[1] | 1 | SUBROUTINE flow_statistics |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[254] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[254] | 6 | ! Output of messages replaced by message handling routine. |
---|
[1] | 7 | ! |
---|
[254] | 8 | ! |
---|
[1] | 9 | ! Former revisions: |
---|
| 10 | ! ----------------- |
---|
[3] | 11 | ! $Id: flow_statistics.f90 254 2009-03-05 15:33:42Z letzel $ |
---|
[39] | 12 | ! |
---|
[198] | 13 | ! 197 2008-09-16 15:29:03Z raasch |
---|
| 14 | ! Spline timeseries splptx etc. removed, timeseries w'u', w'v', w'q' (k=0) |
---|
| 15 | ! added, |
---|
| 16 | ! bugfix: divide sums(k,8) (e) and sums(k,34) (e*) by ngp_2dh_s_inner(k,sr) |
---|
| 17 | ! (like other scalars) |
---|
| 18 | ! |
---|
[139] | 19 | ! 133 2007-11-20 10:10:53Z letzel |
---|
| 20 | ! Vertical profiles now based on nzb_s_inner; they are divided by |
---|
| 21 | ! ngp_2dh_s_inner (scalars, procucts of scalars) and ngp_2dh (staggered |
---|
| 22 | ! velocity components and their products, procucts of scalars and velocity |
---|
| 23 | ! components), respectively. |
---|
| 24 | ! |
---|
[110] | 25 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 26 | ! Prescribed momentum fluxes at the top surface are used, |
---|
| 27 | ! profiles for w*p* and w"e are calculated |
---|
| 28 | ! |
---|
[98] | 29 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 30 | ! Statistics for ocean version (salinity, density) added, |
---|
| 31 | ! calculation of z_i and Deardorff velocity scale adjusted to be used with |
---|
| 32 | ! the ocean version |
---|
| 33 | ! |
---|
[90] | 34 | ! 87 2007-05-22 15:46:47Z raasch |
---|
| 35 | ! Two more arguments added to user_statistics, which is now also called for |
---|
| 36 | ! user-defined profiles, |
---|
| 37 | ! var_hom and var_sum renamed pr_palm |
---|
| 38 | ! |
---|
[83] | 39 | ! 82 2007-04-16 15:40:52Z raasch |
---|
| 40 | ! Cpp-directive lcmuk changed to intel_openmp_bug |
---|
| 41 | ! |
---|
[77] | 42 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 43 | ! Collection of time series quantities moved from routine flow_statistics to |
---|
| 44 | ! here, routine user_statistics is called for each statistic region, |
---|
| 45 | ! moisture renamed humidity |
---|
| 46 | ! |
---|
[39] | 47 | ! 19 2007-02-23 04:53:48Z raasch |
---|
[77] | 48 | ! fluxes at top modified (tswst, qswst) |
---|
[39] | 49 | ! |
---|
[3] | 50 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 51 | ! |
---|
[1] | 52 | ! Revision 1.41 2006/08/04 14:37:50 raasch |
---|
| 53 | ! Error removed in non-parallel part (sums_l) |
---|
| 54 | ! |
---|
| 55 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
| 56 | ! Initial revision |
---|
| 57 | ! |
---|
| 58 | ! |
---|
| 59 | ! Description: |
---|
| 60 | ! ------------ |
---|
| 61 | ! Compute average profiles and further average flow quantities for the different |
---|
| 62 | ! user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
| 63 | ! |
---|
[132] | 64 | ! NOTE: For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
| 65 | ! ---- lower vertical index for k-loops for all variables, although strictly |
---|
| 66 | ! speaking the k-loops would have to be split up according to the staggered |
---|
| 67 | ! grid. However, this implies no error since staggered velocity components are |
---|
| 68 | ! zero at the walls and inside buildings. |
---|
[1] | 69 | !------------------------------------------------------------------------------! |
---|
| 70 | |
---|
| 71 | USE arrays_3d |
---|
| 72 | USE cloud_parameters |
---|
| 73 | USE cpulog |
---|
| 74 | USE grid_variables |
---|
| 75 | USE indices |
---|
| 76 | USE interfaces |
---|
| 77 | USE pegrid |
---|
| 78 | USE statistics |
---|
| 79 | USE control_parameters |
---|
| 80 | |
---|
| 81 | IMPLICIT NONE |
---|
| 82 | |
---|
| 83 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
| 84 | LOGICAL :: first |
---|
| 85 | REAL :: height, pts, sums_l_eper, sums_l_etot, ust, ust2, u2, vst, & |
---|
| 86 | vst2, v2, w2, z_i(2) |
---|
| 87 | REAL :: sums_ll(nzb:nzt+1,2) |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 91 | |
---|
| 92 | ! |
---|
| 93 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 94 | !-- called once after the current time step |
---|
| 95 | IF ( flow_statistics_called ) THEN |
---|
[254] | 96 | |
---|
| 97 | message_string = 'flow_statistics is called two times within one timestep' |
---|
| 98 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
| 99 | |
---|
[1] | 100 | ENDIF |
---|
| 101 | |
---|
| 102 | ! |
---|
| 103 | !-- Compute statistics for each (sub-)region |
---|
| 104 | DO sr = 0, statistic_regions |
---|
| 105 | |
---|
| 106 | ! |
---|
| 107 | !-- Initialize (local) summation array |
---|
| 108 | sums_l = 0.0 |
---|
| 109 | |
---|
| 110 | ! |
---|
| 111 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 112 | !-- array |
---|
| 113 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 114 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
| 115 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
[87] | 116 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 117 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
[1] | 118 | |
---|
| 119 | ! |
---|
| 120 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 121 | !-- They must have been computed before, because they are already required |
---|
| 122 | !-- for other horizontal averages. |
---|
| 123 | tn = 0 |
---|
| 124 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
[82] | 125 | #if defined( __intel_openmp_bug ) |
---|
[1] | 126 | tn = omp_get_thread_num() |
---|
| 127 | #else |
---|
| 128 | !$ tn = omp_get_thread_num() |
---|
| 129 | #endif |
---|
| 130 | |
---|
| 131 | !$OMP DO |
---|
| 132 | DO i = nxl, nxr |
---|
| 133 | DO j = nys, nyn |
---|
