[1221] | 1 | #if ! defined( __openacc ) |
---|
[1] | 2 | SUBROUTINE flow_statistics |
---|
| 3 | |
---|
[1036] | 4 | !--------------------------------------------------------------------------------! |
---|
| 5 | ! This file is part of PALM. |
---|
| 6 | ! |
---|
| 7 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 8 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 9 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 10 | ! |
---|
| 11 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 12 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 13 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 14 | ! |
---|
| 15 | ! You should have received a copy of the GNU General Public License along with |
---|
| 16 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 17 | ! |
---|
[1310] | 18 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 19 | !--------------------------------------------------------------------------------! |
---|
| 20 | ! |
---|
[254] | 21 | ! Current revisions: |
---|
[1] | 22 | ! ----------------- |
---|
[1321] | 23 | ! |
---|
[1323] | 24 | ! |
---|
[1321] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: flow_statistics.f90 1323 2014-03-20 17:09:54Z suehring $ |
---|
| 28 | ! |
---|
[1323] | 29 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 30 | ! REAL constants defined as wp-kind |
---|
| 31 | ! |
---|
[1321] | 32 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 33 | ! ONLY-attribute added to USE-statements, |
---|
| 34 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 35 | ! kinds are defined in new module kinds, |
---|
| 36 | ! revision history before 2012 removed, |
---|
| 37 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 38 | ! all variable declaration statements |
---|
[1008] | 39 | ! |
---|
[1300] | 40 | ! 1299 2014-03-06 13:15:21Z heinze |
---|
| 41 | ! Output of large scale vertical velocity w_subs |
---|
| 42 | ! |
---|
[1258] | 43 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 44 | ! openacc "end parallel" replaced by "end parallel loop" |
---|
| 45 | ! |
---|
[1242] | 46 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 47 | ! Output of ug and vg |
---|
| 48 | ! |
---|
[1222] | 49 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 50 | ! ported for openACC in separate #else branch |
---|
| 51 | ! |
---|
[1182] | 52 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 53 | ! comment for profile 77 added |
---|
| 54 | ! |
---|
[1116] | 55 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 56 | ! ql is calculated by calc_liquid_water_content |
---|
| 57 | ! |
---|
[1112] | 58 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 59 | ! openACC directive added |
---|
| 60 | ! |
---|
[1054] | 61 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1112] | 62 | ! additions for two-moment cloud physics scheme: |
---|
[1054] | 63 | ! +nr, qr, qc, prr |
---|
| 64 | ! |
---|
[1037] | 65 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 66 | ! code put under GPL (PALM 3.9) |
---|
| 67 | ! |
---|
[1008] | 68 | ! 1007 2012-09-19 14:30:36Z franke |
---|
[1007] | 69 | ! Calculation of buoyancy flux for humidity in case of WS-scheme is now using |
---|
| 70 | ! turbulent fluxes of WS-scheme |
---|
| 71 | ! Bugfix: Calculation of subgridscale buoyancy flux for humidity and cloud |
---|
| 72 | ! droplets at nzb and nzt added |
---|
[700] | 73 | ! |
---|
[802] | 74 | ! 801 2012-01-10 17:30:36Z suehring |
---|
| 75 | ! Calculation of turbulent fluxes in advec_ws is now thread-safe. |
---|
| 76 | ! |
---|
[1] | 77 | ! Revision 1.1 1997/08/11 06:15:17 raasch |
---|
| 78 | ! Initial revision |
---|
| 79 | ! |
---|
| 80 | ! |
---|
| 81 | ! Description: |
---|
| 82 | ! ------------ |
---|
| 83 | ! Compute average profiles and further average flow quantities for the different |
---|
| 84 | ! user-defined (sub-)regions. The region indexed 0 is the total model domain. |
---|
| 85 | ! |
---|
[132] | 86 | ! NOTE: For simplicity, nzb_s_inner and nzb_diff_s_inner are being used as a |
---|
| 87 | ! ---- lower vertical index for k-loops for all variables, although strictly |
---|
| 88 | ! speaking the k-loops would have to be split up according to the staggered |
---|
| 89 | ! grid. However, this implies no error since staggered velocity components are |
---|
| 90 | ! zero at the walls and inside buildings. |
---|
[1] | 91 | !------------------------------------------------------------------------------! |
---|
| 92 | |
---|
[1320] | 93 | USE arrays_3d, & |
---|
| 94 | ONLY : ddzu, ddzw, e, hyp, km, kh,nr, p, prho, pt, q, qc, ql, qr, & |
---|
| 95 | qs, qsws, qswst, rho, sa, saswsb, saswst, shf, ts, tswst, u, & |
---|
| 96 | ug, us, usws, uswst, vsws, v, vg, vpt, vswst, w, w_subs, zw |
---|
| 97 | |
---|
| 98 | USE cloud_parameters, & |
---|
| 99 | ONLY : l_d_cp, prr, pt_d_t |
---|
| 100 | |
---|
| 101 | USE control_parameters, & |
---|
| 102 | ONLY : average_count_pr, cloud_droplets, cloud_physics, do_sum, & |
---|
| 103 | dt_3d, g, humidity, icloud_scheme, kappa, max_pr_user, & |
---|
| 104 | message_string, ocean, passive_scalar, precipitation, & |
---|
| 105 | use_surface_fluxes, use_top_fluxes, ws_scheme_mom, ws_scheme_sca |
---|
| 106 | |
---|
| 107 | USE cpulog, & |
---|
| 108 | ONLY : cpu_log, log_point |
---|
| 109 | |
---|
| 110 | USE grid_variables, & |
---|
| 111 | ONLY : ddx, ddy |
---|
| 112 | |
---|
| 113 | USE indices, & |
---|
| 114 | ONLY : ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, nxl, & |
---|
| 115 | nxr, nyn, nys, nzb, nzb_diff_s_inner, nzb_s_inner, nzt, nzt_diff |
---|
| 116 | |
---|
| 117 | USE kinds |
---|
| 118 | |
---|
[1] | 119 | USE pegrid |
---|
[1320] | 120 | |
---|
[1] | 121 | USE statistics |
---|
| 122 | |
---|
| 123 | IMPLICIT NONE |
---|
| 124 | |
---|
[1320] | 125 | INTEGER(iwp) :: i !: |
---|
| 126 | INTEGER(iwp) :: j !: |
---|
| 127 | INTEGER(iwp) :: k !: |
---|
| 128 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 129 | INTEGER(iwp) :: sr !: |
---|
| 130 | INTEGER(iwp) :: tn !: |
---|
| 131 | |
---|
| 132 | LOGICAL :: first !: |
---|
| 133 | |
---|
| 134 | REAL(wp) :: dptdz_threshold !: |
---|
| 135 | REAL(wp) :: height !: |
---|
| 136 | REAL(wp) :: pts !: |
---|
| 137 | REAL(wp) :: sums_l_eper !: |
---|
| 138 | REAL(wp) :: sums_l_etot !: |
---|
| 139 | REAL(wp) :: ust !: |
---|
| 140 | REAL(wp) :: ust2 !: |
---|
| 141 | REAL(wp) :: u2 !: |
---|
| 142 | REAL(wp) :: vst !: |
---|
| 143 | REAL(wp) :: vst2 !: |
---|
| 144 | REAL(wp) :: v2 !: |
---|
| 145 | REAL(wp) :: w2 !: |
---|
| 146 | REAL(wp) :: z_i(2) !: |
---|
| 147 | |
---|
| 148 | REAL(wp) :: dptdz(nzb+1:nzt+1) !: |
---|
| 149 | REAL(wp) :: sums_ll(nzb:nzt+1,2) !: |
---|
[1] | 150 | |
---|
| 151 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 152 | |
---|
[1221] | 153 | !$acc update host( km, kh, e, pt, qs, qsws, rif, shf, ts, u, usws, v, vsws, w ) |
---|
| 154 | |
---|
[1] | 155 | ! |
---|
| 156 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 157 | !-- called once after the current time step |
---|
| 158 | IF ( flow_statistics_called ) THEN |
---|
[254] | 159 | |
---|
[274] | 160 | message_string = 'flow_statistics is called two times within one ' // & |
---|
| 161 | 'timestep' |
---|
[254] | 162 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
[1007] | 163 | |
---|
[1] | 164 | ENDIF |
---|
| 165 | |
---|
| 166 | ! |
---|
| 167 | !-- Compute statistics for each (sub-)region |
---|
| 168 | DO sr = 0, statistic_regions |
---|
| 169 | |
---|
| 170 | ! |
---|
| 171 | !-- Initialize (local) summation array |
---|
| 172 | sums_l = 0.0 |
---|
| 173 | |
---|
| 174 | ! |
---|
| 175 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 176 | !-- array |
---|
| 177 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 178 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
| 179 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
[87] | 180 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 181 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
[1] | 182 | |
---|
[667] | 183 | ! |
---|
| 184 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
| 185 | !-- the local array sums_l() for further computations |
---|
[743] | 186 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
[696] | 187 | |
---|
[1007] | 188 | ! |
---|
[673] | 189 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
| 190 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
| 191 | IF ( ocean ) THEN |
---|
[801] | 192 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
[1007] | 193 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
[673] | 194 | ENDIF |
---|
[696] | 195 | |
---|
| 196 | DO i = 0, threads_per_task-1 |
---|
[1007] | 197 | ! |
---|
[696] | 198 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
[801] | 199 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u* |
---|
| 200 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v* |
---|
| 201 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
| 202 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
| 203 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
[1320] | 204 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5 * & |
---|
| 205 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
[801] | 206 | sums_ws2_ws_l(:,i) ) ! e* |
---|
[696] | 207 | DO k = nzb, nzt |
---|
[1320] | 208 | sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5 * ( & |
---|
| 209 | sums_us2_ws_l(k,i) + & |
---|
| 210 | sums_vs2_ws_l(k,i) + & |
---|
[801] | 211 | sums_ws2_ws_l(k,i) ) |
---|
[696] | 212 | ENDDO |
---|
[667] | 213 | ENDDO |
---|
[696] | 214 | |
---|
[667] | 215 | ENDIF |
---|
[696] | 216 | |
---|
[743] | 217 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
[696] | 218 | |
---|
| 219 | DO i = 0, threads_per_task-1 |
---|
[801] | 220 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* from advec_s_ws |
---|
| 221 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
[696] | 222 | IF ( humidity .OR. passive_scalar ) sums_l(:,49,i) = & |
---|
[801] | 223 | sums_wsqs_ws_l(:,i) !w*q* |
---|
[696] | 224 | ENDDO |
---|
| 225 | |
---|
[667] | 226 | ENDIF |
---|
[305] | 227 | ! |
---|
[1] | 228 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 229 | !-- They must have been computed before, because they are already required |
---|
| 230 | !-- for other horizontal averages. |
---|
| 231 | tn = 0 |
---|
[667] | 232 | |
---|
[1] | 233 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
[82] | 234 | #if defined( __intel_openmp_bug ) |
---|
[1] | 235 | tn = omp_get_thread_num() |
---|
| 236 | #else |
---|
| 237 | !$ tn = omp_get_thread_num() |
---|
| 238 | #endif |
---|
| 239 | |
---|
| 240 | !$OMP DO |
---|
| 241 | DO i = nxl, nxr |
---|
| 242 | DO j = nys, nyn |
---|
[132] | 243 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 244 | sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) |
---|
| 245 | sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) |
---|
| 246 | sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) |
---|
| 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | ENDDO |
---|
| 250 | |
---|
| 251 | ! |
---|
[96] | 252 | !-- Horizontally averaged profile of salinity |
---|
| 253 | IF ( ocean ) THEN |
---|
| 254 | !$OMP DO |
---|
| 255 | DO i = nxl, nxr |
---|
| 256 | DO j = nys, nyn |
---|
[132] | 257 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[96] | 258 | sums_l(k,23,tn) = sums_l(k,23,tn) + & |
---|
| 259 | sa(k,j,i) * rmask(j,i,sr) |
---|
| 260 | ENDDO |
---|
| 261 | ENDDO |
---|
| 262 | ENDDO |
---|
| 263 | ENDIF |
---|
| 264 | |
---|
| 265 | ! |
---|
[1] | 266 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
| 267 | !-- total water content, specific humidity and liquid water potential |
---|
| 268 | !-- temperature |
---|
[75] | 269 | IF ( humidity ) THEN |
---|
[1] | 270 | !$OMP DO |
---|
| 271 | DO i = nxl, nxr |
---|
| 272 | DO j = nys, nyn |
---|
[132] | 273 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 274 | sums_l(k,44,tn) = sums_l(k,44,tn) + & |
---|
| 275 | vpt(k,j,i) * rmask(j,i,sr) |
---|
| 276 | sums_l(k,41,tn) = sums_l(k,41,tn) + & |
---|
| 277 | q(k,j,i) * rmask(j,i,sr) |
---|
| 278 | ENDDO |
---|
| 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | IF ( cloud_physics ) THEN |
---|
| 282 | !$OMP DO |
---|
| 283 | DO i = nxl, nxr |
---|
| 284 | DO j = nys, nyn |
---|
[132] | 285 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 286 | sums_l(k,42,tn) = sums_l(k,42,tn) + & |
---|
| 287 | ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) |
---|
| 288 | sums_l(k,43,tn) = sums_l(k,43,tn) + ( & |
---|
| 289 | pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) & |
---|
| 290 | ) * rmask(j,i,sr) |
---|
| 291 | ENDDO |
---|
| 292 | ENDDO |
---|
| 293 | ENDDO |
---|
| 294 | ENDIF |
---|
| 295 | ENDIF |
---|
| 296 | |
---|
| 297 | ! |
---|
| 298 | !-- Horizontally averaged profiles of passive scalar |
---|
| 299 | IF ( passive_scalar ) THEN |
---|
| 300 | !$OMP DO |
---|
| 301 | DO i = nxl, nxr |
---|
| 302 | DO j = nys, nyn |
---|
[132] | 303 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 304 | sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
| 308 | ENDIF |
---|
| 309 | !$OMP END PARALLEL |
---|
| 310 | ! |
---|
| 311 | !-- Summation of thread sums |
---|
| 312 | IF ( threads_per_task > 1 ) THEN |
---|
| 313 | DO i = 1, threads_per_task-1 |
---|
| 314 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 315 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 316 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
[96] | 317 | IF ( ocean ) THEN |
---|
| 318 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
| 319 | ENDIF |
---|
[75] | 320 | IF ( humidity ) THEN |
---|
[1] | 321 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 322 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
| 323 | IF ( cloud_physics ) THEN |
---|
| 324 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 325 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 326 | ENDIF |
---|
| 327 | ENDIF |
---|
| 328 | IF ( passive_scalar ) THEN |
---|
| 329 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 330 | ENDIF |
---|
| 331 | ENDDO |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | #if defined( __parallel ) |
---|
| 335 | ! |
---|
| 336 | !-- Compute total sum from local sums |
---|
[622] | 337 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 338 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 339 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 340 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 341 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 342 | MPI_SUM, comm2d, ierr ) |
---|
[622] | 343 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 344 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
[1] | 345 | MPI_SUM, comm2d, ierr ) |
---|
[96] | 346 | IF ( ocean ) THEN |
---|
[622] | 347 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 348 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
[96] | 349 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 350 | ENDIF |
---|
[75] | 351 | IF ( humidity ) THEN |
---|
[622] | 352 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 353 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
[1] | 354 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 355 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 356 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
[1] | 357 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 358 | IF ( cloud_physics ) THEN |
---|
[622] | 359 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 360 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
[1] | 361 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[622] | 362 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 363 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
[1] | 364 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 365 | ENDIF |
---|
| 366 | ENDIF |
---|
| 367 | |
---|
| 368 | IF ( passive_scalar ) THEN |
---|
[622] | 369 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1320] | 370 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
[1] | 371 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 372 | ENDIF |
---|
| 373 | #else |
---|
| 374 | sums(:,1) = sums_l(:,1,0) |
---|
| 375 | sums(:,2) = sums_l(:,2,0) |
---|
| 376 | sums(:,4) = sums_l(:,4,0) |
---|
[96] | 377 | IF ( ocean ) sums(:,23) = sums_l(:,23,0) |
---|
[75] | 378 | IF ( humidity ) THEN |
---|
[1] | 379 | sums(:,44) = sums_l(:,44,0) |
---|
