1 | !> @file fft_xy_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: fft_xy_mod.f90 4651 2020-08-27 07:17:45Z suehring $ |
---|
26 | ! preprocessor branch for ibm removed |
---|
27 | ! |
---|
28 | ! 4646 2020-08-24 16:02:40Z raasch |
---|
29 | ! file re-formatted to follow the PALM coding standard |
---|
30 | ! |
---|
31 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
32 | ! bugfix for Temperton-fft usage on GPU |
---|
33 | ! |
---|
34 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
35 | ! Vectorized Temperton-fft added |
---|
36 | ! |
---|
37 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
38 | ! Corrected "Former revisions" section |
---|
39 | ! |
---|
40 | ! 4069 2019-07-01 14:05:51Z Giersch |
---|
41 | ! Code added to avoid compiler warnings |
---|
42 | ! |
---|
43 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
44 | ! OpenACC port for SPEC |
---|
45 | ! |
---|
46 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
47 | ! Initial revision |
---|
48 | ! |
---|
49 | ! |
---|
50 | ! Description: |
---|
51 | ! ------------ |
---|
52 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
53 | !> Original version: Klaus Ketelsen (May 2002) |
---|
54 | !> @todo openmp support for vectorized Temperton fft |
---|
55 | !------------------------------------------------------------------------------! |
---|
56 | MODULE fft_xy |
---|
57 | |
---|
58 | |
---|
59 | USE control_parameters, & |
---|
60 | ONLY: fft_method, loop_optimization, message_string |
---|
61 | |
---|
62 | USE cuda_fft_interfaces |
---|
63 | |
---|
64 | USE indices, & |
---|
65 | ONLY: nx, ny, nz |
---|
66 | |
---|
67 | #if defined( __cuda_fft ) |
---|
68 | USE ISO_C_BINDING |
---|
69 | #elif defined( __fftw ) |
---|
70 | USE, INTRINSIC :: ISO_C_BINDING |
---|
71 | #endif |
---|
72 | |
---|
73 | USE kinds |
---|
74 | |
---|
75 | USE singleton, & |
---|
76 | ONLY: fftn |
---|
77 | |
---|
78 | USE temperton_fft |
---|
79 | |
---|
80 | USE transpose_indices, & |
---|
81 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
82 | |
---|
83 | IMPLICIT NONE |
---|
84 | |
---|
85 | PRIVATE |
---|
86 | PUBLIC fft_init, f_vec_x, fft_x, fft_x_1d, fft_x_m, fft_y, fft_y_1d, fft_y_m, temperton_fft_vec |
---|
87 | |
---|
88 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
89 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
90 | |
---|
91 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
92 | LOGICAL, SAVE :: temperton_fft_vec = .FALSE. !< |
---|
93 | |
---|
94 | REAL(wp), SAVE :: dnx !< |
---|
95 | REAL(wp), SAVE :: dny !< |
---|
96 | REAL(wp), SAVE :: sqr_dnx !< |
---|
97 | REAL(wp), SAVE :: sqr_dny !< |
---|
98 | |
---|
99 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
100 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
101 | |
---|
102 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: f_vec_x |
---|
103 | |
---|
104 | #if defined( __nec_fft ) |
---|
105 | INTEGER(iwp), SAVE :: nz1 !< |
---|
106 | |
---|
107 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
108 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
109 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
110 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
111 | |
---|
112 | #elif defined( __cuda_fft ) |
---|
113 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
114 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
115 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
116 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
117 | |
---|
118 | #endif |
---|
119 | |
---|
120 | #if defined( __fftw ) |
---|
121 | INCLUDE 'fftw3.f03' |
---|
122 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
123 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: y_out !< |
---|
124 | |
---|
125 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
126 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
127 | |
---|
128 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: x_in !< |
---|
129 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: y_in !< |
---|
130 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
131 | |
---|
132 | |
---|
133 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
134 | #endif |
---|
135 | |
---|
136 | ! |
---|
137 | !-- Public interfaces |
---|
138 | INTERFACE fft_init |
---|
139 | MODULE PROCEDURE fft_init |
---|
140 | END INTERFACE fft_init |
---|
141 | |
---|
142 | INTERFACE fft_x |
---|
143 | MODULE PROCEDURE fft_x |
---|
144 | END INTERFACE fft_x |
---|
145 | |
---|
146 | INTERFACE fft_x_1d |
---|
147 | MODULE PROCEDURE fft_x_1d |
---|
148 | END INTERFACE fft_x_1d |
---|
149 | |
---|
150 | INTERFACE fft_y |
---|
151 | MODULE PROCEDURE fft_y |
---|
152 | END INTERFACE fft_y |
---|
153 | |
---|
154 | INTERFACE fft_y_1d |
---|
155 | MODULE PROCEDURE fft_y_1d |
---|
156 | END INTERFACE fft_y_1d |
---|
157 | |
---|
158 | INTERFACE fft_x_m |
---|
159 | MODULE PROCEDURE fft_x_m |
---|
160 | END INTERFACE fft_x_m |
---|
161 | |
---|
162 | INTERFACE fft_y_m |
---|
163 | MODULE PROCEDURE fft_y_m |
---|
164 | END INTERFACE fft_y_m |
---|
165 | |
---|
166 | CONTAINS |
---|
167 | |
---|
168 | |
---|
169 | !--------------------------------------------------------------------------------------------------! |
---|
170 | ! Description: |
---|
171 | ! ------------ |
---|
172 | !> @todo Missing subroutine description. |
---|
173 | !--------------------------------------------------------------------------------------------------! |
---|
174 | SUBROUTINE fft_init |
---|
175 | |
---|
176 | USE pegrid, & |
---|
177 | ONLY: pdims |
---|
178 | |
---|
179 | IMPLICIT NONE |
---|
180 | |
---|
181 | ! |
---|
182 | !-- The following temporary working arrays have to be on stack or private |
---|
183 | !-- in OpenMP sense |
---|
184 | #if defined( __nec_fft ) |
---|
185 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
186 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
187 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
188 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
189 | #endif |
---|
190 | |
---|
191 | ! |
---|
192 | !-- Return, if already called |
---|
193 | IF ( init_fft ) THEN |
---|
194 | RETURN |
---|
195 | ELSE |
---|
196 | init_fft = .TRUE. |
---|
197 | ENDIF |
---|
198 | |
---|
199 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
200 | fft_method = 'system-specific' |
---|
201 | #endif |
---|
202 | |
---|
203 | ! |
---|
204 | !-- Switch to tell the Poisson-solver that the vectorized version of Temperton-fft is to be used. |
---|
205 | IF ( fft_method == 'temperton-algorithm' .AND. loop_optimization == 'vector' .AND. & |
---|
206 | pdims(1) /= 1 .AND. pdims(2) /= 1 ) THEN |
---|
207 | temperton_fft_vec = .TRUE. |
---|
208 | ENDIF |
---|
209 | |
---|
210 | IF ( fft_method == 'system-specific' ) THEN |
---|
211 | |
---|
212 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
213 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
214 | sqr_dnx = SQRT( dnx ) |
---|
215 | sqr_dny = SQRT( dny ) |
---|
216 | |
---|
217 | #if defined( __nec_fft ) |
---|
218 | message_string = 'fft method "' // TRIM( fft_method) // '" currently does not work on NEC' |
---|
219 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
220 | |
---|
221 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
222 | |
---|
223 | work_x = 0.0_wp |
---|
224 | work_y = 0.0_wp |
---|