[132] | 134 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 135 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
| 136 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
| 137 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
| 138 | ENDDO |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | |
---|
| 142 | ! |
---|
[96] | 143 | !-- Horizontally averaged profile of salinity |
---|
| 144 | IF ( ocean ) THEN |
---|
| 145 | !$OMP DO |
---|
| 146 | DO i = nxl, nxr |
---|
| 147 | DO j = nys, nyn |
---|
[132] | 148 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[96] | 149 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
| 150 | sa(k,j,i) * rmask(j,i,sr) |
---|
| 151 | ENDDO |
---|
| 152 | ENDDO |
---|
| 153 | ENDDO |
---|
| 154 | ENDIF |
---|
| 155 | |
---|
| 156 | ! |
---|
[1] | 157 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
| 158 | !-- total water content, specific humidity and liquid water potential |
---|
| 159 | !-- temperature |
---|
[75] | 160 | IF ( humidity ) THEN |
---|
[1] | 161 | !$OMP DO |
---|
| 162 | DO i = nxl, nxr |
---|
| 163 | DO j = nys, nyn |
---|
[132] | 164 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 165 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
| 166 | vpt(k,j,i) * rmask(j,i,sr) |
---|
| 167 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
| 168 | q(k,j,i) * rmask(j,i,sr) |
---|
| 169 | ENDDO |
---|
| 170 | ENDDO |
---|
| 171 | ENDDO |
---|
| 172 | IF ( cloud_physics ) THEN |
---|
| 173 | !$OMP DO |
---|
| 174 | DO i = nxl, nxr |
---|
| 175 | DO j = nys, nyn |
---|
[132] | 176 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 177 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
| 178 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
| 179 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
| 180 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
| 181 | ) * rmask(j,i,sr) |
---|
| 182 | ENDDO |
---|
| 183 | ENDDO |
---|
| 184 | ENDDO |
---|
| 185 | ENDIF |
---|
| 186 | ENDIF |
---|
| 187 | |
---|
| 188 | ! |
---|
| 189 | !-- Horizontally averaged profiles of passive scalar |
---|
| 190 | IF ( passive_scalar ) THEN |
---|
| 191 | !$OMP DO |
---|
| 192 | DO i = nxl, nxr |
---|
| 193 | DO j = nys, nyn |
---|
[132] | 194 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 195 | sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) |
---|
| 196 | ENDDO |
---|
| 197 | ENDDO |
---|
| 198 | ENDDO |
---|
| 199 | ENDIF |
---|
| 200 | !$OMP END PARALLEL |
---|
| 201 | |
---|
| 202 | ! |
---|
| 203 | !-- Summation of thread sums |
---|
| 204 | IF ( threads_per_task > 1 ) THEN |
---|
| 205 | DO i = 1, threads_per_task-1 |
---|
| 206 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 207 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 208 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
[96] | 209 | IF ( ocean ) THEN |
---|
| 210 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
| 211 | ENDIF |
---|
[75] | 212 | IF ( humidity ) THEN |
---|
[1] | 213 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 214 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
| 215 | IF ( cloud_physics ) THEN |
---|
| 216 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 217 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 218 | ENDIF |
---|
| 219 | ENDIF |
---|
| 220 | IF ( passive_scalar ) THEN |
---|
| 221 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 222 | ENDIF |
---|
| 223 | ENDDO |
---|
| 224 | ENDIF |
---|
| 225 | |
---|
| 226 | #if defined( __parallel ) |
---|
| 227 | ! |
---|
| 228 | !-- Compute total sum from local sums |
---|
| 229 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
| 230 | MPI_SUM, comm2d, ierr ) |
---|
| 231 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
| 232 | MPI_SUM, comm2d, ierr ) |
---|
| 233 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
| 234 | MPI_SUM, comm2d, ierr ) |
---|
[96] | 235 | IF ( ocean ) THEN |
---|
| 236 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
| 237 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 238 | ENDIF |
---|
[75] | 239 | IF ( humidity ) THEN |
---|
[1] | 240 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
| 241 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 242 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 243 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 244 | IF ( cloud_physics ) THEN |
---|
| 245 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
| 246 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 247 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
| 248 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 249 | ENDIF |
---|
| 250 | ENDIF |
---|
| 251 | |
---|
| 252 | IF ( passive_scalar ) THEN |
---|
| 253 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 254 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 255 | ENDIF |
---|
| 256 | #else |
---|
| 257 | sums(:,1) = sums_l(:,1,0) |
---|
| 258 | sums(:,2) = sums_l(:,2,0) |
---|
| 259 | sums(:,4) = sums_l(:,4,0) |
---|
[96] | 260 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
[75] | 261 | IF ( humidity ) THEN |
---|
[1] | 262 | sums(:,44) = sums_l(:,44,0) |
---|
| 263 | sums(:,41) = sums_l(:,41,0) |
---|
| 264 | IF ( cloud_physics ) THEN |
---|
| 265 | sums(:,42) = sums_l(:,42,0) |
---|
| 266 | sums(:,43) = sums_l(:,43,0) |
---|
| 267 | ENDIF |
---|
| 268 | ENDIF |
---|
| 269 | IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0) |
---|
| 270 | #endif |
---|
| 271 | |
---|
| 272 | ! |
---|
| 273 | !-- Final values are obtained by division by the total number of grid points |
---|
| 274 | !-- used for summation. After that store profiles. |
---|
[132] | 275 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
| 276 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