| 380 | sums(:,41) = sums_l(:,41,0) |
---|
| 381 | IF ( cloud_physics ) THEN |
---|
| 382 | sums(:,42) = sums_l(:,42,0) |
---|
| 383 | sums(:,43) = sums_l(:,43,0) |
---|
| 384 | ENDIF |
---|
| 385 | ENDIF |
---|
| 386 | IF ( passive_scalar ) sums(:,41) = sums_l(:,41,0) |
---|
| 387 | #endif |
---|
| 388 | |
---|
| 389 | ! |
---|
| 390 | !-- Final values are obtained by division by the total number of grid points |
---|
| 391 | !-- used for summation. After that store profiles. |
---|
[132] | 392 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
| 393 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
| 394 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 395 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 396 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 397 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
| 398 | |
---|
[667] | 399 | |
---|
[1] | 400 | ! |
---|
[96] | 401 | !-- Salinity |
---|
| 402 | IF ( ocean ) THEN |
---|
[132] | 403 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
[96] | 404 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
| 405 | ENDIF |
---|
| 406 | |
---|
| 407 | ! |
---|
[1] | 408 | !-- Humidity and cloud parameters |
---|
[75] | 409 | IF ( humidity ) THEN |
---|
[132] | 410 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
| 411 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 412 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 413 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
| 414 | IF ( cloud_physics ) THEN |
---|
[132] | 415 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
| 416 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
[1] | 417 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 418 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 419 | ENDIF |
---|
| 420 | ENDIF |
---|
| 421 | |
---|
| 422 | ! |
---|
| 423 | !-- Passive scalar |
---|
[1320] | 424 | IF ( passive_scalar ) hom(:,1,41,sr) = sums(:,41) / & |
---|
[132] | 425 | ngp_2dh_s_inner(:,sr) ! s (q) |
---|
[1] | 426 | |
---|
| 427 | ! |
---|
| 428 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 429 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 430 | !-- column of sums_l) and some diagnostic quantities. |
---|
[132] | 431 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 432 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 433 | !-- rearranged according to the staggered grid. |
---|
[132] | 434 | !-- However, this implies no error since staggered velocity components |
---|
| 435 | !-- are zero at the walls and inside buildings. |
---|
[1] | 436 | tn = 0 |
---|
[82] | 437 | #if defined( __intel_openmp_bug ) |
---|
[1] | 438 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
| 439 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 440 | tn = omp_get_thread_num() |
---|
| 441 | #else |
---|
| 442 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 443 | !$ tn = omp_get_thread_num() |
---|
| 444 | #endif |
---|
| 445 | !$OMP DO |
---|
| 446 | DO i = nxl, nxr |
---|
| 447 | DO j = nys, nyn |
---|
| 448 | sums_l_etot = 0.0 |
---|
[132] | 449 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[1] | 450 | ! |
---|
| 451 | !-- Prognostic and diagnostic variables |
---|
| 452 | sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) |
---|
| 453 | sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) |
---|
| 454 | sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) |
---|
| 455 | sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) |
---|
| 456 | sums_l(k,40,tn) = sums_l(k,40,tn) + p(k,j,i) |
---|
| 457 | |
---|
| 458 | sums_l(k,33,tn) = sums_l(k,33,tn) + & |
---|
| 459 | ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) |
---|
[624] | 460 | |
---|
| 461 | IF ( humidity ) THEN |
---|
| 462 | sums_l(k,70,tn) = sums_l(k,70,tn) + & |
---|
| 463 | ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) |
---|
| 464 | ENDIF |
---|
[1007] | 465 | |
---|
[699] | 466 | ! |
---|
| 467 | !-- Higher moments |
---|
| 468 | !-- (Computation of the skewness of w further below) |
---|
| 469 | sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) |
---|
[667] | 470 | |
---|
[1] | 471 | sums_l_etot = sums_l_etot + & |
---|
[667] | 472 | 0.5 * ( u(k,j,i)**2 + v(k,j,i)**2 + & |
---|
| 473 | w(k,j,i)**2 ) * rmask(j,i,sr) |
---|
[1] | 474 | ENDDO |
---|
| 475 | ! |
---|
| 476 | !-- Total and perturbation energy for the total domain (being |
---|
| 477 | !-- collected in the last column of sums_l). Summation of these |
---|
| 478 | !-- quantities is seperated from the previous loop in order to |
---|
| 479 | !-- allow vectorization of that loop. |
---|
[87] | 480 | sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot |
---|
[1] | 481 | ! |
---|
| 482 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
[1320] | 483 | sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & |
---|
[1] | 484 | us(j,i) * rmask(j,i,sr) |
---|
[1320] | 485 | sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & |
---|
[1] | 486 | usws(j,i) * rmask(j,i,sr) |
---|
[1320] | 487 | sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & |
---|
[1] | 488 | vsws(j,i) * rmask(j,i,sr) |
---|
[1320] | 489 | sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & |
---|
[1] | 490 | ts(j,i) * rmask(j,i,sr) |
---|
[197] | 491 | IF ( humidity ) THEN |
---|
[1320] | 492 | sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & |
---|
[197] | 493 | qs(j,i) * rmask(j,i,sr) |
---|
| 494 | ENDIF |
---|
[1] | 495 | ENDDO |
---|
| 496 | ENDDO |
---|
| 497 | |
---|
| 498 | ! |
---|
[667] | 499 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
| 500 | !-- quantities are evaluated in the advection routines. |
---|
[743] | 501 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
[667] | 502 | !$OMP DO |
---|
| 503 | DO i = nxl, nxr |
---|
| 504 | DO j = nys, nyn |
---|
| 505 | sums_l_eper = 0.0 |
---|
| 506 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
| 507 | u2 = u(k,j,i)**2 |
---|
| 508 | v2 = v(k,j,i)**2 |
---|
| 509 | w2 = w(k,j,i)**2 |
---|
| 510 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 511 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 512 | |
---|
| 513 | sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) |
---|
| 514 | sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) |
---|
| 515 | sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) |
---|
| 516 | ! |
---|
| 517 | !-- Perturbation energy |
---|
| 518 | |
---|
| 519 | sums_l(k,34,tn) = sums_l(k,34,tn) + 0.5 * & |
---|
| 520 | ( ust2 + vst2 + w2 ) * rmask(j,i,sr) |
---|
| 521 | sums_l_eper = sums_l_eper + & |
---|
| 522 | 0.5 * ( ust2+vst2+w2 ) * rmask(j,i,sr) |
---|
| 523 | |
---|
| 524 | ENDDO |
---|
| 525 | sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & |
---|
| 526 | + sums_l_eper |
---|
| 527 | ENDDO |
---|
| 528 | ENDDO |
---|
| 529 | ENDIF |
---|
[1241] | 530 | |
---|
[667] | 531 | ! |
---|
[1] | 532 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
[667] | 533 | |
---|
[1] | 534 | !$OMP DO |
---|
| 535 | DO i = nxl, nxr |
---|
| 536 | DO j = nys, nyn |
---|
| 537 | ! |
---|
| 538 | !-- Subgridscale fluxes (without Prandtl layer from k=nzb, |
---|
| 539 | !-- oterwise from k=nzb+1) |
---|
[132] | 540 | !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although |
---|
[1] | 541 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 542 | !-- split up according to the staggered grid. |
---|
[132] | 543 | !-- However, this implies no error since staggered velocity |
---|
| 544 | !-- components are zero at the walls and inside buildings. |
---|
| 545 | |
---|
| 546 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
[1] | 547 | ! |
---|
| 548 | !-- Momentum flux w"u" |
---|
| 549 | sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25 * ( & |
---|
| 550 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 551 | ) * ( & |
---|
| 552 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 553 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 554 | ) * rmask(j,i,sr) |
---|
| 555 | ! |
---|
| 556 | !-- Momentum flux w"v" |
---|
| 557 | sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25 * ( & |
---|
| 558 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 559 | ) * ( & |
---|
| 560 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 561 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 562 | ) * rmask(j,i,sr) |
---|
| 563 | ! |
---|
| 564 | !-- Heat flux w"pt" |
---|
| 565 | sums_l(k,16,tn) = sums_l(k,16,tn) & |
---|
| 566 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 567 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 568 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 569 | |
---|
| 570 | |
---|
| 571 | ! |
---|
[96] | 572 | !-- Salinity flux w"sa" |
---|
| 573 | IF ( ocean ) THEN |
---|
| 574 | sums_l(k,65,tn) = sums_l(k,65,tn) & |
---|
| 575 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 576 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
| 577 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 578 | ENDIF |
---|
| 579 | |
---|
| 580 | ! |
---|
[1] | 581 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
[75] | 582 | IF ( humidity ) THEN |
---|
[1] | 583 | sums_l(k,45,tn) = sums_l(k,45,tn) & |
---|
| 584 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 585 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
| 586 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 587 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 588 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 589 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 590 | * ddzu(k+1) * rmask(j,i,sr) |
---|
[1007] | 591 | |
---|
[1] | 592 | IF ( cloud_physics ) THEN |
---|
| 593 | sums_l(k,51,tn) = sums_l(k,51,tn) & |
---|
| 594 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 595 | * ( ( q(k+1,j,i) - ql(k+1,j,i) )& |
---|
| 596 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
| 597 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 598 | ENDIF |
---|
| 599 | ENDIF |
---|
| 600 | |
---|
| 601 | ! |
---|
| 602 | !-- Passive scalar flux |
---|
| 603 | IF ( passive_scalar ) THEN |
---|
| 604 | sums_l(k,48,tn) = sums_l(k,48,tn) & |
---|
| 605 | - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 606 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 607 | * ddzu(k+1) * rmask(j,i,sr) |
---|
| 608 | ENDIF |
---|
| 609 | |
---|
| 610 | ENDDO |
---|
| 611 | |
---|
| 612 | ! |
---|
| 613 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 614 | IF ( use_surface_fluxes ) THEN |
---|
| 615 | sums_l(nzb,12,tn) = sums_l(nzb,12,tn) + & |
---|
| 616 | usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 617 | sums_l(nzb,14,tn) = sums_l(nzb,14,tn) + & |
---|
| 618 | vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 619 | sums_l(nzb,16,tn) = sums_l(nzb,16,tn) + & |
---|
| 620 | shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 621 | sums_l(nzb,58,tn) = sums_l(nzb,58,tn) + & |
---|
| 622 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 623 | sums_l(nzb,61,tn) = sums_l(nzb,61,tn) + & |
---|
| 624 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
[96] | 625 | IF ( ocean ) THEN |
---|
| 626 | sums_l(nzb,65,tn) = sums_l(nzb,65,tn) + & |
---|
| 627 | saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 628 | ENDIF |
---|
[75] | 629 | IF ( humidity ) THEN |
---|
[1] | 630 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 631 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[1007] | 632 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 633 | ( 1.0 + 0.61 * q(nzb,j,i) ) * & |
---|
| 634 | shf(j,i) + 0.61 * pt(nzb,j,i) * & |
---|
| 635 | qsws(j,i) ) |
---|
| 636 | IF ( cloud_droplets ) THEN |
---|
| 637 | sums_l(nzb,45,tn) = sums_l(nzb,45,tn) + ( & |
---|
| 638 | ( 1.0 + 0.61 * q(nzb,j,i) - & |
---|
| 639 | ql(nzb,j,i) ) * shf(j,i) + & |
---|
| 640 | 0.61 * pt(nzb,j,i) * qsws(j,i) ) |
---|
| 641 | ENDIF |
---|
[1] | 642 | IF ( cloud_physics ) THEN |
---|
| 643 | ! |
---|
| 644 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 645 | sums_l(nzb,51,tn) = sums_l(nzb,51,tn) + & ! w"q" (w"qv") |
---|
| 646 | qsws(j,i) * rmask(j,i,sr) |
---|
| 647 | ENDIF |
---|
| 648 | ENDIF |
---|
| 649 | IF ( passive_scalar ) THEN |
---|
| 650 | sums_l(nzb,48,tn) = sums_l(nzb,48,tn) + & |
---|
| 651 | qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 652 | ENDIF |
---|
| 653 | ENDIF |
---|
| 654 | |
---|
| 655 | ! |
---|
[19] | 656 | !-- Subgridscale fluxes at the top surface |
---|
| 657 | IF ( use_top_fluxes ) THEN |
---|
[550] | 658 | sums_l(nzt:nzt+1,12,tn) = sums_l(nzt:nzt+1,12,tn) + & |
---|
[102] | 659 | uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
[550] | 660 | sums_l(nzt:nzt+1,14,tn) = sums_l(nzt:nzt+1,14,tn) + & |
---|
[102] | 661 | vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
[550] | 662 | sums_l(nzt:nzt+1,16,tn) = sums_l(nzt:nzt+1,16,tn) + & |
---|
[19] | 663 | tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
[550] | 664 | sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & |
---|
[19] | 665 | 0.0 * rmask(j,i,sr) ! u"pt" |
---|
[550] | 666 | sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & |
---|
| 667 | 0.0 * rmask(j,i,sr) ! v"pt" |
---|
| 668 | |
---|
[96] | 669 | IF ( ocean ) THEN |
---|
| 670 | sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & |
---|
| 671 | saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 672 | ENDIF |
---|
[75] | 673 | IF ( humidity ) THEN |
---|
[19] | 674 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[388] | 675 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[1007] | 676 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 677 | ( 1.0 + 0.61 * q(nzt,j,i) ) * & |
---|
| 678 | tswst(j,i) + 0.61 * pt(nzt,j,i) * & |
---|
| 679 | qswst(j,i) ) |
---|
| 680 | IF ( cloud_droplets ) THEN |
---|
| 681 | sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & |
---|
| 682 | ( 1.0 + 0.61 * q(nzt,j,i) - & |
---|
| 683 | ql(nzt,j,i) ) * tswst(j,i) + & |
---|
| 684 | 0.61 * pt(nzt,j,i) * qswst(j,i) ) |
---|
| 685 | ENDIF |
---|
[19] | 686 | IF ( cloud_physics ) THEN |
---|
| 687 | ! |
---|
| 688 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 689 | sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") |
---|
| 690 | qswst(j,i) * rmask(j,i,sr) |
---|
| 691 | ENDIF |
---|
| 692 | ENDIF |
---|
| 693 | IF ( passive_scalar ) THEN |
---|
| 694 | sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & |
---|
[388] | 695 | qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
[19] | 696 | ENDIF |
---|
| 697 | ENDIF |
---|
| 698 | |
---|
| 699 | ! |
---|
[1] | 700 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
[132] | 701 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
[1] | 702 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 703 | !-- rearranged according to the staggered grid. |
---|
[132] | 704 | DO k = nzb_s_inner(j,i), nzt |
---|
[1] | 705 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 706 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 707 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 708 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 709 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 710 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
[667] | 711 | |
---|
[1] | 712 | !-- Higher moments |
---|
| 713 | sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * & |
---|
| 714 | rmask(j,i,sr) |
---|
| 715 | sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * & |
---|
| 716 | rmask(j,i,sr) |
---|
| 717 | |
---|
| 718 | ! |
---|
[96] | 719 | !-- Salinity flux and density (density does not belong to here, |
---|
[97] | 720 | !-- but so far there is no other suitable place to calculate) |
---|
[96] | 721 | IF ( ocean ) THEN |
---|
[743] | 722 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[667] | 723 | pts = 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
[96] | 724 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) |
---|
[667] | 725 | sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & |
---|
[96] | 726 | rmask(j,i,sr) |
---|
[667] | 727 | ENDIF |
---|
[96] | 728 | sums_l(k,64,tn) = sums_l(k,64,tn) + rho(k,j,i) * & |
---|
| 729 | rmask(j,i,sr) |
---|
[388] | 730 | sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * & |
---|
| 731 | rmask(j,i,sr) |
---|
[96] | 732 | ENDIF |
---|
| 733 | |
---|
| 734 | ! |
---|
[1053] | 735 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
| 736 | !-- content, rain drop concentration and rain water content |