225 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
226 | ! when using the NEC ffts |
---|
227 | |
---|
228 | ! |
---|
229 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
230 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
231 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
232 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, trig_xf, workx, 0 ) |
---|
233 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, trig_xb, workx, 0 ) |
---|
234 | ! |
---|
235 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
236 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
237 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
238 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, trig_yf, worky, 0 ) |
---|
239 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, trig_yb, worky, 0 ) |
---|
240 | #elif defined( __cuda_fft ) |
---|
241 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
242 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
243 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
244 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
245 | #else |
---|
246 | message_string = 'no system-specific fft-call available' |
---|
247 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
248 | #endif |
---|
249 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
250 | ! |
---|
251 | !-- Temperton-algorithm |
---|
252 | !-- Initialize tables for fft along x and y |
---|
253 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
254 | |
---|
255 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
256 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
257 | |
---|
258 | IF ( temperton_fft_vec ) THEN |
---|
259 | ALLOCATE( f_vec_x((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),0:nx+2) ) |
---|
260 | ENDIF |
---|
261 | |
---|
262 | |
---|
263 | |
---|
264 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
265 | ! |
---|
266 | !-- FFTW |
---|
267 | #if defined( __fftw ) |
---|
268 | nx_c = nx+1 |
---|
269 | ny_c = ny+1 |
---|
270 | !$OMP PARALLEL |
---|
271 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), y_out(0:(ny+1)/2) ) |
---|
272 | !$OMP END PARALLEL |
---|
273 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
274 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
275 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
276 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
277 | #else |
---|
278 | message_string = 'preprocessor switch for fftw is missing' |
---|
279 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
280 | #endif |
---|
281 | |
---|
282 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
283 | |
---|
284 | CONTINUE |
---|
285 | |
---|
286 | ELSE |
---|
287 | |
---|
288 | message_string = 'fft method "' // TRIM( fft_method) // '" not available' |
---|
289 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
290 | ENDIF |
---|
291 | |
---|
292 | END SUBROUTINE fft_init |
---|
293 | |
---|
294 | |
---|
295 | !--------------------------------------------------------------------------------------------------! |
---|
296 | ! Description: |
---|
297 | ! ------------ |
---|
298 | !> Fourier-transformation along x-direction. |
---|
299 | !> Version for 2D-decomposition. |
---|
300 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
301 | !> available. |
---|
302 | !--------------------------------------------------------------------------------------------------! |
---|
303 | |
---|
304 | SUBROUTINE fft_x( ar, direction, ar_2d, ar_inv ) |
---|
305 | |
---|
306 | |
---|
307 | IMPLICIT NONE |
---|
308 | |
---|
309 | CHARACTER (LEN=*) :: direction !< |
---|
310 | |
---|
311 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
312 | |
---|
313 | INTEGER(iwp) :: i !< |
---|
314 | INTEGER(iwp) :: ishape(1) !< |
---|
315 | INTEGER(iwp) :: j !< |
---|
316 | INTEGER(iwp) :: k !< |
---|
317 | INTEGER(iwp) :: mm !< |
---|
318 | |
---|
319 | LOGICAL :: forward_fft !< |
---|
320 | |
---|
321 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
322 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
323 | |
---|
324 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec !< |
---|
325 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: ar_2d !< |
---|
326 | |
---|
327 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: ar !< |
---|
328 | REAL(wp), DIMENSION(nys_x:nyn_x,nzb_x:nzt_x,0:nx), OPTIONAL :: ar_inv !< |
---|
329 | |
---|
330 | #if defined( __nec_fft ) |
---|
331 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
332 | #elif defined( __cuda_fft ) |
---|
333 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: ar_tmp !< |
---|
334 | !$ACC DECLARE CREATE(ar_tmp) |
---|
335 | #endif |
---|
336 | |
---|
337 | ! |
---|
338 | !-- To avoid compiler warning: Unused dummy argument âar_2dâ |
---|
339 | IF ( PRESENT( ar_2d ) ) CONTINUE |
---|
340 | |
---|
341 | IF ( direction == 'forward' ) THEN |
---|
342 | forward_fft = .TRUE. |
---|
343 | ELSE |
---|
344 | forward_fft = .FALSE. |
---|
345 | ENDIF |
---|
346 | |
---|
347 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
348 | |
---|
349 | ! |
---|
350 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
351 | !-- the model. |
---|
352 | ALLOCATE( cwork(0:nx) ) |
---|
353 | |
---|
354 | IF ( forward_fft ) THEN |
---|
355 | |
---|
356 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
357 | !$OMP DO |
---|
358 | DO k = nzb_x, nzt_x |
---|
359 | DO j = nys_x, nyn_x |
---|
360 | |
---|
361 | DO i = 0, nx |
---|
362 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
363 | ENDDO |
---|
364 | |
---|
365 | ishape = SHAPE( cwork ) |
---|
366 | CALL FFTN( cwork, ishape ) |
---|
367 | |
---|
368 | DO i = 0, (nx+1)/2 |
---|
369 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
370 | ENDDO |
---|
371 | DO i = 1, (nx+1)/2 - 1 |
---|
372 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
373 | ENDDO |
---|
374 | |
---|
375 | ENDDO |
---|
376 | ENDDO |
---|
377 | !$OMP END PARALLEL |
---|
378 | |
---|
379 | ELSE |
---|
380 | |
---|
381 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
382 | !$OMP DO |
---|
383 | DO k = nzb_x, nzt_x |
---|
384 | DO j = nys_x, nyn_x |
---|
385 | |
---|
386 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
387 | DO i = 1, (nx+1)/2 - 1 |
---|
388 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), KIND=wp ) |
---|
389 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
390 | ENDDO |
---|
391 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
392 | |
---|
393 | ishape = SHAPE( cwork ) |
---|
394 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
395 | |
---|
396 | DO i = 0, nx |
---|
397 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
398 | ENDDO |
---|
399 | |
---|
400 | ENDDO |
---|
401 | ENDDO |
---|
402 | !$OMP END PARALLEL |
---|
403 | |
---|
404 | ENDIF |
---|
405 | |
---|
406 | DEALLOCATE( cwork ) |
---|
407 | |
---|
408 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
409 | |
---|
410 | ! |
---|
411 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
412 | !-- the model. |
---|
413 | IF ( forward_fft ) THEN |
---|
414 | |
---|
415 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
416 | |
---|
417 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
418 | !$OMP DO |
---|
419 | DO k = nzb_x, nzt_x |
---|
420 | DO j = nys_x, nyn_x |
---|
421 | |
---|
422 | work(0:nx) = ar(0:nx,j,k) |
---|