| 277 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 278 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 279 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 280 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
| 281 | |
---|
| 282 | ! |
---|
[96] | 283 | !-- Salinity |
---|
| 284 | IF ( ocean ) THEN |
---|
[132] | 285 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
[96] | 286 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
| 287 | ENDIF |
---|
| 288 | |
---|
| 289 | ! |
---|
[1] | 290 | !-- Humidity and cloud parameters |
---|
[75] | 291 | IF ( humidity ) THEN |
---|
[132] | 292 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
| 293 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 294 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 295 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
| 296 | IF ( cloud_physics ) THEN |
---|
[132] | 297 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
| 298 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 299 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 300 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 301 | ENDIF |
---|
| 302 | ENDIF |
---|
| 303 | |
---|
| 304 | ! |
---|
| 305 | !-- Passive scalar |
---|
[132] | 306 | IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / & |
---|
| 307 | ngp_2dh_s_inner(:,sr) ! s (q) |
---|
[1] | 308 | |
---|
| 309 | ! |
---|
| 310 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 311 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 312 | !-- column of sums_l) and some diagnostic quantities. |
---|
[132] | 313 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 314 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 315 | !-- rearranged according to the staggered grid. |
---|
[132] | 316 | !-- However, this implies no error since staggered velocity components |
---|
| 317 | !-- are zero at the walls and inside buildings. |
---|
[1] | 318 | tn = 0 |
---|
[82] | 319 | #if defined( __intel_openmp_bug ) |
---|
[1] | 320 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
| 321 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 322 | tn = omp_get_thread_num() |
---|
| 323 | #else |
---|
| 324 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 325 | !$ tn = omp_get_thread_num() |
---|
| 326 | #endif |
---|
| 327 | !$OMP DO |
---|
| 328 | DO i = nxl, nxr |
---|
| 329 | DO j = nys, nyn |
---|
| 330 | sums_l_etot = 0.0 |
---|
| 331 | sums_l_eper = 0.0 |
---|
[132] | 332 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 333 | u2 = u(k,j,i)**2 |
---|
| 334 | v2 = v(k,j,i)**2 |
---|
| 335 | w2 = w(k,j,i)**2 |
---|
| 336 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 337 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 338 | ! |
---|
| 339 | !-- Prognostic and diagnostic variables |
---|
| 340 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
| 341 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
| 342 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
| 343 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
| 344 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
| 345 | |
---|
| 346 | ! |
---|
| 347 | !-- Variances |
---|
| 348 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
| 349 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
| 350 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
| 351 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
| 352 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
| 353 | ! |
---|
| 354 | !-- Higher moments |
---|
| 355 | !-- (Computation of the skewness of w further below) |
---|
| 356 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i) * w2 * & |
---|
| 357 | rmask(j,i,sr) |
---|
| 358 | ! |
---|
| 359 | !-- Perturbation energy |
---|
| 360 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5 * ( ust2 + vst2 + w2 ) & |
---|
| 361 | * rmask(j,i,sr) |
---|
| 362 | sums_l_etot = sums_l_etot + & |
---|
| 363 | 0.5 * ( u2 + v2 + w2 ) * rmask(j,i,sr) |
---|
| 364 | sums_l_eper = sums_l_eper + & |
---|
| 365 | 0.5 * ( ust2+vst2+w2 ) * rmask(j,i,sr) |
---|
| 366 | ENDDO |
---|
| 367 | ! |
---|
| 368 | !-- Total and perturbation energy for the total domain (being |
---|
| 369 | !-- collected in the last column of sums_l). Summation of these |
---|
| 370 | !-- quantities is seperated from the previous loop in order to |
---|
| 371 | !-- allow vectorization of that loop. |
---|
[87] | 372 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
| 373 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) + sums_l_eper |
---|
[1] | 374 | ! |
---|
| 375 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
[87] | 376 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[1] | 377 | us(j,i) * rmask(j,i,sr) |
---|
[87] | 378 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[1] | 379 | usws(j,i) * rmask(j,i,sr) |
---|
[87] | 380 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[1] | 381 | vsws(j,i) * rmask(j,i,sr) |
---|
[87] | 382 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[1] | 383 | ts(j,i) * rmask(j,i,sr) |
---|
[197] | 384 | IF ( humidity ) THEN |
---|
| 385 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
| 386 | qs(j,i) * rmask(j,i,sr) |
---|
| 387 | ENDIF |
---|
[1] | 388 | ENDDO |
---|
| 389 | ENDDO |
---|
| 390 | |
---|
| 391 | ! |
---|
| 392 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
| 393 | !$OMP DO |
---|
| 394 | DO i = nxl, nxr |
---|
| 395 | DO j = nys, nyn |
---|
| 396 | ! |
---|
| 397 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
| 398 | !-- oterwise from k=nzb+1) |
---|
[132] | 399 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
[1] | 400 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 401 | !-- split up according to the staggered grid. |
---|
[132] | 402 | !-- However, this implies no error since staggered velocity |
---|
| 403 | !-- components are zero at the walls and inside buildings. |
