[1682] | 1 | !> @file flow_statistics.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1961] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1739] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: flow_statistics.f90 2119 2017-01-17 16:51:50Z suehring $ |
---|
| 27 | ! |
---|
[2119] | 28 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 29 | ! OpenACC version of subroutine removed |
---|
| 30 | ! |
---|
[2074] | 31 | ! 2073 2016-11-30 14:34:05Z raasch |
---|
| 32 | ! openmp bugfix: large scale forcing calculations cannot be executed thread |
---|
| 33 | ! parallel |
---|
| 34 | ! |
---|
[2038] | 35 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
| 36 | ! Anelastic approximation implemented |
---|
| 37 | ! |
---|
[2032] | 38 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
| 39 | ! renamed variable rho to rho_ocean |
---|
| 40 | ! |
---|
[2027] | 41 | ! 2026 2016-10-18 10:27:02Z suehring |
---|
| 42 | ! Bugfix, enable output of s*2. |
---|
| 43 | ! Change, calculation of domain-averaged perturbation energy. |
---|
| 44 | ! Some formatting adjustments. |
---|
| 45 | ! |
---|
[2001] | 46 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 47 | ! Forced header and separation lines into 80 columns |
---|
| 48 | ! |
---|
[1977] | 49 | ! 1976 2016-07-27 13:28:04Z maronga |
---|
| 50 | ! Removed some unneeded __rrtmg preprocessor directives |
---|
| 51 | ! |
---|
[1961] | 52 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 53 | ! Separate humidity and passive scalar |
---|
| 54 | ! |
---|
[1919] | 55 | ! 1918 2016-05-27 14:35:57Z raasch |
---|
| 56 | ! in case of Wicker-Skamarock scheme, calculate disturbance kinetic energy here, |
---|
| 57 | ! if flow_statistics is called before the first initial time step |
---|
| 58 | ! |
---|
[1854] | 59 | ! 1853 2016-04-11 09:00:35Z maronga |
---|
| 60 | ! Adjusted for use with radiation_scheme = constant |
---|
| 61 | ! |
---|
[1851] | 62 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
| 63 | ! prr moved to arrays_3d |
---|
| 64 | ! |
---|
[1823] | 65 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 66 | ! Output of bulk microphysics simplified. |
---|
| 67 | ! |
---|
[1816] | 68 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 69 | ! cpp-directives for intel openmp bug removed |
---|
| 70 | ! |
---|
[1784] | 71 | ! 1783 2016-03-06 18:36:17Z raasch |
---|
| 72 | ! +module netcdf_interface |
---|
| 73 | ! |
---|
[1748] | 74 | ! 1747 2016-02-08 12:25:53Z raasch |
---|
| 75 | ! small bugfixes for accelerator version |
---|
| 76 | ! |
---|
[1739] | 77 | ! 1738 2015-12-18 13:56:05Z raasch |
---|
[1738] | 78 | ! bugfixes for calculations in statistical regions which do not contain grid |
---|
| 79 | ! points in the lowest vertical levels, mean surface level height considered |
---|
| 80 | ! in the calculation of the characteristic vertical velocity, |
---|
| 81 | ! old upstream parts removed |
---|
[1383] | 82 | ! |
---|
[1710] | 83 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 84 | ! Updated output of Obukhov length |
---|
| 85 | ! |
---|
[1692] | 86 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 87 | ! Revised calculation of Obukhov length. Added output of radiative heating > |
---|
| 88 | ! rates for RRTMG. |
---|
| 89 | ! |
---|
[1683] | 90 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 91 | ! Code annotations made doxygen readable |
---|
| 92 | ! |
---|
[1659] | 93 | ! 1658 2015-09-18 10:52:53Z raasch |
---|
| 94 | ! bugfix: temporary reduction variables in the openacc branch are now |
---|
| 95 | ! initialized to zero |
---|
| 96 | ! |
---|
[1655] | 97 | ! 1654 2015-09-17 09:20:17Z raasch |
---|
| 98 | ! FORTRAN bugfix of r1652 |
---|
| 99 | ! |
---|
[1653] | 100 | ! 1652 2015-09-17 08:12:24Z raasch |
---|
| 101 | ! bugfix in calculation of energy production by turbulent transport of TKE |
---|
| 102 | ! |
---|
[1594] | 103 | ! 1593 2015-05-16 13:58:02Z raasch |
---|
| 104 | ! FORTRAN errors removed from openacc branch |
---|
| 105 | ! |
---|
[1586] | 106 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
| 107 | ! Added output of timeseries and profiles for RRTMG |
---|
| 108 | ! |
---|
[1572] | 109 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
| 110 | ! Bugfix: output of rad_net and rad_sw_in |
---|
| 111 | ! |
---|
[1568] | 112 | ! 1567 2015-03-10 17:57:55Z suehring |
---|
| 113 | ! Reverse modifications made for monotonic limiter. |
---|
| 114 | ! |
---|
[1558] | 115 | ! 1557 2015-03-05 16:43:04Z suehring |
---|
| 116 | ! Adjustments for monotonic limiter |
---|
| 117 | ! |
---|
[1556] | 118 | ! 1555 2015-03-04 17:44:27Z maronga |
---|
| 119 | ! Added output of r_a and r_s. |
---|
| 120 | ! |
---|
[1552] | 121 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
| 122 | ! Added suppport for land surface model and radiation model output. |
---|
| 123 | ! |
---|
[1499] | 124 | ! 1498 2014-12-03 14:09:51Z suehring |
---|
| 125 | ! Comments added |
---|
| 126 | ! |
---|
[1483] | 127 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
| 128 | ! missing ngp_sums_ls added in accelerator version |
---|
| 129 | ! |
---|
[1451] | 130 | ! 1450 2014-08-21 07:31:51Z heinze |
---|
| 131 | ! bugfix: calculate fac only for simulated_time >= 0.0 |
---|
| 132 | ! |
---|
[1397] | 133 | ! 1396 2014-05-06 13:37:41Z raasch |
---|
| 134 | ! bugfix: "copyin" replaced by "update device" in openacc-branch |
---|
| 135 | ! |
---|
[1387] | 136 | ! 1386 2014-05-05 13:55:30Z boeske |
---|
| 137 | ! bugfix: simulated time before the last timestep is needed for the correct |
---|
| 138 | ! calculation of the profiles of large scale forcing tendencies |
---|
| 139 | ! |
---|
[1383] | 140 | ! 1382 2014-04-30 12:15:41Z boeske |
---|
[1382] | 141 | ! Renamed variables which store large scale forcing tendencies |
---|
| 142 | ! pt_lsa -> td_lsa_lpt, pt_subs -> td_sub_lpt, |
---|
| 143 | ! q_lsa -> td_lsa_q, q_subs -> td_sub_q, |
---|
| 144 | ! added Neumann boundary conditions for profile data output of large scale |
---|
| 145 | ! advection and subsidence terms at nzt+1 |
---|
[1354] | 146 | ! |
---|
[1375] | 147 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 148 | ! bugfix: syntax errors removed from openacc-branch |
---|
| 149 | ! missing variables added to ONLY-lists |
---|
| 150 | ! |
---|
[1366] | 151 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
| 152 | ! Output of large scale advection, large scale subsidence and nudging tendencies |
---|
| 153 | ! +sums_ls_l, ngp_sums_ls, use_subsidence_tendencies |
---|
| 154 | ! |
---|
[1354] | 155 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 156 | ! REAL constants provided with KIND-attribute |
---|
| 157 | ! |
---|
[1323] | 158 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 159 | ! REAL constants defined as wp-kind |
---|
| 160 | ! |
---|
[1321] | 161 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 162 | ! ONLY-attribute added to USE-statements, |
---|
| 163 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 164 | ! kinds are defined in new module kinds, |
---|
| 165 | ! revision history before 2012 removed, |
---|
| 166 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 167 | ! all variable declaration statements |
---|
[1008] | 168 | ! |
---|
[1300] | 169 | ! 1299 2014-03-06 13:15:21Z heinze |
---|
| 170 | ! Output of large scale vertical velocity w_subs |
---|
| 171 | ! |
---|
[1258] | 172 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 173 | ! openacc "end parallel" replaced by "end parallel loop" |
---|
| 174 | ! |
---|
[1242] | 175 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 176 | ! Output of ug and vg |
---|
| 177 | ! |
---|
[1222] | 178 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 179 | ! ported for openACC in separate #else branch |
---|
| 180 | ! |
---|
[1182] | 181 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 182 | ! comment for profile 77 added |
---|
| 183 | ! |
---|
[1116] | 184 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 185 | ! ql is calculated by calc_liquid_water_content |
---|
| 186 | ! |
---|
[1112] | 187 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 188 | ! openACC directive added |
---|
| 189 | ! |
---|
[1054] | 190 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1112] | 191 | ! additions for two-moment cloud physics scheme: |
---|
[1054] | 192 | ! +nr, qr, qc, prr |
---|
| 193 | ! |
---|
[1037] | 194 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 195 | ! code put under GPL (PALM 3.9) |
---|
| 196 | ! |
---|
[1008] | 197 | ! 1007 2012-09-19 14:30:36Z franke |
---|
[1007] | 198 | ! Calculation of buoyancy flux for humidity in case of WS-scheme is now using |
---|
| 199 | ! turbulent fluxes of WS-scheme |
---|
| 200 | ! Bugfix: Calculation of subgridscale buoyancy flux for humidity and cloud |
---|
| 201 | ! droplets at nzb and nzt added |
---|
[700] | 202 | ! |
---|
[802] | 203 | ! 801 2012-01-10 17:30:36Z suehring |
---|
| 204 | ! Calculation of turbulent fluxes in advec_ws is now thread-safe. |
---|
| 205 | ! |
---|
[1] | 206 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
| 207 | ! Initial revision |
---|
| 208 | ! |
---|
| 209 | ! |
---|
| 210 | ! Description: |
---|
| 211 | ! ------------ |
---|
[1682] | 212 | !> Compute average profiles and further average flow quantities for the different |
---|
| 213 | !> user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
| 214 | !> |
---|
| 215 | !> @note For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
| 216 | !> lower vertical index for k-loops for all variables, although strictly |
---|
| 217 | !> speaking the k-loops would have to be split up according to the staggered |
---|
| 218 | !> grid. However, this implies no error since staggered velocity components |
---|
| 219 | !> are zero at the walls and inside buildings. |
---|
[1] | 220 | !------------------------------------------------------------------------------! |
---|
[1682] | 221 | SUBROUTINE flow_statistics |
---|
| 222 | |
---|
[1] | 223 | |
---|
[1320] | 224 | USE arrays_3d, & |
---|
[2037] | 225 | ONLY: ddzu, ddzw, e, heatflux_output_conversion, hyp, km, kh, & |
---|
| 226 | momentumflux_output_conversion, nr, ol, p, prho, prr, pt, q, & |
---|
| 227 | qc, ql, qr, qs, qsws, qswst, rho_air, rho_air_zw, rho_ocean, s, & |
---|
| 228 | sa, ss, ssws, sswst, saswsb, saswst, shf, td_lsa_lpt, td_lsa_q, & |
---|
