ( & |
---|
[1] | 741 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 742 | ) * ( & |
---|
| 743 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 744 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
[2037] | 745 | ) * rmask(j,i,sr) & |
---|
| 746 | * rho_air_zw(k) & |
---|
[2232] | 747 | * momentumflux_output_conversion(k) & |
---|
| 748 | * flag |
---|
[1] | 749 | ! |
---|
| 750 | !-- Momentum flux w"v" |
---|
[3658] | 751 | !$ACC ATOMIC |
---|
[1353] | 752 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25_wp * ( & |
---|
[1] | 753 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 754 | ) * ( & |
---|
| 755 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 756 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
[2037] | 757 | ) * rmask(j,i,sr) & |
---|
| 758 | * rho_air_zw(k) & |
---|
[2232] | 759 | * momentumflux_output_conversion(k) & |
---|
| 760 | * flag |
---|
[1] | 761 | ! |
---|
| 762 | !-- Heat flux w"pt" |
---|
[3658] | 763 | !$ACC ATOMIC |
---|
[1] | 764 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
[1353] | 765 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 766 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
[2037] | 767 | * rho_air_zw(k) & |
---|
| 768 | * heatflux_output_conversion(k) & |
---|
[2232] | 769 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
| 770 | * flag |
---|
[1] | 771 | |
---|
| 772 | ! |
---|
[96] | 773 | !-- Salinity flux w"sa" |
---|
[3658] | 774 | #ifndef _OPENACC |
---|
[3294] | 775 | IF ( ocean_mode ) THEN |
---|
[96] | 776 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
[1353] | 777 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[96] | 778 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
[2232] | 779 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
| 780 | * flag |
---|
[96] | 781 | ENDIF |
---|
| 782 | |
---|
| 783 | ! |
---|
[1] | 784 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
[75] | 785 | IF ( humidity ) THEN |
---|
[1] | 786 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
[1353] | 787 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 788 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
[2037] | 789 | * rho_air_zw(k) & |
---|
| 790 | * heatflux_output_conversion(k) & |
---|
[2232] | 791 | * ddzu(k+1) * rmask(j,i,sr) * flag |
---|
[1] | 792 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
[1353] | 793 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 794 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
[2037] | 795 | * rho_air_zw(k) & |
---|
| 796 | * waterflux_output_conversion(k)& |
---|
[2232] | 797 | * ddzu(k+1) * rmask(j,i,sr) * flag |
---|
[1007] | 798 | |
---|
[3274] | 799 | IF ( bulk_cloud_model ) THEN |
---|
[1] | 800 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
[1353] | 801 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 802 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
| 803 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
[2037] | 804 | * rho_air_zw(k) & |
---|
| 805 | * waterflux_output_conversion(k)& |
---|
[2232] | 806 | * ddzu(k+1) * rmask(j,i,sr) * flag |
---|
[1] | 807 | ENDIF |
---|
| 808 | ENDIF |
---|
| 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Passive scalar flux |
---|
| 812 | IF ( passive_scalar ) THEN |
---|
[2270] | 813 | sums_l(k,117,tn) = sums_l(k,117,tn) & |
---|
[1353] | 814 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[2026] | 815 | * ( s(k+1,j,i) - s(k,j,i) ) & |
---|
[2232] | 816 | * ddzu(k+1) * rmask(j,i,sr) & |
---|
| 817 | * flag |
---|
[1] | 818 | ENDIF |
---|
[3658] | 819 | #endif |
---|
[1] | 820 | |
---|
| 821 | ENDDO |
---|
| 822 | |
---|
| 823 | ! |
---|
| 824 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 825 | IF ( use_surface_fluxes ) THEN |
---|
[2232] | 826 | DO l = 0, 1 |
---|
[3658] | 827 | ! The original code using MERGE doesn't work with the PGI |
---|
| 828 | ! compiler when running on the GPU. |
---|
[3676] | 829 | ! This is submitted as a compiler Bug in PGI ticket TPR#26718 |
---|
[3658] | 830 | ! ki = MERGE( -1, 0, l == 0 ) |
---|
| 831 | ki = -1 + l |
---|
[2232] | 832 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
[2696] | 833 | DO m = surf_def_h(l)%start_index(j,i), & |
---|
| 834 | surf_def_h(l)%end_index(j,i) |
---|
[2232] | 835 | k = surf_def_h(l)%k(m) |
---|
| 836 | |
---|
[3658] | 837 | !$ACC ATOMIC |
---|
[2232] | 838 | sums_l(k+ki,12,tn) = sums_l(k+ki,12,tn) + & |
---|
| 839 | momentumflux_output_conversion(k+ki) * & |
---|
| 840 | surf_def_h(l)%usws(m) * rmask(j,i,sr) ! w"u" |
---|
[3658] | 841 | !$ACC ATOMIC |
---|
[2232] | 842 | sums_l(k+ki,14,tn) = sums_l(k+ki,14,tn) + & |
---|
| 843 | momentumflux_output_conversion(k+ki) * & |
---|
| 844 | surf_def_h(l)%vsws(m) * rmask(j,i,sr) ! w"v" |
---|
[3658] | 845 | !$ACC ATOMIC |
---|
[2232] | 846 | sums_l(k+ki,16,tn) = sums_l(k+ki,16,tn) + & |
---|
| 847 | heatflux_output_conversion(k+ki) * & |
---|
| 848 | surf_def_h(l)%shf(m) * rmask(j,i,sr) ! w"pt" |
---|
[3658] | 849 | #if 0 |
---|
[2232] | 850 | sums_l(k+ki,58,tn) = sums_l(k+ki,58,tn) + & |
---|
| 851 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
| 852 | sums_l(k+ki,61,tn) = sums_l(k+ki,61,tn) + & |
---|
| 853 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
[3658] | 854 | #endif |
---|
| 855 | #ifndef _OPENACC |
---|
[3294] | 856 | IF ( ocean_mode ) THEN |
---|
[2232] | 857 | sums_l(k+ki,65,tn) = sums_l(k+ki,65,tn) + & |
---|
| 858 | surf_def_h(l)%sasws(m) * rmask(j,i,sr) ! w"sa" |
---|
| 859 | ENDIF |
---|
| 860 | IF ( humidity ) THEN |
---|
| 861 | sums_l(k+ki,48,tn) = sums_l(k+ki,48,tn) + & |
---|
| 862 | waterflux_output_conversion(k+ki) * & |
---|
| 863 | surf_def_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 864 | sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & |
---|
| 865 | ( 1.0_wp + 0.61_wp * q(k+ki,j,i) ) * & |
---|
| 866 | surf_def_h(l)%shf(m) + 0.61_wp * pt(k+ki,j,i) * & |
---|
| 867 | surf_def_h(l)%qsws(m) ) & |
---|
| 868 | * heatflux_output_conversion(k+ki) |
---|
| 869 | IF ( cloud_droplets ) THEN |
---|
| 870 | sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & |
---|
| 871 | ( 1.0_wp + 0.61_wp * q(k+ki,j,i) - & |
---|
| 872 | ql(k+ki,j,i) ) * surf_def_h(l)%shf(m) + & |
---|
| 873 | 0.61_wp * pt(k+ki,j,i) * surf_def_h(l)%qsws(m) ) & |
---|
| 874 | * heatflux_output_conversion(k+ki) |
---|
| 875 | ENDIF |
---|
[3274] | 876 | IF ( bulk_cloud_model ) THEN |
---|
[2232] | 877 | ! |
---|
| 878 | !-- Formula does not work if ql(k+ki) /= 0.0 |
---|
| 879 | sums_l(k+ki,51,tn) = sums_l(k+ki,51,tn) + & |
---|
| 880 | waterflux_output_conversion(k+ki) * & |
---|
| 881 | surf_def_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 882 | ENDIF |
---|
| 883 | ENDIF |
---|
| 884 | IF ( passive_scalar ) THEN |
---|
[2270] | 885 | sums_l(k+ki,117,tn) = sums_l(k+ki,117,tn) + & |
---|
[2232] | 886 | surf_def_h(l)%ssws(m) * rmask(j,i,sr) ! w"s" |
---|
| 887 | ENDIF |
---|
[3658] | 888 | #endif |
---|
[2232] | 889 | |
---|
| 890 | ENDDO |
---|
| 891 | |
---|
| 892 | ENDIF |
---|
| 893 | ENDDO |
---|
[2696] | 894 | IF ( surf_lsm_h%end_index(j,i) >= & |
---|
| 895 | surf_lsm_h%start_index(j,i) ) THEN |
---|
[2232] | 896 | m = surf_lsm_h%start_index(j,i) |
---|
[3658] | 897 | !$ACC ATOMIC |
---|
[2232] | 898 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
[2037] | 899 | momentumflux_output_conversion(nzb) * & |
---|
[2232] | 900 | surf_lsm_h%usws(m) * rmask(j,i,sr) ! w"u" |
---|
[3658] | 901 | !$ACC ATOMIC |
---|
[2232] | 902 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
[2037] | 903 | momentumflux_output_conversion(nzb) * & |
---|
[2232] | 904 | surf_lsm_h%vsws(m) * rmask(j,i,sr) ! w"v" |
---|
[3658] | 905 | !$ACC ATOMIC |
---|
[2232] | 906 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
[2037] | 907 | heatflux_output_conversion(nzb) * & |
---|
[2232] | 908 | surf_lsm_h%shf(m) * rmask(j,i,sr) ! w"pt" |
---|
[3658] | 909 | #if 0 |
---|
[2232] | 910 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
[1353] | 911 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
[2232] | 912 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
[1353] | 913 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
[3658] | 914 | #endif |
---|
| 915 | #ifndef _OPENACC |
---|
[3294] | 916 | IF ( ocean_mode ) THEN |
---|
[2232] | 917 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
| 918 | surf_lsm_h%sasws(m) * rmask(j,i,sr) ! w"sa" |
---|
| 919 | ENDIF |
---|
| 920 | IF ( humidity ) THEN |
---|
| 921 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 922 | waterflux_output_conversion(nzb) * & |
---|
| 923 | surf_lsm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 924 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 925 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * & |
---|
| 926 | surf_lsm_h%shf(m) + 0.61_wp * pt(nzb,j,i) * & |
---|
| 927 | surf_lsm_h%qsws(m) ) & |
---|
| 928 | * heatflux_output_conversion(nzb) |