---|
[75] | 737 | IF ( humidity ) THEN |
---|
[1007] | 738 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
[1053] | 739 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
[1007] | 740 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 741 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
[1] | 742 | rmask(j,i,sr) |
---|
[1053] | 743 | IF ( .NOT. cloud_droplets ) THEN |
---|
[1115] | 744 | pts = 0.5 * & |
---|
| 745 | ( ( q(k,j,i) - ql(k,j,i) ) - & |
---|
| 746 | hom(k,1,42,sr) + & |
---|
| 747 | ( q(k+1,j,i) - ql(k+1,j,i) ) - & |
---|
[1053] | 748 | hom(k+1,1,42,sr) ) |
---|
[1115] | 749 | sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & |
---|
[1053] | 750 | rmask(j,i,sr) |
---|
| 751 | IF ( icloud_scheme == 0 ) THEN |
---|
[1115] | 752 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
[1053] | 753 | rmask(j,i,sr) |
---|
[1115] | 754 | sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * & |
---|
[1053] | 755 | rmask(j,i,sr) |
---|
[1115] | 756 | IF ( precipitation ) THEN |
---|
| 757 | sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * & |
---|
| 758 | rmask(j,i,sr) |
---|
| 759 | sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * & |
---|
| 760 | rmask(j,i,sr) |
---|
| 761 | sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) *& |
---|
| 762 | rmask(j,i,sr) |
---|
| 763 | ENDIF |
---|
[1053] | 764 | ELSE |
---|
[1115] | 765 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
[1053] | 766 | rmask(j,i,sr) |
---|
| 767 | ENDIF |
---|
| 768 | ELSE |
---|
[1115] | 769 | sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * & |
---|
[1053] | 770 | rmask(j,i,sr) |
---|
| 771 | ENDIF |
---|
[1007] | 772 | ELSE |
---|
| 773 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
| 774 | pts = 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 775 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) |
---|
| 776 | sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & |
---|
| 777 | rmask(j,i,sr) |
---|
| 778 | ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
[1053] | 779 | sums_l(k,46,tn) = ( 1.0 + 0.61 * hom(k,1,41,sr) ) * & |
---|
[1007] | 780 | sums_l(k,17,tn) + & |
---|
| 781 | 0.61 * hom(k,1,4,sr) * sums_l(k,49,tn) |
---|
| 782 | END IF |
---|
| 783 | END IF |
---|
[1] | 784 | ENDIF |
---|
| 785 | ! |
---|
| 786 | !-- Passive scalar flux |
---|
[743] | 787 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca & |
---|
| 788 | .OR. sr /= 0 ) ) THEN |
---|
[1] | 789 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 790 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 791 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 792 | rmask(j,i,sr) |
---|
| 793 | ENDIF |
---|
| 794 | |
---|
| 795 | ! |
---|
| 796 | !-- Energy flux w*e* |
---|
[667] | 797 | !-- has to be adjusted |
---|
| 798 | sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5 * & |
---|
| 799 | ( ust**2 + vst**2 + w(k,j,i)**2 )& |
---|
| 800 | * rmask(j,i,sr) |
---|
[1] | 801 | ENDDO |
---|
| 802 | ENDDO |
---|
| 803 | ENDDO |
---|
[709] | 804 | ! |
---|
| 805 | !-- For speed optimization fluxes which have been computed in part directly |
---|
| 806 | !-- inside the WS advection routines are treated seperatly |
---|
| 807 | !-- Momentum fluxes first: |
---|
[743] | 808 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
[667] | 809 | !$OMP DO |
---|
| 810 | DO i = nxl, nxr |
---|
| 811 | DO j = nys, nyn |
---|
| 812 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
| 813 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 814 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 815 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 816 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
[1007] | 817 | ! |
---|
[667] | 818 | !-- Momentum flux w*u* |
---|
| 819 | sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5 * & |
---|
| 820 | ( w(k,j,i-1) + w(k,j,i) ) & |
---|
| 821 | * ust * rmask(j,i,sr) |
---|
| 822 | ! |
---|
| 823 | !-- Momentum flux w*v* |
---|
| 824 | sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5 * & |
---|
| 825 | ( w(k,j-1,i) + w(k,j,i) ) & |
---|
| 826 | * vst * rmask(j,i,sr) |
---|
| 827 | ENDDO |
---|
| 828 | ENDDO |
---|
| 829 | ENDDO |
---|
[1] | 830 | |
---|
[667] | 831 | ENDIF |
---|
[743] | 832 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
[667] | 833 | !$OMP DO |
---|
| 834 | DO i = nxl, nxr |
---|
| 835 | DO j = nys, nyn |
---|
[709] | 836 | DO k = nzb_diff_s_inner(j,i)-1, nzt_diff |
---|
| 837 | ! |
---|
| 838 | !-- Vertical heat flux |
---|
[667] | 839 | sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5 * & |
---|
| 840 | ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 841 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
| 842 | * w(k,j,i) * rmask(j,i,sr) |
---|
| 843 | IF ( humidity ) THEN |
---|
| 844 | pts = 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 845 | q(k+1,j,i) - hom(k+1,1,41,sr) ) |
---|
| 846 | sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & |
---|
| 847 | rmask(j,i,sr) |
---|
| 848 | ENDIF |
---|
| 849 | ENDDO |
---|
| 850 | ENDDO |
---|
| 851 | ENDDO |
---|
| 852 | |
---|
| 853 | ENDIF |
---|
| 854 | |
---|
[1] | 855 | ! |
---|
[97] | 856 | !-- Density at top follows Neumann condition |
---|
[388] | 857 | IF ( ocean ) THEN |
---|
| 858 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
| 859 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
| 860 | ENDIF |
---|
[97] | 861 | |
---|
| 862 | ! |
---|
[1] | 863 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
[106] | 864 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
| 865 | !-- First calculate the products, then the divergence. |
---|
[1] | 866 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
[106] | 867 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
[1] | 868 | |
---|
| 869 | sums_ll = 0.0 ! local array |
---|
| 870 | |
---|
| 871 | !$OMP DO |
---|
| 872 | DO i = nxl, nxr |
---|
| 873 | DO j = nys, nyn |
---|
[132] | 874 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 875 | |
---|
| 876 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
| 877 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
[678] | 878 | - 0.5 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
[1] | 879 | ) )**2 & |
---|
| 880 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
[678] | 881 | - 0.5 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
[1] | 882 | ) )**2 & |
---|
| 883 | + w(k,j,i)**2 ) |
---|
| 884 | |
---|
| 885 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
| 886 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
| 887 | |
---|
| 888 | ENDDO |
---|
| 889 | ENDDO |
---|
| 890 | ENDDO |
---|
| 891 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
| 892 | sums_ll(nzt+1,1) = 0.0 |
---|
| 893 | sums_ll(0,2) = 0.0 |
---|
| 894 | sums_ll(nzt+1,2) = 0.0 |
---|
| 895 | |
---|
[678] | 896 | DO k = nzb+1, nzt |
---|
[1] | 897 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 898 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
[106] | 899 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
[1] | 900 | ENDDO |
---|
| 901 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 902 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
[106] | 903 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
[1] | 904 | |
---|
| 905 | ENDIF |
---|
| 906 | |
---|
| 907 | ! |
---|
[106] | 908 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
| 909 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
[1] | 910 | |
---|
| 911 | !$OMP DO |
---|
| 912 | DO i = nxl, nxr |
---|
| 913 | DO j = nys, nyn |
---|
[132] | 914 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 915 | |
---|
[106] | 916 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
[1] | 917 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 918 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
[106] | 919 | ) * ddzw(k) |
---|
[1] | 920 | |
---|
[106] | 921 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
| 922 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 923 | ) |
---|
| 924 | |
---|
[1] | 925 | ENDDO |
---|
| 926 | ENDDO |
---|
| 927 | ENDDO |
---|
| 928 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
[106] | 929 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
[1] | 930 | |
---|
| 931 | ENDIF |
---|
| 932 | |
---|
| 933 | ! |
---|
| 934 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 935 | !-- Do it only, if profiles shall be plotted. |
---|
| 936 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
| 937 | |
---|
| 938 | !$OMP DO |
---|
| 939 | DO i = nxl, nxr |
---|
| 940 | DO j = nys, nyn |
---|
[132] | 941 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 942 | ! |
---|
| 943 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
| 944 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
| 945 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 946 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
| 947 | * ddx * rmask(j,i,sr) |
---|
| 948 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
| 949 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 950 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
| 951 | * ddy * rmask(j,i,sr) |
---|
| 952 | ! |
---|
| 953 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 954 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 955 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
| 956 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
| 957 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 958 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 959 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 960 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 961 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
| 962 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 963 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 964 | ENDDO |
---|
| 965 | ENDDO |
---|
| 966 | ENDDO |
---|
| 967 | ! |
---|
| 968 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
[97] | 969 | sums_l(nzb,58,tn) = 0.0 |
---|
| 970 | sums_l(nzb,59,tn) = 0.0 |
---|
| 971 | sums_l(nzb,60,tn) = 0.0 |
---|
| 972 | sums_l(nzb,61,tn) = 0.0 |
---|
| 973 | sums_l(nzb,62,tn) = 0.0 |
---|
| 974 | sums_l(nzb,63,tn) = 0.0 |
---|
[1] | 975 | |
---|
| 976 | ENDIF |
---|
[87] | 977 | |
---|
| 978 | ! |
---|
| 979 | !-- Calculate the user-defined profiles |
---|
| 980 | CALL user_statistics( 'profiles', sr, tn ) |
---|
[1] | 981 | !$OMP END PARALLEL |
---|
| 982 | |
---|
| 983 | ! |
---|
| 984 | !-- Summation of thread sums |
---|
| 985 | IF ( threads_per_task > 1 ) THEN |
---|
| 986 | DO i = 1, threads_per_task-1 |
---|
| 987 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 988 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
[87] | 989 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
| 990 | sums_l(:,45:pr_palm,i) |
---|
| 991 | IF ( max_pr_user > 0 ) THEN |
---|
| 992 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
| 993 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
| 994 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
| 995 | ENDIF |
---|
[1] | 996 | ENDDO |
---|
| 997 | ENDIF |
---|
| 998 | |
---|
| 999 | #if defined( __parallel ) |
---|
[667] | 1000 | |
---|
[1] | 1001 | ! |
---|
| 1002 | !-- Compute total sum from local sums |
---|
[622] | 1003 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1004 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
| 1005 | MPI_SUM, comm2d, ierr ) |
---|
| 1006 | #else |
---|
| 1007 | sums = sums_l(:,:,0) |
---|
| 1008 | #endif |
---|
| 1009 | |
---|
| 1010 | ! |
---|
| 1011 | !-- Final values are obtained by division by the total number of grid points |
---|
| 1012 | !-- used for summation. After that store profiles. |
---|
| 1013 | !-- Profiles: |
---|
| 1014 | DO k = nzb, nzt+1 |
---|
[132] | 1015 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
[142] | 1016 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
[132] | 1017 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
| 1018 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
| 1019 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
[142] | 1020 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
| 1021 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
[132] | 1022 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
| 1023 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
| 1024 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
| 1025 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
| 1026 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
| 1027 | sums(k,65:69) = sums(k,65:69) / ngp_2dh(sr) |
---|
| 1028 | sums(k,70:pr_palm-2) = sums(k,70:pr_palm-2)/ ngp_2dh_s_inner(k,sr) |
---|
[1] | 1029 | ENDDO |
---|
[667] | 1030 | |
---|
[1] | 1031 | !-- Upstream-parts |
---|
[87] | 1032 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
[1] | 1033 | !-- u* and so on |
---|
[87] | 1034 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
[1] | 1035 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 1036 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
[87] | 1037 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
[1] | 1038 | ngp_2dh(sr) |
---|
[197] | 1039 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
| 1040 | ngp_2dh(sr) |
---|
[1] | 1041 | !-- eges, e* |
---|
[87] | 1042 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
[132] | 1043 | ngp_3d(sr) |
---|
[1] | 1044 | !-- Old and new divergence |
---|
[87] | 1045 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
[1] | 1046 | ngp_3d_inner(sr) |
---|
| 1047 | |
---|
[87] | 1048 | !-- User-defined profiles |
---|
| 1049 | IF ( max_pr_user > 0 ) THEN |
---|
| 1050 | DO k = nzb, nzt+1 |
---|
| 1051 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
| 1052 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
[132] | 1053 | ngp_2dh_s_inner(k,sr) |
---|
[87] | 1054 | ENDDO |
---|
| 1055 | ENDIF |
---|
[1007] | 1056 | |
---|
[1] | 1057 | ! |
---|
| 1058 | !-- Collect horizontal average in hom. |
---|
| 1059 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 1060 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 1061 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 1062 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 1063 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 1064 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 1065 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 1066 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 1067 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 1068 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 1069 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 1070 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 1071 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 1072 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 1073 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 1074 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 1075 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
[96] | 1076 | ! profile 24 is initial profile (sa) |
---|
| 1077 | ! profiles 25-29 left empty for initial |
---|
[1] | 1078 | ! profiles |
---|
| 1079 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 1080 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 1081 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 1082 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 1083 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 1084 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 1085 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 1086 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 1087 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
[699] | 1088 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20 )**1.5 ! Sw |
---|
[1] | 1089 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
[531] | 1090 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
[1] | 1091 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 1092 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 1093 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 1094 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 1095 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 1096 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 1097 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 1098 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 1099 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 1100 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 1101 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