---|
| 404 | |
---|
| 405 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
[1] | 406 | ! |
---|
| 407 | !-- Momentum flux w"u" |
---|
| 408 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25 * ( & |
---|
| 409 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 410 | ) * ( & |
---|
| 411 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 412 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 413 | ) * rmask(j,i,sr) |
---|
| 414 | ! |
---|
| 415 | !-- Momentum flux w"v" |
---|
| 416 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25 * ( & |
---|
| 417 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 418 | ) * ( & |
---|
| 419 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 420 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 421 | ) * rmask(j,i,sr) |
---|
| 422 | ! |
---|
| 423 | !-- Heat flux w"pt" |
---|
| 424 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
| 425 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 426 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 427 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 428 | |
---|
| 429 | |
---|
| 430 | ! |
---|
[96] | 431 | !-- Salinity flux w"sa" |
---|
| 432 | IF ( ocean ) THEN |
---|
| 433 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
| 434 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 435 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
| 436 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 437 | ENDIF |
---|
| 438 | |
---|
| 439 | ! |
---|
[1] | 440 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
[75] | 441 | IF ( humidity ) THEN |
---|
[1] | 442 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
| 443 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 444 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
| 445 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 446 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 447 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 448 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 449 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 450 | IF ( cloud_physics ) THEN |
---|
| 451 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
| 452 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 453 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
| 454 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
| 455 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 456 | ENDIF |
---|
| 457 | ENDIF |
---|
| 458 | |
---|
| 459 | ! |
---|
| 460 | !-- Passive scalar flux |
---|
| 461 | IF ( passive_scalar ) THEN |
---|
| 462 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 463 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 464 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 465 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 466 | ENDIF |
---|
| 467 | |
---|
| 468 | ENDDO |
---|
| 469 | |
---|
| 470 | ! |
---|
| 471 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 472 | IF ( use_surface_fluxes ) THEN |
---|
| 473 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
| 474 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 475 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
| 476 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 477 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
| 478 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 479 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
| 480 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 481 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
| 482 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
[96] | 483 | IF ( ocean ) THEN |
---|
| 484 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
| 485 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 486 | ENDIF |
---|
[75] | 487 | IF ( humidity ) THEN |
---|
[1] | 488 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 489 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 490 | IF ( cloud_physics ) THEN |
---|
| 491 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 492 | ( 1.0 + 0.61 * q(nzb,j,i) ) * & |
---|
| 493 | shf(j,i) + 0.61 * pt(nzb,j,i) * & |
---|
| 494 | qsws(j,i) & |
---|
| 495 | ) |
---|
| 496 | ! |
---|
| 497 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 498 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & ! w"q" (w"qv") |
---|
| 499 | qsws(j,i) * rmask(j,i,sr) |
---|
| 500 | ENDIF |
---|
| 501 | ENDIF |
---|
| 502 | IF ( passive_scalar ) THEN |
---|
| 503 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 504 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 505 | ENDIF |
---|
| 506 | ENDIF |
---|
| 507 | |
---|
| 508 | ! |
---|
[19] | 509 | !-- Subgridscale fluxes at the top surface |
---|
| 510 | IF ( use_top_fluxes ) THEN |
---|
[102] | 511 | sums_l(nzt,12,tn) = sums_l(nzt,12,tn) + & |
---|
| 512 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 513 | sums_l(nzt,14,tn) = sums_l(nzt,14,tn) + & |
---|
| 514 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
[19] | 515 | sums_l(nzt,16,tn) = sums_l(nzt,16,tn) + & |
---|
| 516 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 517 | sums_l(nzt,58,tn) = sums_l(nzt,58,tn) + & |
---|
| 518 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 519 | sums_l(nzt,61,tn) = sums_l(nzt,61,tn) + & |
---|
| 520 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
[96] | 521 | IF ( ocean ) THEN |
---|
| 522 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
| 523 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 524 | ENDIF |
---|
[75] | 525 | IF ( humidity ) THEN |
---|
[19] | 526 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
| 527 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 528 | IF ( cloud_physics ) THEN |
---|
| 529 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 530 | ( 1.0 + 0.61 * q(nzt,j,i) ) * & |