---|
| 929 | IF ( cloud_droplets ) THEN |
---|
| 930 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 931 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) - & |
---|
| 932 | ql(nzb,j,i) ) * surf_lsm_h%shf(m) + & |
---|
| 933 | 0.61_wp * pt(nzb,j,i) * surf_lsm_h%qsws(m) ) & |
---|
| 934 | * heatflux_output_conversion(nzb) |
---|
| 935 | ENDIF |
---|
[3274] | 936 | IF ( bulk_cloud_model ) THEN |
---|
[2232] | 937 | ! |
---|
| 938 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 939 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & |
---|
| 940 | waterflux_output_conversion(nzb) * & |
---|
| 941 | surf_lsm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 942 | ENDIF |
---|
| 943 | ENDIF |
---|
| 944 | IF ( passive_scalar ) THEN |
---|
[2270] | 945 | sums_l(nzb,117,tn) = sums_l(nzb,117,tn) + & |
---|
[2232] | 946 | surf_lsm_h%ssws(m) * rmask(j,i,sr) ! w"s" |
---|
| 947 | ENDIF |
---|
[3658] | 948 | #endif |
---|
[2232] | 949 | |
---|
[96] | 950 | ENDIF |
---|
[2696] | 951 | IF ( surf_usm_h%end_index(j,i) >= & |
---|
| 952 | surf_usm_h%start_index(j,i) ) THEN |
---|
[2232] | 953 | m = surf_usm_h%start_index(j,i) |
---|
[3658] | 954 | !$ACC ATOMIC |
---|
[2232] | 955 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
| 956 | momentumflux_output_conversion(nzb) * & |
---|
| 957 | surf_usm_h%usws(m) * rmask(j,i,sr) ! w"u" |
---|
[3658] | 958 | !$ACC ATOMIC |
---|
[2232] | 959 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
| 960 | momentumflux_output_conversion(nzb) * & |
---|
| 961 | surf_usm_h%vsws(m) * rmask(j,i,sr) ! w"v" |
---|
[3658] | 962 | !$ACC ATOMIC |
---|
[2232] | 963 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
| 964 | heatflux_output_conversion(nzb) * & |
---|
| 965 | surf_usm_h%shf(m) * rmask(j,i,sr) ! w"pt" |
---|
[3658] | 966 | #if 0 |
---|
[2232] | 967 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
| 968 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
| 969 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
| 970 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
[3658] | 971 | #endif |
---|
| 972 | #ifndef _OPENACC |
---|
[3294] | 973 | IF ( ocean_mode ) THEN |
---|
[2232] | 974 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
| 975 | surf_usm_h%sasws(m) * rmask(j,i,sr) ! w"sa" |
---|
| 976 | ENDIF |
---|
| 977 | IF ( humidity ) THEN |
---|
| 978 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
[2037] | 979 | waterflux_output_conversion(nzb) * & |
---|
[2232] | 980 | surf_usm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 981 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
[1353] | 982 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * & |
---|
[2232] | 983 | surf_usm_h%shf(m) + 0.61_wp * pt(nzb,j,i) * & |
---|
| 984 | surf_usm_h%qsws(m) ) & |
---|
[2037] | 985 | * heatflux_output_conversion(nzb) |
---|
[2232] | 986 | IF ( cloud_droplets ) THEN |
---|
| 987 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
[1353] | 988 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) - & |
---|
[2232] | 989 | ql(nzb,j,i) ) * surf_usm_h%shf(m) + & |
---|
| 990 | 0.61_wp * pt(nzb,j,i) * surf_usm_h%qsws(m) ) & |
---|
[2037] | 991 | * heatflux_output_conversion(nzb) |
---|
[2232] | 992 | ENDIF |
---|
[3274] | 993 | IF ( bulk_cloud_model ) THEN |
---|
[1] | 994 | ! |
---|
[2232] | 995 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 996 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & |
---|
[2037] | 997 | waterflux_output_conversion(nzb) * & |
---|
[2232] | 998 | surf_usm_h%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 999 | ENDIF |
---|
[1] | 1000 | ENDIF |
---|
[2232] | 1001 | IF ( passive_scalar ) THEN |
---|
[2270] | 1002 | sums_l(nzb,117,tn) = sums_l(nzb,117,tn) + & |
---|
[2232] | 1003 | surf_usm_h%ssws(m) * rmask(j,i,sr) ! w"s" |
---|
| 1004 | ENDIF |
---|
[3658] | 1005 | #endif |
---|
[2232] | 1006 | |
---|
[1] | 1007 | ENDIF |
---|
[2232] | 1008 | |
---|
[1] | 1009 | ENDIF |
---|
| 1010 | |
---|
[3658] | 1011 | #ifndef _OPENACC |
---|
[1691] | 1012 | IF ( .NOT. neutral ) THEN |
---|
[2696] | 1013 | IF ( surf_def_h(0)%end_index(j,i) >= & |
---|
| 1014 | surf_def_h(0)%start_index(j,i) ) THEN |
---|
[2232] | 1015 | m = surf_def_h(0)%start_index(j,i) |
---|
[2696] | 1016 | sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + & |
---|
[2232] | 1017 | surf_def_h(0)%ol(m) * rmask(j,i,sr) ! L |
---|
| 1018 | ENDIF |
---|
[2696] | 1019 | IF ( surf_lsm_h%end_index(j,i) >= & |
---|
| 1020 | surf_lsm_h%start_index(j,i) ) THEN |
---|
[2232] | 1021 | m = surf_lsm_h%start_index(j,i) |
---|
[2696] | 1022 | sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + & |
---|
[2232] | 1023 | surf_lsm_h%ol(m) * rmask(j,i,sr) ! L |
---|
| 1024 | ENDIF |
---|
[2696] | 1025 | IF ( surf_usm_h%end_index(j,i) >= & |
---|
| 1026 | surf_usm_h%start_index(j,i) ) THEN |
---|
[2232] | 1027 | m = surf_usm_h%start_index(j,i) |
---|
[2696] | 1028 | sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + & |
---|
[2232] | 1029 | surf_usm_h%ol(m) * rmask(j,i,sr) ! L |
---|
| 1030 | ENDIF |
---|
[1691] | 1031 | ENDIF |
---|
| 1032 | |
---|
[2296] | 1033 | IF ( radiation ) THEN |
---|
[2696] | 1034 | IF ( surf_def_h(0)%end_index(j,i) >= & |
---|
| 1035 | surf_def_h(0)%start_index(j,i) ) THEN |
---|
| 1036 | m = surf_def_h(0)%start_index(j,i) |
---|
| 1037 | sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & |
---|
| 1038 | surf_def_h(0)%rad_net(m) * rmask(j,i,sr) |
---|
| 1039 | sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & |
---|
| 1040 | surf_def_h(0)%rad_lw_in(m) * rmask(j,i,sr) |
---|
| 1041 | sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & |
---|
| 1042 | surf_def_h(0)%rad_lw_out(m) * rmask(j,i,sr) |
---|
| 1043 | sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & |
---|
| 1044 | surf_def_h(0)%rad_sw_in(m) * rmask(j,i,sr) |
---|
| 1045 | sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & |
---|
| 1046 | surf_def_h(0)%rad_sw_out(m) * rmask(j,i,sr) |
---|
| 1047 | ENDIF |
---|
| 1048 | IF ( surf_lsm_h%end_index(j,i) >= & |
---|
| 1049 | surf_lsm_h%start_index(j,i) ) THEN |
---|
| 1050 | m = surf_lsm_h%start_index(j,i) |
---|
| 1051 | sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & |
---|
| 1052 | surf_lsm_h%rad_net(m) * rmask(j,i,sr) |
---|
| 1053 | sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & |
---|
| 1054 | surf_lsm_h%rad_lw_in(m) * rmask(j,i,sr) |
---|
| 1055 | sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & |
---|
| 1056 | surf_lsm_h%rad_lw_out(m) * rmask(j,i,sr) |
---|
| 1057 | sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & |
---|
| 1058 | surf_lsm_h%rad_sw_in(m) * rmask(j,i,sr) |
---|
| 1059 | sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & |
---|
| 1060 | surf_lsm_h%rad_sw_out(m) * rmask(j,i,sr) |
---|
| 1061 | ENDIF |
---|
| 1062 | IF ( surf_usm_h%end_index(j,i) >= & |
---|
| 1063 | surf_usm_h%start_index(j,i) ) THEN |
---|
| 1064 | m = surf_usm_h%start_index(j,i) |
---|
| 1065 | sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & |
---|
| 1066 | surf_usm_h%rad_net(m) * rmask(j,i,sr) |
---|
| 1067 | sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & |
---|
| 1068 | surf_usm_h%rad_lw_in(m) * rmask(j,i,sr) |
---|
| 1069 | sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & |
---|
| 1070 | surf_usm_h%rad_lw_out(m) * rmask(j,i,sr) |
---|
| 1071 | sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & |
---|
| 1072 | surf_usm_h%rad_sw_in(m) * rmask(j,i,sr) |
---|
| 1073 | sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & |
---|
| 1074 | surf_usm_h%rad_sw_out(m) * rmask(j,i,sr) |
---|
| 1075 | ENDIF |
---|
[1585] | 1076 | |
---|
| 1077 | #if defined ( __rrtmg ) |
---|
| 1078 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
[2696] | 1079 | |
---|
| 1080 | IF ( surf_def_h(0)%end_index(j,i) >= & |
---|
| 1081 | surf_def_h(0)%start_index(j,i) ) THEN |
---|
| 1082 | m = surf_def_h(0)%start_index(j,i) |
---|
| 1083 | sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & |
---|
[2753] | 1084 | surf_def_h(0)%rrtm_aldif(0,m) * rmask(j,i,sr) |
---|
[2696] | 1085 | sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & |
---|
[2753] | 1086 | surf_def_h(0)%rrtm_aldir(0,m) * rmask(j,i,sr) |
---|
[2696] | 1087 | sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & |
---|
[2753] | 1088 | surf_def_h(0)%rrtm_asdif(0,m) * rmask(j,i,sr) |
---|
[2696] | 1089 | sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & |
---|
[2753] | 1090 | surf_def_h(0)%rrtm_asdir(0,m) * rmask(j,i,sr) |
---|
[2696] | 1091 | ENDIF |
---|
| 1092 | IF ( surf_lsm_h%end_index(j,i) >= & |
---|
| 1093 | surf_lsm_h%start_index(j,i) ) THEN |
---|
| 1094 | m = surf_lsm_h%start_index(j,i) |
---|
| 1095 | sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & |
---|
[2753] | 1096 | SUM( surf_lsm_h%frac(:,m) * & |
---|
| 1097 | surf_lsm_h%rrtm_aldif(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1098 | sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & |
---|
[2753] | 1099 | SUM( surf_lsm_h%frac(:,m) * & |
---|
| 1100 | surf_lsm_h%rrtm_aldir(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1101 | sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & |
---|
[2753] | 1102 | SUM( surf_lsm_h%frac(:,m) * & |
---|
| 1103 | surf_lsm_h%rrtm_asdif(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1104 | sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & |
---|
[2753] | 1105 | SUM( surf_lsm_h%frac(:,m) * & |
---|
| 1106 | surf_lsm_h%rrtm_asdir(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1107 | ENDIF |
---|
| 1108 | IF ( surf_usm_h%end_index(j,i) >= & |
---|
| 1109 | surf_usm_h%start_index(j,i) ) THEN |
---|
| 1110 | m = surf_usm_h%start_index(j,i) |
---|
| 1111 | sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & |
---|
[2753] | 1112 | SUM( surf_usm_h%frac(:,m) * & |
---|
| 1113 | surf_usm_h%rrtm_aldif(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1114 | sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & |
---|
[2753] | 1115 | SUM( surf_usm_h%frac(:,m) * & |
---|
| 1116 | surf_usm_h%rrtm_aldir(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1117 | sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & |
---|
[2753] | 1118 | SUM( surf_usm_h%frac(:,m) * & |
---|
| 1119 | surf_usm_h%rrtm_asdif(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1120 | sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & |
---|
[2753] | 1121 | SUM( surf_usm_h%frac(:,m) * & |
---|
| 1122 | surf_usm_h%rrtm_asdir(:,m) ) * rmask(j,i,sr) |
---|
[2696] | 1123 | ENDIF |
---|
| 1124 | |
---|
[1585] | 1125 | ENDIF |
---|
| 1126 | #endif |
---|
[1551] | 1127 | ENDIF |
---|
[3658] | 1128 | #endif |
---|
[1] | 1129 | ! |
---|
[19] | 1130 | !-- Subgridscale fluxes at the top surface |
---|
| 1131 | IF ( use_top_fluxes ) THEN |
---|
[2232] | 1132 | m = surf_def_h(2)%start_index(j,i) |
---|
[3658] | 1133 | !$ACC ATOMIC |
---|
| 1134 | sums_l(nzt,12,tn) = sums_l(nzt,12,tn) + & |
---|
| 1135 | momentumflux_output_conversion(nzt) * & |
---|
[2232] | 1136 | surf_def_h(2)%usws(m) * rmask(j,i,sr) ! w"u" |
---|
[3658] | 1137 | !$ACC ATOMIC |
---|
| 1138 | sums_l(nzt+1,12,tn) = sums_l(nzt+1,12,tn) + & |
---|
| 1139 | momentumflux_output_conversion(nzt+1) * & |
---|
| 1140 | surf_def_h(2)%usws(m) * rmask(j,i,sr) ! w"u" |
---|
| 1141 | !$ACC ATOMIC |
---|
| 1142 | sums_l(nzt,14,tn) = sums_l(nzt,14,tn) + & |
---|
| 1143 | momentumflux_output_conversion(nzt) * & |
---|
[2232] | 1144 | surf_def_h(2)%vsws(m) * rmask(j,i,sr) ! w"v" |
---|
[3658] | 1145 | !$ACC ATOMIC |
---|
| 1146 | sums_l(nzt+1,14,tn) = sums_l(nzt+1,14,tn) + & |
---|
| 1147 | momentumflux_output_conversion(nzt+1) * & |
---|
| 1148 | surf_def_h(2)%vsws(m) * rmask(j,i,sr) ! w"v" |
---|
| 1149 | !$ACC ATOMIC |
---|
| 1150 | sums_l(nzt,16,tn) = sums_l(nzt,16,tn) + & |
---|
| 1151 | heatflux_output_conversion(nzt) * & |
---|
[2232] | 1152 | surf_def_h(2)%shf(m) * rmask(j,i,sr) ! w"pt" |
---|
[3658] | 1153 | !$ACC ATOMIC |
---|
| 1154 | sums_l(nzt+1,16,tn) = sums_l(nzt+1,16,tn) + & |
---|
| 1155 | heatflux_output_conversion(nzt+1) * & |
---|
| 1156 | surf_def_h(2)%shf(m) * rmask(j,i,sr) ! w"pt" |
---|
| 1157 | #if 0 |
---|
[550] | 1158 | sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & |
---|
[1353] | 1159 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
[550] | 1160 | sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & |
---|
[1353] | 1161 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
[3658] | 1162 | #endif |
---|
| 1163 | #ifndef _OPENACC |
---|
[3294] | 1164 | IF ( ocean_mode ) THEN |
---|
[96] | 1165 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
[2232] | 1166 | surf_def_h(2)%sasws(m) * rmask(j,i,sr) ! w"sa" |
---|
[96] | 1167 | ENDIF |
---|
[75] | 1168 | IF ( humidity ) THEN |
---|
[1353] | 1169 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[2037] | 1170 | waterflux_output_conversion(nzt) * & |
---|
[2232] | 1171 | surf_def_h(2)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[1353] | 1172 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 1173 | ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * & |
---|
[2232] | 1174 | surf_def_h(2)%shf(m) + & |
---|
| 1175 | 0.61_wp * pt(nzt,j,i) * & |
---|
| 1176 | surf_def_h(2)%qsws(m) ) & |
---|
[2037] | 1177 | * heatflux_output_conversion(nzt) |
---|
[1007] | 1178 | IF ( cloud_droplets ) THEN |
---|
[1353] | 1179 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 1180 | ( 1.0_wp + 0.61_wp * q(nzt,j,i) - & |
---|
[2232] | 1181 | ql(nzt,j,i) ) * & |
---|
| 1182 | surf_def_h(2)%shf(m) + & |
---|
| 1183 | 0.61_wp * pt(nzt,j,i) * & |
---|
| 1184 | surf_def_h(2)%qsws(m) )& |
---|
[2037] | 1185 | * heatflux_output_conversion(nzt) |
---|
[1007] | 1186 | ENDIF |
---|
[3274] | 1187 | IF ( bulk_cloud_model ) THEN |
---|
[19] | 1188 | ! |
---|
| 1189 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 1190 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
[2037] | 1191 | waterflux_output_conversion(nzt) * & |
---|
[2232] | 1192 | surf_def_h(2)%qsws(m) * rmask(j,i,sr) |
---|
[19] | 1193 | ENDIF |
---|
| 1194 | ENDIF |
---|
| 1195 | IF ( passive_scalar ) THEN |
---|
[2270] | 1196 | sums_l(nzt,117,tn) = sums_l(nzt,117,tn) + & |
---|
[2232] | 1197 | surf_def_h(2)%ssws(m) * rmask(j,i,sr) ! w"s" |
---|
[19] | 1198 | ENDIF |
---|
[3658] | 1199 | #endif |
---|
[19] | 1200 | ENDIF |
---|
| 1201 | |
---|
| 1202 | ! |
---|
[1] | 1203 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
[132] | 1204 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 1205 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 1206 | !-- rearranged according to the staggered grid. |
---|
[2232] | 1207 | DO k = nzb, nzt |
---|
| 1208 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 22 ) ) |
---|
[1353] | 1209 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 1210 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 1211 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 1212 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 1213 | pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 1214 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
[667] | 1215 | |
---|
[1] | 1216 | !-- Higher moments |
---|
[3658] | 1217 | !$ACC ATOMIC |
---|
[1353] | 1218 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
[2232] | 1219 | rmask(j,i,sr) * flag |
---|
[3658] | 1220 | !$ACC ATOMIC |
---|
[1353] | 1221 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
[2232] | 1222 | rmask(j,i,sr) * flag |
---|
[1] | 1223 | |
---|
| 1224 | ! |
---|
[96] | 1225 | !-- Salinity flux and density (density does not belong to here, |
---|
[97] | 1226 | !-- but so far there is no other suitable place to calculate) |
---|
[3658] | 1227 | #ifndef _OPENACC |
---|
[3294] | 1228 | IF ( ocean_mode ) THEN |
---|
[1567] | 1229 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[1353] | 1230 | pts = 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
| 1231 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
| 1232 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
[2232] | 1233 | rmask(j,i,sr) * flag |
---|
[667] | 1234 | ENDIF |
---|
[2232] | 1235 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho_ocean(k,j,i) * & |
---|
| 1236 | rmask(j,i,sr) * flag |
---|
[1353] | 1237 | sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & |
---|
[2232] | 1238 | rmask(j,i,sr) * flag |
---|
[96] | 1239 | ENDIF |
---|
| 1240 | |
---|
| 1241 | ! |
---|
[1053] | 1242 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
| 1243 | !-- content, rain drop concentration and rain water content |
---|
[75] | 1244 | IF ( humidity ) THEN |
---|
[3274] | 1245 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[1353] | 1246 | pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
[1007] | 1247 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
[1353] | 1248 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
[4039] | 1249 | rho_air_zw(k) * & |
---|
[2037] | 1250 | heatflux_output_conversion(k) * & |
---|
[2232] | 1251 | rmask(j,i,sr) * flag |
---|
| 1252 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * rmask(j,i,sr) & |
---|
| 1253 | * flag |
---|
[1822] | 1254 | |
---|
[1053] | 1255 | IF ( .NOT. cloud_droplets ) THEN |
---|
[1353] | 1256 | pts = 0.5_wp * & |
---|
[1115] | 1257 | ( ( q(k,j,i) - ql(k,j,i) ) - & |
---|
| 1258 | hom(k,1,42,sr) + & |
---|
| 1259 | ( q(k+1,j,i) - ql(k+1,j,i) ) - & |
---|
[1053] | 1260 | hom(k+1,1,42,sr) ) |
---|
[1115] | 1261 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
[4039] | 1262 | rho_air_zw(k) * & |
---|
[2037] | 1263 | waterflux_output_conversion(k) * & |
---|
[2232] | 1264 | rmask(j,i,sr) * & |
---|
| 1265 | flag |
---|
[1822] | 1266 | sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * & |
---|
[2232] | 1267 | rmask(j,i,sr) * & |
---|
| 1268 | flag |
---|