[106] | 1102 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
[1] | 1103 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 1104 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 1105 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 1106 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 1107 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 1108 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
[96] | 1109 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
| 1110 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
| 1111 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
| 1112 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
[106] | 1113 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
| 1114 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
[197] | 1115 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
[388] | 1116 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
[531] | 1117 | hom(:,1,72,sr) = hyp * 1E-4 ! hyp in dbar |
---|
[1053] | 1118 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
| 1119 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
| 1120 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
| 1121 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
[1179] | 1122 | ! 77 is initial density profile |
---|
[1241] | 1123 | hom(:,1,78,sr) = ug ! ug |
---|
| 1124 | hom(:,1,79,sr) = vg ! vg |
---|
[1299] | 1125 | hom(:,1,80,sr) = w_subs ! w_subs |
---|
[1] | 1126 | |
---|
[87] | 1127 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
[1] | 1128 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
| 1129 | ! v_y, usw. (in last but one profile) |
---|
[667] | 1130 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
[1] | 1131 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 1132 | |
---|
[87] | 1133 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
| 1134 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
| 1135 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
| 1136 | ENDIF |
---|
| 1137 | |
---|
[1] | 1138 | ! |
---|
| 1139 | !-- Determine the boundary layer height using two different schemes. |
---|
[94] | 1140 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
| 1141 | !-- first relative minimum (maximum) of the total heat flux. |
---|
| 1142 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
| 1143 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
| 1144 | !-- (positive) for the first time. |
---|
[1] | 1145 | z_i(1) = 0.0 |
---|
| 1146 | first = .TRUE. |
---|
[667] | 1147 | |
---|
[97] | 1148 | IF ( ocean ) THEN |
---|
| 1149 | DO k = nzt, nzb+1, -1 |
---|
[667] | 1150 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
| 1151 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8) THEN |
---|
[97] | 1152 | first = .FALSE. |
---|
| 1153 | height = zw(k) |
---|
| 1154 | ENDIF |
---|
| 1155 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
[667] | 1156 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
[97] | 1157 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 1158 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 1159 | z_i(1) = zw(k) |
---|
| 1160 | ELSE |
---|
| 1161 | z_i(1) = height |
---|
| 1162 | ENDIF |
---|
| 1163 | EXIT |
---|
| 1164 | ENDIF |
---|
| 1165 | ENDDO |
---|
| 1166 | ELSE |
---|
[94] | 1167 | DO k = nzb, nzt-1 |
---|
[667] | 1168 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
| 1169 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8 ) THEN |
---|
[94] | 1170 | first = .FALSE. |
---|
| 1171 | height = zw(k) |
---|
[1] | 1172 | ENDIF |
---|
[667] | 1173 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 1174 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
[94] | 1175 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 1176 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 1177 | z_i(1) = zw(k) |
---|
| 1178 | ELSE |
---|
| 1179 | z_i(1) = height |
---|
| 1180 | ENDIF |
---|
| 1181 | EXIT |
---|
| 1182 | ENDIF |
---|
| 1183 | ENDDO |
---|
[97] | 1184 | ENDIF |
---|
[1] | 1185 | |
---|
| 1186 | ! |
---|
[291] | 1187 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
| 1188 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
| 1189 | !-- maximal local temperature gradient: starting from the second (the last |
---|
| 1190 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
| 1191 | !-- 0.2K/100m and greater than the next four gradients. |
---|
| 1192 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
| 1193 | !-- ocean case! |
---|
[1] | 1194 | z_i(2) = 0.0 |
---|
[291] | 1195 | DO k = nzb+1, nzt+1 |
---|
| 1196 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
| 1197 | ENDDO |
---|
[1322] | 1198 | dptdz_threshold = 0.2_wp / 100.0_wp |
---|
[291] | 1199 | |
---|
[97] | 1200 | IF ( ocean ) THEN |
---|
[291] | 1201 | DO k = nzt+1, nzb+5, -1 |
---|
| 1202 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 1203 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
| 1204 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
| 1205 | z_i(2) = zw(k-1) |
---|
[97] | 1206 | EXIT |
---|
| 1207 | ENDIF |
---|
| 1208 | ENDDO |
---|
| 1209 | ELSE |
---|
[291] | 1210 | DO k = nzb+1, nzt-3 |
---|
| 1211 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 1212 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
| 1213 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
| 1214 | z_i(2) = zw(k-1) |
---|
[97] | 1215 | EXIT |
---|
| 1216 | ENDIF |
---|
| 1217 | ENDDO |
---|
| 1218 | ENDIF |
---|
[1] | 1219 | |
---|
[87] | 1220 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
| 1221 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
[1] | 1222 | |
---|
| 1223 | ! |
---|
| 1224 | !-- Computation of both the characteristic vertical velocity and |
---|
| 1225 | !-- the characteristic convective boundary layer temperature. |
---|
| 1226 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
[667] | 1227 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. abs(hom(nzb,1,18,sr)) > 1.0E-8 & |
---|
| 1228 | .AND. z_i(1) /= 0.0 ) THEN |
---|
[87] | 1229 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
[94] | 1230 | hom(nzb,1,18,sr) * & |
---|
| 1231 | ABS( z_i(1) ) )**0.333333333 |
---|
[1] | 1232 | !-- so far this only works if Prandtl layer is used |
---|
[87] | 1233 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
[1] | 1234 | ELSE |
---|
[87] | 1235 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
| 1236 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
[1] | 1237 | ENDIF |
---|
| 1238 | |
---|
[48] | 1239 | ! |
---|
| 1240 | !-- Collect the time series quantities |
---|
[87] | 1241 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
| 1242 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
[48] | 1243 | ts_value(3,sr) = dt_3d |
---|
[87] | 1244 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
| 1245 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
[48] | 1246 | ts_value(6,sr) = u_max |
---|
| 1247 | ts_value(7,sr) = v_max |
---|
| 1248 | ts_value(8,sr) = w_max |
---|
[87] | 1249 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
| 1250 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
| 1251 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
| 1252 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
| 1253 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
[48] | 1254 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 1255 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
| 1256 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
| 1257 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
| 1258 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
[197] | 1259 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
| 1260 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
[343] | 1261 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
[197] | 1262 | |
---|
[48] | 1263 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
| 1264 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
| 1265 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
| 1266 | ELSE |
---|
| 1267 | ts_value(22,sr) = 10000.0 |
---|
| 1268 | ENDIF |
---|
[1] | 1269 | |
---|
[343] | 1270 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
[1] | 1271 | ! |
---|
[48] | 1272 | !-- Calculate additional statistics provided by the user interface |
---|
[87] | 1273 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
[1] | 1274 | |
---|
[48] | 1275 | ENDDO ! loop of the subregions |
---|
| 1276 | |
---|
[1] | 1277 | ! |
---|
| 1278 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
| 1279 | IF ( do_sum ) THEN |
---|
| 1280 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
| 1281 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 1282 | average_count_pr = average_count_pr + 1 |
---|
| 1283 | do_sum = .FALSE. |
---|
| 1284 | ENDIF |
---|
| 1285 | |
---|
| 1286 | ! |
---|
| 1287 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 1288 | !-- This flag is reset after each time step in time_integration. |
---|
| 1289 | flow_statistics_called = .TRUE. |
---|
| 1290 | |
---|
| 1291 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 1292 | |
---|
| 1293 | |
---|
| 1294 | END SUBROUTINE flow_statistics |
---|
[1221] | 1295 | |
---|
| 1296 | |
---|
| 1297 | #else |
---|
| 1298 | |
---|
| 1299 | |
---|
| 1300 | !------------------------------------------------------------------------------! |
---|
| 1301 | ! flow statistics - accelerator version |
---|
| 1302 | !------------------------------------------------------------------------------! |
---|
| 1303 | SUBROUTINE flow_statistics |
---|
| 1304 | |
---|
[1320] | 1305 | USE arrays_3d, & |
---|
| 1306 | ONLY: ddzu, ddzw, e, hyp, km, kh,nr, p, prho, pt, q, qc, ql, qr, & |
---|
| 1307 | qs, qsws, qswst, rho, sa, saswsb, saswst, shf, ts, tswst, u, & |
---|
| 1308 | ug, us, usws, uswst, vsws, v, vg, vpt, vswst, w, w_subs, zw |
---|
| 1309 | |
---|
| 1310 | USE cloud_parameters, & |
---|
| 1311 | ONLY: l_d_cp, prr, pt_d_t |
---|
| 1312 | |
---|
| 1313 | USE control_parameters, & |
---|
| 1314 | ONLY: average_count_pr, cloud_droplets, cloud_physics, do_sum, & |
---|
| 1315 | dt_3d, g, humidity, icloud_scheme, kappa, max_pr_user, & |
---|
| 1316 | message_string, ocean, passive_scalar, precipitation, & |
---|
| 1317 | use_surface_fluxes, use_top_fluxes, ws_scheme_mom, ws_scheme_sca |
---|
| 1318 | |
---|
| 1319 | USE cpulog, & |
---|
| 1320 | ONLY: cpu_log, log_point |
---|
| 1321 | |
---|
| 1322 | USE grid_variables, & |
---|
| 1323 | ONLY: ddx, ddy |
---|
| 1324 | |
---|
| 1325 | USE indices, & |
---|
| 1326 | ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, ngp_sums, nxl, & |
---|
| 1327 | nxr, nyn, nys, nzb, nzb_diff_s_inner, nzb_s_inner, nzt, nzt_diff |
---|
| 1328 | |
---|
| 1329 | USE kinds |
---|
| 1330 | |
---|
[1221] | 1331 | USE pegrid |
---|
[1320] | 1332 | |
---|
[1221] | 1333 | USE statistics |
---|
| 1334 | |
---|
| 1335 | IMPLICIT NONE |
---|
| 1336 | |
---|
[1320] | 1337 | INTEGER(iwp) :: i !: |
---|
| 1338 | INTEGER(iwp) :: j !: |
---|
| 1339 | INTEGER(iwp) :: k !: |
---|
| 1340 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 1341 | INTEGER(iwp) :: sr !: |
---|
| 1342 | INTEGER(iwp) :: tn !: |
---|
| 1343 | |
---|
| 1344 | LOGICAL :: first !: |
---|
| 1345 | |
---|
| 1346 | REAL(wp) :: dptdz_threshold !: |
---|
| 1347 | REAL(wp) :: height !: |
---|
| 1348 | REAL(wp) :: pts !: |
---|
| 1349 | REAL(wp) :: sums_l_eper !: |
---|
| 1350 | REAL(wp) :: sums_l_etot !: |
---|
| 1351 | REAL(wp) :: s1 !: |
---|
| 1352 | REAL(wp) :: s2 !: |
---|
| 1353 | REAL(wp) :: s3 !: |
---|
| 1354 | REAL(wp) :: s4 !: |
---|
| 1355 | REAL(wp) :: s5 !: |
---|
| 1356 | REAL(wp) :: s6 !: |
---|
| 1357 | REAL(wp) :: s7 !: |
---|
| 1358 | REAL(wp) :: ust !: |
---|
| 1359 | REAL(wp) :: ust2 !: |
---|
| 1360 | REAL(wp) :: u2, !: |
---|
| 1361 | REAL(wp) :: vst !: |
---|
| 1362 | REAL(wp) :: vst2 !: |
---|
| 1363 | REAL(wp) :: v2 !: |
---|
| 1364 | REAL(wp) :: w2 !: |
---|
| 1365 | REAL(wp) :: z_i(2) !: |
---|
[1221] | 1366 | |
---|
[1320] | 1367 | REAL(wp) :: dptdz(nzb+1:nzt+1) !: |
---|
| 1368 | REAL(wp) :: sums_ll(nzb:nzt+1,2) !: |
---|
| 1369 | |
---|
[1221] | 1370 | CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) |
---|
| 1371 | |
---|
| 1372 | ! |
---|
| 1373 | !-- To be on the safe side, check whether flow_statistics has already been |
---|
| 1374 | !-- called once after the current time step |
---|
| 1375 | IF ( flow_statistics_called ) THEN |
---|
| 1376 | |
---|
| 1377 | message_string = 'flow_statistics is called two times within one ' // & |
---|
| 1378 | 'timestep' |
---|
| 1379 | CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) |
---|
| 1380 | |
---|
| 1381 | ENDIF |
---|
| 1382 | |
---|
| 1383 | !$acc data copyin( hom ) create( sums, sums_l ) |
---|
| 1384 | |
---|
| 1385 | ! |
---|
| 1386 | !-- Compute statistics for each (sub-)region |
---|
| 1387 | DO sr = 0, statistic_regions |
---|
| 1388 | |
---|
| 1389 | ! |
---|
| 1390 | !-- Initialize (local) summation array |
---|
| 1391 | sums_l = 0.0 |
---|
| 1392 | |
---|
| 1393 | ! |
---|
| 1394 | !-- Store sums that have been computed in other subroutines in summation |
---|
| 1395 | !-- array |
---|
| 1396 | sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities |
---|
| 1397 | !-- WARNING: next line still has to be adjusted for OpenMP |
---|
| 1398 | sums_l(:,21,0) = sums_wsts_bc_l(:,sr) ! heat flux from advec_s_bc |
---|
| 1399 | sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres |
---|
| 1400 | sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres |
---|
| 1401 | |
---|
| 1402 | ! |
---|
| 1403 | !-- Copy the turbulent quantities, evaluated in the advection routines to |
---|
| 1404 | !-- the local array sums_l() for further computations |
---|
| 1405 | IF ( ws_scheme_mom .AND. sr == 0 ) THEN |
---|
| 1406 | |
---|
| 1407 | ! |
---|
| 1408 | !-- According to the Neumann bc for the horizontal velocity components, |
---|
| 1409 | !-- the corresponding fluxes has to satisfiy the same bc. |
---|
| 1410 | IF ( ocean ) THEN |
---|
| 1411 | sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) |
---|
| 1412 | sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) |
---|
| 1413 | ENDIF |
---|
| 1414 | |
---|
| 1415 | DO i = 0, threads_per_task-1 |
---|
| 1416 | ! |
---|
| 1417 | !-- Swap the turbulent quantities evaluated in advec_ws. |
---|
| 1418 | sums_l(:,13,i) = sums_wsus_ws_l(:,i) ! w*u* |
---|
| 1419 | sums_l(:,15,i) = sums_wsvs_ws_l(:,i) ! w*v* |
---|
| 1420 | sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 |
---|
| 1421 | sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 |
---|
| 1422 | sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 |
---|
| 1423 | sums_l(:,34,i) = sums_l(:,34,i) + 0.5 * & |
---|
| 1424 | ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + & |
---|
| 1425 | sums_ws2_ws_l(:,i) ) ! e* |
---|
| 1426 | DO k = nzb, nzt |
---|
| 1427 | sums_l(nzb+5,pr_palm,i) = sums_l(nzb+5,pr_palm,i) + 0.5 * ( & |
---|
| 1428 | sums_us2_ws_l(k,i) + & |
---|
| 1429 | sums_vs2_ws_l(k,i) + & |
---|
| 1430 | sums_ws2_ws_l(k,i) ) |
---|
| 1431 | ENDDO |
---|
| 1432 | ENDDO |
---|
| 1433 | |
---|
| 1434 | ENDIF |
---|
| 1435 | |
---|
| 1436 | IF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
| 1437 | |
---|
| 1438 | DO i = 0, threads_per_task-1 |
---|
| 1439 | sums_l(:,17,i) = sums_wspts_ws_l(:,i) ! w*pt* from advec_s_ws |
---|
| 1440 | IF ( ocean ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* |
---|
| 1441 | IF ( humidity .OR. passive_scalar ) sums_l(:,49,i) = & |
---|
| 1442 | sums_wsqs_ws_l(:,i) !w*q* |
---|
| 1443 | ENDDO |
---|
| 1444 | |
---|
| 1445 | ENDIF |
---|
| 1446 | ! |
---|
| 1447 | !-- Horizontally averaged profiles of horizontal velocities and temperature. |
---|
| 1448 | !-- They must have been computed before, because they are already required |
---|
| 1449 | !-- for other horizontal averages. |
---|
| 1450 | tn = 0 |
---|
| 1451 | |
---|
| 1452 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
| 1453 | #if defined( __intel_openmp_bug ) |
---|
| 1454 | tn = omp_get_thread_num() |
---|
| 1455 | #else |
---|
| 1456 | !$ tn = omp_get_thread_num() |
---|
| 1457 | #endif |
---|
| 1458 | |
---|
| 1459 | !$acc update device( sums_l ) |
---|
| 1460 | |
---|
| 1461 | !$OMP DO |
---|
| 1462 | !$acc parallel loop gang present( pt, rflags_invers, rmask, sums_l, u, v ) create( s1, s2, s3 ) |