423 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
424 | |
---|
425 | DO i = 0, (nx+1)/2 |
---|
426 | ar(i,j,k) = work(2*i) |
---|
427 | ENDDO |
---|
428 | DO i = 1, (nx+1)/2 - 1 |
---|
429 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
430 | ENDDO |
---|
431 | |
---|
432 | ENDDO |
---|
433 | ENDDO |
---|
434 | !$OMP END PARALLEL |
---|
435 | |
---|
436 | ELSE |
---|
437 | |
---|
438 | ! |
---|
439 | !-- Vector version of the Temperton-algorithm. Computes multiple 1-D FFT's. |
---|
440 | ALLOCATE( work_vec( (nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
441 | ! |
---|
442 | !-- f_vec_x is already set in transpose_zx |
---|
443 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, -1 ) |
---|
444 | DEALLOCATE( work_vec ) |
---|
445 | |
---|
446 | IF ( PRESENT( ar_inv ) ) THEN |
---|
447 | |
---|
448 | DO k = nzb_x, nzt_x |
---|
449 | DO j = nys_x, nyn_x |
---|
450 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
451 | DO i = 0, (nx+1)/2 |
---|
452 | ar_inv(j,k,i) = f_vec_x(mm,2*i) |
---|
453 | ENDDO |
---|
454 | DO i = 1, (nx+1)/2-1 |
---|
455 | ar_inv(j,k,nx+1-i) = f_vec_x(mm,2*i+1) |
---|
456 | ENDDO |
---|
457 | ENDDO |
---|
458 | ENDDO |
---|
459 | |
---|
460 | ELSE |
---|
461 | |
---|
462 | DO k = nzb_x, nzt_x |
---|
463 | DO j = nys_x, nyn_x |
---|
464 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
465 | DO i = 0, (nx+1)/2 |
---|
466 | ar(i,j,k) = f_vec_x(mm,2*i) |
---|
467 | ENDDO |
---|
468 | DO i = 1, (nx+1)/2-1 |
---|
469 | ar(nx+1-i,j,k) = f_vec_x(mm,2*i+1) |
---|
470 | ENDDO |
---|
471 | ENDDO |
---|
472 | ENDDO |
---|
473 | |
---|
474 | ENDIF |
---|
475 | |
---|
476 | ENDIF |
---|
477 | |
---|
478 | ELSE |
---|
479 | |
---|
480 | ! |
---|
481 | !-- Backward fft |
---|
482 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
483 | |
---|
484 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
485 | !$OMP DO |
---|
486 | DO k = nzb_x, nzt_x |
---|
487 | DO j = nys_x, nyn_x |
---|
488 | |
---|
489 | DO i = 0, (nx+1)/2 |
---|
490 | work(2*i) = ar(i,j,k) |
---|
491 | ENDDO |
---|
492 | DO i = 1, (nx+1)/2 - 1 |
---|
493 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
494 | ENDDO |
---|
495 | work(1) = 0.0_wp |
---|
496 | work(nx+2) = 0.0_wp |
---|
497 | |
---|
498 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
499 | ar(0:nx,j,k) = work(0:nx) |
---|
500 | |
---|
501 | ENDDO |
---|
502 | ENDDO |
---|
503 | !$OMP END PARALLEL |
---|
504 | |
---|
505 | ELSE |
---|
506 | |
---|
507 | IF ( PRESENT( ar_inv ) ) THEN |
---|
508 | |
---|
509 | DO k = nzb_x, nzt_x |
---|
510 | DO j = nys_x, nyn_x |
---|
511 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
512 | DO i = 0, (nx+1)/2 |
---|
513 | f_vec_x(mm,2*i) = ar_inv(j,k,i) |
---|
514 | ENDDO |
---|
515 | DO i = 1, (nx+1)/2-1 |
---|
516 | f_vec_x(mm,2*i+1) = ar_inv(j,k,nx+1-i) |
---|
517 | ENDDO |
---|
518 | ENDDO |
---|
519 | ENDDO |
---|
520 | |
---|
521 | ELSE |
---|
522 | |
---|
523 | DO k = nzb_x, nzt_x |
---|
524 | DO j = nys_x, nyn_x |
---|
525 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
526 | DO i = 0, (nx+1)/2 |
---|
527 | f_vec_x(mm,2*i) = ar(i,j,k) |
---|
528 | ENDDO |
---|
529 | DO i = 1, (nx+1)/2-1 |
---|
530 | f_vec_x(mm,2*i+1) = ar(nx+1-i,j,k) |
---|
531 | ENDDO |
---|
532 | ENDDO |
---|
533 | ENDDO |
---|
534 | |
---|
535 | ENDIF |
---|
536 | f_vec_x(:,1) = 0.0_wp |
---|
537 | f_vec_x(:,nx+2) = 0.0_wp |
---|
538 | |
---|
539 | ALLOCATE( work_vec((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
540 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, 1 ) |
---|
541 | DEALLOCATE( work_vec ) |
---|
542 | |
---|
543 | ENDIF |
---|
544 | |
---|
545 | ENDIF |
---|
546 | |
---|
547 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
548 | |
---|
549 | #if defined( __fftw ) |
---|
550 | IF ( forward_fft ) THEN |
---|
551 | |
---|
552 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
553 | !$OMP DO |
---|
554 | DO k = nzb_x, nzt_x |
---|
555 | DO j = nys_x, nyn_x |
---|
556 | |
---|
557 | x_in(0:nx) = ar(0:nx,j,k) |
---|
558 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
559 | |
---|
560 | IF ( PRESENT( ar_2d ) ) THEN |
---|
561 | |
---|
562 | DO i = 0, (nx+1)/2 |
---|
563 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
564 | ENDDO |
---|
565 | DO i = 1, (nx+1)/2 - 1 |
---|
566 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
567 | ENDDO |
---|
568 | |
---|
569 | ELSE |
---|
570 | |
---|
571 | DO i = 0, (nx+1)/2 |
---|
572 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
573 | ENDDO |
---|
574 | DO i = 1, (nx+1)/2 - 1 |
---|
575 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
576 | ENDDO |
---|
577 | |
---|
578 | ENDIF |
---|
579 | |
---|
580 | ENDDO |
---|
581 | ENDDO |
---|
582 | !$OMP END PARALLEL |
---|
583 | |
---|
584 | ELSE |
---|
585 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
586 | !$OMP DO |
---|
587 | DO k = nzb_x, nzt_x |
---|
588 | DO j = nys_x, nyn_x |
---|
589 | |
---|
590 | IF ( PRESENT( ar_2d ) ) THEN |
---|
591 | |
---|
592 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
593 | DO i = 1, (nx+1)/2 - 1 |
---|
594 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), KIND=wp ) |
---|
595 | ENDDO |
---|
596 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, KIND=wp ) |
---|
597 | |
---|
598 | ELSE |
---|
599 | |
---|
600 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
601 | DO i = 1, (nx+1)/2 - 1 |
---|
602 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
603 | ENDDO |
---|
604 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
605 | |
---|
606 | ENDIF |
---|
607 | |
---|
608 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
609 | ar(0:nx,j,k) = x_in(0:nx) |
---|
610 | |
---|
611 | ENDDO |
---|
612 | ENDDO |
---|
613 | !$OMP END PARALLEL |
---|
614 | |
---|
615 | ENDIF |
---|
616 | #endif |
---|
617 | |
---|
618 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
619 | |
---|
620 | #if defined( __nec_fft ) |
---|
621 | |
---|
622 | IF ( forward_fft ) THEN |
---|
623 | |
---|
624 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
625 | !$OMP DO |
---|
626 | DO k = nzb_x, nzt_x |
---|
627 | DO j = nys_x, nyn_x |
---|
628 | |
---|
629 | work(0:nx) = ar(0:nx,j,k) |
---|
630 | |
---|
631 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
632 | |
---|
633 | DO i = 0, (nx+1)/2 |
---|
634 | ar(i,j,k) = work(2*i) |
---|
635 | ENDDO |
---|
636 | DO i = 1, (nx+1)/2 - 1 |
---|
637 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
638 | ENDDO |
---|
639 | |
---|
640 | ENDDO |
---|
641 | ENDDO |
---|
642 | !$END OMP PARALLEL |
---|
643 | |
---|
644 | ELSE |
---|
645 | |
---|
646 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
647 | !$OMP DO |
---|
648 | DO k = nzb_x, nzt_x |
---|
649 | DO j = nys_x, nyn_x |
---|
650 | |
---|
651 | DO i = 0, (nx+1)/2 |
---|
652 | work(2*i) = ar(i,j,k) |
---|
653 | ENDDO |
---|
654 | DO i = 1, (nx+1)/2 - 1 |
---|
655 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
656 | ENDDO |
---|
657 | work(1) = 0.0_wp |
---|
658 | work(nx+2) = 0.0_wp |
---|
659 | |
---|
660 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
661 | |
---|
662 | ar(0:nx,j,k) = work(0:nx) |
---|
663 | |
---|
664 | ENDDO |
---|
665 | ENDDO |
---|
666 | !$OMP END PARALLEL |
---|
667 | |
---|
668 | ENDIF |
---|
669 | |
---|
670 | #elif defined( __cuda_fft ) |
---|
671 | |
---|