[1822] | 1269 | sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) * & |
---|
[2232] | 1270 | rmask(j,i,sr) * & |
---|
| 1271 | flag |
---|
[2292] | 1272 | IF ( microphysics_morrison ) THEN |
---|
| 1273 | sums_l(k,123,tn) = sums_l(k,123,tn) + nc(k,j,i) * & |
---|
| 1274 | rmask(j,i,sr) *& |
---|
| 1275 | flag |
---|
| 1276 | ENDIF |
---|
[1822] | 1277 | IF ( microphysics_seifert ) THEN |
---|
| 1278 | sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * & |
---|
[2232] | 1279 | rmask(j,i,sr) *& |
---|
| 1280 | flag |
---|
[1822] | 1281 | sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * & |
---|
[2232] | 1282 | rmask(j,i,sr) *& |
---|
| 1283 | flag |
---|
[1053] | 1284 | ENDIF |
---|
| 1285 | ENDIF |
---|
[1822] | 1286 | |
---|
[1007] | 1287 | ELSE |
---|
[1567] | 1288 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[1353] | 1289 | pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 1290 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 1291 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
[4039] | 1292 | rho_air_zw(k) * & |
---|
[2037] | 1293 | heatflux_output_conversion(k) * & |
---|
[2232] | 1294 | rmask(j,i,sr) * & |
---|
| 1295 | flag |
---|
[1567] | 1296 | ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
[2037] | 1297 | sums_l(k,46,tn) = ( ( 1.0_wp + 0.61_wp * & |
---|
| 1298 | hom(k,1,41,sr) ) * & |
---|
| 1299 | sums_l(k,17,tn) + & |
---|
| 1300 | 0.61_wp * hom(k,1,4,sr) * & |
---|
| 1301 | sums_l(k,49,tn) & |
---|
[2232] | 1302 | ) * heatflux_output_conversion(k) * & |
---|
| 1303 | flag |
---|
[1007] | 1304 | END IF |
---|
| 1305 | END IF |
---|
[1] | 1306 | ENDIF |
---|
| 1307 | ! |
---|
| 1308 | !-- Passive scalar flux |
---|
[1353] | 1309 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & |
---|
[1567] | 1310 | .OR. sr /= 0 ) ) THEN |
---|
[2270] | 1311 | pts = 0.5_wp * ( s(k,j,i) - hom(k,1,115,sr) + & |
---|
| 1312 | s(k+1,j,i) - hom(k+1,1,115,sr) ) |
---|
| 1313 | sums_l(k,114,tn) = sums_l(k,114,tn) + pts * w(k,j,i) * & |
---|
[2232] | 1314 | rmask(j,i,sr) * flag |
---|
[1] | 1315 | ENDIF |
---|
[3658] | 1316 | #endif |
---|
[1] | 1317 | |
---|
| 1318 | ! |
---|
| 1319 | !-- Energy flux w*e* |
---|
[667] | 1320 | !-- has to be adjusted |
---|
[3658] | 1321 | !$ACC ATOMIC |
---|
[1353] | 1322 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5_wp * & |
---|
| 1323 | ( ust**2 + vst**2 + w(k,j,i)**2 ) & |
---|
[2674] | 1324 | * rho_air_zw(k) & |
---|
[2037] | 1325 | * momentumflux_output_conversion(k) & |
---|
[2232] | 1326 | * rmask(j,i,sr) * flag |
---|
[1] | 1327 | ENDDO |
---|
| 1328 | ENDDO |
---|
| 1329 | ENDDO |
---|
[2232] | 1330 | !$OMP END PARALLEL |
---|
[3658] | 1331 | |
---|
| 1332 | !$ACC UPDATE & |
---|
| 1333 | !$ACC HOST(sums_l(:,12,tn), sums_l(:,14,tn), sums_l(:,16,tn)) & |
---|
| 1334 | !$ACC HOST(sums_l(:,35,tn), sums_l(:,36,tn), sums_l(:,37,tn)) |
---|
[709] | 1335 | ! |
---|
[2232] | 1336 | !-- Treat land-surface quantities according to new wall model structure. |
---|
| 1337 | IF ( land_surface ) THEN |
---|
| 1338 | tn = 0 |
---|
| 1339 | !$OMP PARALLEL PRIVATE( i, j, m, tn ) |
---|
| 1340 | !$ tn = omp_get_thread_num() |
---|
| 1341 | !$OMP DO |
---|
| 1342 | DO m = 1, surf_lsm_h%ns |
---|
| 1343 | i = surf_lsm_h%i(m) |
---|
| 1344 | j = surf_lsm_h%j(m) |
---|
| 1345 | |
---|
| 1346 | IF ( i >= nxl .AND. i <= nxr .AND. & |
---|
| 1347 | j >= nys .AND. j <= nyn ) THEN |
---|
[2270] | 1348 | sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + surf_lsm_h%ghf(m) |
---|
| 1349 | sums_l(nzb,94,tn) = sums_l(nzb,94,tn) + surf_lsm_h%qsws_liq(m) |
---|
| 1350 | sums_l(nzb,95,tn) = sums_l(nzb,95,tn) + surf_lsm_h%qsws_soil(m) |
---|
| 1351 | sums_l(nzb,96,tn) = sums_l(nzb,96,tn) + surf_lsm_h%qsws_veg(m) |
---|
| 1352 | sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + surf_lsm_h%r_a(m) |
---|
| 1353 | sums_l(nzb,98,tn) = sums_l(nzb,98,tn)+ surf_lsm_h%r_s(m) |
---|
[2232] | 1354 | ENDIF |
---|
| 1355 | ENDDO |
---|
| 1356 | !$OMP END PARALLEL |
---|
| 1357 | |
---|
| 1358 | tn = 0 |
---|
| 1359 | !$OMP PARALLEL PRIVATE( i, j, k, m, tn ) |
---|
| 1360 | !$ tn = omp_get_thread_num() |
---|
| 1361 | !$OMP DO |
---|
| 1362 | DO m = 1, surf_lsm_h%ns |
---|
| 1363 | |
---|
| 1364 | i = surf_lsm_h%i(m) |
---|
| 1365 | j = surf_lsm_h%j(m) |
---|
| 1366 | |
---|
| 1367 | IF ( i >= nxl .AND. i <= nxr .AND. & |
---|
| 1368 | j >= nys .AND. j <= nyn ) THEN |
---|
| 1369 | |
---|
| 1370 | DO k = nzb_soil, nzt_soil |
---|
| 1371 | sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil_h%var_2d(k,m) & |
---|
| 1372 | * rmask(j,i,sr) |
---|
| 1373 | sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil_h%var_2d(k,m) & |
---|
| 1374 | * rmask(j,i,sr) |
---|
| 1375 | ENDDO |
---|
| 1376 | ENDIF |
---|
| 1377 | ENDDO |
---|
| 1378 | !$OMP END PARALLEL |
---|
| 1379 | ENDIF |
---|
| 1380 | ! |
---|
[709] | 1381 | !-- For speed optimization fluxes which have been computed in part directly |
---|
| 1382 | !-- inside the WS advection routines are treated seperatly |
---|
| 1383 | !-- Momentum fluxes first: |
---|
[2232] | 1384 | |
---|
| 1385 | tn = 0 |
---|
| 1386 | !$OMP PARALLEL PRIVATE( i, j, k, tn, flag ) |
---|
| 1387 | !$ tn = omp_get_thread_num() |
---|
[743] | 1388 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
[2232] | 1389 | !$OMP DO |
---|
| 1390 | DO i = nxl, nxr |
---|
| 1391 | DO j = nys, nyn |
---|
| 1392 | DO k = nzb, nzt |
---|
[1007] | 1393 | ! |
---|
[2232] | 1394 | !-- Flag 23 is used to mask surface fluxes as well as model-top |
---|
| 1395 | !-- fluxes, which are added further below. |
---|
| 1396 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1397 | BTEST( wall_flags_0(k,j,i), 23 ) ) * & |
---|
| 1398 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1399 | BTEST( wall_flags_0(k,j,i), 9 ) ) |
---|
| 1400 | |
---|
| 1401 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 1402 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 1403 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 1404 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
[667] | 1405 | ! |
---|
[2232] | 1406 | !-- Momentum flux w*u* |
---|
| 1407 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5_wp * & |
---|
| 1408 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
[2674] | 1409 | * rho_air_zw(k) & |
---|
[2232] | 1410 | * momentumflux_output_conversion(k) & |
---|
| 1411 | * ust * rmask(j,i,sr) & |
---|
| 1412 | * flag |
---|
| 1413 | ! |
---|
| 1414 | !-- Momentum flux w*v* |
---|
| 1415 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5_wp * & |
---|
| 1416 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
[2674] | 1417 | * rho_air_zw(k) & |
---|
[2232] | 1418 | * momentumflux_output_conversion(k) & |
---|
| 1419 | * vst * rmask(j,i,sr) & |
---|
| 1420 | * flag |
---|
| 1421 | ENDDO |
---|
| 1422 | ENDDO |
---|
| 1423 | ENDDO |
---|
[1] | 1424 | |
---|
[667] | 1425 | ENDIF |
---|
[1567] | 1426 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[2232] | 1427 | !$OMP DO |
---|
| 1428 | DO i = nxl, nxr |
---|
| 1429 | DO j = nys, nyn |
---|
| 1430 | DO k = nzb, nzt |
---|
| 1431 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1432 | BTEST( wall_flags_0(k,j,i), 23 ) ) * & |
---|
| 1433 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1434 | BTEST( wall_flags_0(k,j,i), 9 ) ) |
---|
[709] | 1435 | ! |
---|
[2232] | 1436 | !-- Vertical heat flux |
---|
| 1437 | sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5_wp * & |
---|
[1353] | 1438 | ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 1439 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
[4039] | 1440 | * rho_air_zw(k) & |
---|
[2037] | 1441 | * heatflux_output_conversion(k) & |
---|
[2232] | 1442 | * w(k,j,i) * rmask(j,i,sr) * flag |
---|
| 1443 | IF ( humidity ) THEN |
---|
| 1444 | pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
[1353] | 1445 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
[2232] | 1446 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
[4039] | 1447 | rho_air_zw(k) * & |
---|
[2037] | 1448 | waterflux_output_conversion(k) * & |
---|
[2232] | 1449 | rmask(j,i,sr) * flag |
---|
| 1450 | ENDIF |
---|
| 1451 | IF ( passive_scalar ) THEN |
---|
[2270] | 1452 | pts = 0.5_wp * ( s(k,j,i) - hom(k,1,115,sr) + & |
---|
| 1453 | s(k+1,j,i) - hom(k+1,1,115,sr) ) |
---|
| 1454 | sums_l(k,114,tn) = sums_l(k,114,tn) + pts * w(k,j,i) * & |
---|
[2232] | 1455 | rmask(j,i,sr) * flag |
---|
| 1456 | ENDIF |
---|
| 1457 | ENDDO |
---|
| 1458 | ENDDO |
---|
| 1459 | ENDDO |
---|
[667] | 1460 | |
---|
| 1461 | ENDIF |
---|
| 1462 | |
---|
[1] | 1463 | ! |
---|
[97] | 1464 | !-- Density at top follows Neumann condition |
---|
[3294] | 1465 | IF ( ocean_mode ) THEN |
---|
[388] | 1466 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
| 1467 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
| 1468 | ENDIF |
---|
[97] | 1469 | |
---|
| 1470 | ! |
---|
[1] | 1471 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