---|
| 1463 | DO k = nzb, nzt+1 |
---|
| 1464 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
| 1465 | DO i = nxl, nxr |
---|
| 1466 | DO j = nys, nyn |
---|
| 1467 | ! |
---|
| 1468 | !-- k+1 is used in rflags since rflags is set 0 at surface points |
---|
| 1469 | s1 = s1 + u(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1470 | s2 = s2 + v(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1471 | s3 = s3 + pt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1472 | ENDDO |
---|
| 1473 | ENDDO |
---|
| 1474 | sums_l(k,1,tn) = s1 |
---|
| 1475 | sums_l(k,2,tn) = s2 |
---|
| 1476 | sums_l(k,4,tn) = s3 |
---|
| 1477 | ENDDO |
---|
[1257] | 1478 | !$acc end parallel loop |
---|
[1221] | 1479 | |
---|
| 1480 | ! |
---|
| 1481 | !-- Horizontally averaged profile of salinity |
---|
| 1482 | IF ( ocean ) THEN |
---|
| 1483 | !$OMP DO |
---|
| 1484 | !$acc parallel loop gang present( rflags_invers, rmask, sums_l, sa ) create( s1 ) |
---|
| 1485 | DO k = nzb, nzt+1 |
---|
| 1486 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 1487 | DO i = nxl, nxr |
---|
| 1488 | DO j = nys, nyn |
---|
| 1489 | s1 = s1 + sa(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1490 | ENDDO |
---|
| 1491 | ENDDO |
---|
| 1492 | sums_l(k,23,tn) = s1 |
---|
| 1493 | ENDDO |
---|
[1257] | 1494 | !$acc end parallel loop |
---|
[1221] | 1495 | ENDIF |
---|
| 1496 | |
---|
| 1497 | ! |
---|
| 1498 | !-- Horizontally averaged profiles of virtual potential temperature, |
---|
| 1499 | !-- total water content, specific humidity and liquid water potential |
---|
| 1500 | !-- temperature |
---|
| 1501 | IF ( humidity ) THEN |
---|
| 1502 | |
---|
| 1503 | !$OMP DO |
---|
| 1504 | !$acc parallel loop gang present( q, rflags_invers, rmask, sums_l, vpt ) create( s1, s2 ) |
---|
| 1505 | DO k = nzb, nzt+1 |
---|
| 1506 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 1507 | DO i = nxl, nxr |
---|
| 1508 | DO j = nys, nyn |
---|
| 1509 | s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1510 | s2 = s2 + vpt(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1511 | ENDDO |
---|
| 1512 | ENDDO |
---|
| 1513 | sums_l(k,41,tn) = s1 |
---|
| 1514 | sums_l(k,44,tn) = s2 |
---|
| 1515 | ENDDO |
---|
[1257] | 1516 | !$acc end parallel loop |
---|
[1221] | 1517 | |
---|
| 1518 | IF ( cloud_physics ) THEN |
---|
| 1519 | !$OMP DO |
---|
| 1520 | !$acc parallel loop gang present( pt, q, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
| 1521 | DO k = nzb, nzt+1 |
---|
| 1522 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 1523 | DO i = nxl, nxr |
---|
| 1524 | DO j = nys, nyn |
---|
| 1525 | s1 = s1 + ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1526 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1527 | s2 = s2 + ( pt(k,j,i) + l_d_cp*pt_d_t(k) * ql(k,j,i) ) * & |
---|
| 1528 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1529 | ENDDO |
---|
| 1530 | ENDDO |
---|
| 1531 | sums_l(k,42,tn) = s1 |
---|
| 1532 | sums_l(k,43,tn) = s2 |
---|
| 1533 | ENDDO |
---|
[1257] | 1534 | !$acc end parallel loop |
---|
[1221] | 1535 | ENDIF |
---|
| 1536 | ENDIF |
---|
| 1537 | |
---|
| 1538 | ! |
---|
| 1539 | !-- Horizontally averaged profiles of passive scalar |
---|
| 1540 | IF ( passive_scalar ) THEN |
---|
| 1541 | !$OMP DO |
---|
| 1542 | !$acc parallel loop gang present( q, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
| 1543 | DO k = nzb, nzt+1 |
---|
| 1544 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 1545 | DO i = nxl, nxr |
---|
| 1546 | DO j = nys, nyn |
---|
| 1547 | s1 = s1 + q(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1548 | ENDDO |
---|
| 1549 | ENDDO |
---|
| 1550 | sums_l(k,41,tn) = s1 |
---|
| 1551 | ENDDO |
---|
[1257] | 1552 | !$acc end parallel loop |
---|
[1221] | 1553 | ENDIF |
---|
| 1554 | !$OMP END PARALLEL |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- Summation of thread sums |
---|
| 1558 | IF ( threads_per_task > 1 ) THEN |
---|
| 1559 | DO i = 1, threads_per_task-1 |
---|
| 1560 | !$acc parallel present( sums_l ) |
---|
| 1561 | sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) |
---|
| 1562 | sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) |
---|
| 1563 | sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) |
---|
| 1564 | !$acc end parallel |
---|
| 1565 | IF ( ocean ) THEN |
---|
| 1566 | !$acc parallel present( sums_l ) |
---|
| 1567 | sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) |
---|
| 1568 | !$acc end parallel |
---|
| 1569 | ENDIF |
---|
| 1570 | IF ( humidity ) THEN |
---|
| 1571 | !$acc parallel present( sums_l ) |
---|
| 1572 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 1573 | sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) |
---|
| 1574 | !$acc end parallel |
---|
| 1575 | IF ( cloud_physics ) THEN |
---|
| 1576 | !$acc parallel present( sums_l ) |
---|
| 1577 | sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) |
---|
| 1578 | sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) |
---|
| 1579 | !$acc end parallel |
---|
| 1580 | ENDIF |
---|
| 1581 | ENDIF |
---|
| 1582 | IF ( passive_scalar ) THEN |
---|
| 1583 | !$acc parallel present( sums_l ) |
---|
| 1584 | sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) |
---|
| 1585 | !$acc end parallel |
---|
| 1586 | ENDIF |
---|
| 1587 | ENDDO |
---|
| 1588 | ENDIF |
---|
| 1589 | |
---|
| 1590 | #if defined( __parallel ) |
---|
| 1591 | ! |
---|
| 1592 | !-- Compute total sum from local sums |
---|
| 1593 | !$acc update host( sums_l ) |
---|
| 1594 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1595 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, & |
---|
| 1596 | MPI_SUM, comm2d, ierr ) |
---|
| 1597 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1598 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, & |
---|
| 1599 | MPI_SUM, comm2d, ierr ) |
---|
| 1600 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1601 | CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, & |
---|
| 1602 | MPI_SUM, comm2d, ierr ) |
---|
| 1603 | IF ( ocean ) THEN |
---|
| 1604 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1605 | CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, & |
---|
| 1606 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1607 | ENDIF |
---|
| 1608 | IF ( humidity ) THEN |
---|
| 1609 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1610 | CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, & |
---|
| 1611 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1612 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1613 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 1614 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1615 | IF ( cloud_physics ) THEN |
---|
| 1616 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1617 | CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, & |
---|
| 1618 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1619 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1620 | CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, & |
---|
| 1621 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1622 | ENDIF |
---|
| 1623 | ENDIF |
---|
| 1624 | |
---|
| 1625 | IF ( passive_scalar ) THEN |
---|
| 1626 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1627 | CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, & |
---|
| 1628 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1629 | ENDIF |
---|
| 1630 | !$acc update device( sums ) |
---|
| 1631 | #else |
---|
| 1632 | !$acc parallel present( sums, sums_l ) |
---|
| 1633 | sums(:,1) = sums_l(:,1,0) |
---|
| 1634 | sums(:,2) = sums_l(:,2,0) |
---|
| 1635 | sums(:,4) = sums_l(:,4,0) |
---|
| 1636 | !$acc end parallel |
---|
| 1637 | IF ( ocean ) THEN |
---|
| 1638 | !$acc parallel present( sums, sums_l ) |
---|
| 1639 | sums(:,23) = sums_l(:,23,0) |
---|
| 1640 | !$acc end parallel |
---|
| 1641 | ENDIF |
---|
| 1642 | IF ( humidity ) THEN |
---|
| 1643 | !$acc parallel present( sums, sums_l ) |
---|
| 1644 | sums(:,44) = sums_l(:,44,0) |
---|
| 1645 | sums(:,41) = sums_l(:,41,0) |
---|
| 1646 | !$acc end parallel |
---|
| 1647 | IF ( cloud_physics ) THEN |
---|
| 1648 | !$acc parallel present( sums, sums_l ) |
---|
| 1649 | sums(:,42) = sums_l(:,42,0) |
---|
| 1650 | sums(:,43) = sums_l(:,43,0) |
---|
| 1651 | !$acc end parallel |
---|
| 1652 | ENDIF |
---|
| 1653 | ENDIF |
---|
| 1654 | IF ( passive_scalar ) THEN |
---|
| 1655 | !$acc parallel present( sums, sums_l ) |
---|
| 1656 | sums(:,41) = sums_l(:,41,0) |
---|
| 1657 | !$acc end parallel |
---|
| 1658 | ENDIF |
---|
| 1659 | #endif |
---|
| 1660 | |
---|
| 1661 | ! |
---|
| 1662 | !-- Final values are obtained by division by the total number of grid points |
---|
| 1663 | !-- used for summation. After that store profiles. |
---|
| 1664 | !$acc parallel present( hom, ngp_2dh, ngp_2dh_s_inner, sums ) |
---|
| 1665 | sums(:,1) = sums(:,1) / ngp_2dh(sr) |
---|
| 1666 | sums(:,2) = sums(:,2) / ngp_2dh(sr) |
---|
| 1667 | sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) |
---|
| 1668 | hom(:,1,1,sr) = sums(:,1) ! u |
---|
| 1669 | hom(:,1,2,sr) = sums(:,2) ! v |
---|
| 1670 | hom(:,1,4,sr) = sums(:,4) ! pt |
---|
| 1671 | !$acc end parallel |
---|
| 1672 | |
---|
| 1673 | ! |
---|
| 1674 | !-- Salinity |
---|
| 1675 | IF ( ocean ) THEN |
---|
| 1676 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
| 1677 | sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) |
---|
| 1678 | hom(:,1,23,sr) = sums(:,23) ! sa |
---|
| 1679 | !$acc end parallel |
---|
| 1680 | ENDIF |
---|
| 1681 | |
---|
| 1682 | ! |
---|
| 1683 | !-- Humidity and cloud parameters |
---|
| 1684 | IF ( humidity ) THEN |
---|
| 1685 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
| 1686 | sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) |
---|
| 1687 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
| 1688 | hom(:,1,44,sr) = sums(:,44) ! vpt |
---|
| 1689 | hom(:,1,41,sr) = sums(:,41) ! qv (q) |
---|
| 1690 | !$acc end parallel |
---|
| 1691 | IF ( cloud_physics ) THEN |
---|
| 1692 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
| 1693 | sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) |
---|
| 1694 | sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) |
---|
| 1695 | hom(:,1,42,sr) = sums(:,42) ! qv |
---|
| 1696 | hom(:,1,43,sr) = sums(:,43) ! pt |
---|
| 1697 | !$acc end parallel |
---|
| 1698 | ENDIF |
---|
| 1699 | ENDIF |
---|
| 1700 | |
---|
| 1701 | ! |
---|
| 1702 | !-- Passive scalar |
---|
| 1703 | IF ( passive_scalar ) THEN |
---|
| 1704 | !$acc parallel present( hom, ngp_2dh_s_inner, sums ) |
---|
| 1705 | sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) |
---|
| 1706 | hom(:,1,41,sr) = sums(:,41) ! s (q) |
---|
| 1707 | !$acc end parallel |
---|
| 1708 | ENDIF |
---|
| 1709 | |
---|
| 1710 | ! |
---|
| 1711 | !-- Horizontally averaged profiles of the remaining prognostic variables, |
---|
| 1712 | !-- variances, the total and the perturbation energy (single values in last |
---|
| 1713 | !-- column of sums_l) and some diagnostic quantities. |
---|
| 1714 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
| 1715 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 1716 | !-- rearranged according to the staggered grid. |
---|
| 1717 | !-- However, this implies no error since staggered velocity components |
---|
| 1718 | !-- are zero at the walls and inside buildings. |
---|
| 1719 | tn = 0 |
---|
| 1720 | #if defined( __intel_openmp_bug ) |
---|
| 1721 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, & |
---|
| 1722 | !$OMP tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 1723 | tn = omp_get_thread_num() |
---|
| 1724 | #else |
---|
| 1725 | !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, sums_l_eper, sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, w2 ) |
---|
| 1726 | !$ tn = omp_get_thread_num() |
---|
| 1727 | #endif |
---|
| 1728 | !$OMP DO |
---|
| 1729 | !$acc parallel loop gang present( e, hom, kh, km, p, pt, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, s5, s6, s7 ) |
---|
| 1730 | DO k = nzb, nzt+1 |
---|
| 1731 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5, s6, s7 ) |
---|
| 1732 | DO i = nxl, nxr |
---|
| 1733 | DO j = nys, nyn |
---|
| 1734 | ! |
---|
| 1735 | !-- Prognostic and diagnostic variables |
---|
| 1736 | s1 = s1 + w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1737 | s2 = s2 + e(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1738 | s3 = s3 + km(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1739 | s4 = s4 + kh(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1740 | s5 = s5 + p(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1741 | s6 = s6 + ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) * & |
---|
| 1742 | rflags_invers(j,i,k+1) |
---|
| 1743 | ! |
---|
| 1744 | !-- Higher moments |
---|
| 1745 | !-- (Computation of the skewness of w further below) |
---|
| 1746 | s7 = s7 + w(k,j,i)**3 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1747 | ENDDO |
---|
| 1748 | ENDDO |
---|
| 1749 | sums_l(k,3,tn) = s1 |
---|
| 1750 | sums_l(k,8,tn) = s2 |
---|
| 1751 | sums_l(k,9,tn) = s3 |
---|
| 1752 | sums_l(k,10,tn) = s4 |
---|
| 1753 | sums_l(k,40,tn) = s5 |
---|
| 1754 | sums_l(k,33,tn) = s6 |
---|
| 1755 | sums_l(k,38,tn) = s7 |
---|
| 1756 | ENDDO |
---|
[1257] | 1757 | !$acc end parallel loop |
---|
[1221] | 1758 | |
---|
| 1759 | IF ( humidity ) THEN |
---|
| 1760 | !$OMP DO |
---|
| 1761 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
| 1762 | DO k = nzb, nzt+1 |
---|
| 1763 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 1764 | DO i = nxl, nxr |
---|
| 1765 | DO j = nys, nyn |
---|
| 1766 | s1 = s1 + ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) * & |
---|
| 1767 | rflags_invers(j,i,k+1) |
---|
| 1768 | ENDDO |
---|
| 1769 | ENDDO |
---|
| 1770 | sums_l(k,70,tn) = s1 |
---|
| 1771 | ENDDO |
---|
[1257] | 1772 | !$acc end parallel loop |
---|
[1221] | 1773 | ENDIF |
---|
| 1774 | |
---|
| 1775 | ! |
---|
| 1776 | !-- Total and perturbation energy for the total domain (being |
---|
| 1777 | !-- collected in the last column of sums_l). |
---|
| 1778 | !$OMP DO |
---|
| 1779 | !$acc parallel loop collapse(3) present( rflags_invers, rmask, u, v, w ) reduction(+:s1) |
---|
| 1780 | DO i = nxl, nxr |
---|
| 1781 | DO j = nys, nyn |
---|
| 1782 | DO k = nzb, nzt+1 |
---|
| 1783 | s1 = s1 + 0.5 * ( u(k,j,i)**2 + v(k,j,i)**2 + w(k,j,i)**2 ) * & |
---|
| 1784 | rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1785 | ENDDO |
---|
| 1786 | ENDDO |
---|
| 1787 | ENDDO |
---|
[1257] | 1788 | !$acc end parallel loop |
---|
[1221] | 1789 | !$acc parallel present( sums_l ) |
---|
| 1790 | sums_l(nzb+4,pr_palm,tn) = s1 |
---|
| 1791 | !$acc end parallel |
---|
| 1792 | |
---|
| 1793 | !$OMP DO |
---|
| 1794 | !$acc parallel present( rmask, sums_l, us, usws, vsws, ts ) create( s1, s2, s3, s4 ) |
---|
| 1795 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) |
---|
| 1796 | DO i = nxl, nxr |
---|
| 1797 | DO j = nys, nyn |
---|
| 1798 | ! |
---|
| 1799 | !-- 2D-arrays (being collected in the last column of sums_l) |
---|
| 1800 | s1 = s1 + us(j,i) * rmask(j,i,sr) |
---|
| 1801 | s2 = s2 + usws(j,i) * rmask(j,i,sr) |
---|
| 1802 | s3 = s3 + vsws(j,i) * rmask(j,i,sr) |
---|
| 1803 | s4 = s4 + ts(j,i) * rmask(j,i,sr) |
---|
| 1804 | ENDDO |
---|
| 1805 | ENDDO |
---|
| 1806 | sums_l(nzb,pr_palm,tn) = s1 |
---|
| 1807 | sums_l(nzb+1,pr_palm,tn) = s2 |
---|
| 1808 | sums_l(nzb+2,pr_palm,tn) = s3 |
---|
| 1809 | sums_l(nzb+3,pr_palm,tn) = s4 |
---|
| 1810 | !$acc end parallel |
---|
| 1811 | |
---|
| 1812 | IF ( humidity ) THEN |
---|
| 1813 | !$acc parallel present( qs, rmask, sums_l ) create( s1 ) |
---|
| 1814 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 1815 | DO i = nxl, nxr |
---|
| 1816 | DO j = nys, nyn |
---|
| 1817 | s1 = s1 + qs(j,i) * rmask(j,i,sr) |
---|
| 1818 | ENDDO |
---|
| 1819 | ENDDO |
---|
| 1820 | sums_l(nzb+12,pr_palm,tn) = s1 |
---|
| 1821 | !$acc end parallel |
---|
| 1822 | ENDIF |
---|
| 1823 | |
---|
| 1824 | ! |
---|
| 1825 | !-- Computation of statistics when ws-scheme is not used. Else these |
---|
| 1826 | !-- quantities are evaluated in the advection routines. |
---|
| 1827 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
| 1828 | |
---|
| 1829 | !$OMP DO |
---|
| 1830 | !$acc parallel loop gang present( u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3, s4, ust2, vst2, w2 ) |