672 | IF ( forward_fft ) THEN |
---|
673 | |
---|
674 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
675 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
676 | !$ACC END HOST_DATA |
---|
677 | |
---|
678 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
679 | !$ACC PRESENT(ar, ar_tmp) |
---|
680 | DO k = nzb_x, nzt_x |
---|
681 | DO j = nys_x, nyn_x |
---|
682 | |
---|
683 | DO i = 0, (nx+1)/2 |
---|
684 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
685 | ENDDO |
---|
686 | |
---|
687 | DO i = 1, (nx+1)/2 - 1 |
---|
688 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
689 | ENDDO |
---|
690 | |
---|
691 | ENDDO |
---|
692 | ENDDO |
---|
693 | |
---|
694 | ELSE |
---|
695 | |
---|
696 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
697 | !$ACC PRESENT(ar, ar_tmp) |
---|
698 | DO k = nzb_x, nzt_x |
---|
699 | DO j = nys_x, nyn_x |
---|
700 | |
---|
701 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
702 | |
---|
703 | DO i = 1, (nx+1)/2 - 1 |
---|
704 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
705 | ENDDO |
---|
706 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
707 | |
---|
708 | ENDDO |
---|
709 | ENDDO |
---|
710 | |
---|
711 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
712 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
713 | !$ACC END HOST_DATA |
---|
714 | |
---|
715 | ENDIF |
---|
716 | |
---|
717 | #endif |
---|
718 | |
---|
719 | ENDIF |
---|
720 | |
---|
721 | END SUBROUTINE fft_x |
---|
722 | |
---|
723 | !--------------------------------------------------------------------------------------------------! |
---|
724 | ! Description: |
---|
725 | ! ------------ |
---|
726 | !> Fourier-transformation along x-direction. |
---|
727 | !> Version for 1D-decomposition. |
---|
728 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
729 | !> available. |
---|
730 | !--------------------------------------------------------------------------------------------------! |
---|
731 | |
---|
732 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
733 | |
---|
734 | |
---|
735 | IMPLICIT NONE |
---|
736 | |
---|
737 | CHARACTER (LEN=*) :: direction !< |
---|
738 | |
---|
739 | INTEGER(iwp) :: i !< |
---|
740 | INTEGER(iwp) :: ishape(1) !< |
---|
741 | |
---|
742 | LOGICAL :: forward_fft !< |
---|
743 | |
---|
744 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
745 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
746 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
747 | |
---|
748 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
749 | |
---|
750 | #if defined( __nec_fft ) |
---|
751 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
752 | #endif |
---|
753 | |
---|
754 | IF ( direction == 'forward' ) THEN |
---|
755 | forward_fft = .TRUE. |
---|
756 | ELSE |
---|
757 | forward_fft = .FALSE. |
---|
758 | ENDIF |
---|
759 | |
---|
760 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
761 | |
---|
762 | ! |
---|
763 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
764 | !-- the model. |
---|
765 | ALLOCATE( cwork(0:nx) ) |
---|
766 | |
---|
767 | IF ( forward_fft ) THEN |
---|
768 | |
---|
769 | DO i = 0, nx |
---|
770 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
771 | ENDDO |
---|
772 | ishape = SHAPE( cwork ) |
---|
773 | CALL FFTN( cwork, ishape ) |
---|
774 | DO i = 0, (nx+1)/2 |
---|
775 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
776 | ENDDO |
---|
777 | DO i = 1, (nx+1)/2 - 1 |
---|
778 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
779 | ENDDO |
---|
780 | |
---|
781 | ELSE |
---|
782 | |
---|
783 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
784 | DO i = 1, (nx+1)/2 - 1 |
---|
785 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
786 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
787 | ENDDO |
---|
788 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
789 | |
---|
790 | ishape = SHAPE( cwork ) |
---|
791 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
792 | |
---|
793 | DO i = 0, nx |
---|
794 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
795 | ENDDO |
---|
796 | |
---|
797 | ENDIF |
---|
798 | |
---|
799 | DEALLOCATE( cwork ) |
---|
800 | |
---|
801 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
802 | |
---|
803 | ! |
---|
804 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
805 | !-- the model. |
---|
806 | IF ( forward_fft ) THEN |
---|
807 | |
---|
808 | work(0:nx) = ar |
---|
809 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
810 | |
---|
811 | DO i = 0, (nx+1)/2 |
---|
812 | ar(i) = work(2*i) |
---|
813 | ENDDO |
---|
814 | DO i = 1, (nx+1)/2 - 1 |
---|
815 | ar(nx+1-i) = work(2*i+1) |
---|
816 | ENDDO |
---|
817 | |
---|
818 | ELSE |
---|
819 | |
---|
820 | DO i = 0, (nx+1)/2 |
---|
821 | work(2*i) = ar(i) |
---|
822 | ENDDO |
---|
823 | DO i = 1, (nx+1)/2 - 1 |
---|
824 | work(2*i+1) = ar(nx+1-i) |
---|
825 | ENDDO |
---|
826 | work(1) = 0.0_wp |
---|
827 | work(nx+2) = 0.0_wp |
---|
828 | |
---|
829 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
830 | ar = work(0:nx) |
---|
831 | |
---|
832 | ENDIF |
---|
833 | |
---|
834 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
835 | |
---|
836 | #if defined( __fftw ) |
---|
837 | IF ( forward_fft ) THEN |
---|
838 | |
---|
839 | x_in(0:nx) = ar(0:nx) |
---|
840 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
841 | |
---|
842 | DO i = 0, (nx+1)/2 |
---|
843 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
844 | ENDDO |
---|
845 | DO i = 1, (nx+1)/2 - 1 |
---|
846 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
847 | ENDDO |
---|
848 | |
---|
849 | ELSE |
---|
850 | |
---|
851 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
852 | DO i = 1, (nx+1)/2 - 1 |
---|
853 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
854 | ENDDO |
---|
855 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
856 | |
---|
857 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
858 | ar(0:nx) = x_in(0:nx) |
---|
859 | |
---|
860 | ENDIF |
---|
861 | #endif |
---|
862 | |
---|
863 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
864 | |
---|
865 | #if defined( __nec_fft ) |
---|
866 | IF ( forward_fft ) THEN |
---|
867 | |
---|
868 | work(0:nx) = ar(0:nx) |
---|
869 | |
---|
870 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
871 | |
---|
872 | DO i = 0, (nx+1)/2 |
---|
873 | ar(i) = work(2*i) |
---|
874 | ENDDO |
---|
875 | DO i = 1, (nx+1)/2 - 1 |
---|
876 | ar(nx+1-i) = work(2*i+1) |
---|
877 | ENDDO |
---|
878 | |
---|
879 | ELSE |
---|
880 | |
---|
881 | DO i = 0, (nx+1)/2 |
---|
882 | work(2*i) = ar(i) |
---|
883 | ENDDO |
---|
884 | DO i = 1, (nx+1)/2 - 1 |
---|
885 | work(2*i+1) = ar(nx+1-i) |
---|
886 | ENDDO |
---|
887 | work(1) = 0.0_wp |
---|
888 | work(nx+2) = 0.0_wp |
---|
889 | |
---|
890 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
891 | |
---|
892 | ar(0:nx) = work(0:nx) |
---|
893 | |
---|
894 | ENDIF |
---|
895 | #endif |
---|
896 | |
---|
897 | ENDIF |
---|
898 | |
---|
899 | END SUBROUTINE fft_x_1d |
---|
900 | |
---|
901 | !--------------------------------------------------------------------------------------------------! |
---|
902 | ! Description: |
---|
903 | ! ------------ |
---|
904 | !> Fourier-transformation along y-direction. |
---|
905 | !> Version for 2D-decomposition. |
---|
906 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