[106] | 1472 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
| 1473 | !-- First calculate the products, then the divergence. |
---|
[1] | 1474 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
[1691] | 1475 | IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) & |
---|
| 1476 | THEN |
---|
[1353] | 1477 | sums_ll = 0.0_wp ! local array |
---|
[1] | 1478 | |
---|
| 1479 | !$OMP DO |
---|
| 1480 | DO i = nxl, nxr |
---|
| 1481 | DO j = nys, nyn |
---|
[2232] | 1482 | DO k = nzb+1, nzt |
---|
| 1483 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
[1] | 1484 | |
---|
[1353] | 1485 | sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & |
---|
[1652] | 1486 | ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & |
---|
| 1487 | - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2& |
---|
| 1488 | + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & |
---|
[1654] | 1489 | - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2& |
---|
[2232] | 1490 | + w(k,j,i)**2 ) * flag |
---|
[1] | 1491 | |
---|
[1353] | 1492 | sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & |
---|
[2252] | 1493 | * ( ( p(k,j,i) + p(k+1,j,i) ) & |
---|
| 1494 | / momentumflux_output_conversion(k) ) & |
---|
| 1495 | * flag |
---|
[1] | 1496 | |
---|
| 1497 | ENDDO |
---|
| 1498 | ENDDO |
---|
| 1499 | ENDDO |
---|
[1353] | 1500 | sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom |
---|
| 1501 | sums_ll(nzt+1,1) = 0.0_wp |
---|
| 1502 | sums_ll(0,2) = 0.0_wp |
---|
| 1503 | sums_ll(nzt+1,2) = 0.0_wp |
---|
[1] | 1504 | |
---|
[678] | 1505 | DO k = nzb+1, nzt |
---|
[1] | 1506 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 1507 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
[106] | 1508 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
[1] | 1509 | ENDDO |
---|
| 1510 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 1511 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
[1353] | 1512 | sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb |
---|
[1] | 1513 | |
---|
| 1514 | ENDIF |
---|
| 1515 | |
---|
| 1516 | ! |
---|
[106] | 1517 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
[1691] | 1518 | IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) & |
---|
| 1519 | THEN |
---|
[1] | 1520 | !$OMP DO |
---|
| 1521 | DO i = nxl, nxr |
---|
| 1522 | DO j = nys, nyn |
---|
[2232] | 1523 | DO k = nzb+1, nzt |
---|
[1] | 1524 | |
---|
[2232] | 1525 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
| 1526 | |
---|
[1353] | 1527 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & |
---|
[1] | 1528 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 1529 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
[2232] | 1530 | ) * ddzw(k) & |
---|
| 1531 | * flag |
---|
[1] | 1532 | |
---|
[1353] | 1533 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & |
---|
[106] | 1534 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
[2232] | 1535 | ) * flag |
---|
[106] | 1536 | |
---|
[1] | 1537 | ENDDO |
---|
| 1538 | ENDDO |
---|
| 1539 | ENDDO |
---|
| 1540 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
[106] | 1541 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
[1] | 1542 | |
---|
| 1543 | ENDIF |
---|
| 1544 | |
---|
| 1545 | ! |
---|
| 1546 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 1547 | !-- Do it only, if profiles shall be plotted. |
---|
[1353] | 1548 | IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN |
---|
[1] | 1549 | |
---|
| 1550 | !$OMP DO |
---|
| 1551 | DO i = nxl, nxr |
---|
| 1552 | DO j = nys, nyn |
---|
[2232] | 1553 | DO k = nzb+1, nzt |
---|
| 1554 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
[1] | 1555 | ! |
---|
| 1556 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
[1353] | 1557 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & |
---|
[1] | 1558 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 1559 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
[2037] | 1560 | * rho_air_zw(k) & |
---|
| 1561 | * heatflux_output_conversion(k) & |
---|
[2232] | 1562 | * ddx * rmask(j,i,sr) * flag |
---|
[1353] | 1563 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & |
---|
[1] | 1564 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 1565 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
[2037] | 1566 | * rho_air_zw(k) & |
---|
| 1567 | * heatflux_output_conversion(k) & |
---|
[2232] | 1568 | * ddy * rmask(j,i,sr) * flag |
---|
[1] | 1569 | ! |
---|
| 1570 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 1571 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 1572 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
[1353] | 1573 | * 0.5_wp * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
[2037] | 1574 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
[2232] | 1575 | * heatflux_output_conversion(k) & |
---|
| 1576 | * flag |
---|
[1353] | 1577 | pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 1578 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
[1] | 1579 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 1580 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
[1353] | 1581 | * 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
[2037] | 1582 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
[2232] | 1583 | * heatflux_output_conversion(k) & |
---|
| 1584 | * flag |
---|
[1] | 1585 | ENDDO |
---|
| 1586 | ENDDO |
---|
| 1587 | ENDDO |
---|
| 1588 | ! |
---|
| 1589 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
[1353] | 1590 | sums_l(nzb,58,tn) = 0.0_wp |
---|
| 1591 | sums_l(nzb,59,tn) = 0.0_wp |
---|
| 1592 | sums_l(nzb,60,tn) = 0.0_wp |
---|
| 1593 | sums_l(nzb,61,tn) = 0.0_wp |
---|
| 1594 | sums_l(nzb,62,tn) = 0.0_wp |
---|
| 1595 | sums_l(nzb,63,tn) = 0.0_wp |
---|
[1] | 1596 | |
---|
| 1597 | ENDIF |
---|
[2073] | 1598 | !$OMP END PARALLEL |
---|
[87] | 1599 | |
---|
| 1600 | ! |
---|
[1365] | 1601 | !-- Collect current large scale advection and subsidence tendencies for |
---|
| 1602 | !-- data output |
---|
[1691] | 1603 | IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN |
---|
[1365] | 1604 | ! |
---|
| 1605 | !-- Interpolation in time of LSF_DATA |
---|
| 1606 | nt = 1 |
---|
[1386] | 1607 | DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) |
---|
[1365] | 1608 | nt = nt + 1 |
---|
| 1609 | ENDDO |
---|
[1386] | 1610 | IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN |
---|
[1365] | 1611 | nt = nt - 1 |
---|
| 1612 | ENDIF |
---|
| 1613 | |
---|
[1386] | 1614 | fac = ( simulated_time - dt_3d - time_vert(nt) ) & |
---|
[1365] | 1615 | / ( time_vert(nt+1)-time_vert(nt) ) |
---|
| 1616 | |
---|
| 1617 | |
---|
| 1618 | DO k = nzb, nzt |
---|
[1382] | 1619 | sums_ls_l(k,0) = td_lsa_lpt(k,nt) & |
---|
| 1620 | + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) |
---|
| 1621 | sums_ls_l(k,1) = td_lsa_q(k,nt) & |
---|
| 1622 | + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) |
---|
[1365] | 1623 | ENDDO |
---|
| 1624 | |
---|
[1382] | 1625 | sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) |
---|
| 1626 | sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) |
---|
| 1627 | |
---|
[1365] | 1628 | IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN |
---|
| 1629 | |
---|
| 1630 | DO k = nzb, nzt |
---|
[1382] | 1631 | sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * & |
---|
| 1632 | ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) |
---|
| 1633 | sums_ls_l(k,3) = td_sub_q(k,nt) + fac * & |
---|
| 1634 | ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) |
---|
[1365] | 1635 | ENDDO |
---|
| 1636 | |
---|
[1382] | 1637 | sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) |
---|
| 1638 | sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) |
---|
| 1639 | |
---|
[1365] | 1640 | ENDIF |
---|
| 1641 | |
---|
| 1642 | ENDIF |
---|
| 1643 | |
---|
[2232] | 1644 | tn = 0 |
---|
[2073] | 1645 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
[2232] | 1646 | !$ tn = omp_get_thread_num() |
---|
[1585] | 1647 | IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN |
---|
| 1648 | !$OMP DO |
---|
| 1649 | DO i = nxl, nxr |
---|
| 1650 | DO j = nys, nyn |
---|
[2232] | 1651 | DO k = nzb+1, nzt+1 |
---|
| 1652 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
| 1653 | |
---|
[2270] | 1654 | sums_l(k,100,tn) = sums_l(k,100,tn) + rad_lw_in(k,j,i) & |
---|
[2232] | 1655 | * rmask(j,i,sr) * flag |
---|
[2270] | 1656 | sums_l(k,101,tn) = sums_l(k,101,tn) + rad_lw_out(k,j,i) & |
---|
[2232] | 1657 | * rmask(j,i,sr) * flag |
---|
[2270] | 1658 | sums_l(k,102,tn) = sums_l(k,102,tn) + rad_sw_in(k,j,i) & |
---|
[2232] | 1659 | * rmask(j,i,sr) * flag |
---|
[2270] | 1660 | sums_l(k,103,tn) = sums_l(k,103,tn) + rad_sw_out(k,j,i) & |
---|
[2232] | 1661 | * rmask(j,i,sr) * flag |
---|
[2270] | 1662 | sums_l(k,104,tn) = sums_l(k,104,tn) + rad_lw_cs_hr(k,j,i) & |
---|
[2232] | 1663 | * rmask(j,i,sr) * flag |
---|