---|
| 531 | tswst(j,i) + 0.61 * pt(nzt,j,i) * & |
---|
| 532 | qsws(j,i) & |
---|
| 533 | ) |
---|
| 534 | ! |
---|
| 535 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 536 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
| 537 | qswst(j,i) * rmask(j,i,sr) |
---|
| 538 | ENDIF |
---|
| 539 | ENDIF |
---|
| 540 | IF ( passive_scalar ) THEN |
---|
| 541 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
| 542 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 543 | ENDIF |
---|
| 544 | ENDIF |
---|
| 545 | |
---|
| 546 | ! |
---|
[1] | 547 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
[132] | 548 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 549 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 550 | !-- rearranged according to the staggered grid. |
---|
[132] | 551 | DO k = nzb_s_inner(j,i), nzt |
---|
[1] | 552 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 553 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 554 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 555 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 556 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 557 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
| 558 | ! |
---|
| 559 | !-- Momentum flux w*u* |
---|
| 560 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5 * & |
---|
| 561 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
| 562 | * ust * rmask(j,i,sr) |
---|
| 563 | ! |
---|
| 564 | !-- Momentum flux w*v* |
---|
| 565 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5 * & |
---|
| 566 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
| 567 | * vst * rmask(j,i,sr) |
---|
| 568 | ! |
---|
| 569 | !-- Heat flux w*pt* |
---|
| 570 | !-- The following formula (comment line, not executed) does not |
---|
| 571 | !-- work if applied to subregions |
---|
| 572 | ! sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5 * & |
---|
| 573 | ! ( pt(k,j,i)+pt(k+1,j,i) ) & |
---|
| 574 | ! * w(k,j,i) * rmask(j,i,sr) |
---|
| 575 | sums_l(k,17,tn) = sums_l(k,17,tn) + pts * w(k,j,i) * & |
---|
| 576 | rmask(j,i,sr) |
---|
| 577 | ! |
---|
| 578 | !-- Higher moments |
---|
| 579 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
| 580 | rmask(j,i,sr) |
---|
| 581 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
| 582 | rmask(j,i,sr) |
---|
| 583 | |
---|
| 584 | ! |
---|
[96] | 585 | !-- Salinity flux and density (density does not belong to here, |
---|
[97] | 586 | !-- but so far there is no other suitable place to calculate) |
---|
[96] | 587 | IF ( ocean ) THEN |
---|
| 588 | pts = 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
| 589 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
| 590 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
| 591 | rmask(j,i,sr) |
---|
| 592 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * & |
---|
| 593 | rmask(j,i,sr) |
---|
| 594 | ENDIF |
---|
| 595 | |
---|
| 596 | ! |
---|
[1] | 597 | !-- Buoyancy flux, water flux, humidity flux and liquid water |
---|
| 598 | !-- content |
---|
[75] | 599 | IF ( humidity ) THEN |
---|
[1] | 600 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 601 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 602 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
| 603 | rmask(j,i,sr) |
---|
| 604 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 605 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 606 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 607 | rmask(j,i,sr) |
---|
| 608 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 609 | pts = 0.5 * & |
---|
| 610 | ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) & |
---|
| 611 | + ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) |
---|
| 612 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
| 613 | rmask(j,i,sr) |
---|
| 614 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
| 615 | rmask(j,i,sr) |
---|
| 616 | ENDIF |
---|
| 617 | ENDIF |
---|
| 618 | |
---|
| 619 | ! |
---|
| 620 | !-- Passive scalar flux |
---|
| 621 | IF ( passive_scalar ) THEN |
---|
| 622 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 623 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 624 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 625 | rmask(j,i,sr) |
---|
| 626 | ENDIF |
---|
| 627 | |
---|
| 628 | ! |
---|
| 629 | !-- Energy flux w*e* |
---|
| 630 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5 * & |
---|
| 631 | ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
| 632 | * rmask(j,i,sr) |
---|
| 633 | |
---|
| 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | ENDDO |
---|
| 637 | |
---|
| 638 | ! |
---|
[97] | 639 | !-- Density at top follows Neumann condition |
---|
| 640 | IF ( ocean ) sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
| 641 | |
---|
| 642 | ! |
---|
[1] | 643 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
[106] | 644 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
| 645 | !-- First calculate the products, then the divergence. |
---|
[1] | 646 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
[106] | 647 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
[1] | 648 | |
---|
| 649 | sums_ll = 0.0 ! local array |
---|
| 650 | |
---|
| 651 | !$OMP DO |
---|
| 652 | DO i = nxl, nxr |
---|
| 653 | DO j = nys, nyn |
---|
[132] | 654 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 655 | |
---|
| 656 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
| 657 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
| 658 | - 2.0 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
| 659 | ) )**2 & |
---|
| 660 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
| 661 | - 2.0 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
| 662 | ) )**2 & |
---|
| 663 | + w(k,j,i)**2 ) |
---|
| 664 | |
---|