907 | !> available. |
---|
908 | !> |
---|
909 | !> direction: 'forward' or 'backward' |
---|
910 | !> ar, ar_tr: 3D data arrays |
---|
911 | !> forward: ar: before ar_tr: after transformation |
---|
912 | !> backward: ar_tr: before ar: after transfosition |
---|
913 | !> |
---|
914 | !> In case of non-overlapping transposition/transformation: |
---|
915 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
916 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
917 | !> |
---|
918 | !> In case of overlapping transposition/transformation |
---|
919 | !> - nxl_y_bound and nxr_y_bound have the original values of nxl_y, nxr_y. ar_tr is dimensioned |
---|
920 | !> using these values. |
---|
921 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that transformation is carried out |
---|
922 | !> for a 2D-plane only. |
---|
923 | !--------------------------------------------------------------------------------------------------! |
---|
924 | |
---|
925 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, nxr_y_l, ar_inv ) |
---|
926 | |
---|
927 | |
---|
928 | IMPLICIT NONE |
---|
929 | |
---|
930 | CHARACTER (LEN=*) :: direction !< |
---|
931 | |
---|
932 | INTEGER(iwp) :: i !< |
---|
933 | INTEGER(iwp) :: j !< |
---|
934 | INTEGER(iwp) :: jshape(1) !< |
---|
935 | INTEGER(iwp) :: k !< |
---|
936 | INTEGER(iwp) :: mm !< |
---|
937 | INTEGER(iwp) :: nxl_y_bound !< |
---|
938 | INTEGER(iwp) :: nxl_y_l !< |
---|
939 | INTEGER(iwp) :: nxr_y_bound !< |
---|
940 | INTEGER(iwp) :: nxr_y_l !< |
---|
941 | |
---|
942 | LOGICAL :: forward_fft !< |
---|
943 | |
---|
944 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
945 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
946 | |
---|
947 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: f_vec_y |
---|
948 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec |
---|
949 | |
---|
950 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: ar !< |
---|
951 | REAL(wp), DIMENSION(nxl_y:nxr_y,nzb_y:nzt_y,0:ny), OPTIONAL :: ar_inv !< |
---|
952 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y), OPTIONAL :: ar_tr !< |
---|
953 | |
---|
954 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
955 | |
---|
956 | #if defined( __nec_fft ) |
---|
957 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
958 | #elif defined( __cuda_fft ) |
---|
959 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: ar_tmp !< |
---|
960 | !$ACC DECLARE CREATE(ar_tmp) |
---|
961 | #endif |
---|
962 | |
---|
963 | |
---|
964 | IF ( direction == 'forward' ) THEN |
---|
965 | forward_fft = .TRUE. |
---|
966 | ELSE |
---|
967 | forward_fft = .FALSE. |
---|
968 | ENDIF |
---|
969 | |
---|
970 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
971 | |
---|
972 | ! |
---|
973 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
974 | !-- the model. |
---|
975 | ALLOCATE( cwork(0:ny) ) |
---|
976 | |
---|
977 | IF ( forward_fft ) THEN |
---|
978 | |
---|
979 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
980 | !$OMP DO |
---|
981 | DO k = nzb_y, nzt_y |
---|
982 | DO i = nxl_y_l, nxr_y_l |
---|
983 | |
---|
984 | DO j = 0, ny |
---|
985 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
986 | ENDDO |
---|
987 | |
---|
988 | jshape = SHAPE( cwork ) |
---|
989 | CALL FFTN( cwork, jshape ) |
---|
990 | |
---|
991 | DO j = 0, (ny+1)/2 |
---|
992 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
993 | ENDDO |
---|
994 | DO j = 1, (ny+1)/2 - 1 |
---|
995 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
996 | ENDDO |
---|
997 | |
---|
998 | ENDDO |
---|
999 | ENDDO |
---|
1000 | !$OMP END PARALLEL |
---|
1001 | |
---|
1002 | ELSE |
---|
1003 | |
---|
1004 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
1005 | !$OMP DO |
---|
1006 | DO k = nzb_y, nzt_y |
---|
1007 | DO i = nxl_y_l, nxr_y_l |
---|
1008 | |
---|
1009 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
1010 | DO j = 1, (ny+1)/2 - 1 |
---|
1011 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), KIND=wp ) |
---|
1012 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), KIND=wp ) |
---|
1013 | ENDDO |
---|
1014 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, KIND=wp ) |
---|
1015 | |
---|
1016 | jshape = SHAPE( cwork ) |
---|
1017 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1018 | |
---|
1019 | DO j = 0, ny |
---|
1020 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
1021 | ENDDO |
---|
1022 | |
---|
1023 | ENDDO |
---|
1024 | ENDDO |
---|
1025 | !$OMP END PARALLEL |
---|
1026 | |
---|
1027 | ENDIF |
---|
1028 | |
---|
1029 | DEALLOCATE( cwork ) |
---|
1030 | |
---|
1031 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1032 | |
---|
1033 | ! |
---|
1034 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
1035 | !-- the model. |
---|
1036 | IF ( forward_fft ) THEN |
---|
1037 | |
---|
1038 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
1039 | |
---|
1040 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
1041 | !$OMP DO |
---|
1042 | DO k = nzb_y, nzt_y |
---|
1043 | DO i = nxl_y_l, nxr_y_l |
---|
1044 | |
---|
1045 | work(0:ny) = ar(0:ny,i,k) |
---|
1046 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1047 | |
---|
1048 | DO j = 0, (ny+1)/2 |
---|
1049 | ar_tr(j,i,k) = work(2*j) |
---|
1050 | ENDDO |
---|
1051 | DO j = 1, (ny+1)/2 - 1 |
---|
1052 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1053 | ENDDO |
---|
1054 | |
---|
1055 | ENDDO |
---|
1056 | ENDDO |
---|
1057 | !$OMP END PARALLEL |
---|
1058 | |
---|
1059 | ELSE |
---|
1060 | ! |
---|
1061 | !-- Vector version of Temperton-fft. Computes multiple 1-D FFT's. |
---|
1062 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
1063 | |
---|
1064 | mm = 1 |
---|
1065 | DO k = nzb_y, nzt_y |
---|
1066 | DO i = nxl_y_l, nxr_y_l |
---|
1067 | f_vec_y(mm,0:nx) = ar(0:nx,i,k) |
---|
1068 | mm = mm+1 |
---|
1069 | ENDDO |
---|
1070 | ENDDO |
---|
1071 | |
---|
1072 | ALLOCATE( work_vec( (nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
1073 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, -1 ) |
---|
1074 | DEALLOCATE( work_vec ) |
---|
1075 | |
---|
1076 | IF( PRESENT( ar_inv ) ) THEN |
---|
1077 | |
---|
1078 | DO k = nzb_y, nzt_y |
---|
1079 | DO i = nxl_y_l, nxr_y_l |
---|
1080 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1081 | DO j = 0, (ny+1)/2 |
---|
1082 | ar_inv(i,k,j) = f_vec_y(mm,2*j) |
---|
1083 | ENDDO |
---|
1084 | DO j = 1, (ny+1)/2 - 1 |
---|
1085 | ar_inv(i,k,ny+1-j) = f_vec_y(mm,2*j+1) |
---|
1086 | ENDDO |
---|
1087 | ENDDO |
---|
1088 | ENDDO |
---|
1089 | |
---|
1090 | ELSE |
---|
1091 | |
---|
1092 | DO k = nzb_y, nzt_y |
---|
1093 | DO i = nxl_y_l, nxr_y_l |
---|
1094 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1095 | DO j = 0, (ny+1)/2 |
---|
1096 | ar(j,i,k) = f_vec_y(mm,2*j) |
---|
1097 | ENDDO |
---|
1098 | DO j = 1, (ny+1)/2 - 1 |
---|
1099 | ar(ny+1-j,i,k) = f_vec_y(mm,2*j+1) |
---|
1100 | ENDDO |
---|
1101 | ENDDO |
---|
1102 | ENDDO |
---|
1103 | |
---|
1104 | ENDIF |
---|
1105 | |
---|
1106 | DEALLOCATE( f_vec_y ) |
---|
1107 | |
---|
1108 | ENDIF |
---|
1109 | |
---|
1110 | ELSE |
---|
1111 | |
---|
1112 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
1113 | |
---|
1114 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
1115 | !$OMP DO |
---|
1116 | DO k = nzb_y, nzt_y |
---|
1117 | DO i = nxl_y_l, nxr_y_l |