---|
| 1831 | DO k = nzb, nzt+1 |
---|
| 1832 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4 ) |
---|
| 1833 | DO i = nxl, nxr |
---|
| 1834 | DO j = nys, nyn |
---|
| 1835 | ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 |
---|
| 1836 | vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 |
---|
| 1837 | w2 = w(k,j,i)**2 |
---|
| 1838 | |
---|
| 1839 | s1 = s1 + ust2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1840 | s2 = s2 + vst2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1841 | s3 = s3 + w2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1842 | ! |
---|
| 1843 | !-- Perturbation energy |
---|
| 1844 | s4 = s4 + 0.5 * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) * & |
---|
| 1845 | rflags_invers(j,i,k+1) |
---|
| 1846 | ENDDO |
---|
| 1847 | ENDDO |
---|
| 1848 | sums_l(k,30,tn) = s1 |
---|
| 1849 | sums_l(k,31,tn) = s2 |
---|
| 1850 | sums_l(k,32,tn) = s3 |
---|
| 1851 | sums_l(k,34,tn) = s4 |
---|
| 1852 | ENDDO |
---|
[1257] | 1853 | !$acc end parallel loop |
---|
[1221] | 1854 | ! |
---|
| 1855 | !-- Total perturbation TKE |
---|
| 1856 | !$OMP DO |
---|
| 1857 | !$acc parallel present( sums_l ) create( s1 ) |
---|
| 1858 | !$acc loop reduction( +: s1 ) |
---|
| 1859 | DO k = nzb, nzt+1 |
---|
| 1860 | s1 = s1 + sums_l(k,34,tn) |
---|
| 1861 | ENDDO |
---|
| 1862 | sums_l(nzb+5,pr_palm,tn) = s1 |
---|
| 1863 | !$acc end parallel |
---|
| 1864 | |
---|
| 1865 | ENDIF |
---|
| 1866 | |
---|
| 1867 | ! |
---|
| 1868 | !-- Horizontally averaged profiles of the vertical fluxes |
---|
| 1869 | |
---|
| 1870 | ! |
---|
| 1871 | !-- Subgridscale fluxes. |
---|
| 1872 | !-- WARNING: If a Prandtl-layer is used (k=nzb for flat terrain), the fluxes |
---|
| 1873 | !-- ------- should be calculated there in a different way. This is done |
---|
| 1874 | !-- in the next loop further below, where results from this loop are |
---|
| 1875 | !-- overwritten. However, THIS WORKS IN CASE OF FLAT TERRAIN ONLY! |
---|
| 1876 | !-- The non-flat case still has to be handled. |
---|
| 1877 | !-- NOTE: for simplicity, nzb_s_inner is used below, although |
---|
| 1878 | !-- ---- strictly speaking the following k-loop would have to be |
---|
| 1879 | !-- split up according to the staggered grid. |
---|
| 1880 | !-- However, this implies no error since staggered velocity |
---|
| 1881 | !-- components are zero at the walls and inside buildings. |
---|
| 1882 | !$OMP DO |
---|
| 1883 | !$acc parallel loop gang present( ddzu, kh, km, pt, u, v, w, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) |
---|
| 1884 | DO k = nzb, nzt_diff |
---|
| 1885 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
| 1886 | DO i = nxl, nxr |
---|
| 1887 | DO j = nys, nyn |
---|
| 1888 | |
---|
| 1889 | ! |
---|
| 1890 | !-- Momentum flux w"u" |
---|
| 1891 | s1 = s1 - 0.25 * ( & |
---|
| 1892 | km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) & |
---|
| 1893 | ) * ( & |
---|
| 1894 | ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 1895 | + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 1896 | ) & |
---|
| 1897 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1898 | ! |
---|
| 1899 | !-- Momentum flux w"v" |
---|
| 1900 | s2 = s2 - 0.25 * ( & |
---|
| 1901 | km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) & |
---|
| 1902 | ) * ( & |
---|
| 1903 | ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 1904 | + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 1905 | ) & |
---|
| 1906 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1907 | ! |
---|
| 1908 | !-- Heat flux w"pt" |
---|
| 1909 | s3 = s3 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 1910 | * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 1911 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1912 | ENDDO |
---|
| 1913 | ENDDO |
---|
| 1914 | sums_l(k,12,tn) = s1 |
---|
| 1915 | sums_l(k,14,tn) = s2 |
---|
| 1916 | sums_l(k,16,tn) = s3 |
---|
| 1917 | ENDDO |
---|
[1257] | 1918 | !$acc end parallel loop |
---|
[1221] | 1919 | |
---|
| 1920 | ! |
---|
| 1921 | !-- Salinity flux w"sa" |
---|
| 1922 | IF ( ocean ) THEN |
---|
| 1923 | !$acc parallel loop gang present( ddzu, kh, sa, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
| 1924 | DO k = nzb, nzt_diff |
---|
| 1925 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 1926 | DO i = nxl, nxr |
---|
| 1927 | DO j = nys, nyn |
---|
| 1928 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 1929 | * ( sa(k+1,j,i) - sa(k,j,i) ) & |
---|
| 1930 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1931 | ENDDO |
---|
| 1932 | ENDDO |
---|
| 1933 | sums_l(k,65,tn) = s1 |
---|
| 1934 | ENDDO |
---|
[1257] | 1935 | !$acc end parallel loop |
---|
[1221] | 1936 | ENDIF |
---|
| 1937 | |
---|
| 1938 | ! |
---|
| 1939 | !-- Buoyancy flux, water flux (humidity flux) w"q" |
---|
| 1940 | IF ( humidity ) THEN |
---|
| 1941 | |
---|
| 1942 | !$acc parallel loop gang present( ddzu, kh, q, vpt, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
| 1943 | DO k = nzb, nzt_diff |
---|
| 1944 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 1945 | DO i = nxl, nxr |
---|
| 1946 | DO j = nys, nyn |
---|
| 1947 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 1948 | * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
| 1949 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1950 | s2 = s2 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 1951 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 1952 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1953 | ENDDO |
---|
| 1954 | ENDDO |
---|
| 1955 | sums_l(k,45,tn) = s1 |
---|
| 1956 | sums_l(k,48,tn) = s2 |
---|
| 1957 | ENDDO |
---|
[1257] | 1958 | !$acc end parallel loop |
---|
[1221] | 1959 | |
---|
| 1960 | IF ( cloud_physics ) THEN |
---|
| 1961 | |
---|
| 1962 | !$acc parallel loop gang present( ddzu, kh, q, ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
| 1963 | DO k = nzb, nzt_diff |
---|
| 1964 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 1965 | DO i = nxl, nxr |
---|
| 1966 | DO j = nys, nyn |
---|
| 1967 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 1968 | * ( ( q(k+1,j,i) - ql(k+1,j,i) ) & |
---|
| 1969 | - ( q(k,j,i) - ql(k,j,i) ) ) & |
---|
| 1970 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1971 | ENDDO |
---|
| 1972 | ENDDO |
---|
| 1973 | sums_l(k,51,tn) = s1 |
---|
| 1974 | ENDDO |
---|
[1257] | 1975 | !$acc end parallel loop |
---|
[1221] | 1976 | |
---|
| 1977 | ENDIF |
---|
| 1978 | |
---|
| 1979 | ENDIF |
---|
| 1980 | ! |
---|
| 1981 | !-- Passive scalar flux |
---|
| 1982 | IF ( passive_scalar ) THEN |
---|
| 1983 | |
---|
| 1984 | !$acc parallel loop gang present( ddzu, kh, q, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
| 1985 | DO k = nzb, nzt_diff |
---|
| 1986 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 1987 | DO i = nxl, nxr |
---|
| 1988 | DO j = nys, nyn |
---|
| 1989 | s1 = s1 - 0.5 * ( kh(k,j,i) + kh(k+1,j,i) ) & |
---|
| 1990 | * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 1991 | * ddzu(k+1) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 1992 | ENDDO |
---|
| 1993 | ENDDO |
---|
| 1994 | sums_l(k,48,tn) = s1 |
---|
| 1995 | ENDDO |
---|
[1257] | 1996 | !$acc end parallel loop |
---|
[1221] | 1997 | |
---|
| 1998 | ENDIF |
---|
| 1999 | |
---|
| 2000 | IF ( use_surface_fluxes ) THEN |
---|
| 2001 | |
---|
| 2002 | !$OMP DO |
---|
| 2003 | !$acc parallel present( rmask, shf, sums_l, usws, vsws ) create( s1, s2, s3, s4, s5 ) |
---|
| 2004 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) |
---|
| 2005 | DO i = nxl, nxr |
---|
| 2006 | DO j = nys, nyn |
---|
| 2007 | ! |
---|
| 2008 | !-- Subgridscale fluxes in the Prandtl layer |
---|
| 2009 | s1 = s1 + usws(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 2010 | s2 = s2 + vsws(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 2011 | s3 = s3 + shf(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 2012 | s4 = s4 + 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 2013 | s5 = s5 + 0.0 * rmask(j,i,sr) ! v"pt" |
---|
| 2014 | ENDDO |
---|
| 2015 | ENDDO |
---|
| 2016 | sums_l(nzb,12,tn) = s1 |
---|
| 2017 | sums_l(nzb,14,tn) = s2 |
---|
| 2018 | sums_l(nzb,16,tn) = s3 |
---|
| 2019 | sums_l(nzb,58,tn) = s4 |
---|
| 2020 | sums_l(nzb,61,tn) = s5 |
---|
| 2021 | !$acc end parallel |
---|
| 2022 | |
---|
| 2023 | IF ( ocean ) THEN |
---|
| 2024 | |
---|
| 2025 | !$OMP DO |
---|
| 2026 | !$acc parallel present( rmask, saswsb, sums_l ) create( s1 ) |
---|
| 2027 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2028 | DO i = nxl, nxr |
---|
| 2029 | DO j = nys, nyn |
---|
| 2030 | s1 = s1 + saswsb(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 2031 | ENDDO |
---|
| 2032 | ENDDO |
---|
| 2033 | sums_l(nzb,65,tn) = s1 |
---|
| 2034 | !$acc end parallel |
---|
| 2035 | |
---|
| 2036 | ENDIF |
---|
| 2037 | |
---|
| 2038 | IF ( humidity ) THEN |
---|
| 2039 | |
---|
| 2040 | !$OMP DO |
---|
| 2041 | !$acc parallel present( pt, q, qsws, rmask, shf, sums_l ) create( s1, s2 ) |
---|
| 2042 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 2043 | DO i = nxl, nxr |
---|
| 2044 | DO j = nys, nyn |
---|
| 2045 | s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 2046 | s2 = s2 + ( ( 1.0 + 0.61 * q(nzb,j,i) ) * shf(j,i) & |
---|
| 2047 | + 0.61 * pt(nzb,j,i) * qsws(j,i) ) |
---|
| 2048 | ENDDO |
---|
| 2049 | ENDDO |
---|
| 2050 | sums_l(nzb,48,tn) = s1 |
---|
| 2051 | sums_l(nzb,45,tn) = s2 |
---|
| 2052 | !$acc end parallel |
---|
| 2053 | |
---|
| 2054 | IF ( cloud_droplets ) THEN |
---|
| 2055 | |
---|
| 2056 | !$OMP DO |
---|
| 2057 | !$acc parallel present( pt, q, ql, qsws, rmask, shf, sums_l ) create( s1 ) |
---|
| 2058 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2059 | DO i = nxl, nxr |
---|
| 2060 | DO j = nys, nyn |
---|
| 2061 | s1 = s1 + ( ( 1.0 + 0.61 * q(nzb,j,i) - ql(nzb,j,i) ) * & |
---|
| 2062 | shf(j,i) + 0.61 * pt(nzb,j,i) * qsws(j,i) ) |
---|
| 2063 | ENDDO |
---|
| 2064 | ENDDO |
---|
| 2065 | sums_l(nzb,45,tn) = s1 |
---|
| 2066 | !$acc end parallel |
---|
| 2067 | |
---|
| 2068 | ENDIF |
---|
| 2069 | |
---|
| 2070 | IF ( cloud_physics ) THEN |
---|
| 2071 | |
---|
| 2072 | !$OMP DO |
---|
| 2073 | !$acc parallel present( qsws, rmask, sums_l ) create( s1 ) |
---|
| 2074 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2075 | DO i = nxl, nxr |
---|
| 2076 | DO j = nys, nyn |
---|
| 2077 | ! |
---|
| 2078 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 2079 | s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 2080 | ENDDO |
---|
| 2081 | ENDDO |
---|
| 2082 | sums_l(nzb,51,tn) = s1 |
---|
| 2083 | !$acc end parallel |
---|
| 2084 | |
---|
| 2085 | ENDIF |
---|
| 2086 | |
---|
| 2087 | ENDIF |
---|
| 2088 | |
---|
| 2089 | IF ( passive_scalar ) THEN |
---|
| 2090 | |
---|
| 2091 | !$OMP DO |
---|
| 2092 | !$acc parallel present( qsws, rmask, sums_l ) create( s1 ) |
---|
| 2093 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2094 | DO i = nxl, nxr |
---|
| 2095 | DO j = nys, nyn |
---|
| 2096 | s1 = s1 + qsws(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 2097 | ENDDO |
---|
| 2098 | ENDDO |
---|
| 2099 | sums_l(nzb,48,tn) = s1 |
---|
| 2100 | !$acc end parallel |
---|
| 2101 | |
---|
| 2102 | ENDIF |
---|
| 2103 | |
---|
| 2104 | ENDIF |
---|
| 2105 | |
---|
| 2106 | ! |
---|
| 2107 | !-- Subgridscale fluxes at the top surface |
---|
| 2108 | IF ( use_top_fluxes ) THEN |
---|
| 2109 | |
---|
| 2110 | !$OMP DO |
---|
| 2111 | !$acc parallel present( rmask, sums_l, tswst, uswst, vswst ) create( s1, s2, s3, s4, s5 ) |
---|
| 2112 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3, s4, s5 ) |
---|
| 2113 | DO i = nxl, nxr |
---|
| 2114 | DO j = nys, nyn |
---|
| 2115 | s1 = s1 + uswst(j,i) * rmask(j,i,sr) ! w"u" |
---|
| 2116 | s2 = s2 + vswst(j,i) * rmask(j,i,sr) ! w"v" |
---|
| 2117 | s3 = s3 + tswst(j,i) * rmask(j,i,sr) ! w"pt" |
---|
| 2118 | s4 = s4 + 0.0 * rmask(j,i,sr) ! u"pt" |
---|
| 2119 | s5 = s5 + 0.0 * rmask(j,i,sr) ! v"pt" |
---|
| 2120 | ENDDO |
---|
| 2121 | ENDDO |
---|
| 2122 | sums_l(nzt:nzt+1,12,tn) = s1 |
---|
| 2123 | sums_l(nzt:nzt+1,14,tn) = s2 |
---|
| 2124 | sums_l(nzt:nzt+1,16,tn) = s3 |
---|
| 2125 | sums_l(nzt:nzt+1,58,tn) = s4 |
---|
| 2126 | sums_l(nzt:nzt+1,61,tn) = s5 |
---|
| 2127 | !$acc end parallel |
---|
| 2128 | |
---|
| 2129 | IF ( ocean ) THEN |
---|
| 2130 | |
---|
| 2131 | !$OMP DO |
---|
| 2132 | !$acc parallel present( rmask, saswst, sums_l ) create( s1 ) |
---|
| 2133 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2134 | DO i = nxl, nxr |
---|
| 2135 | DO j = nys, nyn |
---|
| 2136 | s1 = s1 + saswst(j,i) * rmask(j,i,sr) ! w"sa" |
---|
| 2137 | ENDDO |
---|
| 2138 | ENDDO |
---|
| 2139 | sums_l(nzt,65,tn) = s1 |
---|
| 2140 | !$acc end parallel |
---|
| 2141 | |
---|
| 2142 | ENDIF |
---|
| 2143 | |
---|
| 2144 | IF ( humidity ) THEN |
---|
| 2145 | |
---|
| 2146 | !$OMP DO |
---|
| 2147 | !$acc parallel present( pt, q, qswst, rmask, tswst, sums_l ) create( s1, s2 ) |
---|
| 2148 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 2149 | DO i = nxl, nxr |
---|
| 2150 | DO j = nys, nyn |
---|
| 2151 | s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 2152 | s2 = s2 + ( ( 1.0 + 0.61 * q(nzt,j,i) ) * tswst(j,i) + & |
---|
| 2153 | 0.61 * pt(nzt,j,i) * qswst(j,i) ) |
---|
| 2154 | ENDDO |
---|
| 2155 | ENDDO |
---|
| 2156 | sums_l(nzt,48,tn) = s1 |
---|
| 2157 | sums_l(nzt,45,tn) = s2 |
---|
| 2158 | !$acc end parallel |
---|
| 2159 | |
---|
| 2160 | IF ( cloud_droplets ) THEN |
---|
| 2161 | |
---|
| 2162 | !$OMP DO |
---|
| 2163 | !$acc parallel present( pt, q, ql, qswst, rmask, tswst, sums_l ) create( s1 ) |
---|
| 2164 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2165 | DO i = nxl, nxr |
---|
| 2166 | DO j = nys, nyn |
---|
| 2167 | s1 = s1 + ( ( 1.0 + 0.61 * q(nzt,j,i) - ql(nzt,j,i) ) * & |
---|
| 2168 | tswst(j,i) + 0.61 * pt(nzt,j,i) * qswst(j,i) ) |
---|
| 2169 | ENDDO |
---|
| 2170 | ENDDO |
---|
| 2171 | sums_l(nzt,45,tn) = s1 |
---|
| 2172 | !$acc end parallel |
---|
| 2173 | |
---|
| 2174 | ENDIF |
---|
| 2175 | |
---|
| 2176 | IF ( cloud_physics ) THEN |
---|
| 2177 | |
---|
| 2178 | !$OMP DO |
---|
| 2179 | !$acc parallel present( qswst, rmask, sums_l ) create( s1 ) |
---|
| 2180 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2181 | DO i = nxl, nxr |
---|
| 2182 | DO j = nys, nyn |
---|
| 2183 | ! |
---|
| 2184 | !-- Formula does not work if ql(nzb) /= 0.0 |
---|
| 2185 | s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 2186 | ENDDO |
---|
| 2187 | ENDDO |
---|
| 2188 | sums_l(nzt,51,tn) = s1 |
---|
| 2189 | !$acc end parallel |
---|
| 2190 | |
---|
| 2191 | ENDIF |
---|
| 2192 | |
---|
| 2193 | ENDIF |
---|
| 2194 | |
---|
| 2195 | IF ( passive_scalar ) THEN |
---|
| 2196 | |
---|
| 2197 | !$OMP DO |
---|
| 2198 | !$acc parallel present( qswst, rmask, sums_l ) create( s1 ) |
---|
| 2199 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2200 | DO i = nxl, nxr |
---|
| 2201 | DO j = nys, nyn |
---|
| 2202 | s1 = s1 + qswst(j,i) * rmask(j,i,sr) ! w"q" (w"qv") |
---|
| 2203 | ENDDO |
---|
| 2204 | ENDDO |
---|
| 2205 | sums_l(nzt,48,tn) = s1 |
---|
| 2206 | !$acc end parallel |
---|
| 2207 | |
---|
| 2208 | ENDIF |
---|
| 2209 | |
---|
| 2210 | ENDIF |
---|
| 2211 | |
---|
| 2212 | ! |
---|
| 2213 | !-- Resolved fluxes (can be computed for all horizontal points) |
---|
| 2214 | !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly |
---|
| 2215 | !-- ---- speaking the following k-loop would have to be split up and |
---|
| 2216 | !-- rearranged according to the staggered grid. |
---|
| 2217 | !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2, s3 ) |
---|
| 2218 | DO k = nzb, nzt_diff |
---|
| 2219 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
| 2220 | DO i = nxl, nxr |
---|
| 2221 | DO j = nys, nyn |
---|
| 2222 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 2223 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 2224 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 2225 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 2226 | pts = 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 2227 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) |
---|
| 2228 | ! |
---|
| 2229 | !-- Higher moments |
---|
| 2230 | s1 = s1 + pts * w(k,j,i)**2 * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2231 | s2 = s2 + pts**2 * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2232 | ! |