| 229 | td_sub_lpt, td_sub_q, time_vert, ts, tswst, u, ug, us, usws, & |
---|
| 230 | uswst, vsws, v, vg, vpt, vswst, w, w_subs, & |
---|
| 231 | waterflux_output_conversion, zw |
---|
[1320] | 232 | |
---|
| 233 | USE cloud_parameters, & |
---|
[1849] | 234 | ONLY: l_d_cp, pt_d_t |
---|
[1320] | 235 | |
---|
| 236 | USE control_parameters, & |
---|
[1551] | 237 | ONLY: average_count_pr, cloud_droplets, cloud_physics, do_sum, & |
---|
[1822] | 238 | dt_3d, g, humidity, kappa, large_scale_forcing, & |
---|
[1691] | 239 | large_scale_subsidence, max_pr_user, message_string, neutral, & |
---|
[1822] | 240 | microphysics_seifert, ocean, passive_scalar, simulated_time, & |
---|
[1365] | 241 | use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, & |
---|
| 242 | ws_scheme_mom, ws_scheme_sca |
---|
[1320] | 243 | |
---|
| 244 | USE cpulog, & |
---|
[1551] | 245 | ONLY: cpu_log, log_point |
---|
[1320] | 246 | |
---|
| 247 | USE grid_variables, & |
---|
[1551] | 248 | ONLY: ddx, ddy |
---|
[1320] | 249 | |
---|
| 250 | USE indices, & |
---|
[1551] | 251 | ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, & |
---|
[1365] | 252 | ngp_sums_ls, nxl, nxr, nyn, nys, nzb, nzb_diff_s_inner, & |
---|
| 253 | nzb_s_inner, nzt, nzt_diff |
---|
[1320] | 254 | |
---|
| 255 | USE kinds |
---|
| 256 | |
---|
[1551] | 257 | USE land_surface_model_mod, & |
---|
[1783] | 258 | ONLY: ghf_eb, land_surface, m_soil, nzb_soil, nzt_soil, & |
---|
[1555] | 259 | qsws_eb, qsws_liq_eb, qsws_soil_eb, qsws_veg_eb, r_a, r_s, & |
---|
| 260 | shf_eb, t_soil |
---|
[1551] | 261 | |
---|
[1783] | 262 | USE netcdf_interface, & |
---|
| 263 | ONLY: dots_rad, dots_soil |
---|
| 264 | |
---|
[1] | 265 | USE pegrid |
---|
[1551] | 266 | |
---|
| 267 | USE radiation_model_mod, & |
---|
[1783] | 268 | ONLY: radiation, radiation_scheme, rad_net, & |
---|
[1691] | 269 | rad_lw_in, rad_lw_out, rad_lw_cs_hr, rad_lw_hr, & |
---|
| 270 | rad_sw_in, rad_sw_out, rad_sw_cs_hr, rad_sw_hr |
---|
[1585] | 271 | |
---|
| 272 | #if defined ( __rrtmg ) |
---|
| 273 | USE radiation_model_mod, & |
---|
| 274 | ONLY: rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir |
---|
| 275 | #endif |
---|
| 276 | |
---|
[1] | 277 | USE statistics |
---|
| 278 | |
---|
[1691] | 279 | |
---|
[1] | 280 | IMPLICIT NONE |
---|
| 281 | |
---|
[1682] | 282 | INTEGER(iwp) :: i !< |
---|
| 283 | INTEGER(iwp) :: j !< |
---|
| 284 | INTEGER(iwp) :: k !< |
---|
[1738] | 285 | INTEGER(iwp) :: k_surface_level !< |
---|
[1682] | 286 | INTEGER(iwp) :: nt !< |
---|
| 287 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 288 | INTEGER(iwp) :: sr !< |
---|
| 289 | INTEGER(iwp) :: tn !< |
---|
[1320] | 290 | |
---|
[1682] | 291 | LOGICAL :: first !< |
---|
[1320] | 292 | |
---|
[1682] | 293 | REAL(wp) :: dptdz_threshold !< |
---|
| 294 | REAL(wp) :: fac !< |
---|
| 295 | REAL(wp) :: height !< |
---|
| 296 | REAL(wp) :: pts !< |
---|
| 297 | REAL(wp) :: sums_l_eper !< |
---|
| 298 | REAL(wp) :: sums_l_etot !< |
---|
| 299 | REAL(wp) :: ust !< |
---|
| 300 | REAL(wp) :: ust2 !< |
---|
| 301 | REAL(wp) :: u2 !< |
---|
| 302 | REAL(wp) :: vst !< |
---|
| 303 | REAL(wp) :: vst2 !< |
---|
| 304 | REAL(wp) :: v2 !< |
---|
| 305 | REAL(wp) :: w2 !< |
---|
| 306 | REAL(wp) :: z_i(2) !< |
---|
[1320] | 307 | |
---|
[1682] | 308 | REAL(wp) :: dptdz(nzb+1:nzt+1) !< |
---|
| 309 | REAL(wp) :: sums_ll(nzb:nzt+1,2) !< |
---|
[1] | 310 | |
---|
| 311 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 312 | |
---|
[1221] | 313 | |
---|
[1] | 314 | ! |
---|
| 315 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 316 | !-- called once after the current time step |
---|
| 317 | IF ( flow_statistics_called ) THEN |
---|
[254] | 318 | |
---|
[274] | 319 | message_string = 'flow_statistics is called two times within one ' // & |
---|
| 320 | 'timestep' |
---|
[254] | 321 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
[1007] | 322 | |
---|
[1] | 323 | ENDIF |
---|
| 324 | |
---|
| 325 | ! |
---|
| 326 | !-- Compute statistics for each (sub-)region |
---|
| 327 | DO sr = 0, statistic_regions |
---|
| 328 | |
---|
| 329 | ! |
---|
| 330 | !-- Initialize (local) summation array |
---|
[1353] | 331 | sums_l = 0.0_wp |
---|
[1] | 332 | |
---|
| 333 | ! |
---|
| 334 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 335 | !-- array |
---|
| 336 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 337 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
[2037] | 338 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) * & |
---|
| 339 | heatflux_output_conversion ! heat flux from advec_s_bc |
---|
[87] | 340 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 341 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
[1] | 342 | |
---|
[667] | 343 | ! |
---|
[1498] | 344 | !-- When calcuating horizontally-averaged total (resolved- plus subgrid- |
---|
| 345 | !-- scale) vertical fluxes and velocity variances by using commonly- |
---|
| 346 | !-- applied Reynolds-based methods ( e.g. <w'pt'> = (w-<w>)*(pt-<pt>) ) |
---|
| 347 | !-- in combination with the 5th order advection scheme, pronounced |
---|
| 348 | !-- artificial kinks could be observed in the vertical profiles near the |
---|
| 349 | !-- surface. Please note: these kinks were not related to the model truth, |
---|
| 350 | !-- i.e. these kinks are just related to an evaluation problem. |
---|
| 351 | !-- In order avoid these kinks, vertical fluxes and horizontal as well |
---|
| 352 | !-- vertical velocity variances are calculated directly within the advection |
---|
| 353 | !-- routines, according to the numerical discretization, to evaluate the |
---|
| 354 | !-- statistical quantities as they will appear within the prognostic |
---|
| 355 | !-- equations. |
---|
[667] | 356 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
[1498] | 357 | !-- the local array sums_l() for further computations. |
---|
[743] | 358 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
[696] | 359 | |
---|
[1007] | 360 | ! |
---|
[673] | 361 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
| 362 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
| 363 | IF ( ocean ) THEN |
---|
[801] | 364 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
[1007] | 365 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
[673] | 366 | ENDIF |
---|
[696] | 367 | |
---|
| 368 | DO i = 0, threads_per_task-1 |
---|
[1007] | 369 | ! |
---|
[696] | 370 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
[2037] | 371 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) & |
---|
| 372 | * momentumflux_output_conversion ! w*u* |
---|
| 373 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) & |
---|
| 374 | * momentumflux_output_conversion ! w*v* |
---|
[801] | 375 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
| 376 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
| 377 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
[1353] | 378 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & |
---|
[1320] | 379 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
[801] | 380 | sums_ws2_ws_l(:,i) ) ! e* |
---|
[667] | 381 | ENDDO |
---|
[696] | 382 | |
---|
[667] | 383 | ENDIF |
---|
[696] | 384 | |
---|
[1567] | 385 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
[696] | 386 | |
---|
| 387 | DO i = 0, threads_per_task-1 |
---|
[2037] | 388 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) & |
---|
| 389 | * heatflux_output_conversion ! w*pt* |
---|
[1960] | 390 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
[2037] | 391 | IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) & |
---|
| 392 | * waterflux_output_conversion ! w*q* |
---|
[1960] | 393 | IF ( passive_scalar ) sums_l(:,116,i) = sums_wsss_ws_l(:,i) ! w*s* |
---|
[696] | 394 | ENDDO |
---|
| 395 | |
---|
[667] | 396 | ENDIF |
---|
[305] | 397 | ! |
---|
[1] | 398 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 399 | !-- They must have been computed before, because they are already required |
---|
| 400 | !-- for other horizontal averages. |
---|
| 401 | tn = 0 |
---|
[667] | 402 | |
---|
[1] | 403 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
| 404 | !$ tn = omp_get_thread_num() |
---|
| 405 | |
---|
| 406 | !$OMP DO |
---|
| 407 | DO i = nxl, nxr |
---|
| 408 | DO j = nys, nyn |
---|
[132] | 409 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 410 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
| 411 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
| 412 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
| 413 | ENDDO |
---|
| 414 | ENDDO |
---|
| 415 | ENDDO |
---|
| 416 | |
---|
| 417 | ! |
---|
[96] | 418 | !-- Horizontally averaged profile of salinity |
---|
| 419 | IF ( ocean ) THEN |
---|
| 420 | !$OMP DO |
---|
| 421 | DO i = nxl, nxr |
---|
| 422 | DO j = nys, nyn |
---|
[132] | 423 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[96] | 424 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
| 425 | sa(k,j,i) * rmask(j,i,sr) |
---|
| 426 | ENDDO |
---|
| 427 | ENDDO |
---|
| 428 | ENDDO |
---|
| 429 | ENDIF |
---|
| 430 | |
---|
| 431 | ! |
---|
[1] | 432 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
| 433 | !-- total water content, specific humidity and liquid water potential |
---|
| 434 | !-- temperature |
---|
[75] | 435 | IF ( humidity ) THEN |
---|
[1] | 436 | !$OMP DO |
---|
| 437 | DO i = nxl, nxr |
---|
| 438 | DO j = nys, nyn |
---|
[132] | 439 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 440 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
| 441 | vpt(k,j,i) * rmask(j,i,sr) |
---|
| 442 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
| 443 | q(k,j,i) * rmask(j,i,sr) |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | ENDDO |
---|
| 447 | IF ( cloud_physics ) THEN |
---|
| 448 | !$OMP DO |
---|
| 449 | DO i = nxl, nxr |
---|
| 450 | DO j = nys, nyn |
---|
[132] | 451 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 452 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
| 453 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
| 454 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
| 455 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
| 456 | ) * rmask(j,i,sr) |
---|
| 457 | ENDDO |
---|
| 458 | ENDDO |
---|
| 459 | ENDDO |
---|
| 460 | ENDIF |
---|
| 461 | ENDIF |
---|
| 462 | |
---|
| 463 | ! |
---|
| 464 | !-- Horizontally averaged profiles of passive scalar |