[2270] | 1664 | sums_l(k,105,tn) = sums_l(k,105,tn) + rad_lw_hr(k,j,i) & |
---|
[2232] | 1665 | * rmask(j,i,sr) * flag |
---|
[2270] | 1666 | sums_l(k,106,tn) = sums_l(k,106,tn) + rad_sw_cs_hr(k,j,i) & |
---|
[2232] | 1667 | * rmask(j,i,sr) * flag |
---|
[2270] | 1668 | sums_l(k,107,tn) = sums_l(k,107,tn) + rad_sw_hr(k,j,i) & |
---|
[2232] | 1669 | * rmask(j,i,sr) * flag |
---|
[1585] | 1670 | ENDDO |
---|
| 1671 | ENDDO |
---|
| 1672 | ENDDO |
---|
| 1673 | ENDIF |
---|
[3637] | 1674 | |
---|
[1365] | 1675 | ! |
---|
[3637] | 1676 | !-- Calculate the profiles for all other modules |
---|
| 1677 | CALL module_interface_statistics( 'profiles', sr, tn, dots_max ) |
---|
[3651] | 1678 | !$OMP END PARALLEL |
---|
[1] | 1679 | |
---|
| 1680 | ! |
---|
| 1681 | !-- Summation of thread sums |
---|
| 1682 | IF ( threads_per_task > 1 ) THEN |
---|
| 1683 | DO i = 1, threads_per_task-1 |
---|
| 1684 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 1685 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
[87] | 1686 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
| 1687 | sums_l(:,45:pr_palm,i) |
---|
| 1688 | IF ( max_pr_user > 0 ) THEN |
---|
| 1689 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
| 1690 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
| 1691 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
| 1692 | ENDIF |
---|
[3298] | 1693 | |
---|
| 1694 | IF ( air_chemistry ) THEN |
---|
| 1695 | IF ( max_pr_cs > 0 ) THEN |
---|
| 1696 | sums_l(:,pr_palm+max_pr_user+1:pr_palm + max_pr_user+ max_pr_cs,0) = & |
---|
| 1697 | sums_l(:,pr_palm+max_pr_user+1:pr_palm + max_pr_user+max_pr_cs,0) + & |
---|
| 1698 | sums_l(:,pr_palm+max_pr_user+1:pr_palm + max_pr_user+max_pr_cs,i) |
---|
| 1699 | |
---|
| 1700 | ENDIF |
---|
| 1701 | ENDIF |
---|
[4131] | 1702 | IF ( salsa ) THEN |
---|
| 1703 | IF ( max_pr_cs > 0 ) THEN |
---|
| 1704 | sums_l(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0) = & |
---|
| 1705 | sums_l(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0) + & |
---|
| 1706 | sums_l(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,i) |
---|
| 1707 | |
---|
| 1708 | ENDIF |
---|
| 1709 | ENDIF |
---|
[1] | 1710 | ENDDO |
---|
| 1711 | ENDIF |
---|
| 1712 | |
---|
| 1713 | #if defined( __parallel ) |
---|
[667] | 1714 | |
---|
[1] | 1715 | ! |
---|
| 1716 | !-- Compute total sum from local sums |
---|
[622] | 1717 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1365] | 1718 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
[1] | 1719 | MPI_SUM, comm2d, ierr ) |
---|
[1365] | 1720 | IF ( large_scale_forcing ) THEN |
---|
| 1721 | CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, & |
---|
| 1722 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1723 | ENDIF |
---|
[3298] | 1724 | |
---|
[3458] | 1725 | IF ( air_chemistry .AND. max_pr_cs > 0 ) THEN |
---|
[3298] | 1726 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[3458] | 1727 | DO i = 1, max_pr_cs |
---|
| 1728 | CALL MPI_ALLREDUCE( sums_l(nzb,pr_palm+max_pr_user+i,0), & |
---|
| 1729 | sums(nzb,pr_palm+max_pr_user+i), & |
---|
| 1730 | nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1731 | ENDDO |
---|
[3298] | 1732 | ENDIF |
---|
| 1733 | |
---|
[4131] | 1734 | IF ( salsa .AND. max_pr_salsa > 0 ) THEN |
---|
| 1735 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1736 | DO i = 1, max_pr_salsa |
---|
| 1737 | CALL MPI_ALLREDUCE( sums_l(nzb,pr_palm+max_pr_user+max_pr_cs+i,0), & |
---|
| 1738 | sums(nzb,pr_palm+max_pr_user+max_pr_user+i), & |
---|
| 1739 | nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1740 | ENDDO |
---|
| 1741 | ENDIF |
---|
| 1742 | |
---|
[1] | 1743 | #else |
---|
| 1744 | sums = sums_l(:,:,0) |
---|
[1365] | 1745 | IF ( large_scale_forcing ) THEN |
---|
| 1746 | sums(:,81:88) = sums_ls_l |
---|
| 1747 | ENDIF |
---|
[1] | 1748 | #endif |
---|
| 1749 | |
---|
| 1750 | ! |
---|
| 1751 | !-- Final values are obtained by division by the total number of grid points |
---|
| 1752 | !-- used for summation. After that store profiles. |
---|
[1738] | 1753 | !-- Check, if statistical regions do contain at least one grid point at the |
---|
| 1754 | !-- respective k-level, otherwise division by zero will lead to undefined |
---|
| 1755 | !-- values, which may cause e.g. problems with NetCDF output |
---|
[1] | 1756 | !-- Profiles: |
---|
| 1757 | DO k = nzb, nzt+1 |
---|
[1738] | 1758 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
| 1759 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
| 1760 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
| 1761 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
| 1762 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
| 1763 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
| 1764 | sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) |
---|
[2270] | 1765 | sums(k,89:112) = sums(k,89:112) / ngp_2dh(sr) |
---|
| 1766 | sums(k,114) = sums(k,114) / ngp_2dh(sr) |
---|
| 1767 | sums(k,117) = sums(k,117) / ngp_2dh(sr) |
---|
[1738] | 1768 | IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN |
---|
| 1769 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
| 1770 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
| 1771 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
| 1772 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
| 1773 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
| 1774 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
| 1775 | sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) |
---|
[2270] | 1776 | sums(k,116) = sums(k,116) / ngp_2dh_s_inner(k,sr) |
---|
| 1777 | sums(k,118:pr_palm-2) = sums(k,118:pr_palm-2) / ngp_2dh_s_inner(k,sr) |
---|
[3452] | 1778 | sums(k,123) = sums(k,123) * ngp_2dh_s_inner(k,sr) / ngp_2dh(sr) |
---|
[1738] | 1779 | ENDIF |
---|
[1] | 1780 | ENDDO |
---|
[667] | 1781 | |
---|
[1] | 1782 | !-- u* and so on |
---|
[87] | 1783 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
[1] | 1784 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 1785 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
[87] | 1786 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
[1] | 1787 | ngp_2dh(sr) |
---|
[197] | 1788 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
| 1789 | ngp_2dh(sr) |
---|
[1960] | 1790 | sums(nzb+13,pr_palm) = sums(nzb+13,pr_palm) / & ! ss |
---|
| 1791 | ngp_2dh(sr) |
---|
[2773] | 1792 | sums(nzb+14,pr_palm) = sums(nzb+14,pr_palm) / & ! surface temperature |
---|
| 1793 | ngp_2dh(sr) |
---|
[1] | 1794 | !-- eges, e* |
---|
[87] | 1795 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
[132] | 1796 | ngp_3d(sr) |
---|
[1] | 1797 | !-- Old and new divergence |
---|
[87] | 1798 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
[1] | 1799 | ngp_3d_inner(sr) |
---|
| 1800 | |
---|
[87] | 1801 | !-- User-defined profiles |
---|
| 1802 | IF ( max_pr_user > 0 ) THEN |
---|
| 1803 | DO k = nzb, nzt+1 |
---|
| 1804 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
| 1805 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
[132] | 1806 | ngp_2dh_s_inner(k,sr) |
---|
[87] | 1807 | ENDDO |
---|
| 1808 | ENDIF |
---|
[1007] | 1809 | |
---|
[3298] | 1810 | IF ( air_chemistry ) THEN |
---|
| 1811 | IF ( max_pr_cs > 0 ) THEN |
---|
| 1812 | DO k = nzb, nzt+1 |
---|
| 1813 | sums(k, pr_palm+1:pr_palm+max_pr_user+max_pr_cs) = & |
---|
| 1814 | sums(k, pr_palm+1:pr_palm+max_pr_user+max_pr_cs) / & |
---|
| 1815 | ngp_2dh_s_inner(k,sr) |
---|
| 1816 | ENDDO |
---|
| 1817 | ENDIF |
---|
| 1818 | ENDIF |
---|
| 1819 | |
---|
[4131] | 1820 | IF ( salsa ) THEN |
---|
| 1821 | IF ( max_pr_salsa > 0 ) THEN |
---|
| 1822 | DO k = nzb, nzt+1 |
---|
| 1823 | sums(k,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa) = & |
---|
| 1824 | sums(k,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa) & |
---|
| 1825 | / ngp_2dh_s_inner(k,sr) |
---|
| 1826 | ENDDO |
---|
| 1827 | ENDIF |
---|
| 1828 | ENDIF |
---|
| 1829 | |
---|
[1] | 1830 | ! |
---|
| 1831 | !-- Collect horizontal average in hom. |
---|
| 1832 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 1833 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 1834 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 1835 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 1836 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 1837 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 1838 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 1839 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 1840 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 1841 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 1842 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 1843 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 1844 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 1845 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 1846 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 1847 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 1848 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