---|
| 2233 | !-- Energy flux w*e* (has to be adjusted?) |
---|
| 2234 | s3 = s3 + w(k,j,i) * 0.5 * ( ust**2 + vst**2 + w(k,j,i)**2 ) & |
---|
| 2235 | * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2236 | ENDDO |
---|
| 2237 | ENDDO |
---|
| 2238 | sums_l(k,35,tn) = s1 |
---|
| 2239 | sums_l(k,36,tn) = s2 |
---|
| 2240 | sums_l(k,37,tn) = s3 |
---|
| 2241 | ENDDO |
---|
[1257] | 2242 | !$acc end parallel loop |
---|
[1221] | 2243 | |
---|
| 2244 | ! |
---|
| 2245 | !-- Salinity flux and density (density does not belong to here, |
---|
| 2246 | !-- but so far there is no other suitable place to calculate) |
---|
| 2247 | IF ( ocean ) THEN |
---|
| 2248 | |
---|
| 2249 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
| 2250 | |
---|
| 2251 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sa, sums_l, w ) create( s1 ) |
---|
| 2252 | DO k = nzb, nzt_diff |
---|
| 2253 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2254 | DO i = nxl, nxr |
---|
| 2255 | DO j = nys, nyn |
---|
| 2256 | s1 = s1 + 0.5 * ( sa(k,j,i) - hom(k,1,23,sr) + & |
---|
| 2257 | sa(k+1,j,i) - hom(k+1,1,23,sr) ) & |
---|
| 2258 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2259 | ENDDO |
---|
| 2260 | ENDDO |
---|
| 2261 | sums_l(k,66,tn) = s1 |
---|
| 2262 | ENDDO |
---|
[1257] | 2263 | !$acc end parallel loop |
---|
[1221] | 2264 | |
---|
| 2265 | ENDIF |
---|
| 2266 | |
---|
| 2267 | !$acc parallel loop gang present( rflags_invers, rho, prho, rmask, sums_l ) create( s1, s2 ) |
---|
| 2268 | DO k = nzb, nzt_diff |
---|
| 2269 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 2270 | DO i = nxl, nxr |
---|
| 2271 | DO j = nys, nyn |
---|
| 2272 | s1 = s1 + rho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2273 | s2 = s2 + prho(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2274 | ENDDO |
---|
| 2275 | ENDDO |
---|
| 2276 | sums_l(k,64,tn) = s1 |
---|
| 2277 | sums_l(k,71,tn) = s2 |
---|
| 2278 | ENDDO |
---|
[1257] | 2279 | !$acc end parallel loop |
---|
[1221] | 2280 | |
---|
| 2281 | ENDIF |
---|
| 2282 | |
---|
| 2283 | ! |
---|
| 2284 | !-- Buoyancy flux, water flux, humidity flux, liquid water |
---|
| 2285 | !-- content, rain drop concentration and rain water content |
---|
| 2286 | IF ( humidity ) THEN |
---|
| 2287 | |
---|
| 2288 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 2289 | |
---|
| 2290 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) |
---|
| 2291 | DO k = nzb, nzt_diff |
---|
| 2292 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2293 | DO i = nxl, nxr |
---|
| 2294 | DO j = nys, nyn |
---|
| 2295 | s1 = s1 + 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 2296 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) * & |
---|
| 2297 | w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2298 | ENDDO |
---|
| 2299 | ENDDO |
---|
| 2300 | sums_l(k,46,tn) = s1 |
---|
| 2301 | ENDDO |
---|
[1257] | 2302 | !$acc end parallel loop |
---|
[1221] | 2303 | |
---|
| 2304 | IF ( .NOT. cloud_droplets ) THEN |
---|
| 2305 | |
---|
| 2306 | !$acc parallel loop gang present( hom, q, ql, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
| 2307 | DO k = nzb, nzt_diff |
---|
| 2308 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2309 | DO i = nxl, nxr |
---|
| 2310 | DO j = nys, nyn |
---|
| 2311 | s1 = s1 + 0.5 * ( ( q(k,j,i) - ql(k,j,i) ) - hom(k,1,42,sr) + & |
---|
| 2312 | ( q(k+1,j,i) - ql(k+1,j,i) ) - hom(k+1,1,42,sr) ) & |
---|
| 2313 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2314 | ENDDO |
---|
| 2315 | ENDDO |
---|
| 2316 | sums_l(k,52,tn) = s1 |
---|
| 2317 | ENDDO |
---|
[1257] | 2318 | !$acc end parallel loop |
---|
[1221] | 2319 | |
---|
| 2320 | IF ( icloud_scheme == 0 ) THEN |
---|
| 2321 | |
---|
| 2322 | !$acc parallel loop gang present( qc, ql, rflags_invers, rmask, sums_l ) create( s1, s2 ) |
---|
| 2323 | DO k = nzb, nzt_diff |
---|
| 2324 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 2325 | DO i = nxl, nxr |
---|
| 2326 | DO j = nys, nyn |
---|
| 2327 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2328 | s2 = s2 + qc(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2329 | ENDDO |
---|
| 2330 | ENDDO |
---|
| 2331 | sums_l(k,54,tn) = s1 |
---|
| 2332 | sums_l(k,75,tn) = s2 |
---|
| 2333 | ENDDO |
---|
[1257] | 2334 | !$acc end parallel loop |
---|
[1221] | 2335 | |
---|
| 2336 | IF ( precipitation ) THEN |
---|
| 2337 | |
---|
| 2338 | !$acc parallel loop gang present( nr, qr, prr, rflags_invers, rmask, sums_l ) create( s1, s2, s3 ) |
---|
| 2339 | DO k = nzb, nzt_diff |
---|
| 2340 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2, s3 ) |
---|
| 2341 | DO i = nxl, nxr |
---|
| 2342 | DO j = nys, nyn |
---|
| 2343 | s1 = s1 + nr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2344 | s2 = s2 + qr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2345 | s3 = s3 + prr(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2346 | ENDDO |
---|
| 2347 | ENDDO |
---|
| 2348 | sums_l(k,73,tn) = s1 |
---|
| 2349 | sums_l(k,74,tn) = s2 |
---|
| 2350 | sums_l(k,76,tn) = s3 |
---|
| 2351 | ENDDO |
---|
[1257] | 2352 | !$acc end parallel loop |
---|
[1221] | 2353 | |
---|
| 2354 | ENDIF |
---|
| 2355 | |
---|
| 2356 | ELSE |
---|
| 2357 | |
---|
| 2358 | !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
| 2359 | DO k = nzb, nzt_diff |
---|
| 2360 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2361 | DO i = nxl, nxr |
---|
| 2362 | DO j = nys, nyn |
---|
| 2363 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2364 | ENDDO |
---|
| 2365 | ENDDO |
---|
| 2366 | sums_l(k,54,tn) = s1 |
---|
| 2367 | ENDDO |
---|
[1257] | 2368 | !$acc end parallel loop |
---|
[1221] | 2369 | |
---|
| 2370 | ENDIF |
---|
| 2371 | |
---|
| 2372 | ELSE |
---|
| 2373 | |
---|
| 2374 | !$acc parallel loop gang present( ql, rflags_invers, rmask, sums_l ) create( s1 ) |
---|
| 2375 | DO k = nzb, nzt_diff |
---|
| 2376 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2377 | DO i = nxl, nxr |
---|
| 2378 | DO j = nys, nyn |
---|
| 2379 | s1 = s1 + ql(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2380 | ENDDO |
---|
| 2381 | ENDDO |
---|
| 2382 | sums_l(k,54,tn) = s1 |
---|
| 2383 | ENDDO |
---|
[1257] | 2384 | !$acc end parallel loop |
---|
[1221] | 2385 | |
---|
| 2386 | ENDIF |
---|
| 2387 | |
---|
| 2388 | ELSE |
---|
| 2389 | |
---|
| 2390 | IF( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
| 2391 | |
---|
| 2392 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, vpt, w ) create( s1 ) |
---|
| 2393 | DO k = nzb, nzt_diff |
---|
| 2394 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2395 | DO i = nxl, nxr |
---|
| 2396 | DO j = nys, nyn |
---|
| 2397 | s1 = s1 + 0.5 * ( vpt(k,j,i) - hom(k,1,44,sr) + & |
---|
| 2398 | vpt(k+1,j,i) - hom(k+1,1,44,sr) ) & |
---|
| 2399 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2400 | ENDDO |
---|
| 2401 | ENDDO |
---|
| 2402 | sums_l(k,46,tn) = s1 |
---|
| 2403 | ENDDO |
---|
[1257] | 2404 | !$acc end parallel loop |
---|
[1221] | 2405 | |
---|
| 2406 | ELSEIF ( ws_scheme_sca .AND. sr == 0 ) THEN |
---|
| 2407 | |
---|
| 2408 | !$acc parallel loop present( hom, sums_l ) |
---|
| 2409 | DO k = nzb, nzt_diff |
---|
| 2410 | sums_l(k,46,tn) = ( 1.0 + 0.61 * hom(k,1,41,sr) ) * sums_l(k,17,tn) + & |
---|
| 2411 | 0.61 * hom(k,1,4,sr) * sums_l(k,49,tn) |
---|
| 2412 | ENDDO |
---|
[1257] | 2413 | !$acc end parallel loop |
---|
[1221] | 2414 | |
---|
| 2415 | ENDIF |
---|
| 2416 | |
---|
| 2417 | ENDIF |
---|
| 2418 | |
---|
| 2419 | ENDIF |
---|
| 2420 | ! |
---|
| 2421 | !-- Passive scalar flux |
---|
| 2422 | IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca .OR. sr /= 0 ) ) THEN |
---|
| 2423 | |
---|
| 2424 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
| 2425 | DO k = nzb, nzt_diff |
---|
| 2426 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2427 | DO i = nxl, nxr |
---|
| 2428 | DO j = nys, nyn |
---|
| 2429 | s1 = s1 + 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 2430 | q(k+1,j,i) - hom(k+1,1,41,sr) ) & |
---|
| 2431 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2432 | ENDDO |
---|
| 2433 | ENDDO |
---|
| 2434 | sums_l(k,49,tn) = s1 |
---|
| 2435 | ENDDO |
---|
[1257] | 2436 | !$acc end parallel loop |
---|
[1221] | 2437 | |
---|
| 2438 | ENDIF |
---|
| 2439 | |
---|
| 2440 | ! |
---|
| 2441 | !-- For speed optimization fluxes which have been computed in part directly |
---|
| 2442 | !-- inside the WS advection routines are treated seperatly |
---|
| 2443 | !-- Momentum fluxes first: |
---|
| 2444 | IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN |
---|
| 2445 | |
---|
| 2446 | !$OMP DO |
---|
| 2447 | !$acc parallel loop gang present( hom, rflags_invers, rmask, sums_l, u, v, w ) create( s1, s2 ) |
---|
| 2448 | DO k = nzb, nzt_diff |
---|
| 2449 | !$acc loop vector collapse( 2 ) reduction( +: s1, s2 ) |
---|
| 2450 | DO i = nxl, nxr |
---|
| 2451 | DO j = nys, nyn |
---|
| 2452 | ust = 0.5 * ( u(k,j,i) - hom(k,1,1,sr) + & |
---|
| 2453 | u(k+1,j,i) - hom(k+1,1,1,sr) ) |
---|
| 2454 | vst = 0.5 * ( v(k,j,i) - hom(k,1,2,sr) + & |
---|
| 2455 | v(k+1,j,i) - hom(k+1,1,2,sr) ) |
---|
| 2456 | ! |
---|
| 2457 | !-- Momentum flux w*u* |
---|
| 2458 | s1 = s1 + 0.5 * ( w(k,j,i-1) + w(k,j,i) ) & |
---|
| 2459 | * ust * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2460 | ! |
---|
| 2461 | !-- Momentum flux w*v* |
---|
| 2462 | s2 = s2 + 0.5 * ( w(k,j-1,i) + w(k,j,i) ) & |
---|
| 2463 | * vst * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2464 | ENDDO |
---|
| 2465 | ENDDO |
---|
| 2466 | sums_l(k,13,tn) = s1 |
---|
| 2467 | sums_l(k,15,tn) = s1 |
---|
| 2468 | ENDDO |
---|
[1257] | 2469 | !$acc end parallel loop |
---|
[1221] | 2470 | |
---|
| 2471 | ENDIF |
---|
| 2472 | |
---|
| 2473 | IF ( .NOT. ws_scheme_sca .OR. sr /= 0 ) THEN |
---|
| 2474 | |
---|
| 2475 | !$OMP DO |
---|
| 2476 | !$acc parallel loop gang present( hom, pt, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
| 2477 | DO k = nzb, nzt_diff |
---|
| 2478 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2479 | DO i = nxl, nxr |
---|
| 2480 | DO j = nys, nyn |
---|
| 2481 | ! |
---|
| 2482 | !-- Vertical heat flux |
---|
| 2483 | s1 = s1 + 0.5 * ( pt(k,j,i) - hom(k,1,4,sr) + & |
---|
| 2484 | pt(k+1,j,i) - hom(k+1,1,4,sr) ) & |
---|
| 2485 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2486 | ENDDO |
---|
| 2487 | ENDDO |
---|
| 2488 | sums_l(k,17,tn) = s1 |
---|
| 2489 | ENDDO |
---|
[1257] | 2490 | !$acc end parallel loop |
---|
[1221] | 2491 | |
---|
| 2492 | IF ( humidity ) THEN |
---|
| 2493 | |
---|
| 2494 | !$acc parallel loop gang present( hom, q, rflags_invers, rmask, sums_l, w ) create( s1 ) |
---|
| 2495 | DO k = nzb, nzt_diff |
---|
| 2496 | !$acc loop vector collapse( 2 ) reduction( +: s1 ) |
---|
| 2497 | DO i = nxl, nxr |
---|
| 2498 | DO j = nys, nyn |
---|
| 2499 | s1 = s1 + 0.5 * ( q(k,j,i) - hom(k,1,41,sr) + & |
---|
| 2500 | q(k+1,j,i) - hom(k+1,1,41,sr) ) & |
---|
| 2501 | * w(k,j,i) * rmask(j,i,sr) * rflags_invers(j,i,k+1) |
---|
| 2502 | ENDDO |
---|
| 2503 | ENDDO |
---|
| 2504 | sums_l(k,49,tn) = s1 |
---|
| 2505 | ENDDO |
---|
[1257] | 2506 | !$acc end parallel loop |
---|
[1221] | 2507 | |
---|
| 2508 | ENDIF |
---|
| 2509 | |
---|
| 2510 | ENDIF |
---|
| 2511 | |
---|
| 2512 | |
---|
| 2513 | ! |
---|
| 2514 | !-- Density at top follows Neumann condition |
---|
| 2515 | IF ( ocean ) THEN |
---|
| 2516 | !$acc parallel present( sums_l ) |
---|
| 2517 | sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) |
---|
| 2518 | sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) |
---|
| 2519 | !$acc end parallel |
---|
| 2520 | ENDIF |
---|
| 2521 | |
---|
| 2522 | ! |
---|
| 2523 | !-- Divergence of vertical flux of resolved scale energy and pressure |
---|
| 2524 | !-- fluctuations as well as flux of pressure fluctuation itself (68). |
---|
| 2525 | !-- First calculate the products, then the divergence. |
---|
| 2526 | !-- Calculation is time consuming. Do it only, if profiles shall be plotted. |
---|
| 2527 | IF ( hom(nzb+1,2,55,0) /= 0.0 .OR. hom(nzb+1,2,68,0) /= 0.0 ) THEN |
---|
| 2528 | |
---|
| 2529 | STOP '+++ openACC porting for vertical flux div of resolved scale TKE in flow_statistics is still missing' |
---|
| 2530 | sums_ll = 0.0 ! local array |
---|
| 2531 | |
---|
| 2532 | !$OMP DO |
---|
| 2533 | DO i = nxl, nxr |
---|
| 2534 | DO j = nys, nyn |
---|
| 2535 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2536 | |
---|
| 2537 | sums_ll(k,1) = sums_ll(k,1) + 0.5 * w(k,j,i) * ( & |
---|
| 2538 | ( 0.25 * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) & |
---|
| 2539 | - 0.5 * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) & |
---|
| 2540 | ) )**2 & |
---|
| 2541 | + ( 0.25 * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) & |
---|
| 2542 | - 0.5 * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) & |
---|
| 2543 | ) )**2 & |
---|
| 2544 | + w(k,j,i)**2 ) |
---|
| 2545 | |
---|
| 2546 | sums_ll(k,2) = sums_ll(k,2) + 0.5 * w(k,j,i) & |
---|
| 2547 | * ( p(k,j,i) + p(k+1,j,i) ) |
---|
| 2548 | |
---|
| 2549 | ENDDO |
---|
| 2550 | ENDDO |
---|
| 2551 | ENDDO |
---|
| 2552 | sums_ll(0,1) = 0.0 ! because w is zero at the bottom |
---|
| 2553 | sums_ll(nzt+1,1) = 0.0 |
---|
| 2554 | sums_ll(0,2) = 0.0 |
---|
| 2555 | sums_ll(nzt+1,2) = 0.0 |
---|
| 2556 | |
---|
| 2557 | DO k = nzb+1, nzt |
---|
| 2558 | sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) |
---|
| 2559 | sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) |
---|
| 2560 | sums_l(k,68,tn) = sums_ll(k,2) |
---|
| 2561 | ENDDO |
---|
| 2562 | sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) |
---|
| 2563 | sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) |
---|
| 2564 | sums_l(nzb,68,tn) = 0.0 ! because w* = 0 at nzb |
---|
| 2565 | |
---|
| 2566 | ENDIF |
---|
| 2567 | |
---|
| 2568 | ! |
---|
| 2569 | !-- Divergence of vertical flux of SGS TKE and the flux itself (69) |
---|
| 2570 | IF ( hom(nzb+1,2,57,0) /= 0.0 .OR. hom(nzb+1,2,69,0) /= 0.0 ) THEN |
---|
| 2571 | |
---|
| 2572 | STOP '+++ openACC porting for vertical flux div of SGS TKE in flow_statistics is still missing' |
---|
| 2573 | !$OMP DO |
---|
| 2574 | DO i = nxl, nxr |
---|
| 2575 | DO j = nys, nyn |
---|
| 2576 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2577 | |
---|
| 2578 | sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5 * ( & |
---|
| 2579 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 2580 | - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & |
---|
| 2581 | ) * ddzw(k) |
---|
| 2582 | |
---|
| 2583 | sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5 * ( & |
---|
| 2584 | (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & |
---|
| 2585 | ) |
---|
| 2586 | |
---|
| 2587 | ENDDO |
---|
| 2588 | ENDDO |
---|
| 2589 | ENDDO |
---|
| 2590 | sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) |
---|
| 2591 | sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) |
---|
| 2592 | |
---|
| 2593 | ENDIF |
---|
| 2594 | |
---|
| 2595 | ! |
---|
| 2596 | !-- Horizontal heat fluxes (subgrid, resolved, total). |
---|
| 2597 | !-- Do it only, if profiles shall be plotted. |
---|
| 2598 | IF ( hom(nzb+1,2,58,0) /= 0.0 ) THEN |
---|
| 2599 | |
---|
| 2600 | STOP '+++ openACC porting for horizontal flux calculation in flow_statistics is still missing' |
---|
| 2601 | !$OMP DO |
---|
| 2602 | DO i = nxl, nxr |
---|
| 2603 | DO j = nys, nyn |
---|
| 2604 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2605 | ! |
---|
| 2606 | !-- Subgrid horizontal heat fluxes u"pt", v"pt" |
---|
| 2607 | sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5 * & |
---|
| 2608 | ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
| 2609 | * ( pt(k,j,i-1) - pt(k,j,i) ) & |
---|
| 2610 | * ddx * rmask(j,i,sr) |
---|
| 2611 | sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5 * & |
---|
| 2612 | ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
| 2613 | * ( pt(k,j-1,i) - pt(k,j,i) ) & |
---|
| 2614 | * ddy * rmask(j,i,sr) |
---|
| 2615 | ! |
---|
| 2616 | !-- Resolved horizontal heat fluxes u*pt*, v*pt* |
---|
| 2617 | sums_l(k,59,tn) = sums_l(k,59,tn) + & |
---|
| 2618 | ( u(k,j,i) - hom(k,1,1,sr) ) & |
---|
| 2619 | * 0.5 * ( pt(k,j,i-1) - hom(k,1,4,sr) + & |
---|
| 2620 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 2621 | pts = 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 2622 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 2623 | sums_l(k,62,tn) = sums_l(k,62,tn) + & |