| 665 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
| 666 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
| 667 | |
---|
| 668 | ENDDO |
---|
| 669 | ENDDO |
---|
| 670 | ENDDO |
---|
| 671 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
| 672 | sums_ll(nzt+1,1) = 0.0 |
---|
| 673 | sums_ll(0,2) = 0.0 |
---|
| 674 | sums_ll(nzt+1,2) = 0.0 |
---|
| 675 | |
---|
[132] | 676 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 677 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 678 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
[106] | 679 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
[1] | 680 | ENDDO |
---|
| 681 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 682 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
[106] | 683 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
[1] | 684 | |
---|
| 685 | ENDIF |
---|
| 686 | |
---|
| 687 | ! |
---|
[106] | 688 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
| 689 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
[1] | 690 | |
---|
| 691 | !$OMP DO |
---|
| 692 | DO i = nxl, nxr |
---|
| 693 | DO j = nys, nyn |
---|
[132] | 694 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 695 | |
---|
[106] | 696 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
[1] | 697 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 698 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
[106] | 699 | ) * ddzw(k) |
---|
[1] | 700 | |
---|
[106] | 701 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
| 702 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 703 | ) |
---|
| 704 | |
---|
[1] | 705 | ENDDO |
---|
| 706 | ENDDO |
---|
| 707 | ENDDO |
---|
| 708 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
[106] | 709 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
[1] | 710 | |
---|
| 711 | ENDIF |
---|
| 712 | |
---|
| 713 | ! |
---|
| 714 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 715 | !-- Do it only, if profiles shall be plotted. |
---|
| 716 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
| 717 | |
---|
| 718 | !$OMP DO |
---|
| 719 | DO i = nxl, nxr |
---|
| 720 | DO j = nys, nyn |
---|
[132] | 721 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 722 | ! |
---|
| 723 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
| 724 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
| 725 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 726 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
| 727 | * ddx * rmask(j,i,sr) |
---|
| 728 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
| 729 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 730 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
| 731 | * ddy * rmask(j,i,sr) |
---|
| 732 | ! |
---|
| 733 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 734 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 735 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
| 736 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
| 737 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 738 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 739 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 740 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 741 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
| 742 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 743 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 744 | ENDDO |
---|
| 745 | ENDDO |
---|
| 746 | ENDDO |
---|
| 747 | ! |
---|
| 748 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
[97] | 749 | sums_l(nzb,58,tn) = 0.0 |
---|
| 750 | sums_l(nzb,59,tn) = 0.0 |
---|
| 751 | sums_l(nzb,60,tn) = 0.0 |
---|
| 752 | sums_l(nzb,61,tn) = 0.0 |
---|
| 753 | sums_l(nzb,62,tn) = 0.0 |
---|
| 754 | sums_l(nzb,63,tn) = 0.0 |
---|
[1] | 755 | |
---|
| 756 | ENDIF |
---|
[87] | 757 | |
---|
| 758 | ! |
---|
| 759 | !-- Calculate the user-defined profiles |
---|
| 760 | CALL user_statistics( 'profiles', sr, tn ) |
---|
[1] | 761 | !$OMP END PARALLEL |
---|
| 762 | |
---|
| 763 | ! |
---|
| 764 | !-- Summation of thread sums |
---|
| 765 | IF ( threads_per_task > 1 ) THEN |
---|
| 766 | DO i = 1, threads_per_task-1 |
---|
| 767 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 768 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
[87] | 769 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
| 770 | sums_l(:,45:pr_palm,i) |
---|
| 771 | IF ( max_pr_user > 0 ) THEN |
---|
| 772 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
| 773 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
| 774 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
| 775 | ENDIF |
---|
[1] | 776 | ENDDO |
---|
| 777 | ENDIF |
---|
| 778 | |
---|
| 779 | #if defined( __parallel ) |
---|
| 780 | ! |
---|
| 781 | !-- Compute total sum from local sums |
---|
| 782 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
| 783 | MPI_SUM, comm2d, ierr ) |
---|
| 784 | #else |
---|
| 785 | sums = sums_l(:,:,0) |
---|
| 786 | #endif |
---|
| 787 | |
---|
| 788 | ! |
---|
| 789 | !-- Final values are obtained by division by the total number of grid points |
---|
| 790 | !-- used for summation. After that store profiles. |
---|
| 791 | !-- Profiles: |
---|
| 792 | DO k = nzb, nzt+1 |
---|
[132] | 793 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
[142] | 794 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
[132] | 795 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
| 796 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
| 797 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
[142] | 798 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
| 799 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
[132] | 800 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
| 801 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