---|
| 465 | IF ( passive_scalar ) THEN |
---|
| 466 | !$OMP DO |
---|
| 467 | DO i = nxl, nxr |
---|
| 468 | DO j = nys, nyn |
---|
[132] | 469 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1960] | 470 | sums_l(k,117,tn) = sums_l(k,117,tn) + s(k,j,i) * rmask(j,i,sr) |
---|
[1] | 471 | ENDDO |
---|
| 472 | ENDDO |
---|
| 473 | ENDDO |
---|
| 474 | ENDIF |
---|
| 475 | !$OMP END PARALLEL |
---|
| 476 | ! |
---|
| 477 | !-- Summation of thread sums |
---|
| 478 | IF ( threads_per_task > 1 ) THEN |
---|
| 479 | DO i = 1, threads_per_task-1 |
---|
| 480 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 481 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 482 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
[96] | 483 | IF ( ocean ) THEN |
---|
| 484 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
| 485 | ENDIF |
---|
[75] | 486 | IF ( humidity ) THEN |
---|
[1] | 487 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 488 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
| 489 | IF ( cloud_physics ) THEN |
---|
| 490 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 491 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 492 | ENDIF |
---|
| 493 | ENDIF |
---|
| 494 | IF ( passive_scalar ) THEN |
---|
[1960] | 495 | sums_l(:,117,0) = sums_l(:,117,0) + sums_l(:,117,i) |
---|
[1] | 496 | ENDIF |
---|
| 497 | ENDDO |
---|
| 498 | ENDIF |
---|
| 499 | |
---|
| 500 | #if defined( __parallel ) |
---|
| 501 | ! |
---|
| 502 | !-- Compute total sum from local sums |
---|
[622] | 503 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 504 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 505 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 506 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 507 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 508 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 509 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 510 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 511 | MPI_SUM, comm2d, ierr ) |
---|
[96] | 512 | IF ( ocean ) THEN |
---|
[622] | 513 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 514 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
[96] | 515 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 516 | ENDIF |
---|
[75] | 517 | IF ( humidity ) THEN |
---|
[622] | 518 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 519 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
[1] | 520 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 521 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 522 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
[1] | 523 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 524 | IF ( cloud_physics ) THEN |
---|
[622] | 525 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 526 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
[1] | 527 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 528 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 529 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
[1] | 530 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 531 | ENDIF |
---|
| 532 | ENDIF |
---|
| 533 | |
---|
| 534 | IF ( passive_scalar ) THEN |
---|
[622] | 535 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1960] | 536 | CALL MPI_ALLREDUCE( sums_l(nzb,117,0), sums(nzb,117), nzt+2-nzb, & |
---|
[1] | 537 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 538 | ENDIF |
---|
| 539 | #else |
---|
| 540 | sums(:,1) = sums_l(:,1,0) |
---|
| 541 | sums(:,2) = sums_l(:,2,0) |
---|
| 542 | sums(:,4) = sums_l(:,4,0) |
---|
[96] | 543 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
[75] | 544 | IF ( humidity ) THEN |
---|
[1] | 545 | sums(:,44) = sums_l(:,44,0) |
---|
| 546 | sums(:,41) = sums_l(:,41,0) |
---|
| 547 | IF ( cloud_physics ) THEN |
---|
| 548 | sums(:,42) = sums_l(:,42,0) |
---|
| 549 | sums(:,43) = sums_l(:,43,0) |
---|
| 550 | ENDIF |
---|
| 551 | ENDIF |
---|
[1960] | 552 | IF ( passive_scalar ) sums(:,117) = sums_l(:,117,0) |
---|
[1] | 553 | #endif |
---|
| 554 | |
---|
| 555 | ! |
---|
| 556 | !-- Final values are obtained by division by the total number of grid points |
---|
| 557 | !-- used for summation. After that store profiles. |
---|
[132] | 558 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
| 559 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
| 560 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 561 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 562 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 563 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
| 564 | |
---|
[667] | 565 | |
---|
[1] | 566 | ! |
---|
[96] | 567 | !-- Salinity |
---|
| 568 | IF ( ocean ) THEN |
---|
[132] | 569 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
[96] | 570 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
| 571 | ENDIF |
---|
| 572 | |
---|
| 573 | ! |
---|
[1] | 574 | !-- Humidity and cloud parameters |
---|
[75] | 575 | IF ( humidity ) THEN |
---|
[132] | 576 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
| 577 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 578 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 579 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
| 580 | IF ( cloud_physics ) THEN |
---|
[132] | 581 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
| 582 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 583 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 584 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 585 | ENDIF |
---|
| 586 | ENDIF |
---|
| 587 | |
---|
| 588 | ! |
---|
| 589 | !-- Passive scalar |
---|
[1960] | 590 | IF ( passive_scalar ) hom(:,1,117,sr) = sums(:,117) / & |
---|
| 591 | ngp_2dh_s_inner(:,sr) ! s |
---|
[1] | 592 | |
---|
| 593 | ! |
---|
| 594 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 595 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 596 | !-- column of sums_l) and some diagnostic quantities. |
---|
[132] | 597 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 598 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 599 | !-- rearranged according to the staggered grid. |
---|
[132] | 600 | !-- However, this implies no error since staggered velocity components |
---|
| 601 | !-- are zero at the walls and inside buildings. |
---|
[1] | 602 | tn = 0 |
---|
[1815] | 603 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, & |
---|
| 604 | !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & |
---|
| 605 | !$OMP w2 ) |
---|
[1] | 606 | !$ tn = omp_get_thread_num() |
---|
[1815] | 607 | |
---|
[1] | 608 | !$OMP DO |
---|
| 609 | DO i = nxl, nxr |
---|
| 610 | DO j = nys, nyn |
---|
[1353] | 611 | sums_l_etot = 0.0_wp |
---|
[132] | 612 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 613 | ! |
---|
| 614 | !-- Prognostic and diagnostic variables |
---|
| 615 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
| 616 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
| 617 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
| 618 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
| 619 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
| 620 | |
---|
| 621 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
| 622 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
[624] | 623 | |
---|
| 624 | IF ( humidity ) THEN |
---|
| 625 | sums_l(k,70,tn) = sums_l(k,70,tn) + & |
---|
| 626 | ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) |
---|
| 627 | ENDIF |
---|
[1960] | 628 | IF ( passive_scalar ) THEN |
---|
| 629 | sums_l(k,118,tn) = sums_l(k,118,tn) + & |
---|
| 630 | ( s(k,j,i)-hom(k,1,117,sr) )**2 * rmask(j,i,sr) |
---|
| 631 | ENDIF |
---|
[699] | 632 | ! |
---|
| 633 | !-- Higher moments |
---|
| 634 | !-- (Computation of the skewness of w further below) |
---|
| 635 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) |
---|
[667] | 636 | |
---|
[1] | 637 | sums_l_etot = sums_l_etot + & |
---|
[1353] | 638 | 0.5_wp * ( u(k,j,i)**2 + v(k,j,i)**2 + & |
---|
[667] | 639 | w(k,j,i)**2 ) * rmask(j,i,sr) |
---|
[1] | 640 | ENDDO |
---|
| 641 | ! |
---|
| 642 | !-- Total and perturbation energy for the total domain (being |
---|
| 643 | !-- collected in the last column of sums_l). Summation of these |
---|
| 644 | !-- quantities is seperated from the previous loop in order to |
---|
| 645 | !-- allow vectorization of that loop. |
---|
[87] | 646 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
[1] | 647 | ! |
---|
| 648 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
[1320] | 649 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[1] | 650 | us(j,i) * rmask(j,i,sr) |
---|
[1320] | 651 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[1] | 652 | usws(j,i) * rmask(j,i,sr) |
---|
[1320] | 653 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[1] | 654 | vsws(j,i) * rmask(j,i,sr) |
---|
[1320] | 655 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[1] | 656 | ts(j,i) * rmask(j,i,sr) |
---|
[197] | 657 | IF ( humidity ) THEN |
---|
[1320] | 658 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
[197] | 659 | qs(j,i) * rmask(j,i,sr) |
---|
| 660 | ENDIF |
---|
[1960] | 661 | IF ( passive_scalar ) THEN |
---|
| 662 | sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & |
---|
| 663 | ss(j,i) * rmask(j,i,sr) |
---|
| 664 | ENDIF |
---|
[1] | 665 | ENDDO |
---|
| 666 | ENDDO |
---|
| 667 | |
---|
| 668 | ! |
---|
[667] | 669 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
| 670 | !-- quantities are evaluated in the advection routines. |
---|
[1918] | 671 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) & |
---|
| 672 | THEN |
---|
[667] | 673 | !$OMP DO |
---|
| 674 | DO i = nxl, nxr |
---|
| 675 | DO j = nys, nyn |
---|
| 676 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
| 677 | u2 = u(k,j,i)**2 |
---|
| 678 | v2 = v(k,j,i)**2 |
---|
| 679 | w2 = w(k,j,i)**2 |
---|
| 680 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 681 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 682 | |
---|
| 683 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
| 684 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
| 685 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
| 686 | ! |
---|
[2026] | 687 | !-- Perturbation energy |
---|
[667] | 688 | |
---|
[1353] | 689 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5_wp * & |
---|