---|
| 2624 | ( v(k,j,i) - hom(k,1,2,sr) ) & |
---|
| 2625 | * 0.5 * ( pt(k,j-1,i) - hom(k,1,4,sr) + & |
---|
| 2626 | pt(k,j,i) - hom(k,1,4,sr) ) |
---|
| 2627 | ENDDO |
---|
| 2628 | ENDDO |
---|
| 2629 | ENDDO |
---|
| 2630 | ! |
---|
| 2631 | !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) |
---|
| 2632 | sums_l(nzb,58,tn) = 0.0 |
---|
| 2633 | sums_l(nzb,59,tn) = 0.0 |
---|
| 2634 | sums_l(nzb,60,tn) = 0.0 |
---|
| 2635 | sums_l(nzb,61,tn) = 0.0 |
---|
| 2636 | sums_l(nzb,62,tn) = 0.0 |
---|
| 2637 | sums_l(nzb,63,tn) = 0.0 |
---|
| 2638 | |
---|
| 2639 | ENDIF |
---|
| 2640 | |
---|
| 2641 | ! |
---|
| 2642 | !-- Calculate the user-defined profiles |
---|
| 2643 | CALL user_statistics( 'profiles', sr, tn ) |
---|
| 2644 | !$OMP END PARALLEL |
---|
| 2645 | |
---|
| 2646 | ! |
---|
| 2647 | !-- Summation of thread sums |
---|
| 2648 | IF ( threads_per_task > 1 ) THEN |
---|
| 2649 | STOP '+++ openACC porting for threads_per_task > 1 in flow_statistics is still missing' |
---|
| 2650 | DO i = 1, threads_per_task-1 |
---|
| 2651 | sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) |
---|
| 2652 | sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) |
---|
| 2653 | sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & |
---|
| 2654 | sums_l(:,45:pr_palm,i) |
---|
| 2655 | IF ( max_pr_user > 0 ) THEN |
---|
| 2656 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & |
---|
| 2657 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & |
---|
| 2658 | sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) |
---|
| 2659 | ENDIF |
---|
| 2660 | ENDDO |
---|
| 2661 | ENDIF |
---|
| 2662 | |
---|
| 2663 | !$acc update host( hom, sums, sums_l ) |
---|
| 2664 | |
---|
| 2665 | #if defined( __parallel ) |
---|
| 2666 | |
---|
| 2667 | ! |
---|
| 2668 | !-- Compute total sum from local sums |
---|
| 2669 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 2670 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, & |
---|
| 2671 | MPI_SUM, comm2d, ierr ) |
---|
| 2672 | #else |
---|
| 2673 | sums = sums_l(:,:,0) |
---|
| 2674 | #endif |
---|
| 2675 | |
---|
| 2676 | ! |
---|
| 2677 | !-- Final values are obtained by division by the total number of grid points |
---|
| 2678 | !-- used for summation. After that store profiles. |
---|
| 2679 | !-- Profiles: |
---|
| 2680 | DO k = nzb, nzt+1 |
---|
| 2681 | sums(k,3) = sums(k,3) / ngp_2dh(sr) |
---|
| 2682 | sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) |
---|
| 2683 | sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) |
---|
| 2684 | sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) |
---|
| 2685 | sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) |
---|
| 2686 | sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) |
---|
| 2687 | sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) |
---|
| 2688 | sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) |
---|
| 2689 | sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) |
---|
| 2690 | sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) |
---|
| 2691 | sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) |
---|
| 2692 | sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) |
---|
| 2693 | sums(k,65:69) = sums(k,65:69) / ngp_2dh(sr) |
---|
| 2694 | sums(k,70:pr_palm-2) = sums(k,70:pr_palm-2)/ ngp_2dh_s_inner(k,sr) |
---|
| 2695 | ENDDO |
---|
| 2696 | |
---|
| 2697 | !-- Upstream-parts |
---|
| 2698 | sums(nzb:nzb+11,pr_palm-1) = sums(nzb:nzb+11,pr_palm-1) / ngp_3d(sr) |
---|
| 2699 | !-- u* and so on |
---|
| 2700 | !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose |
---|
| 2701 | !-- size is always ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer |
---|
| 2702 | !-- above the topography, they are being divided by ngp_2dh(sr) |
---|
| 2703 | sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / & |
---|
| 2704 | ngp_2dh(sr) |
---|
| 2705 | sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / & ! qs |
---|
| 2706 | ngp_2dh(sr) |
---|
| 2707 | !-- eges, e* |
---|
| 2708 | sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / & |
---|
| 2709 | ngp_3d(sr) |
---|
| 2710 | !-- Old and new divergence |
---|
| 2711 | sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / & |
---|
| 2712 | ngp_3d_inner(sr) |
---|
| 2713 | |
---|
| 2714 | !-- User-defined profiles |
---|
| 2715 | IF ( max_pr_user > 0 ) THEN |
---|
| 2716 | DO k = nzb, nzt+1 |
---|
| 2717 | sums(k,pr_palm+1:pr_palm+max_pr_user) = & |
---|
| 2718 | sums(k,pr_palm+1:pr_palm+max_pr_user) / & |
---|
| 2719 | ngp_2dh_s_inner(k,sr) |
---|
| 2720 | ENDDO |
---|
| 2721 | ENDIF |
---|
| 2722 | |
---|
| 2723 | ! |
---|
| 2724 | !-- Collect horizontal average in hom. |
---|
| 2725 | !-- Compute deduced averages (e.g. total heat flux) |
---|
| 2726 | hom(:,1,3,sr) = sums(:,3) ! w |
---|
| 2727 | hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles |
---|
| 2728 | hom(:,1,9,sr) = sums(:,9) ! km |
---|
| 2729 | hom(:,1,10,sr) = sums(:,10) ! kh |
---|
| 2730 | hom(:,1,11,sr) = sums(:,11) ! l |
---|
| 2731 | hom(:,1,12,sr) = sums(:,12) ! w"u" |
---|
| 2732 | hom(:,1,13,sr) = sums(:,13) ! w*u* |
---|
| 2733 | hom(:,1,14,sr) = sums(:,14) ! w"v" |
---|
| 2734 | hom(:,1,15,sr) = sums(:,15) ! w*v* |
---|
| 2735 | hom(:,1,16,sr) = sums(:,16) ! w"pt" |
---|
| 2736 | hom(:,1,17,sr) = sums(:,17) ! w*pt* |
---|
| 2737 | hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt |
---|
| 2738 | hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu |
---|
| 2739 | hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv |
---|
| 2740 | hom(:,1,21,sr) = sums(:,21) ! w*pt*BC |
---|
| 2741 | hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC |
---|
| 2742 | ! profile 24 is initial profile (sa) |
---|
| 2743 | ! profiles 25-29 left empty for initial |
---|
| 2744 | ! profiles |
---|
| 2745 | hom(:,1,30,sr) = sums(:,30) ! u*2 |
---|
| 2746 | hom(:,1,31,sr) = sums(:,31) ! v*2 |
---|
| 2747 | hom(:,1,32,sr) = sums(:,32) ! w*2 |
---|
| 2748 | hom(:,1,33,sr) = sums(:,33) ! pt*2 |
---|
| 2749 | hom(:,1,34,sr) = sums(:,34) ! e* |
---|
| 2750 | hom(:,1,35,sr) = sums(:,35) ! w*2pt* |
---|
| 2751 | hom(:,1,36,sr) = sums(:,36) ! w*pt*2 |
---|
| 2752 | hom(:,1,37,sr) = sums(:,37) ! w*e* |
---|
| 2753 | hom(:,1,38,sr) = sums(:,38) ! w*3 |
---|
| 2754 | hom(:,1,39,sr) = sums(:,38) / ( abs( sums(:,32) ) + 1E-20 )**1.5 ! Sw |
---|
| 2755 | hom(:,1,40,sr) = sums(:,40) ! p |
---|
| 2756 | hom(:,1,45,sr) = sums(:,45) ! w"vpt" |
---|
| 2757 | hom(:,1,46,sr) = sums(:,46) ! w*vpt* |
---|
| 2758 | hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt |
---|
| 2759 | hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") |
---|
| 2760 | hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) |
---|
| 2761 | hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) |
---|
| 2762 | hom(:,1,51,sr) = sums(:,51) ! w"qv" |
---|
| 2763 | hom(:,1,52,sr) = sums(:,52) ! w*qv* |
---|
| 2764 | hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) |
---|
| 2765 | hom(:,1,54,sr) = sums(:,54) ! ql |
---|
| 2766 | hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz |
---|
| 2767 | hom(:,1,56,sr) = sums(:,56) ! w*p*/dz |
---|
| 2768 | hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho )/dz |
---|
| 2769 | hom(:,1,58,sr) = sums(:,58) ! u"pt" |
---|
| 2770 | hom(:,1,59,sr) = sums(:,59) ! u*pt* |
---|
| 2771 | hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t |
---|
| 2772 | hom(:,1,61,sr) = sums(:,61) ! v"pt" |
---|
| 2773 | hom(:,1,62,sr) = sums(:,62) ! v*pt* |
---|
| 2774 | hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t |
---|
| 2775 | hom(:,1,64,sr) = sums(:,64) ! rho |
---|
| 2776 | hom(:,1,65,sr) = sums(:,65) ! w"sa" |
---|
| 2777 | hom(:,1,66,sr) = sums(:,66) ! w*sa* |
---|
| 2778 | hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa |
---|
| 2779 | hom(:,1,68,sr) = sums(:,68) ! w*p* |
---|
| 2780 | hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho |
---|
| 2781 | hom(:,1,70,sr) = sums(:,70) ! q*2 |
---|
| 2782 | hom(:,1,71,sr) = sums(:,71) ! prho |
---|
| 2783 | hom(:,1,72,sr) = hyp * 1E-4 ! hyp in dbar |
---|
| 2784 | hom(:,1,73,sr) = sums(:,73) ! nr |
---|
| 2785 | hom(:,1,74,sr) = sums(:,74) ! qr |
---|
| 2786 | hom(:,1,75,sr) = sums(:,75) ! qc |
---|
| 2787 | hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) |
---|
| 2788 | ! 77 is initial density profile |
---|
[1241] | 2789 | hom(:,1,78,sr) = ug ! ug |
---|
| 2790 | hom(:,1,79,sr) = vg ! vg |
---|
[1299] | 2791 | hom(:,1,80,sr) = w_subs ! w_subs |
---|
[1221] | 2792 | |
---|
| 2793 | hom(:,1,pr_palm-1,sr) = sums(:,pr_palm-1) |
---|
| 2794 | ! upstream-parts u_x, u_y, u_z, v_x, |
---|
| 2795 | ! v_y, usw. (in last but one profile) |
---|
| 2796 | hom(:,1,pr_palm,sr) = sums(:,pr_palm) |
---|
| 2797 | ! u*, w'u', w'v', t* (in last profile) |
---|
| 2798 | |
---|
| 2799 | IF ( max_pr_user > 0 ) THEN ! user-defined profiles |
---|
| 2800 | hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & |
---|
| 2801 | sums(:,pr_palm+1:pr_palm+max_pr_user) |
---|
| 2802 | ENDIF |
---|
| 2803 | |
---|
| 2804 | ! |
---|
| 2805 | !-- Determine the boundary layer height using two different schemes. |
---|
| 2806 | !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the |
---|
| 2807 | !-- first relative minimum (maximum) of the total heat flux. |
---|
| 2808 | !-- The corresponding height is assumed as the boundary layer height, if it |
---|
| 2809 | !-- is less than 1.5 times the height where the heat flux becomes negative |
---|
| 2810 | !-- (positive) for the first time. |
---|
| 2811 | z_i(1) = 0.0 |
---|
| 2812 | first = .TRUE. |
---|
| 2813 | |
---|
| 2814 | IF ( ocean ) THEN |
---|
| 2815 | DO k = nzt, nzb+1, -1 |
---|
| 2816 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
| 2817 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8) THEN |
---|
| 2818 | first = .FALSE. |
---|
| 2819 | height = zw(k) |
---|
| 2820 | ENDIF |
---|
| 2821 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 2822 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
| 2823 | hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 2824 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 2825 | z_i(1) = zw(k) |
---|
| 2826 | ELSE |
---|
| 2827 | z_i(1) = height |
---|
| 2828 | ENDIF |
---|
| 2829 | EXIT |
---|
| 2830 | ENDIF |
---|
| 2831 | ENDDO |
---|
| 2832 | ELSE |
---|
| 2833 | DO k = nzb, nzt-1 |
---|
| 2834 | IF ( first .AND. hom(k,1,18,sr) < 0.0 & |
---|
| 2835 | .AND. abs(hom(k,1,18,sr)) > 1.0E-8 ) THEN |
---|
| 2836 | first = .FALSE. |
---|
| 2837 | height = zw(k) |
---|
| 2838 | ENDIF |
---|
| 2839 | IF ( hom(k,1,18,sr) < 0.0 .AND. & |
---|
| 2840 | abs(hom(k,1,18,sr)) > 1.0E-8 .AND. & |
---|
| 2841 | hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN |
---|
| 2842 | IF ( zw(k) < 1.5 * height ) THEN |
---|
| 2843 | z_i(1) = zw(k) |
---|
| 2844 | ELSE |
---|
| 2845 | z_i(1) = height |
---|
| 2846 | ENDIF |
---|
| 2847 | EXIT |
---|
| 2848 | ENDIF |
---|
| 2849 | ENDDO |
---|
| 2850 | ENDIF |
---|
| 2851 | |
---|
| 2852 | ! |
---|
| 2853 | !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified |
---|
| 2854 | !-- by Uhlenbrock(2006). The boundary layer height is the height with the |
---|
| 2855 | !-- maximal local temperature gradient: starting from the second (the last |
---|
| 2856 | !-- but one) vertical gridpoint, the local gradient must be at least |
---|
| 2857 | !-- 0.2K/100m and greater than the next four gradients. |
---|
| 2858 | !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the |
---|
| 2859 | !-- ocean case! |
---|
| 2860 | z_i(2) = 0.0 |
---|
| 2861 | DO k = nzb+1, nzt+1 |
---|
| 2862 | dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) |
---|
| 2863 | ENDDO |
---|
[1322] | 2864 | dptdz_threshold = 0.2_wp / 100.0_wp |
---|
[1221] | 2865 | |
---|
| 2866 | IF ( ocean ) THEN |
---|
| 2867 | DO k = nzt+1, nzb+5, -1 |
---|
| 2868 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 2869 | dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & |
---|
| 2870 | dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN |
---|
| 2871 | z_i(2) = zw(k-1) |
---|
| 2872 | EXIT |
---|
| 2873 | ENDIF |
---|
| 2874 | ENDDO |
---|
| 2875 | ELSE |
---|
| 2876 | DO k = nzb+1, nzt-3 |
---|
| 2877 | IF ( dptdz(k) > dptdz_threshold .AND. & |
---|
| 2878 | dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & |
---|
| 2879 | dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN |
---|
| 2880 | z_i(2) = zw(k-1) |
---|
| 2881 | EXIT |
---|
| 2882 | ENDIF |
---|
| 2883 | ENDDO |
---|
| 2884 | ENDIF |
---|
| 2885 | |
---|
| 2886 | hom(nzb+6,1,pr_palm,sr) = z_i(1) |
---|
| 2887 | hom(nzb+7,1,pr_palm,sr) = z_i(2) |
---|
| 2888 | |
---|
| 2889 | ! |
---|
| 2890 | !-- Computation of both the characteristic vertical velocity and |
---|
| 2891 | !-- the characteristic convective boundary layer temperature. |
---|
| 2892 | !-- The horizontal average at nzb+1 is input for the average temperature. |
---|
| 2893 | IF ( hom(nzb,1,18,sr) > 0.0 .AND. abs(hom(nzb,1,18,sr)) > 1.0E-8 & |
---|
| 2894 | .AND. z_i(1) /= 0.0 ) THEN |
---|
| 2895 | hom(nzb+8,1,pr_palm,sr) = ( g / hom(nzb+1,1,4,sr) * & |
---|
| 2896 | hom(nzb,1,18,sr) * & |
---|
| 2897 | ABS( z_i(1) ) )**0.333333333 |
---|
| 2898 | !-- so far this only works if Prandtl layer is used |
---|
| 2899 | hom(nzb+11,1,pr_palm,sr) = hom(nzb,1,16,sr) / hom(nzb+8,1,pr_palm,sr) |
---|
| 2900 | ELSE |
---|
| 2901 | hom(nzb+8,1,pr_palm,sr) = 0.0 |
---|
| 2902 | hom(nzb+11,1,pr_palm,sr) = 0.0 |
---|
| 2903 | ENDIF |
---|
| 2904 | |
---|
| 2905 | ! |
---|
| 2906 | !-- Collect the time series quantities |
---|
| 2907 | ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E |
---|
| 2908 | ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* |
---|
| 2909 | ts_value(3,sr) = dt_3d |
---|
| 2910 | ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* |
---|
| 2911 | ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* |
---|
| 2912 | ts_value(6,sr) = u_max |
---|
| 2913 | ts_value(7,sr) = v_max |
---|
| 2914 | ts_value(8,sr) = w_max |
---|
| 2915 | ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence |
---|
| 2916 | ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence |
---|
| 2917 | ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) |
---|
| 2918 | ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) |
---|
| 2919 | ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* |
---|
| 2920 | ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 |
---|
| 2921 | ts_value(15,sr) = hom(nzb+1,1,16,sr) ! w'pt' at k=1 |
---|
| 2922 | ts_value(16,sr) = hom(nzb+1,1,18,sr) ! wpt at k=1 |
---|
| 2923 | ts_value(17,sr) = hom(nzb,1,4,sr) ! pt(0) |
---|
| 2924 | ts_value(18,sr) = hom(nzb+1,1,4,sr) ! pt(zp) |
---|
| 2925 | ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 |
---|
| 2926 | ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 |
---|
| 2927 | ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 |
---|
| 2928 | |
---|
| 2929 | IF ( ts_value(5,sr) /= 0.0 ) THEN |
---|
| 2930 | ts_value(22,sr) = ts_value(4,sr)**2 / & |
---|
| 2931 | ( kappa * g * ts_value(5,sr) / ts_value(18,sr) ) ! L |
---|
| 2932 | ELSE |
---|
| 2933 | ts_value(22,sr) = 10000.0 |
---|
| 2934 | ENDIF |
---|
| 2935 | |
---|
| 2936 | ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* |
---|
| 2937 | ! |
---|
| 2938 | !-- Calculate additional statistics provided by the user interface |
---|
| 2939 | CALL user_statistics( 'time_series', sr, 0 ) |
---|
| 2940 | |
---|
| 2941 | ENDDO ! loop of the subregions |
---|
| 2942 | |
---|
| 2943 | !$acc end data |
---|
| 2944 | |
---|
| 2945 | ! |
---|
| 2946 | !-- If required, sum up horizontal averages for subsequent time averaging |
---|
| 2947 | IF ( do_sum ) THEN |
---|
| 2948 | IF ( average_count_pr == 0 ) hom_sum = 0.0 |
---|
| 2949 | hom_sum = hom_sum + hom(:,1,:,:) |
---|
| 2950 | average_count_pr = average_count_pr + 1 |
---|
| 2951 | do_sum = .FALSE. |
---|
| 2952 | ENDIF |
---|
| 2953 | |
---|
| 2954 | ! |
---|
| 2955 | !-- Set flag for other UPs (e.g. output routines, but also buoyancy). |
---|
| 2956 | !-- This flag is reset after each time step in time_integration. |
---|
| 2957 | flow_statistics_called = .TRUE. |
---|
| 2958 | |
---|
| 2959 | CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) |
---|
| 2960 | |
---|
| 2961 | |
---|
| 2962 | END SUBROUTINE flow_statistics |
---|
| 2963 | #endif |
---|