[96] | 1849 | ! profile 24 is initial profile (sa) |
---|
| 1850 | ! profiles 25-29 left empty for initial |
---|
[1] | 1851 | ! profiles |
---|
| 1852 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 1853 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 1854 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 1855 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 1856 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 1857 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 1858 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 1859 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 1860 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
[1353] | 1861 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw |
---|
[1] | 1862 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
[531] | 1863 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
[1] | 1864 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 1865 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 1866 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 1867 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 1868 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 1869 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 1870 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 1871 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 1872 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 1873 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 1874 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
[2031] | 1875 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho_ocean )/dz |
---|
[1] | 1876 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 1877 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 1878 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 1879 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 1880 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 1881 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
[2031] | 1882 | hom(:,1,64,sr) = sums(:,64) ! rho_ocean |
---|
[96] | 1883 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
| 1884 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
| 1885 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
[106] | 1886 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
[2031] | 1887 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho_ocean |
---|
[197] | 1888 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
[388] | 1889 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
[2252] | 1890 | hom(:,1,72,sr) = hyp * 1E-2_wp ! hyp in hPa |
---|
[2292] | 1891 | hom(:,1,123,sr) = sums(:,123) ! nc |
---|
[1053] | 1892 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
| 1893 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
| 1894 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
| 1895 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
[1179] | 1896 | ! 77 is initial density profile |
---|
[1241] | 1897 | hom(:,1,78,sr) = ug ! ug |
---|
| 1898 | hom(:,1,79,sr) = vg ! vg |
---|
[1299] | 1899 | hom(:,1,80,sr) = w_subs ! w_subs |
---|
[1] | 1900 | |
---|
[1365] | 1901 | IF ( large_scale_forcing ) THEN |
---|
[1382] | 1902 | hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt |
---|
| 1903 | hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q |
---|
[1365] | 1904 | IF ( use_subsidence_tendencies ) THEN |
---|
[1382] | 1905 | hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt |
---|
| 1906 | hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q |
---|
[1365] | 1907 | ELSE |
---|
[1382] | 1908 | hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt |
---|
| 1909 | hom(:,1,84,sr) = sums(:,84) ! td_sub_q |
---|
[1365] | 1910 | ENDIF |
---|
[1382] | 1911 | hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt |
---|
| 1912 | hom(:,1,86,sr) = sums(:,86) ! td_nud_q |
---|
| 1913 | hom(:,1,87,sr) = sums(:,87) ! td_nud_u |
---|
| 1914 | hom(:,1,88,sr) = sums(:,88) ! td_nud_v |
---|
[1365] | 1915 | ENDIF |
---|
| 1916 | |
---|
[1551] | 1917 | IF ( land_surface ) THEN |
---|
| 1918 | hom(:,1,89,sr) = sums(:,89) ! t_soil |
---|
| 1919 | ! 90 is initial t_soil profile |
---|
| 1920 | hom(:,1,91,sr) = sums(:,91) ! m_soil |
---|
| 1921 | ! 92 is initial m_soil profile |
---|
[2270] | 1922 | hom(:,1,93,sr) = sums(:,93) ! ghf |
---|
| 1923 | hom(:,1,94,sr) = sums(:,94) ! qsws_liq |
---|
| 1924 | hom(:,1,95,sr) = sums(:,95) ! qsws_soil |
---|
| 1925 | hom(:,1,96,sr) = sums(:,96) ! qsws_veg |
---|
| 1926 | hom(:,1,97,sr) = sums(:,97) ! r_a |
---|
| 1927 | hom(:,1,98,sr) = sums(:,98) ! r_s |
---|
[1555] | 1928 | |
---|
[1551] | 1929 | ENDIF |
---|
| 1930 | |
---|
| 1931 | IF ( radiation ) THEN |
---|
[2270] | 1932 | hom(:,1,99,sr) = sums(:,99) ! rad_net |
---|
| 1933 | hom(:,1,100,sr) = sums(:,100) ! rad_lw_in |
---|
| 1934 | hom(:,1,101,sr) = sums(:,101) ! rad_lw_out |
---|
| 1935 | hom(:,1,102,sr) = sums(:,102) ! rad_sw_in |
---|
| 1936 | hom(:,1,103,sr) = sums(:,103) ! rad_sw_out |
---|
[1585] | 1937 | |
---|
[1691] | 1938 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
[2270] | 1939 | hom(:,1,104,sr) = sums(:,104) ! rad_lw_cs_hr |
---|
| 1940 | hom(:,1,105,sr) = sums(:,105) ! rad_lw_hr |
---|
| 1941 | hom(:,1,106,sr) = sums(:,106) ! rad_sw_cs_hr |
---|
| 1942 | hom(:,1,107,sr) = sums(:,107) ! rad_sw_hr |
---|
[1691] | 1943 | |
---|
[2270] | 1944 | hom(:,1,108,sr) = sums(:,108) ! rrtm_aldif |
---|
| 1945 | hom(:,1,109,sr) = sums(:,109) ! rrtm_aldir |
---|
| 1946 | hom(:,1,110,sr) = sums(:,110) ! rrtm_asdif |
---|
| 1947 | hom(:,1,111,sr) = sums(:,111) ! rrtm_asdir |
---|
[1585] | 1948 | ENDIF |
---|
[1551] | 1949 | ENDIF |
---|
| 1950 | |
---|
[2270] | 1951 | hom(:,1,112,sr) = sums(:,112) !: L |
---|
[1691] | 1952 | |
---|
[1960] | 1953 | IF ( passive_scalar ) THEN |
---|
[2270] | 1954 | hom(:,1,117,sr) = sums(:,117) ! w"s" |
---|
| 1955 | hom(:,1,114,sr) = sums(:,114) ! w*s* |
---|
| 1956 | hom(:,1,118,sr) = sums(:,117) + sums(:,114) ! ws |
---|
| 1957 | hom(:,1,116,sr) = sums(:,116) ! s*2 |
---|
[1960] | 1958 | ENDIF |
---|
| 1959 | |
---|
[2270] | 1960 | hom(:,1,119,sr) = rho_air ! rho_air in Kg/m^3 |
---|
| 1961 | hom(:,1,120,sr) = rho_air_zw ! rho_air_zw in Kg/m^3 |
---|
[2037] | 1962 | |
---|
[667] | 1963 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
[1] | 1964 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 1965 | |
---|
[87] | 1966 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
| 1967 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
| 1968 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
| 1969 | ENDIF |
---|
| 1970 | |
---|
[3298] | 1971 | IF ( air_chemistry ) THEN |
---|
| 1972 | IF ( max_pr_cs > 0 ) THEN ! chem_spcs profiles |
---|
| 1973 | hom(:, 1, pr_palm+max_pr_user+1:pr_palm + max_pr_user+max_pr_cs, sr) = & |
---|
| 1974 | sums(:, pr_palm+max_pr_user+1:pr_palm+max_pr_user+max_pr_cs) |
---|
| 1975 | ENDIF |
---|
| 1976 | ENDIF |
---|
[4131] | 1977 | |
---|
| 1978 | IF ( salsa ) THEN |
---|
| 1979 | IF ( max_pr_salsa > 0 ) THEN ! salsa profiles |
---|
| 1980 | hom(:,1,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa, sr) = & |
---|
| 1981 | sums(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa) |
---|
| 1982 | ENDIF |
---|
| 1983 | ENDIF |
---|
[1] | 1984 | ! |
---|
| 1985 | !-- Determine the boundary layer height using two different schemes. |
---|
[94] | 1986 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
| 1987 | !-- first relative minimum (maximum) of the total heat flux. |
---|
| 1988 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
| 1989 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
[3004] | 1990 | !-- (positive) for the first time. Attention: the resolved vertical sensible |
---|
| 1991 | !-- heat flux (hom(:,1,17,sr) = w*pt*) is not known at the beginning because |
---|
| 1992 | !-- the calculation happens in advec_s_ws which is called after |
---|
| 1993 | !-- flow_statistics. Therefore z_i is directly taken from restart data at |
---|
| 1994 | !-- the beginning of restart runs. |
---|
[3003] | 1995 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .OR. & |
---|
| 1996 | simulated_time_at_begin /= simulated_time ) THEN |
---|
[667] | 1997 | |
---|
[3003] | 1998 | z_i(1) = 0.0_wp |
---|
| 1999 | first = .TRUE. |
---|
| 2000 | |
---|
[3294] | 2001 | IF ( ocean_mode ) THEN |
---|
[3003] | 2002 | DO k = nzt, nzb+1, -1 |
---|
| 2003 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
| 2004 | first = .FALSE. |
---|
| 2005 | height = zw(k) |
---|
[97] | 2006 | ENDIF |
---|
[3003] | 2007 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
| 2008 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 2009 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
| 2010 | z_i(1) = zw(k) |
---|
| 2011 | ELSE |
---|
| 2012 | z_i(1) = height |