---|
1118 | |
---|
1119 | DO j = 0, (ny+1)/2 |
---|
1120 | work(2*j) = ar_tr(j,i,k) |
---|
1121 | ENDDO |
---|
1122 | DO j = 1, (ny+1)/2 - 1 |
---|
1123 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1124 | ENDDO |
---|
1125 | work(1) = 0.0_wp |
---|
1126 | work(ny+2) = 0.0_wp |
---|
1127 | |
---|
1128 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1129 | ar(0:ny,i,k) = work(0:ny) |
---|
1130 | |
---|
1131 | ENDDO |
---|
1132 | ENDDO |
---|
1133 | !$OMP END PARALLEL |
---|
1134 | |
---|
1135 | ELSE |
---|
1136 | |
---|
1137 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
1138 | |
---|
1139 | IF ( PRESENT( ar_inv ) ) THEN |
---|
1140 | |
---|
1141 | DO k = nzb_y, nzt_y |
---|
1142 | DO i = nxl_y_l, nxr_y_l |
---|
1143 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1144 | DO j = 0, (ny+1)/2 |
---|
1145 | f_vec_y(mm,2*j) = ar_inv(i,k,j) |
---|
1146 | ENDDO |
---|
1147 | DO j = 1, (ny+1)/2 - 1 |
---|
1148 | f_vec_y(mm,2*j+1) = ar_inv(i,k,ny+1-j) |
---|
1149 | ENDDO |
---|
1150 | ENDDO |
---|
1151 | ENDDO |
---|
1152 | |
---|
1153 | ELSE |
---|
1154 | |
---|
1155 | DO k = nzb_y, nzt_y |
---|
1156 | DO i = nxl_y_l, nxr_y_l |
---|
1157 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1158 | DO j = 0, (ny+1)/2 |
---|
1159 | f_vec_y(mm,2*j) = ar(j,i,k) |
---|
1160 | ENDDO |
---|
1161 | DO j = 1, (ny+1)/2 - 1 |
---|
1162 | f_vec_y(mm,2*j+1) = ar(ny+1-j,i,k) |
---|
1163 | ENDDO |
---|
1164 | ENDDO |
---|
1165 | ENDDO |
---|
1166 | |
---|
1167 | ENDIF |
---|
1168 | |
---|
1169 | f_vec_y(:,1) = 0.0_wp |
---|
1170 | f_vec_y(:,ny+2) = 0.0_wp |
---|
1171 | |
---|
1172 | ALLOCATE( work_vec((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
1173 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, 1 ) |
---|
1174 | DEALLOCATE( work_vec ) |
---|
1175 | |
---|
1176 | mm = 1 |
---|
1177 | DO k = nzb_y, nzt_y |
---|
1178 | DO i = nxl_y_l, nxr_y_l |
---|
1179 | ar(0:ny,i,k) = f_vec_y(mm,0:ny) |
---|
1180 | mm = mm+1 |
---|
1181 | ENDDO |
---|
1182 | ENDDO |
---|
1183 | |
---|
1184 | DEALLOCATE( f_vec_y ) |
---|
1185 | |
---|
1186 | ENDIF |
---|
1187 | |
---|
1188 | ENDIF |
---|
1189 | |
---|
1190 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1191 | |
---|
1192 | #if defined( __fftw ) |
---|
1193 | IF ( forward_fft ) THEN |
---|
1194 | |
---|
1195 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1196 | !$OMP DO |
---|
1197 | DO k = nzb_y, nzt_y |
---|
1198 | DO i = nxl_y_l, nxr_y_l |
---|
1199 | |
---|
1200 | y_in(0:ny) = ar(0:ny,i,k) |
---|
1201 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1202 | |
---|
1203 | DO j = 0, (ny+1)/2 |
---|
1204 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
1205 | ENDDO |
---|
1206 | DO j = 1, (ny+1)/2 - 1 |
---|
1207 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
1208 | ENDDO |
---|
1209 | |
---|
1210 | ENDDO |
---|
1211 | ENDDO |
---|
1212 | !$OMP END PARALLEL |
---|
1213 | |
---|
1214 | ELSE |
---|
1215 | |
---|
1216 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1217 | !$OMP DO |
---|
1218 | DO k = nzb_y, nzt_y |
---|
1219 | DO i = nxl_y_l, nxr_y_l |
---|
1220 | |
---|
1221 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
1222 | DO j = 1, (ny+1)/2 - 1 |
---|
1223 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), KIND=wp ) |
---|
1224 | ENDDO |
---|
1225 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, KIND=wp ) |
---|
1226 | |
---|
1227 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1228 | ar(0:ny,i,k) = y_in(0:ny) |
---|
1229 | |
---|
1230 | ENDDO |
---|
1231 | ENDDO |
---|
1232 | !$OMP END PARALLEL |
---|
1233 | |
---|
1234 | ENDIF |
---|
1235 | #endif |
---|
1236 | |
---|
1237 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1238 | |
---|
1239 | #if defined( __nec_fft ) |
---|
1240 | IF ( forward_fft ) THEN |
---|
1241 | |
---|
1242 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1243 | !$OMP DO |
---|
1244 | DO k = nzb_y, nzt_y |
---|
1245 | DO i = nxl_y_l, nxr_y_l |
---|
1246 | |
---|
1247 | work(0:ny) = ar(0:ny,i,k) |
---|
1248 | |
---|
1249 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1250 | |
---|
1251 | DO j = 0, (ny+1)/2 |
---|
1252 | ar_tr(j,i,k) = work(2*j) |
---|
1253 | ENDDO |
---|
1254 | DO j = 1, (ny+1)/2 - 1 |
---|
1255 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1256 | ENDDO |
---|
1257 | |
---|
1258 | ENDDO |
---|
1259 | ENDDO |
---|
1260 | !$END OMP PARALLEL |
---|
1261 | |
---|
1262 | ELSE |
---|
1263 | |
---|
1264 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1265 | !$OMP DO |
---|
1266 | DO k = nzb_y, nzt_y |
---|
1267 | DO i = nxl_y_l, nxr_y_l |
---|
1268 | |
---|
1269 | DO j = 0, (ny+1)/2 |
---|
1270 | work(2*j) = ar_tr(j,i,k) |
---|
1271 | ENDDO |
---|
1272 | DO j = 1, (ny+1)/2 - 1 |
---|
1273 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1274 | ENDDO |
---|
1275 | work(1) = 0.0_wp |
---|
1276 | work(ny+2) = 0.0_wp |
---|
1277 | |
---|
1278 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1279 | |
---|
1280 | ar(0:ny,i,k) = work(0:ny) |
---|
1281 | |
---|
1282 | ENDDO |
---|
1283 | ENDDO |
---|
1284 | !$OMP END PARALLEL |
---|
1285 | |
---|
1286 | ENDIF |
---|
1287 | #elif defined( __cuda_fft ) |
---|
1288 | |
---|
1289 | IF ( forward_fft ) THEN |
---|
1290 | |
---|
1291 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
1292 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
1293 | !$ACC END HOST_DATA |
---|
1294 | |
---|
1295 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
1296 | !$ACC PRESENT(ar, ar_tmp) |
---|
1297 | DO k = nzb_y, nzt_y |
---|
1298 | DO i = nxl_y, nxr_y |
---|
1299 | |
---|
1300 | DO j = 0, (ny+1)/2 |
---|
1301 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
1302 | ENDDO |
---|
1303 | |
---|
1304 | DO j = 1, (ny+1)/2 - 1 |
---|
1305 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
1306 | ENDDO |
---|
1307 | |
---|
1308 | ENDDO |
---|
1309 | ENDDO |
---|
1310 | |
---|
1311 | ELSE |
---|
1312 | |
---|
1313 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
1314 | !$ACC PRESENT(ar, ar_tmp) |
---|
1315 | DO k = nzb_y, nzt_y |
---|
1316 | DO i = nxl_y, nxr_y |
---|
1317 | |
---|
1318 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
1319 | |
---|
1320 | DO j = 1, (ny+1)/2 - 1 |
---|
1321 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), KIND=wp ) |
---|
1322 | ENDDO |
---|
1323 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, KIND=wp ) |
---|
1324 | |
---|
1325 | ENDDO |
---|
1326 | ENDDO |
---|
1327 | |
---|
1328 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
1329 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
1330 | !$ACC END HOST_DATA |
---|
1331 | |
---|
1332 | ENDIF |
---|
1333 | |
---|
1334 | #endif |
---|
1335 | |
---|
1336 | ENDIF |
---|
1337 | |
---|
1338 | END SUBROUTINE fft_y |
---|
1339 | |
---|
1340 | !--------------------------------------------------------------------------------------------------! |
---|
1341 | ! Description: |
---|
1342 | ! ------------ |
---|
1343 | !> Fourier-transformation along y-direction. |
---|
1344 | !> Version for 1D-decomposition. |
---|
1345 | !> It uses internal algorithms (Singleton or Temperton) or system-specific routines, if they are |
---|
1346 | !> available. |
---|
1347 | !--------------------------------------------------------------------------------------------------! |
---|
1348 | |
---|