[667] | 690 | ( ust2 + vst2 + w2 ) * rmask(j,i,sr) |
---|
| 691 | ENDDO |
---|
| 692 | ENDDO |
---|
| 693 | ENDDO |
---|
| 694 | ENDIF |
---|
[2026] | 695 | ! |
---|
| 696 | !-- Computaion of domain-averaged perturbation energy. Please note, |
---|
| 697 | !-- to prevent that perturbation energy is larger (even if only slightly) |
---|
| 698 | !-- than the total kinetic energy, calculation is based on deviations from |
---|
| 699 | !-- the horizontal mean, instead of spatial descretization of the advection |
---|
| 700 | !-- term. |
---|
| 701 | !$OMP DO |
---|
| 702 | DO i = nxl, nxr |
---|
| 703 | DO j = nys, nyn |
---|
| 704 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
| 705 | w2 = w(k,j,i)**2 |
---|
| 706 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 707 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 708 | w2 = w(k,j,i)**2 |
---|
[1241] | 709 | |
---|
[2026] | 710 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & |
---|
| 711 | + 0.5_wp * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) |
---|
| 712 | ENDDO |
---|
| 713 | ENDDO |
---|
| 714 | ENDDO |
---|
| 715 | |
---|
[667] | 716 | ! |
---|
[1] | 717 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
[667] | 718 | |
---|
[1] | 719 | !$OMP DO |
---|
| 720 | DO i = nxl, nxr |
---|
| 721 | DO j = nys, nyn |
---|
| 722 | ! |
---|
| 723 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
| 724 | !-- oterwise from k=nzb+1) |
---|
[132] | 725 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
[1] | 726 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 727 | !-- split up according to the staggered grid. |
---|
[132] | 728 | !-- However, this implies no error since staggered velocity |
---|
| 729 | !-- components are zero at the walls and inside buildings. |
---|
| 730 | |
---|
| 731 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
[1] | 732 | ! |
---|
| 733 | !-- Momentum flux w"u" |
---|
[1353] | 734 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25_wp * ( & |
---|
[1] | 735 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 736 | ) * ( & |
---|
| 737 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 738 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
[2037] | 739 | ) * rmask(j,i,sr) & |
---|
| 740 | * rho_air_zw(k) & |
---|
| 741 | * momentumflux_output_conversion(k) |
---|
[1] | 742 | ! |
---|
| 743 | !-- Momentum flux w"v" |
---|
[1353] | 744 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25_wp * ( & |
---|
[1] | 745 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 746 | ) * ( & |
---|
| 747 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 748 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
[2037] | 749 | ) * rmask(j,i,sr) & |
---|
| 750 | * rho_air_zw(k) & |
---|
| 751 | * momentumflux_output_conversion(k) |
---|
[1] | 752 | ! |
---|
| 753 | !-- Heat flux w"pt" |
---|
| 754 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
[1353] | 755 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 756 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
[2037] | 757 | * rho_air_zw(k) & |
---|
| 758 | * heatflux_output_conversion(k) & |
---|
[1] | 759 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | ! |
---|
[96] | 763 | !-- Salinity flux w"sa" |
---|
| 764 | IF ( ocean ) THEN |
---|
| 765 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
[1353] | 766 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[96] | 767 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
| 768 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 769 | ENDIF |
---|
| 770 | |
---|
| 771 | ! |
---|
[1] | 772 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
[75] | 773 | IF ( humidity ) THEN |
---|
[1] | 774 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
[1353] | 775 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 776 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
[2037] | 777 | * rho_air_zw(k) & |
---|
| 778 | * heatflux_output_conversion(k) & |
---|
[1] | 779 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 780 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
[1353] | 781 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 782 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
[2037] | 783 | * rho_air_zw(k) & |
---|
| 784 | * waterflux_output_conversion(k)& |
---|
[1] | 785 | * ddzu(k+1) * rmask(j,i,sr) |
---|
[1007] | 786 | |
---|
[1] | 787 | IF ( cloud_physics ) THEN |
---|
| 788 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
[1353] | 789 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[1] | 790 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
| 791 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
[2037] | 792 | * rho_air_zw(k) & |
---|
| 793 | * waterflux_output_conversion(k)& |
---|
[1] | 794 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 795 | ENDIF |
---|
| 796 | ENDIF |
---|
| 797 | |
---|
| 798 | ! |
---|
| 799 | !-- Passive scalar flux |
---|
| 800 | IF ( passive_scalar ) THEN |
---|
[1960] | 801 | sums_l(k,119,tn) = sums_l(k,119,tn) & |
---|
[1353] | 802 | - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) )& |
---|
[2026] | 803 | * ( s(k+1,j,i) - s(k,j,i) ) & |
---|
| 804 | * ddzu(k+1) * rmask(j,i,sr) |
---|
[1] | 805 | ENDIF |
---|
| 806 | |
---|
| 807 | ENDDO |
---|
| 808 | |
---|
| 809 | ! |
---|
| 810 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 811 | IF ( use_surface_fluxes ) THEN |
---|
| 812 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
[2037] | 813 | momentumflux_output_conversion(nzb) * & |
---|
[1] | 814 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 815 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
[2037] | 816 | momentumflux_output_conversion(nzb) * & |
---|
[1] | 817 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 818 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
[2037] | 819 | heatflux_output_conversion(nzb) * & |
---|
[1] | 820 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 821 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
[1353] | 822 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
[1] | 823 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
[1353] | 824 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
[96] | 825 | IF ( ocean ) THEN |
---|
| 826 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
| 827 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 828 | ENDIF |
---|
[75] | 829 | IF ( humidity ) THEN |
---|
[1353] | 830 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
[2037] | 831 | waterflux_output_conversion(nzb) * & |
---|
[1] | 832 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[1353] | 833 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 834 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) ) * & |
---|
| 835 | shf(j,i) + 0.61_wp * pt(nzb,j,i) * & |
---|
[2037] | 836 | qsws(j,i) ) & |
---|
| 837 | * heatflux_output_conversion(nzb) |
---|
[1007] | 838 | IF ( cloud_droplets ) THEN |
---|
[1353] | 839 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 840 | ( 1.0_wp + 0.61_wp * q(nzb,j,i) - & |
---|
| 841 | ql(nzb,j,i) ) * shf(j,i) + & |
---|
[2037] | 842 | 0.61_wp * pt(nzb,j,i) * qsws(j,i) ) & |
---|
| 843 | * heatflux_output_conversion(nzb) |
---|
[1007] | 844 | ENDIF |
---|
[1] | 845 | IF ( cloud_physics ) THEN |
---|
| 846 | ! |
---|
| 847 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
[2037] | 848 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & |
---|
| 849 | waterflux_output_conversion(nzb) * & |
---|
[1691] | 850 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[1] | 851 | ENDIF |
---|
| 852 | ENDIF |
---|
| 853 | IF ( passive_scalar ) THEN |
---|
[1960] | 854 | sums_l(nzb,119,tn) = sums_l(nzb,119,tn) + & |
---|
[2026] | 855 | ssws(j,i) * rmask(j,i,sr) ! w"s" |
---|
[1] | 856 | ENDIF |
---|
| 857 | ENDIF |
---|
| 858 | |
---|
[1691] | 859 | IF ( .NOT. neutral ) THEN |
---|
| 860 | sums_l(nzb,114,tn) = sums_l(nzb,114,tn) + & |
---|
| 861 | ol(j,i) * rmask(j,i,sr) ! L |
---|
| 862 | ENDIF |
---|
| 863 | |
---|
| 864 | |
---|
[1551] | 865 | IF ( land_surface ) THEN |
---|
[1555] | 866 | sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + ghf_eb(j,i) |
---|
| 867 | sums_l(nzb,94,tn) = sums_l(nzb,94,tn) + shf_eb(j,i) |
---|
| 868 | sums_l(nzb,95,tn) = sums_l(nzb,95,tn) + qsws_eb(j,i) |
---|
| 869 | sums_l(nzb,96,tn) = sums_l(nzb,96,tn) + qsws_liq_eb(j,i) |
---|
| 870 | sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + qsws_soil_eb(j,i) |
---|
| 871 | sums_l(nzb,98,tn) = sums_l(nzb,98,tn) + qsws_veg_eb(j,i) |
---|
| 872 | sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + r_a(j,i) |
---|
| 873 | sums_l(nzb,100,tn) = sums_l(nzb,100,tn)+ r_s(j,i) |
---|
[1551] | 874 | ENDIF |
---|
| 875 | |
---|
[1853] | 876 | IF ( radiation .AND. radiation_scheme /= 'constant' ) THEN |
---|
[1555] | 877 | sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + rad_net(j,i) |
---|
[1585] | 878 | sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + rad_lw_in(nzb,j,i) |
---|
| 879 | sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + rad_lw_out(nzb,j,i) |
---|
| 880 | sums_l(nzb,104,tn) = sums_l(nzb,104,tn) + rad_sw_in(nzb,j,i) |
---|
| 881 | sums_l(nzb,105,tn) = sums_l(nzb,105,tn) + rad_sw_out(nzb,j,i) |
---|
| 882 | |
---|
| 883 | #if defined ( __rrtmg ) |
---|
| 884 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
[1691] | 885 | sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + rrtm_aldif(0,j,i) |
---|
| 886 | sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + rrtm_aldir(0,j,i) |
---|
| 887 | sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + rrtm_asdif(0,j,i) |
---|
| 888 | sums_l(nzb,113,tn) = sums_l(nzb,113,tn) + rrtm_asdir(0,j,i) |
---|
[1585] | 889 | ENDIF |
---|
| 890 | #endif |
---|
[1551] | 891 | ENDIF |
---|
[1] | 892 | ! |
---|
[19] | 893 | !-- Subgridscale fluxes at the top surface |
---|
| 894 | IF ( use_top_fluxes ) THEN |
---|
[550] | 895 | sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + & |
---|
[2037] | 896 | momentumflux_output_conversion(nzt:nzt+1) * & |
---|
[102] | 897 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
[550] | 898 | sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + & |
---|
[2037] | 899 | momentumflux_output_conversion(nzt:nzt+1) * & |
---|
[102] | 900 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
[550] | 901 | sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + & |
---|