| 802 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
| 803 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
| 804 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
| 805 | sums(k,65:69) = sums(k,65:69) / ngp_2dh(sr) |
---|
| 806 | sums(k,70:pr_palm-2) = sums(k,70:pr_palm-2)/ ngp_2dh_s_inner(k,sr) |
---|
[1] | 807 | ENDDO |
---|
| 808 | !-- Upstream-parts |
---|
[87] | 809 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
[1] | 810 | !-- u* and so on |
---|
[87] | 811 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
[1] | 812 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 813 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
[87] | 814 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
[1] | 815 | ngp_2dh(sr) |
---|
[197] | 816 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
| 817 | ngp_2dh(sr) |
---|
[1] | 818 | !-- eges, e* |
---|
[87] | 819 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
[132] | 820 | ngp_3d(sr) |
---|
[1] | 821 | !-- Old and new divergence |
---|
[87] | 822 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
[1] | 823 | ngp_3d_inner(sr) |
---|
| 824 | |
---|
[87] | 825 | !-- User-defined profiles |
---|
| 826 | IF ( max_pr_user > 0 ) THEN |
---|
| 827 | DO k = nzb, nzt+1 |
---|
| 828 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
| 829 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
[132] | 830 | ngp_2dh_s_inner(k,sr) |
---|
[87] | 831 | ENDDO |
---|
| 832 | ENDIF |
---|
| 833 | |
---|
[1] | 834 | ! |
---|
| 835 | !-- Collect horizontal average in hom. |
---|
| 836 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 837 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 838 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 839 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 840 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 841 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 842 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 843 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 844 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 845 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 846 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 847 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 848 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 849 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 850 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 851 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 852 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
[96] | 853 | ! profile 24 is initial profile (sa) |
---|
| 854 | ! profiles 25-29 left empty for initial |
---|
[1] | 855 | ! profiles |
---|
| 856 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 857 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 858 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 859 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 860 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 861 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 862 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 863 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 864 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
| 865 | hom(:,1,39,sr) = sums(:,38) / ( sums(:,32) + 1E-20 )**1.5 ! Sw |
---|
| 866 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
| 867 | hom(:,1,45,sr) = sums(:,45) ! w"q" |
---|
| 868 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 869 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 870 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 871 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 872 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 873 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 874 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 875 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 876 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 877 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 878 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
[106] | 879 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
[1] | 880 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 881 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 882 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 883 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 884 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 885 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
[96] | 886 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
| 887 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
| 888 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
| 889 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
[106] | 890 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
| 891 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
[197] | 892 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
[1] | 893 | |
---|
[87] | 894 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
[1] | 895 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
| 896 | ! v_y, usw. (in last but one profile) |
---|
[87] | 897 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
[1] | 898 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 899 | |
---|
[87] | 900 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
| 901 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
| 902 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
| 903 | ENDIF |
---|
| 904 | |
---|
[1] | 905 | ! |
---|
| 906 | !-- Determine the boundary layer height using two different schemes. |
---|
[94] | 907 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
| 908 | !-- first relative minimum (maximum) of the total heat flux. |
---|
| 909 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
| 910 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