1349 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
1350 | |
---|
1351 | |
---|
1352 | IMPLICIT NONE |
---|
1353 | |
---|
1354 | CHARACTER (LEN=*) :: direction |
---|
1355 | |
---|
1356 | INTEGER(iwp) :: j !< |
---|
1357 | INTEGER(iwp) :: jshape(1) !< |
---|
1358 | |
---|
1359 | LOGICAL :: forward_fft !< |
---|
1360 | |
---|
1361 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
1362 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
1363 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
1364 | |
---|
1365 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
1366 | |
---|
1367 | #if defined( __nec_fft ) |
---|
1368 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
1369 | #endif |
---|
1370 | |
---|
1371 | IF ( direction == 'forward' ) THEN |
---|
1372 | forward_fft = .TRUE. |
---|
1373 | ELSE |
---|
1374 | forward_fft = .FALSE. |
---|
1375 | ENDIF |
---|
1376 | |
---|
1377 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
1378 | |
---|
1379 | ! |
---|
1380 | !-- Performing the fft with singleton's software works on every system, since it is part of |
---|
1381 | !-- the model. |
---|
1382 | ALLOCATE( cwork(0:ny) ) |
---|
1383 | |
---|
1384 | IF ( forward_fft ) THEN |
---|
1385 | |
---|
1386 | DO j = 0, ny |
---|
1387 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
1388 | ENDDO |
---|
1389 | |
---|
1390 | jshape = SHAPE( cwork ) |
---|
1391 | CALL FFTN( cwork, jshape ) |
---|
1392 | |
---|
1393 | DO j = 0, (ny+1)/2 |
---|
1394 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
1395 | ENDDO |
---|
1396 | DO j = 1, (ny+1)/2 - 1 |
---|
1397 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
1398 | ENDDO |
---|
1399 | |
---|
1400 | ELSE |
---|
1401 | |
---|
1402 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
1403 | DO j = 1, (ny+1)/2 - 1 |
---|
1404 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
1405 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
1406 | ENDDO |
---|
1407 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
1408 | |
---|
1409 | jshape = SHAPE( cwork ) |
---|
1410 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1411 | |
---|
1412 | DO j = 0, ny |
---|
1413 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
1414 | ENDDO |
---|
1415 | |
---|
1416 | ENDIF |
---|
1417 | |
---|
1418 | DEALLOCATE( cwork ) |
---|
1419 | |
---|
1420 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1421 | |
---|
1422 | ! |
---|
1423 | !-- Performing the fft with Temperton's software works on every system, since it is part of |
---|
1424 | !-- the model. |
---|
1425 | IF ( forward_fft ) THEN |
---|
1426 | |
---|
1427 | work(0:ny) = ar |
---|
1428 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1429 | |
---|
1430 | DO j = 0, (ny+1)/2 |
---|
1431 | ar(j) = work(2*j) |
---|
1432 | ENDDO |
---|
1433 | DO j = 1, (ny+1)/2 - 1 |
---|
1434 | ar(ny+1-j) = work(2*j+1) |
---|
1435 | ENDDO |
---|
1436 | |
---|
1437 | ELSE |
---|
1438 | |
---|
1439 | DO j = 0, (ny+1)/2 |
---|
1440 | work(2*j) = ar(j) |
---|
1441 | ENDDO |
---|
1442 | DO j = 1, (ny+1)/2 - 1 |
---|
1443 | work(2*j+1) = ar(ny+1-j) |
---|
1444 | ENDDO |
---|
1445 | work(1) = 0.0_wp |
---|
1446 | work(ny+2) = 0.0_wp |
---|
1447 | |
---|
1448 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1449 | ar = work(0:ny) |
---|
1450 | |
---|
1451 | ENDIF |
---|
1452 | |
---|
1453 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1454 | |
---|
1455 | #if defined( __fftw ) |
---|
1456 | IF ( forward_fft ) THEN |
---|
1457 | |
---|
1458 | y_in(0:ny) = ar(0:ny) |
---|
1459 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1460 | |
---|
1461 | DO j = 0, (ny+1)/2 |
---|
1462 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
1463 | ENDDO |
---|
1464 | DO j = 1, (ny+1)/2 - 1 |
---|
1465 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
1466 | ENDDO |
---|
1467 | |
---|
1468 | ELSE |
---|
1469 | |
---|
1470 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
1471 | DO j = 1, (ny+1)/2 - 1 |
---|
1472 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
1473 | ENDDO |
---|
1474 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
1475 | |
---|
1476 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1477 | ar(0:ny) = y_in(0:ny) |
---|
1478 | |
---|
1479 | ENDIF |
---|
1480 | #endif |
---|
1481 | |
---|
1482 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1483 | |
---|
1484 | #if defined( __nec_fft ) |
---|
1485 | IF ( forward_fft ) THEN |
---|
1486 | |
---|
1487 | work(0:ny) = ar(0:ny) |
---|
1488 | |
---|
1489 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1490 | |
---|
1491 | DO j = 0, (ny+1)/2 |
---|
1492 | ar(j) = work(2*j) |
---|
1493 | ENDDO |
---|
1494 | DO j = 1, (ny+1)/2 - 1 |
---|
1495 | ar(ny+1-j) = work(2*j+1) |
---|
1496 | ENDDO |
---|
1497 | |
---|
1498 | ELSE |
---|
1499 | |
---|
1500 | DO j = 0, (ny+1)/2 |
---|
1501 | work(2*j) = ar(j) |
---|
1502 | ENDDO |
---|
1503 | DO j = 1, (ny+1)/2 - 1 |
---|
1504 | work(2*j+1) = ar(ny+1-j) |
---|
1505 | ENDDO |
---|
1506 | work(1) = 0.0_wp |
---|
1507 | work(ny+2) = 0.0_wp |
---|
1508 | |
---|
1509 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1510 | |
---|
1511 | ar(0:ny) = work(0:ny) |
---|
1512 | |
---|
1513 | ENDIF |
---|
1514 | #endif |
---|
1515 | |
---|
1516 | ENDIF |
---|
1517 | |
---|
1518 | END SUBROUTINE fft_y_1d |
---|
1519 | |
---|
1520 | !--------------------------------------------------------------------------------------------------! |
---|
1521 | ! Description: |
---|
1522 | ! ------------ |
---|
1523 | !> Fourier-transformation along x-direction. |
---|
1524 | !> Version for 1d domain decomposition, |
---|
1525 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
1526 | !> (no singleton-algorithm on NEC because it does not vectorize). |
---|
1527 | !--------------------------------------------------------------------------------------------------! |
---|
1528 | |
---|
1529 | SUBROUTINE fft_x_m( ar, direction ) |
---|
1530 | |
---|
1531 | |
---|
1532 | IMPLICIT NONE |
---|
1533 | |
---|
1534 | CHARACTER (LEN=*) :: direction !< |
---|
1535 | |
---|
1536 | INTEGER(iwp) :: i !< |
---|
1537 | INTEGER(iwp) :: k !< |
---|
1538 | INTEGER(iwp) :: siza !< |
---|
1539 | #if defined( __nec_fft ) |
---|
1540 | INTEGER(iwp) :: sizw |
---|
1541 | #endif |
---|
1542 | |
---|
1543 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
1544 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
1545 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
1546 | |
---|
1547 | #if defined( __nec_fft ) |
---|
1548 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
1549 | #endif |
---|
1550 | |
---|
1551 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1552 | |
---|
1553 | siza = SIZE( ai, 1 ) |
---|
1554 | |
---|
1555 | IF ( direction == 'forward') THEN |
---|
1556 | |
---|
1557 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1558 | ai(nx+1:,:) = 0.0_wp |
---|
1559 | |
---|
1560 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
1561 | |
---|
1562 | DO k = 1, nz |
---|
1563 | DO i = 0, (nx+1)/2 |
---|
1564 | ar(i,k) = ai(2*i,k) |
---|
1565 | ENDDO |
---|
1566 | DO i = 1, (nx+1)/2 - 1 |
---|
1567 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
1568 | ENDDO |
---|
1569 | ENDDO |
---|
1570 | |
---|
1571 | ELSE |
---|
1572 | |
---|
1573 | DO k = 1, nz |
---|
1574 | DO i = 0, (nx+1)/2 |
---|
1575 | ai(2*i,k) = ar(i,k) |