[2037] | 902 | heatflux_output_conversion(nzt:nzt+1) * & |
---|
[19] | 903 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
[550] | 904 | sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & |
---|
[1353] | 905 | 0.0_wp * rmask(j,i,sr) ! u"pt" |
---|
[550] | 906 | sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & |
---|
[1353] | 907 | 0.0_wp * rmask(j,i,sr) ! v"pt" |
---|
[550] | 908 | |
---|
[96] | 909 | IF ( ocean ) THEN |
---|
| 910 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
| 911 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 912 | ENDIF |
---|
[75] | 913 | IF ( humidity ) THEN |
---|
[1353] | 914 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[2037] | 915 | waterflux_output_conversion(nzt) * & |
---|
[388] | 916 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[1353] | 917 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 918 | ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * & |
---|
| 919 | tswst(j,i) + 0.61_wp * pt(nzt,j,i) * & |
---|
[2037] | 920 | qswst(j,i) ) & |
---|
| 921 | * heatflux_output_conversion(nzt) |
---|
[1007] | 922 | IF ( cloud_droplets ) THEN |
---|
[1353] | 923 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 924 | ( 1.0_wp + 0.61_wp * q(nzt,j,i) - & |
---|
| 925 | ql(nzt,j,i) ) * tswst(j,i) + & |
---|
[2037] | 926 | 0.61_wp * pt(nzt,j,i) * qswst(j,i) )& |
---|
| 927 | * heatflux_output_conversion(nzt) |
---|
[1007] | 928 | ENDIF |
---|
[19] | 929 | IF ( cloud_physics ) THEN |
---|
| 930 | ! |
---|
| 931 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 932 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
[2037] | 933 | waterflux_output_conversion(nzt) * & |
---|
[19] | 934 | qswst(j,i) * rmask(j,i,sr) |
---|
| 935 | ENDIF |
---|
| 936 | ENDIF |
---|
| 937 | IF ( passive_scalar ) THEN |
---|
[1960] | 938 | sums_l(nzt,119,tn) = sums_l(nzt,119,tn) + & |
---|
[2026] | 939 | sswst(j,i) * rmask(j,i,sr) ! w"s" |
---|
[19] | 940 | ENDIF |
---|
| 941 | ENDIF |
---|
| 942 | |
---|
| 943 | ! |
---|
[1] | 944 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
[132] | 945 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 946 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 947 | !-- rearranged according to the staggered grid. |
---|
[132] | 948 | DO k = nzb_s_inner(j,i), nzt |
---|
[1353] | 949 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 950 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 951 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 952 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 953 | pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 954 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
[667] | 955 | |
---|
[1] | 956 | !-- Higher moments |
---|
[1353] | 957 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
[1] | 958 | rmask(j,i,sr) |
---|
[1353] | 959 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
[1] | 960 | rmask(j,i,sr) |
---|
| 961 | |
---|
| 962 | ! |
---|
[96] | 963 | !-- Salinity flux and density (density does not belong to here, |
---|
[97] | 964 | !-- but so far there is no other suitable place to calculate) |
---|
[96] | 965 | IF ( ocean ) THEN |
---|
[1567] | 966 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[1353] | 967 | pts = 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
| 968 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
| 969 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
| 970 | rmask(j,i,sr) |
---|
[667] | 971 | ENDIF |
---|
[2031] | 972 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho_ocean(k,j,i) * & |
---|
[96] | 973 | rmask(j,i,sr) |
---|
[1353] | 974 | sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & |
---|
[388] | 975 | rmask(j,i,sr) |
---|
[96] | 976 | ENDIF |
---|
| 977 | |
---|
| 978 | ! |
---|
[1053] | 979 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
| 980 | !-- content, rain drop concentration and rain water content |
---|
[75] | 981 | IF ( humidity ) THEN |
---|
[1007] | 982 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
[1353] | 983 | pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
[1007] | 984 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
[1353] | 985 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
[2037] | 986 | heatflux_output_conversion(k) * & |
---|
[1] | 987 | rmask(j,i,sr) |
---|
[1822] | 988 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * rmask(j,i,sr) |
---|
| 989 | |
---|
[1053] | 990 | IF ( .NOT. cloud_droplets ) THEN |
---|
[1353] | 991 | pts = 0.5_wp * & |
---|
[1115] | 992 | ( ( q(k,j,i) - ql(k,j,i) ) - & |
---|
| 993 | hom(k,1,42,sr) + & |
---|
| 994 | ( q(k+1,j,i) - ql(k+1,j,i) ) - & |
---|
[1053] | 995 | hom(k+1,1,42,sr) ) |
---|
[1115] | 996 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
[2037] | 997 | waterflux_output_conversion(k) * & |
---|
[1053] | 998 | rmask(j,i,sr) |
---|
[1822] | 999 | sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * & |
---|
| 1000 | rmask(j,i,sr) |
---|
| 1001 | sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) * & |
---|
| 1002 | rmask(j,i,sr) |
---|
| 1003 | IF ( microphysics_seifert ) THEN |
---|
| 1004 | sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * & |
---|
[1053] | 1005 | rmask(j,i,sr) |
---|
[1822] | 1006 | sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * & |
---|
[1053] | 1007 | rmask(j,i,sr) |
---|
| 1008 | ENDIF |
---|
| 1009 | ENDIF |
---|
[1822] | 1010 | |
---|
[1007] | 1011 | ELSE |
---|
[1567] | 1012 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[1353] | 1013 | pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 1014 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 1015 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
[2037] | 1016 | heatflux_output_conversion(k) * & |
---|
[1007] | 1017 | rmask(j,i,sr) |
---|
[1567] | 1018 | ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
[2037] | 1019 | sums_l(k,46,tn) = ( ( 1.0_wp + 0.61_wp * & |
---|
| 1020 | hom(k,1,41,sr) ) * & |
---|
| 1021 | sums_l(k,17,tn) + & |
---|
| 1022 | 0.61_wp * hom(k,1,4,sr) * & |
---|
| 1023 | sums_l(k,49,tn) & |
---|
| 1024 | ) * heatflux_output_conversion(k) |
---|
[1007] | 1025 | END IF |
---|
| 1026 | END IF |
---|
[1] | 1027 | ENDIF |
---|
| 1028 | ! |
---|
| 1029 | !-- Passive scalar flux |
---|
[1353] | 1030 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & |
---|
[1567] | 1031 | .OR. sr /= 0 ) ) THEN |
---|
[1960] | 1032 | pts = 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & |
---|
| 1033 | s(k+1,j,i) - hom(k+1,1,117,sr) ) |
---|
| 1034 | sums_l(k,116,tn) = sums_l(k,116,tn) + pts * w(k,j,i) * & |
---|
[1] | 1035 | rmask(j,i,sr) |
---|
| 1036 | ENDIF |
---|
| 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- Energy flux w*e* |
---|
[667] | 1040 | !-- has to be adjusted |
---|
[1353] | 1041 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5_wp * & |
---|
| 1042 | ( ust**2 + vst**2 + w(k,j,i)**2 ) & |
---|
[2037] | 1043 | * momentumflux_output_conversion(k) & |
---|
[667] | 1044 | * rmask(j,i,sr) |
---|
[1] | 1045 | ENDDO |
---|
| 1046 | ENDDO |
---|
| 1047 | ENDDO |
---|
[709] | 1048 | ! |
---|
| 1049 | !-- For speed optimization fluxes which have been computed in part directly |
---|
| 1050 | !-- inside the WS advection routines are treated seperatly |
---|
| 1051 | !-- Momentum fluxes first: |
---|
[743] | 1052 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
[667] | 1053 | !$OMP DO |
---|
| 1054 | DO i = nxl, nxr |
---|
| 1055 | DO j = nys, nyn |
---|
| 1056 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
[1353] | 1057 | ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 1058 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 1059 | vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 1060 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
[1007] | 1061 | ! |
---|
[667] | 1062 | !-- Momentum flux w*u* |
---|
[1353] | 1063 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5_wp * & |
---|
| 1064 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
[2037] | 1065 | * momentumflux_output_conversion(k) & |
---|
[667] | 1066 | * ust * rmask(j,i,sr) |
---|
| 1067 | ! |
---|
| 1068 | !-- Momentum flux w*v* |
---|
[1353] | 1069 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5_wp * & |
---|
| 1070 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
[2037] | 1071 | * momentumflux_output_conversion(k) & |
---|
[667] | 1072 | * vst * rmask(j,i,sr) |
---|
| 1073 | ENDDO |
---|
| 1074 | ENDDO |
---|
| 1075 | ENDDO |
---|
[1] | 1076 | |
---|
[667] | 1077 | ENDIF |
---|
[1567] | 1078 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[667] | 1079 | !$OMP DO |
---|
| 1080 | DO i = nxl, nxr |
---|
| 1081 | DO j = nys, nyn |
---|
[709] | 1082 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
| 1083 | ! |
---|
| 1084 | !-- Vertical heat flux |
---|
[1353] | 1085 | sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5_wp * & |
---|
| 1086 | ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 1087 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
[2037] | 1088 | * heatflux_output_conversion(k) & |
---|
[667] | 1089 | * w(k,j,i) * rmask(j,i,sr) |
---|
| 1090 | IF ( humidity ) THEN |
---|
[1353] | 1091 | pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 1092 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 1093 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
[2037] | 1094 | waterflux_output_conversion(k) * & |
---|
[1353] | 1095 | rmask(j,i,sr) |
---|
[667] | 1096 | ENDIF |
---|
[1960] | 1097 | IF ( passive_scalar ) THEN |
---|
| 1098 | pts = 0.5_wp * ( s(k,j,i) - hom(k,1,117,sr) + & |
---|
| 1099 | s(k+1,j,i) - hom(k+1,1,117,sr) ) |
---|
[2026] | 1100 | sums_l(k,116,tn) = sums_l(k,116,tn) + pts * w(k,j,i) * & |
---|
| 1101 | rmask(j,i,sr) |
---|
[1960] | 1102 | ENDIF |
---|
[667] | 1103 | ENDDO |
---|
| 1104 | ENDDO |
---|
| 1105 | ENDDO |
---|
| 1106 | |
---|
| 1107 | ENDIF |
---|
| 1108 | |
---|
[1] | 1109 | ! |
---|
[97] | 1110 | !-- Density at top follows Neumann condition |
---|
[388] | 1111 | IF ( ocean ) THEN |
---|
| 1112 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
| 1113 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
| 1114 | ENDIF |
---|
[97] | 1115 | |
---|
| 1116 | ! |
---|
[1] | 1117 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
[106] | 1118 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
| 1119 | !-- First calculate the products, then the divergence. |