| 911 | !-- (positive) for the first time. |
---|
[1] | 912 | !-- NOTE: This criterion is still capable of improving! |
---|
| 913 | z_i(1) = 0.0 |
---|
| 914 | first = .TRUE. |
---|
[97] | 915 | IF ( ocean ) THEN |
---|
| 916 | DO k = nzt, nzb+1, -1 |
---|
| 917 | IF ( first .AND. hom(k,1,18,sr) < 0.0 ) THEN |
---|
| 918 | first = .FALSE. |
---|
| 919 | height = zw(k) |
---|
| 920 | ENDIF |
---|
| 921 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 922 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 923 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 924 | z_i(1) = zw(k) |
---|
| 925 | ELSE |
---|
| 926 | z_i(1) = height |
---|
| 927 | ENDIF |
---|
| 928 | EXIT |
---|
| 929 | ENDIF |
---|
| 930 | ENDDO |
---|
| 931 | ELSE |
---|
[94] | 932 | DO k = nzb, nzt-1 |
---|
| 933 | IF ( first .AND. hom(k,1,18,sr) < 0.0 ) THEN |
---|
| 934 | first = .FALSE. |
---|
| 935 | height = zw(k) |
---|
[1] | 936 | ENDIF |
---|
[94] | 937 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 938 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 939 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 940 | z_i(1) = zw(k) |
---|
| 941 | ELSE |
---|
| 942 | z_i(1) = height |
---|
| 943 | ENDIF |
---|
| 944 | EXIT |
---|
| 945 | ENDIF |
---|
| 946 | ENDDO |
---|
[97] | 947 | ENDIF |
---|
[1] | 948 | |
---|
| 949 | ! |
---|
[97] | 950 | !-- Second scheme: Starting from the top/bottom model boundary, look for |
---|
| 951 | !-- the first characteristic kink in the temperature profile, where the |
---|
| 952 | !-- originally stable stratification notably weakens. |
---|
[1] | 953 | z_i(2) = 0.0 |
---|
[97] | 954 | IF ( ocean ) THEN |
---|
| 955 | DO k = nzb+1, nzt-1 |
---|
| 956 | IF ( ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) > & |
---|
| 957 | 2.0 * ( hom(k+1,1,4,sr) - hom(k,1,4,sr) ) ) THEN |
---|
| 958 | z_i(2) = zu(k) |
---|
| 959 | EXIT |
---|
| 960 | ENDIF |
---|
| 961 | ENDDO |
---|
| 962 | ELSE |
---|
| 963 | DO k = nzt-1, nzb+1, -1 |
---|
| 964 | IF ( ( hom(k+1,1,4,sr) - hom(k,1,4,sr) ) > & |
---|
| 965 | 2.0 * ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) ) THEN |
---|
| 966 | z_i(2) = zu(k) |
---|
| 967 | EXIT |
---|
| 968 | ENDIF |
---|
| 969 | ENDDO |
---|
| 970 | ENDIF |
---|
[1] | 971 | |
---|
[87] | 972 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
| 973 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
[1] | 974 | |
---|
| 975 | ! |
---|
| 976 | !-- Computation of both the characteristic vertical velocity and |
---|
| 977 | !-- the characteristic convective boundary layer temperature. |
---|
| 978 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
| 979 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. z_i(1) /= 0.0 ) THEN |
---|
[87] | 980 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
[94] | 981 | hom(nzb,1,18,sr) * & |
---|
| 982 | ABS( z_i(1) ) )**0.333333333 |
---|
[1] | 983 | !-- so far this only works if Prandtl layer is used |
---|
[87] | 984 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
[1] | 985 | ELSE |
---|
[87] | 986 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
| 987 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
[1] | 988 | ENDIF |
---|
| 989 | |
---|
[48] | 990 | ! |
---|
| 991 | !-- Collect the time series quantities |
---|
[87] | 992 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
| 993 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
[48] | 994 | ts_value(3,sr) = dt_3d |
---|
[87] | 995 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
| 996 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
[48] | 997 | ts_value(6,sr) = u_max |
---|
| 998 | ts_value(7,sr) = v_max |
---|
| 999 | ts_value(8,sr) = w_max |
---|
[87] | 1000 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
| 1001 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
| 1002 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
| 1003 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
| 1004 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
[48] | 1005 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 1006 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
| 1007 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
| 1008 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
| 1009 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
[197] | 1010 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
| 1011 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
[220] | 1012 | ts_value(21,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
[197] | 1013 | |
---|
[48] | 1014 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
| 1015 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
| 1016 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
| 1017 | ELSE |
---|
| 1018 | ts_value(22,sr) = 10000.0 |
---|
| 1019 | ENDIF |
---|
[1] | 1020 | |
---|
| 1021 | ! |
---|
[48] | 1022 | !-- Calculate additional statistics provided by the user interface |
---|
[87] | 1023 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
[1] | 1024 | |
---|
[48] | 1025 | ENDDO ! loop of the subregions |
---|
| 1026 | |
---|
[1] | 1027 | ! |
---|
| 1028 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
| 1029 | IF ( do_sum ) THEN |
---|
| 1030 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
| 1031 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 1032 | average_count_pr = average_count_pr + 1 |
---|
| 1033 | do_sum = .FALSE. |
---|
| 1034 | ENDIF |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 1038 | !-- This flag is reset after each time step in time_integration. |
---|
| 1039 | flow_statistics_called = .TRUE. |
---|
| 1040 | |
---|
| 1041 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 1042 | |
---|
| 1043 | |
---|
| 1044 | END SUBROUTINE flow_statistics |
---|
| 1045 | |
---|
| 1046 | |
---|
| 1047 | |
---|