---|
1576 | ENDDO |
---|
1577 | DO i = 1, (nx+1)/2 - 1 |
---|
1578 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
1579 | ENDDO |
---|
1580 | ai(1,k) = 0.0_wp |
---|
1581 | ai(nx+2,k) = 0.0_wp |
---|
1582 | ENDDO |
---|
1583 | |
---|
1584 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
1585 | |
---|
1586 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1587 | |
---|
1588 | ENDIF |
---|
1589 | |
---|
1590 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1591 | |
---|
1592 | #if defined( __nec_fft ) |
---|
1593 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
1594 | siza = SIZE( ai, 1 ) |
---|
1595 | sizw = SIZE( work, 1 ) |
---|
1596 | |
---|
1597 | IF ( direction == 'forward') THEN |
---|
1598 | |
---|
1599 | ! |
---|
1600 | !-- Tables are initialized once more. This call should not be necessary, but otherwise |
---|
1601 | !-- program aborts in asymmetric case. |
---|
1602 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, trig_xf, work1, 0 ) |
---|
1603 | |
---|
1604 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1605 | IF ( nz1 > nz ) THEN |
---|
1606 | ai(:,nz1) = 0.0_wp |
---|
1607 | ENDIF |
---|
1608 | |
---|
1609 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, trig_xf, work1, 0 ) |
---|
1610 | |
---|
1611 | DO k = 1, nz |
---|
1612 | DO i = 0, (nx+1)/2 |
---|
1613 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
1614 | ENDDO |
---|
1615 | DO i = 1, (nx+1)/2 - 1 |
---|
1616 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
1617 | ENDDO |
---|
1618 | ENDDO |
---|
1619 | |
---|
1620 | ELSE |
---|
1621 | |
---|
1622 | ! |
---|
1623 | !-- Tables are initialized once more. This call should not be |
---|
1624 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1625 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, trig_xb, work1, 0 ) |
---|
1626 | |
---|
1627 | IF ( nz1 > nz ) THEN |
---|
1628 | work(:,nz1) = 0.0_wp |
---|
1629 | ENDIF |
---|
1630 | DO k = 1, nz |
---|
1631 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
1632 | DO i = 1, (nx+1)/2 - 1 |
---|
1633 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
1634 | ENDDO |
---|
1635 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
1636 | ENDDO |
---|
1637 | |
---|
1638 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, trig_xb, work1, 0 ) |
---|
1639 | |
---|
1640 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1641 | |
---|
1642 | ENDIF |
---|
1643 | |
---|
1644 | DEALLOCATE( work ) |
---|
1645 | #endif |
---|
1646 | |
---|
1647 | ENDIF |
---|
1648 | |
---|
1649 | END SUBROUTINE fft_x_m |
---|
1650 | |
---|
1651 | !--------------------------------------------------------------------------------------------------! |
---|
1652 | ! Description: |
---|
1653 | ! ------------ |
---|
1654 | !> Fourier-transformation along y-direction. |
---|
1655 | !> Version for 1d domain decomposition, |
---|
1656 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
1657 | !> (no singleton-algorithm on NEC because it does not vectorize). |
---|
1658 | !--------------------------------------------------------------------------------------------------! |
---|
1659 | |
---|
1660 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
1661 | |
---|
1662 | |
---|
1663 | IMPLICIT NONE |
---|
1664 | |
---|
1665 | CHARACTER (LEN=*) :: direction !< |
---|
1666 | |
---|
1667 | INTEGER(iwp) :: j !< |
---|
1668 | INTEGER(iwp) :: k !< |
---|
1669 | INTEGER(iwp) :: ny1 !< |
---|
1670 | INTEGER(iwp) :: siza !< |
---|
1671 | #if defined( __nec_fft ) |
---|
1672 | INTEGER(iwp) :: sizw |
---|
1673 | #endif |
---|
1674 | |
---|
1675 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
1676 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
1677 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
1678 | |
---|
1679 | #if defined( __nec_fft ) |
---|
1680 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
1681 | #endif |
---|
1682 | |
---|
1683 | |
---|
1684 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1685 | |
---|
1686 | siza = SIZE( ai, 1 ) |
---|
1687 | |
---|
1688 | IF ( direction == 'forward') THEN |
---|
1689 | |
---|
1690 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1691 | ai(ny+1:,:) = 0.0_wp |
---|
1692 | |
---|
1693 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
1694 | |
---|
1695 | DO k = 1, nz |
---|
1696 | DO j = 0, (ny+1)/2 |
---|
1697 | ar(j,k) = ai(2*j,k) |
---|
1698 | ENDDO |
---|
1699 | DO j = 1, (ny+1)/2 - 1 |
---|
1700 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
1701 | ENDDO |
---|
1702 | ENDDO |
---|
1703 | |
---|
1704 | ELSE |
---|
1705 | |
---|
1706 | DO k = 1, nz |
---|
1707 | DO j = 0, (ny+1)/2 |
---|
1708 | ai(2*j,k) = ar(j,k) |
---|
1709 | ENDDO |
---|
1710 | DO j = 1, (ny+1)/2 - 1 |
---|
1711 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
1712 | ENDDO |
---|
1713 | ai(1,k) = 0.0_wp |
---|
1714 | ai(ny+2,k) = 0.0_wp |
---|
1715 | ENDDO |
---|
1716 | |
---|
1717 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
1718 | |
---|
1719 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
1720 | |
---|
1721 | ENDIF |
---|
1722 | |
---|
1723 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1724 | |
---|
1725 | #if defined( __nec_fft ) |
---|
1726 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
1727 | siza = SIZE( ai, 1 ) |
---|
1728 | sizw = SIZE( work, 1 ) |
---|
1729 | |
---|
1730 | IF ( direction == 'forward') THEN |
---|
1731 | |
---|
1732 | ! |
---|
1733 | !-- Tables are initialized once more. This call should not be necessary, but otherwise |
---|
1734 | !-- program aborts in asymmetric case. |
---|
1735 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, trig_yf, work1, 0 ) |
---|
1736 | |
---|
1737 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1738 | IF ( nz1 > nz ) THEN |
---|
1739 | ai(:,nz1) = 0.0_wp |
---|
1740 | ENDIF |
---|
1741 | |
---|
1742 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, trig_yf, work1, 0 ) |
---|
1743 | |
---|
1744 | DO k = 1, nz |
---|
1745 | DO j = 0, (ny+1)/2 |
---|
1746 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
1747 | ENDDO |
---|
1748 | DO j = 1, (ny+1)/2 - 1 |
---|
1749 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
1750 | ENDDO |
---|
1751 | ENDDO |
---|
1752 | |
---|
1753 | ELSE |
---|
1754 | |
---|
1755 | ! |
---|
1756 | !-- Tables are initialized once more. This call should not be necessary, but otherwise |
---|
1757 | !-- program aborts in asymmetric case. |
---|
1758 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, trig_yb, work1, 0 ) |
---|
1759 | |
---|
1760 | IF ( nz1 > nz ) THEN |
---|
1761 | work(:,nz1) = 0.0_wp |
---|
1762 | ENDIF |
---|
1763 | DO k = 1, nz |
---|
1764 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
1765 | DO j = 1, (ny+1)/2 - 1 |
---|
1766 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
1767 | ENDDO |
---|
1768 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
1769 | ENDDO |
---|
1770 | |
---|
1771 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, trig_yb, work1, 0 ) |
---|
1772 | |
---|
1773 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
1774 | |
---|
1775 | ENDIF |
---|
1776 | |
---|
1777 | DEALLOCATE( work ) |
---|
1778 | #endif |
---|
1779 | |
---|
1780 | ENDIF |
---|
1781 | |
---|
1782 | END SUBROUTINE fft_y_m |
---|
1783 | |
---|
1784 | |
---|
1785 | END MODULE fft_xy |
---|