---|
[1] | 1120 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
[1691] | 1121 | IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) & |
---|
| 1122 | THEN |
---|
[1353] | 1123 | sums_ll = 0.0_wp ! local array |
---|
[1] | 1124 | |
---|
| 1125 | !$OMP DO |
---|
| 1126 | DO i = nxl, nxr |
---|
| 1127 | DO j = nys, nyn |
---|
[132] | 1128 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1129 | |
---|
[1353] | 1130 | sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & |
---|
[1652] | 1131 | ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & |
---|
| 1132 | - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2& |
---|
| 1133 | + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & |
---|
[1654] | 1134 | - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2& |
---|
[1353] | 1135 | + w(k,j,i)**2 ) |
---|
[1] | 1136 | |
---|
[1353] | 1137 | sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & |
---|
[1] | 1138 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
| 1139 | |
---|
| 1140 | ENDDO |
---|
| 1141 | ENDDO |
---|
| 1142 | ENDDO |
---|
[1353] | 1143 | sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom |
---|
| 1144 | sums_ll(nzt+1,1) = 0.0_wp |
---|
| 1145 | sums_ll(0,2) = 0.0_wp |
---|
| 1146 | sums_ll(nzt+1,2) = 0.0_wp |
---|
[1] | 1147 | |
---|
[678] | 1148 | DO k = nzb+1, nzt |
---|
[1] | 1149 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 1150 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
[106] | 1151 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
[1] | 1152 | ENDDO |
---|
| 1153 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 1154 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
[1353] | 1155 | sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb |
---|
[1] | 1156 | |
---|
| 1157 | ENDIF |
---|
| 1158 | |
---|
| 1159 | ! |
---|
[106] | 1160 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
[1691] | 1161 | IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) & |
---|
| 1162 | THEN |
---|
[1] | 1163 | !$OMP DO |
---|
| 1164 | DO i = nxl, nxr |
---|
| 1165 | DO j = nys, nyn |
---|
[132] | 1166 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1167 | |
---|
[1353] | 1168 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & |
---|
[1] | 1169 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 1170 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
[1353] | 1171 | ) * ddzw(k) |
---|
[1] | 1172 | |
---|
[1353] | 1173 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & |
---|
[106] | 1174 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
[1353] | 1175 | ) |
---|
[106] | 1176 | |
---|
[1] | 1177 | ENDDO |
---|
| 1178 | ENDDO |
---|
| 1179 | ENDDO |
---|
| 1180 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
[106] | 1181 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
[1] | 1182 | |
---|
| 1183 | ENDIF |
---|
| 1184 | |
---|
| 1185 | ! |
---|
| 1186 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 1187 | !-- Do it only, if profiles shall be plotted. |
---|
[1353] | 1188 | IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN |
---|
[1] | 1189 | |
---|
| 1190 | !$OMP DO |
---|
| 1191 | DO i = nxl, nxr |
---|
| 1192 | DO j = nys, nyn |
---|
[132] | 1193 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1194 | ! |
---|
| 1195 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
[1353] | 1196 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & |
---|
[1] | 1197 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 1198 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
[2037] | 1199 | * rho_air_zw(k) & |
---|
| 1200 | * heatflux_output_conversion(k) & |
---|
[1] | 1201 | * ddx * rmask(j,i,sr) |
---|
[1353] | 1202 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & |
---|
[1] | 1203 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 1204 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
[2037] | 1205 | * rho_air_zw(k) & |
---|
| 1206 | * heatflux_output_conversion(k) & |
---|
[1] | 1207 | * ddy * rmask(j,i,sr) |
---|
| 1208 | ! |
---|
| 1209 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 1210 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 1211 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
[1353] | 1212 | * 0.5_wp * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
[2037] | 1213 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
| 1214 | * heatflux_output_conversion(k) |
---|
[1353] | 1215 | pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 1216 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
[1] | 1217 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 1218 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
[1353] | 1219 | * 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
[2037] | 1220 | pt(k,j,i) - hom(k,1,4,sr) ) & |
---|
| 1221 | * heatflux_output_conversion(k) |
---|
[1] | 1222 | ENDDO |
---|
| 1223 | ENDDO |
---|
| 1224 | ENDDO |
---|
| 1225 | ! |
---|
| 1226 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
[1353] | 1227 | sums_l(nzb,58,tn) = 0.0_wp |
---|
| 1228 | sums_l(nzb,59,tn) = 0.0_wp |
---|
| 1229 | sums_l(nzb,60,tn) = 0.0_wp |
---|
| 1230 | sums_l(nzb,61,tn) = 0.0_wp |
---|
| 1231 | sums_l(nzb,62,tn) = 0.0_wp |
---|
| 1232 | sums_l(nzb,63,tn) = 0.0_wp |
---|
[1] | 1233 | |
---|
| 1234 | ENDIF |
---|
[2073] | 1235 | !$OMP END PARALLEL |
---|
[87] | 1236 | |
---|
| 1237 | ! |
---|
[1365] | 1238 | !-- Collect current large scale advection and subsidence tendencies for |
---|
| 1239 | !-- data output |
---|
[1691] | 1240 | IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN |
---|
[1365] | 1241 | ! |
---|
| 1242 | !-- Interpolation in time of LSF_DATA |
---|
| 1243 | nt = 1 |
---|
[1386] | 1244 | DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) |
---|
[1365] | 1245 | nt = nt + 1 |
---|
| 1246 | ENDDO |
---|
[1386] | 1247 | IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN |
---|
[1365] | 1248 | nt = nt - 1 |
---|
| 1249 | ENDIF |
---|
| 1250 | |
---|
[1386] | 1251 | fac = ( simulated_time - dt_3d - time_vert(nt) ) & |
---|
[1365] | 1252 | / ( time_vert(nt+1)-time_vert(nt) ) |
---|
| 1253 | |
---|
| 1254 | |
---|
| 1255 | DO k = nzb, nzt |
---|
[1382] | 1256 | sums_ls_l(k,0) = td_lsa_lpt(k,nt) & |
---|
| 1257 | + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) |
---|
| 1258 | sums_ls_l(k,1) = td_lsa_q(k,nt) & |
---|
| 1259 | + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) |
---|
[1365] | 1260 | ENDDO |
---|
| 1261 | |
---|
[1382] | 1262 | sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) |
---|
| 1263 | sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) |
---|
| 1264 | |
---|
[1365] | 1265 | IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN |
---|
| 1266 | |
---|
| 1267 | DO k = nzb, nzt |
---|
[1382] | 1268 | sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * & |
---|
| 1269 | ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) |
---|
| 1270 | sums_ls_l(k,3) = td_sub_q(k,nt) + fac * & |
---|
| 1271 | ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) |
---|
[1365] | 1272 | ENDDO |
---|
| 1273 | |
---|
[1382] | 1274 | sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) |
---|
| 1275 | sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) |
---|
| 1276 | |
---|
[1365] | 1277 | ENDIF |
---|
| 1278 | |
---|
| 1279 | ENDIF |
---|
| 1280 | |
---|
[2073] | 1281 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
| 1282 | !$ tn = omp_get_thread_num() |
---|
[1551] | 1283 | IF ( land_surface ) THEN |
---|
| 1284 | !$OMP DO |
---|
| 1285 | DO i = nxl, nxr |
---|
| 1286 | DO j = nys, nyn |
---|
| 1287 | DO k = nzb_soil, nzt_soil |
---|
[1691] | 1288 | sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil(k,j,i) & |
---|
| 1289 | * rmask(j,i,sr) |
---|
| 1290 | sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil(k,j,i) & |
---|
| 1291 | * rmask(j,i,sr) |
---|
[1551] | 1292 | ENDDO |
---|
| 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
| 1295 | ENDIF |
---|
| 1296 | |
---|
[1585] | 1297 | IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN |
---|
| 1298 | !$OMP DO |
---|
| 1299 | DO i = nxl, nxr |
---|
| 1300 | DO j = nys, nyn |
---|
| 1301 | DO k = nzb_s_inner(j,i)+1, nzt+1 |
---|
[1691] | 1302 | sums_l(k,102,tn) = sums_l(k,102,tn) + rad_lw_in(k,j,i) & |
---|
| 1303 | * rmask(j,i,sr) |
---|
| 1304 | sums_l(k,103,tn) = sums_l(k,103,tn) + rad_lw_out(k,j,i) & |
---|
| 1305 | * rmask(j,i,sr) |
---|
| 1306 | sums_l(k,104,tn) = sums_l(k,104,tn) + rad_sw_in(k,j,i) & |
---|
| 1307 | * rmask(j,i,sr) |
---|
| 1308 | sums_l(k,105,tn) = sums_l(k,105,tn) + rad_sw_out(k,j,i) & |
---|
| 1309 | * rmask(j,i,sr) |
---|
| 1310 | sums_l(k,106,tn) = sums_l(k,106,tn) + rad_lw_cs_hr(k,j,i) & |
---|
| 1311 | * rmask(j,i,sr) |
---|
| 1312 | sums_l(k,107,tn) = sums_l(k,107,tn) + rad_lw_hr(k,j,i) & |
---|
| 1313 | * rmask(j,i,sr) |
---|
| 1314 | sums_l(k,108,tn) = sums_l(k,108,tn) + rad_sw_cs_hr(k,j,i) & |
---|
| 1315 | * rmask(j,i,sr) |
---|
[1701] | 1316 | sums_l(k,109,tn) = sums_l(k,109,tn) + rad_sw_hr(k,j,i) & |
---|
[1691] | 1317 | * rmask(j,i,sr) |
---|
[1585] | 1318 | ENDDO |
---|
| 1319 | ENDDO |
---|
| 1320 | ENDDO |
---|
| 1321 | ENDIF |
---|
[1365] | 1322 | ! |
---|
[87] | 1323 | !-- Calculate the user-defined profiles |
---|
| 1324 | CALL user_statistics( 'profiles', sr, tn ) |
---|
[1] | 1325 | !$OMP END PARALLEL |
---|
| 1326 | |
---|
| 1327 | ! |
---|
| 1328 | !-- Summation of thread sums |
---|
| 1329 | IF ( threads_per_task > 1 ) THEN |
---|
| 1330 | DO i = 1, threads_per_task-1 |
---|
| 1331 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 1332 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
[87] | 1333 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
| 1334 | sums_l(:,45:pr_palm,i) |
---|
| 1335 | IF ( max_pr_user > 0 ) THEN |
---|
| 1336 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
| 1337 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
| 1338 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
| 1339 | ENDIF |
---|
[1] | 1340 | ENDDO |
---|
| 1341 | ENDIF |
---|
| 1342 | |
---|
| 1343 | #if defined( __parallel ) |
---|
[667] | 1344 | |
---|
[1] | 1345 | ! |
---|
| 1346 | !-- Compute total sum from local sums |
---|
[622] | 1347 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1365] | 1348 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
[1] | 1349 | MPI_SUM, comm2d, ierr ) |