---|
| 2013 | ENDIF |
---|
| 2014 | EXIT |
---|
[94] | 2015 | ENDIF |
---|
[3003] | 2016 | ENDDO |
---|
| 2017 | ELSE |
---|
| 2018 | DO k = nzb, nzt-1 |
---|
| 2019 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
| 2020 | first = .FALSE. |
---|
| 2021 | height = zw(k) |
---|
| 2022 | ENDIF |
---|
| 2023 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
| 2024 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 2025 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
| 2026 | z_i(1) = zw(k) |
---|
| 2027 | ELSE |
---|
| 2028 | z_i(1) = height |
---|
| 2029 | ENDIF |
---|
| 2030 | EXIT |
---|
| 2031 | ENDIF |
---|
| 2032 | ENDDO |
---|
| 2033 | ENDIF |
---|
[1] | 2034 | |
---|
| 2035 | ! |
---|
[3003] | 2036 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
| 2037 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
| 2038 | !-- maximal local temperature gradient: starting from the second (the |
---|
| 2039 | !-- last but one) vertical gridpoint, the local gradient must be at least |
---|
| 2040 | !-- 0.2K/100m and greater than the next four gradients. |
---|
| 2041 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
| 2042 | !-- ocean case! |
---|
| 2043 | z_i(2) = 0.0_wp |
---|
| 2044 | DO k = nzb+1, nzt+1 |
---|
| 2045 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
| 2046 | ENDDO |
---|
| 2047 | dptdz_threshold = 0.2_wp / 100.0_wp |
---|
[291] | 2048 | |
---|
[3294] | 2049 | IF ( ocean_mode ) THEN |
---|
[3003] | 2050 | DO k = nzt+1, nzb+5, -1 |
---|
| 2051 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 2052 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND.& |
---|
| 2053 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
| 2054 | z_i(2) = zw(k-1) |
---|
| 2055 | EXIT |
---|
| 2056 | ENDIF |
---|
| 2057 | ENDDO |
---|
| 2058 | ELSE |
---|
| 2059 | DO k = nzb+1, nzt-3 |
---|
| 2060 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 2061 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND.& |
---|
| 2062 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
| 2063 | z_i(2) = zw(k-1) |
---|
| 2064 | EXIT |
---|
| 2065 | ENDIF |
---|
| 2066 | ENDDO |
---|
| 2067 | ENDIF |
---|
| 2068 | |
---|
[97] | 2069 | ENDIF |
---|
[1] | 2070 | |
---|
[87] | 2071 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
| 2072 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
[1] | 2073 | |
---|
| 2074 | ! |
---|
[1738] | 2075 | !-- Determine vertical index which is nearest to the mean surface level |
---|
| 2076 | !-- height of the respective statistic region |
---|
| 2077 | DO k = nzb, nzt |
---|
| 2078 | IF ( zw(k) >= mean_surface_level_height(sr) ) THEN |
---|
| 2079 | k_surface_level = k |
---|
| 2080 | EXIT |
---|
| 2081 | ENDIF |
---|
| 2082 | ENDDO |
---|
[3003] | 2083 | |
---|
[1738] | 2084 | ! |
---|
[1] | 2085 | !-- Computation of both the characteristic vertical velocity and |
---|
| 2086 | !-- the characteristic convective boundary layer temperature. |
---|
[1738] | 2087 | !-- The inversion height entering into the equation is defined with respect |
---|
| 2088 | !-- to the mean surface level height of the respective statistic region. |
---|
| 2089 | !-- The horizontal average at surface level index + 1 is input for the |
---|
| 2090 | !-- average temperature. |
---|
| 2091 | IF ( hom(k_surface_level,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp )& |
---|
| 2092 | THEN |
---|
[2252] | 2093 | hom(nzb+8,1,pr_palm,sr) = & |
---|
[2037] | 2094 | ( g / hom(k_surface_level+1,1,4,sr) * & |
---|
[2252] | 2095 | ( hom(k_surface_level,1,18,sr) / & |
---|
| 2096 | ( heatflux_output_conversion(nzb) * rho_air(nzb) ) ) & |
---|
[1738] | 2097 | * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp |
---|
[1] | 2098 | ELSE |
---|
[1353] | 2099 | hom(nzb+8,1,pr_palm,sr) = 0.0_wp |
---|
[1] | 2100 | ENDIF |
---|
| 2101 | |
---|
[48] | 2102 | ! |
---|
[2968] | 2103 | !-- Collect the time series quantities. Please note, timeseries quantities |
---|
| 2104 | !-- which are collected from horizontally averaged profiles, e.g. wpt |
---|
| 2105 | !-- or pt(zp), are treated specially. In case of elevated model surfaces, |
---|
| 2106 | !-- index nzb+1 might be within topography and data will be zero. Therefore, |
---|
| 2107 | !-- take value for the first atmosphere index, which is topo_min_level+1. |
---|
| 2108 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
| 2109 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
[48] | 2110 | ts_value(3,sr) = dt_3d |
---|
[2968] | 2111 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
| 2112 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
[48] | 2113 | ts_value(6,sr) = u_max |
---|
| 2114 | ts_value(7,sr) = v_max |
---|
| 2115 | ts_value(8,sr) = w_max |
---|
[2968] | 2116 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
| 2117 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
| 2118 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
| 2119 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
| 2120 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
| 2121 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 2122 | ts_value(15,sr) = hom(topo_min_level+1,1,16,sr) ! w'pt' at k=1 |
---|
| 2123 | ts_value(16,sr) = hom(topo_min_level+1,1,18,sr) ! wpt at k=1 |
---|
| 2124 | ts_value(17,sr) = hom(nzb+14,1,pr_palm,sr) ! pt(0) |
---|
| 2125 | ts_value(18,sr) = hom(topo_min_level+1,1,4,sr) ! pt(zp) |
---|
| 2126 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
| 2127 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
| 2128 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
[1709] | 2129 | |
---|
| 2130 | IF ( .NOT. neutral ) THEN |
---|
[2270] | 2131 | ts_value(22,sr) = hom(nzb,1,112,sr) ! L |
---|
[48] | 2132 | ELSE |
---|
[1709] | 2133 | ts_value(22,sr) = 1.0E10_wp |
---|
[48] | 2134 | ENDIF |
---|
[1] | 2135 | |
---|
[343] | 2136 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
[1551] | 2137 | |
---|
[1960] | 2138 | IF ( passive_scalar ) THEN |
---|
[2270] | 2139 | ts_value(24,sr) = hom(nzb+13,1,117,sr) ! w"s" ( to do ! ) |
---|
[1960] | 2140 | ts_value(25,sr) = hom(nzb+13,1,pr_palm,sr) ! s* |
---|
| 2141 | ENDIF |
---|
| 2142 | |
---|
[1] | 2143 | ! |
---|
[1551] | 2144 | !-- Collect land surface model timeseries |
---|
| 2145 | IF ( land_surface ) THEN |
---|
[2270] | 2146 | ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf |
---|
| 2147 | ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! qsws_liq |
---|
| 2148 | ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_soil |
---|
| 2149 | ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_veg |
---|
| 2150 | ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! r_a |
---|
| 2151 | ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! r_s |
---|
[1551] | 2152 | ENDIF |
---|
| 2153 | ! |
---|
| 2154 | !-- Collect radiation model timeseries |
---|
| 2155 | IF ( radiation ) THEN |
---|
[2270] | 2156 | ts_value(dots_rad,sr) = hom(nzb,1,99,sr) ! rad_net |
---|
| 2157 | ts_value(dots_rad+1,sr) = hom(nzb,1,100,sr) ! rad_lw_in |
---|
| 2158 | ts_value(dots_rad+2,sr) = hom(nzb,1,101,sr) ! rad_lw_out |
---|
| 2159 | ts_value(dots_rad+3,sr) = hom(nzb,1,102,sr) ! rad_sw_in |
---|
| 2160 | ts_value(dots_rad+4,sr) = hom(nzb,1,103,sr) ! rad_sw_out |
---|
[1585] | 2161 | |
---|
| 2162 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
[2270] | 2163 | ts_value(dots_rad+5,sr) = hom(nzb,1,108,sr) ! rrtm_aldif |
---|
| 2164 | ts_value(dots_rad+6,sr) = hom(nzb,1,109,sr) ! rrtm_aldir |
---|
| 2165 | ts_value(dots_rad+7,sr) = hom(nzb,1,110,sr) ! rrtm_asdif |
---|
| 2166 | ts_value(dots_rad+8,sr) = hom(nzb,1,111,sr) ! rrtm_asdir |
---|
[1585] | 2167 | ENDIF |
---|
| 2168 | |
---|
[1551] | 2169 | ENDIF |
---|
| 2170 | |
---|
| 2171 | ! |
---|
[3637] | 2172 | !-- Calculate additional statistics provided by other modules |
---|
| 2173 | CALL module_interface_statistics( 'time_series', sr, 0, dots_max ) |
---|
[2817] | 2174 | |
---|
[48] | 2175 | ENDDO ! loop of the subregions |
---|
| 2176 | |
---|
[1] | 2177 | ! |
---|
[1918] | 2178 | !-- If required, sum up horizontal averages for subsequent time averaging. |
---|
| 2179 | !-- Do not sum, if flow statistics is called before the first initial time step. |
---|
| 2180 | IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN |
---|
[1353] | 2181 | IF ( average_count_pr == 0 ) hom_sum = 0.0_wp |
---|
[1] | 2182 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 2183 | average_count_pr = average_count_pr + 1 |
---|
| 2184 | do_sum = .FALSE. |
---|
| 2185 | ENDIF |
---|
| 2186 | |
---|
| 2187 | ! |
---|
| 2188 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 2189 | !-- This flag is reset after each time step in time_integration. |
---|
| 2190 | flow_statistics_called = .TRUE. |
---|
| 2191 | |
---|
| 2192 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 2193 | |
---|
| 2194 | |
---|
| 2195 | END SUBROUTINE flow_statistics |
---|