---|
[1365] | 1350 | IF ( large_scale_forcing ) THEN |
---|
| 1351 | CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, & |
---|
| 1352 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1353 | ENDIF |
---|
[1] | 1354 | #else |
---|
| 1355 | sums = sums_l(:,:,0) |
---|
[1365] | 1356 | IF ( large_scale_forcing ) THEN |
---|
| 1357 | sums(:,81:88) = sums_ls_l |
---|
| 1358 | ENDIF |
---|
[1] | 1359 | #endif |
---|
| 1360 | |
---|
| 1361 | ! |
---|
| 1362 | !-- Final values are obtained by division by the total number of grid points |
---|
| 1363 | !-- used for summation. After that store profiles. |
---|
[1738] | 1364 | !-- Check, if statistical regions do contain at least one grid point at the |
---|
| 1365 | !-- respective k-level, otherwise division by zero will lead to undefined |
---|
| 1366 | !-- values, which may cause e.g. problems with NetCDF output |
---|
[1] | 1367 | !-- Profiles: |
---|
| 1368 | DO k = nzb, nzt+1 |
---|
[1738] | 1369 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
| 1370 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
| 1371 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
| 1372 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
| 1373 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
| 1374 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
| 1375 | sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) |
---|
| 1376 | sums(k,89:114) = sums(k,89:114) / ngp_2dh(sr) |
---|
[1960] | 1377 | sums(k,116) = sums(k,116) / ngp_2dh(sr) |
---|
| 1378 | sums(k,119) = sums(k,119) / ngp_2dh(sr) |
---|
[1738] | 1379 | IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN |
---|
| 1380 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
| 1381 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
| 1382 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
| 1383 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
| 1384 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
| 1385 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
| 1386 | sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) |
---|
[1960] | 1387 | sums(k,118) = sums(k,118) / ngp_2dh_s_inner(k,sr) |
---|
| 1388 | sums(k,120:pr_palm-2) = sums(k,120:pr_palm-2) / ngp_2dh_s_inner(k,sr) |
---|
[1738] | 1389 | ENDIF |
---|
[1] | 1390 | ENDDO |
---|
[667] | 1391 | |
---|
[1] | 1392 | !-- u* and so on |
---|
[87] | 1393 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
[1] | 1394 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 1395 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
[87] | 1396 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
[1] | 1397 | ngp_2dh(sr) |
---|
[197] | 1398 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
| 1399 | ngp_2dh(sr) |
---|
[1960] | 1400 | sums(nzb+13,pr_palm) = sums(nzb+13,pr_palm) / & ! ss |
---|
| 1401 | ngp_2dh(sr) |
---|
[1] | 1402 | !-- eges, e* |
---|
[87] | 1403 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
[132] | 1404 | ngp_3d(sr) |
---|
[1] | 1405 | !-- Old and new divergence |
---|
[87] | 1406 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
[1] | 1407 | ngp_3d_inner(sr) |
---|
| 1408 | |
---|
[87] | 1409 | !-- User-defined profiles |
---|
| 1410 | IF ( max_pr_user > 0 ) THEN |
---|
| 1411 | DO k = nzb, nzt+1 |
---|
| 1412 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
| 1413 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
[132] | 1414 | ngp_2dh_s_inner(k,sr) |
---|
[87] | 1415 | ENDDO |
---|
| 1416 | ENDIF |
---|
[1007] | 1417 | |
---|
[1] | 1418 | ! |
---|
| 1419 | !-- Collect horizontal average in hom. |
---|
| 1420 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 1421 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 1422 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 1423 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 1424 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 1425 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 1426 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 1427 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 1428 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 1429 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 1430 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 1431 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 1432 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 1433 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 1434 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 1435 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 1436 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
[96] | 1437 | ! profile 24 is initial profile (sa) |
---|
| 1438 | ! profiles 25-29 left empty for initial |
---|
[1] | 1439 | ! profiles |
---|
| 1440 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 1441 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 1442 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 1443 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 1444 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 1445 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 1446 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 1447 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 1448 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
[1353] | 1449 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw |
---|
[1] | 1450 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
[531] | 1451 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
[1] | 1452 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 1453 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 1454 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 1455 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 1456 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 1457 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 1458 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 1459 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 1460 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 1461 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 1462 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
[2031] | 1463 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho_ocean )/dz |
---|
[1] | 1464 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 1465 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 1466 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 1467 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 1468 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 1469 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
[2031] | 1470 | hom(:,1,64,sr) = sums(:,64) ! rho_ocean |
---|
[96] | 1471 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
| 1472 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
| 1473 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
[106] | 1474 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
[2031] | 1475 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho_ocean |
---|
[197] | 1476 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
[388] | 1477 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
[1353] | 1478 | hom(:,1,72,sr) = hyp * 1E-4_wp ! hyp in dbar |
---|
[1053] | 1479 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
| 1480 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
| 1481 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
| 1482 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
[1179] | 1483 | ! 77 is initial density profile |
---|
[1241] | 1484 | hom(:,1,78,sr) = ug ! ug |
---|
| 1485 | hom(:,1,79,sr) = vg ! vg |
---|
[1299] | 1486 | hom(:,1,80,sr) = w_subs ! w_subs |
---|
[1] | 1487 | |
---|
[1365] | 1488 | IF ( large_scale_forcing ) THEN |
---|
[1382] | 1489 | hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt |
---|
| 1490 | hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q |
---|
[1365] | 1491 | IF ( use_subsidence_tendencies ) THEN |
---|
[1382] | 1492 | hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt |
---|
| 1493 | hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q |
---|
[1365] | 1494 | ELSE |
---|
[1382] | 1495 | hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt |
---|
| 1496 | hom(:,1,84,sr) = sums(:,84) ! td_sub_q |
---|
[1365] | 1497 | ENDIF |
---|
[1382] | 1498 | hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt |
---|
| 1499 | hom(:,1,86,sr) = sums(:,86) ! td_nud_q |
---|
| 1500 | hom(:,1,87,sr) = sums(:,87) ! td_nud_u |
---|
| 1501 | hom(:,1,88,sr) = sums(:,88) ! td_nud_v |
---|
[1365] | 1502 | ENDIF |
---|
| 1503 | |
---|
[1551] | 1504 | IF ( land_surface ) THEN |
---|
| 1505 | hom(:,1,89,sr) = sums(:,89) ! t_soil |
---|
| 1506 | ! 90 is initial t_soil profile |
---|
| 1507 | hom(:,1,91,sr) = sums(:,91) ! m_soil |
---|
| 1508 | ! 92 is initial m_soil profile |
---|
[1555] | 1509 | hom(:,1,93,sr) = sums(:,93) ! ghf_eb |
---|
| 1510 | hom(:,1,94,sr) = sums(:,94) ! shf_eb |
---|
| 1511 | hom(:,1,95,sr) = sums(:,95) ! qsws_eb |
---|
| 1512 | hom(:,1,96,sr) = sums(:,96) ! qsws_liq_eb |
---|
| 1513 | hom(:,1,97,sr) = sums(:,97) ! qsws_soil_eb |
---|
| 1514 | hom(:,1,98,sr) = sums(:,98) ! qsws_veg_eb |
---|
| 1515 | hom(:,1,99,sr) = sums(:,99) ! r_a |
---|
| 1516 | hom(:,1,100,sr) = sums(:,100) ! r_s |
---|
| 1517 | |
---|
[1551] | 1518 | ENDIF |
---|
| 1519 | |
---|
| 1520 | IF ( radiation ) THEN |
---|
[1585] | 1521 | hom(:,1,101,sr) = sums(:,101) ! rad_net |
---|
| 1522 | hom(:,1,102,sr) = sums(:,102) ! rad_lw_in |
---|
| 1523 | hom(:,1,103,sr) = sums(:,103) ! rad_lw_out |
---|
| 1524 | hom(:,1,104,sr) = sums(:,104) ! rad_sw_in |
---|
| 1525 | hom(:,1,105,sr) = sums(:,105) ! rad_sw_out |
---|
| 1526 | |
---|
[1691] | 1527 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
| 1528 | hom(:,1,106,sr) = sums(:,106) ! rad_lw_cs_hr |
---|
| 1529 | hom(:,1,107,sr) = sums(:,107) ! rad_lw_hr |
---|
| 1530 | hom(:,1,108,sr) = sums(:,108) ! rad_sw_cs_hr |
---|
| 1531 | hom(:,1,109,sr) = sums(:,109) ! rad_sw_hr |
---|
| 1532 | |
---|
| 1533 | hom(:,1,110,sr) = sums(:,110) ! rrtm_aldif |
---|
| 1534 | hom(:,1,111,sr) = sums(:,111) ! rrtm_aldir |
---|
| 1535 | hom(:,1,112,sr) = sums(:,112) ! rrtm_asdif |
---|
| 1536 | hom(:,1,113,sr) = sums(:,113) ! rrtm_asdir |
---|
[1585] | 1537 | ENDIF |
---|
[1551] | 1538 | ENDIF |
---|
| 1539 | |
---|
[1691] | 1540 | hom(:,1,114,sr) = sums(:,114) !: L |
---|
| 1541 | |
---|
[1960] | 1542 | IF ( passive_scalar ) THEN |
---|
| 1543 | hom(:,1,119,sr) = sums(:,119) ! w"s" |
---|
| 1544 | hom(:,1,116,sr) = sums(:,116) ! w*s* |
---|
| 1545 | hom(:,1,120,sr) = sums(:,119) + sums(:,116) ! ws |
---|
[2026] | 1546 | hom(:,1,118,sr) = sums(:,118) ! s*2 |
---|
[1960] | 1547 | ENDIF |
---|
| 1548 | |
---|
[2037] | 1549 | hom(:,1,121,sr) = rho_air ! rho_air in Kg/m^3 |
---|
| 1550 | hom(:,1,122,sr) = rho_air_zw ! rho_air_zw in Kg/m^3 |
---|
| 1551 | |
---|
[667] | 1552 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
[1] | 1553 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 1554 | |
---|
[87] | 1555 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
| 1556 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
| 1557 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
| 1558 | ENDIF |
---|
| 1559 | |
---|
[1] | 1560 | ! |
---|
| 1561 | !-- Determine the boundary layer height using two different schemes. |
---|
[94] | 1562 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
| 1563 | !-- first relative minimum (maximum) of the total heat flux. |
---|
| 1564 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
| 1565 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
| 1566 | !-- (positive) for the first time. |
---|
[1353] | 1567 | z_i(1) = 0.0_wp |
---|
[1] | 1568 | first = .TRUE. |
---|
[667] | 1569 | |
---|
[97] | 1570 | IF ( ocean ) THEN |
---|
| 1571 | DO k = nzt, nzb+1, -1 |
---|
[1738] | 1572 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
[97] | 1573 | first = .FALSE. |
---|
| 1574 | height = zw(k) |
---|
| 1575 | ENDIF |
---|
[1738] | 1576 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
[97] | 1577 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
[1353] | 1578 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
[97] | 1579 | z_i(1) = zw(k) |
---|
| 1580 | ELSE |
---|
| 1581 | z_i(1) = height |
---|
| 1582 | ENDIF |
---|
| 1583 | EXIT |
---|
| 1584 | ENDIF |
---|
| 1585 | ENDDO |
---|
| 1586 | ELSE |
---|
[94] | 1587 | DO k = nzb, nzt-1 |
---|
[1738] | 1588 | IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN |
---|
[94] | 1589 | first = .FALSE. |
---|
| 1590 | height = zw(k) |
---|
[1] | 1591 | ENDIF |
---|
[1738] | 1592 | IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. & |
---|
[94] | 1593 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
[1353] | 1594 | IF ( zw(k) < 1.5_wp * height ) THEN |
---|
[94] | 1595 | z_i(1) = zw(k) |
---|
| 1596 | ELSE |
---|
| 1597 | z_i(1) = height |
---|
| 1598 | ENDIF |
---|
| 1599 | EXIT |
---|
| 1600 | ENDIF |
---|
| 1601 | ENDDO |
---|
[97] | 1602 | ENDIF |
---|
[1] | 1603 | |
---|
| 1604 | ! |
---|
[291] | 1605 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
| 1606 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
| 1607 | !-- maximal local temperature gradient: starting from the second (the last |
---|
| 1608 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
| 1609 | !-- 0.2K/100m and greater than the next four gradients. |
---|
| 1610 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
| 1611 | !-- ocean case! |
---|
[1353] | 1612 | z_i(2) = 0.0_wp |
---|
[291] | 1613 | DO k = nzb+1, nzt+1 |
---|
| 1614 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
| 1615 | ENDDO |
---|
[1322] | 1616 | dptdz_threshold = 0.2_wp / 100.0_wp |
---|
[291] | 1617 | |
---|
[97] | 1618 | IF ( ocean ) THEN |
---|
[291] | 1619 | DO k = nzt+1, nzb+5, -1 |
---|
| 1620 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 1621 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
| 1622 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
| 1623 | z_i(2) = zw(k-1) |
---|
[97] | 1624 | EXIT |
---|
| 1625 | ENDIF |
---|
| 1626 | ENDDO |
---|
| 1627 | ELSE |
---|
[291] | 1628 | DO k = nzb+1, nzt-3 |
---|
| 1629 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 1630 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
| 1631 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
| 1632 | z_i(2) = zw(k-1) |
---|
[97] | 1633 | EXIT |
---|
| 1634 | ENDIF |
---|
| 1635 | ENDDO |
---|
| 1636 | ENDIF |
---|
[1] | 1637 | |
---|
[87] | 1638 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
| 1639 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
[1] | 1640 | |
---|
| 1641 | ! |
---|
[1738] | 1642 | !-- Determine vertical index which is nearest to the mean surface level |
---|
| 1643 | !-- height of the respective statistic region |
---|
| 1644 | DO k = nzb, nzt |
---|
| 1645 | IF ( zw(k) >= mean_surface_level_height(sr) ) THEN |
---|
| 1646 | k_surface_level = k |
---|
| 1647 | EXIT |
---|
| 1648 | ENDIF |
---|
| 1649 | ENDDO |
---|
| 1650 | ! |
---|
[1] | 1651 | !-- Computation of both the characteristic vertical velocity and |
---|
| 1652 | !-- the characteristic convective boundary layer temperature. |
---|
[1738] | 1653 | !-- The inversion height entering into the equation is defined with respect |
---|
| 1654 | !-- to the mean surface level height of the respective statistic region. |
---|
| 1655 | !-- The horizontal average at surface level index + 1 is input for the |
---|
| 1656 | !-- average temperature. |
---|
| 1657 | IF ( hom(k_surface_level,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp )& |
---|
| 1658 | THEN |
---|
| 1659 | hom(nzb+8,1,pr_palm,sr) = & |
---|
[2037] | 1660 | ( g / hom(k_surface_level+1,1,4,sr) * & |
---|
| 1661 | ( hom(k_surface_level,1,18,sr) / heatflux_output_conversion(nzb) )& |
---|
[1738] | 1662 | * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp |
---|
[1] | 1663 | ELSE |
---|
[1353] | 1664 | hom(nzb+8,1,pr_palm,sr) = 0.0_wp |
---|
[1] | 1665 | ENDIF |
---|
| 1666 | |
---|
[48] | 1667 | ! |
---|
| 1668 | !-- Collect the time series quantities |
---|
[87] | 1669 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
| 1670 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
[48] | 1671 | ts_value(3,sr) = dt_3d |
---|
[87] | 1672 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
| 1673 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
[48] | 1674 | ts_value(6,sr) = u_max |
---|
| 1675 | ts_value(7,sr) = v_max |
---|
| 1676 | ts_value(8,sr) = w_max |
---|
[87] | 1677 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
| 1678 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
| 1679 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
| 1680 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
| 1681 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
[48] | 1682 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 1683 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
| 1684 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
| 1685 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
| 1686 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
[197] | 1687 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
| 1688 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
[343] | 1689 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
[1709] | 1690 | |
---|
| 1691 | IF ( .NOT. neutral ) THEN |
---|
| 1692 | ts_value(22,sr) = hom(nzb,1,114,sr) ! L |
---|
[48] | 1693 | ELSE |
---|
[1709] | 1694 | ts_value(22,sr) = 1.0E10_wp |
---|
[48] | 1695 | ENDIF |
---|
[1] | 1696 | |
---|
[343] | 1697 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
[1551] | 1698 | |
---|
[1960] | 1699 | IF ( passive_scalar ) THEN |
---|
| 1700 | ts_value(24,sr) = hom(nzb+13,1,119,sr) ! w"s" ( to do ! ) |
---|
| 1701 | ts_value(25,sr) = hom(nzb+13,1,pr_palm,sr) ! s* |
---|
| 1702 | ENDIF |
---|
| 1703 | |
---|
[1] | 1704 | ! |
---|
[1551] | 1705 | !-- Collect land surface model timeseries |
---|
| 1706 | IF ( land_surface ) THEN |
---|
| 1707 | ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf_eb |
---|
| 1708 | ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! shf_eb |
---|
| 1709 | ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_eb |
---|
| 1710 | ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_liq_eb |
---|
| 1711 | ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! qsws_soil_eb |
---|
| 1712 | ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! qsws_veg_eb |
---|
[1555] | 1713 | ts_value(dots_soil+6,sr) = hom(nzb,1,99,sr) ! r_a |
---|
| 1714 | ts_value(dots_soil+7,sr) = hom(nzb,1,100,sr) ! r_s |
---|
[1551] | 1715 | ENDIF |
---|
| 1716 | ! |
---|
| 1717 | !-- Collect radiation model timeseries |
---|
| 1718 | IF ( radiation ) THEN |
---|
[1585] | 1719 | ts_value(dots_rad,sr) = hom(nzb,1,101,sr) ! rad_net |
---|
| 1720 | ts_value(dots_rad+1,sr) = hom(nzb,1,102,sr) ! rad_lw_in |
---|
| 1721 | ts_value(dots_rad+2,sr) = hom(nzb,1,103,sr) ! rad_lw_out |
---|
[1701] | 1722 | ts_value(dots_rad+3,sr) = hom(nzb,1,104,sr) ! rad_sw_in |
---|
| 1723 | ts_value(dots_rad+4,sr) = hom(nzb,1,105,sr) ! rad_sw_out |
---|
[1585] | 1724 | |
---|
| 1725 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
[1691] | 1726 | ts_value(dots_rad+5,sr) = hom(nzb,1,110,sr) ! rrtm_aldif |
---|
| 1727 | ts_value(dots_rad+6,sr) = hom(nzb,1,111,sr) ! rrtm_aldir |
---|
| 1728 | ts_value(dots_rad+7,sr) = hom(nzb,1,112,sr) ! rrtm_asdif |
---|
| 1729 | ts_value(dots_rad+8,sr) = hom(nzb,1,113,sr) ! rrtm_asdir |
---|
[1585] | 1730 | ENDIF |
---|
| 1731 | |
---|
[1551] | 1732 | ENDIF |
---|
| 1733 | |
---|
| 1734 | ! |
---|
[48] | 1735 | !-- Calculate additional statistics provided by the user interface |
---|
[87] | 1736 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
[1] | 1737 | |
---|
[48] | 1738 | ENDDO ! loop of the subregions |
---|
| 1739 | |
---|
[1] | 1740 | ! |
---|
[1918] | 1741 | !-- If required, sum up horizontal averages for subsequent time averaging. |
---|
| 1742 | !-- Do not sum, if flow statistics is called before the first initial time step. |
---|
| 1743 | IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN |
---|
[1353] | 1744 | IF ( average_count_pr == 0 ) hom_sum = 0.0_wp |
---|
[1] | 1745 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 1746 | average_count_pr = average_count_pr + 1 |
---|
| 1747 | do_sum = .FALSE. |
---|
| 1748 | ENDIF |
---|
| 1749 | |
---|
| 1750 | ! |
---|
| 1751 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 1752 | !-- This flag is reset after each time step in time_integration. |
---|
| 1753 | flow_statistics_called = .TRUE. |
---|
| 1754 | |
---|
| 1755 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 1756 | |
---|
| 1757 | |
---|
| 1758 | END SUBROUTINE flow_statistics |
---|