1 | !> @file fft_xy_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: fft_xy_mod.f90 4370 2020-01-10 14:00:44Z banzhafs $ |
---|
27 | ! bugfix for Temperton-fft usage on GPU |
---|
28 | ! |
---|
29 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
30 | ! Vectorized Temperton-fft added |
---|
31 | ! |
---|
32 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
33 | ! Corrected "Former revisions" section |
---|
34 | ! |
---|
35 | ! 4069 2019-07-01 14:05:51Z Giersch |
---|
36 | ! Code added to avoid compiler warnings |
---|
37 | ! |
---|
38 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
39 | ! OpenACC port for SPEC |
---|
40 | ! |
---|
41 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
42 | ! Initial revision |
---|
43 | ! |
---|
44 | ! |
---|
45 | ! Description: |
---|
46 | ! ------------ |
---|
47 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
48 | !> Original version: Klaus Ketelsen (May 2002) |
---|
49 | !> @todo openmp support for vectorized Temperton fft |
---|
50 | !------------------------------------------------------------------------------! |
---|
51 | MODULE fft_xy |
---|
52 | |
---|
53 | |
---|
54 | USE control_parameters, & |
---|
55 | ONLY: fft_method, loop_optimization, message_string |
---|
56 | |
---|
57 | USE cuda_fft_interfaces |
---|
58 | |
---|
59 | USE indices, & |
---|
60 | ONLY: nx, ny, nz |
---|
61 | |
---|
62 | #if defined( __cuda_fft ) |
---|
63 | USE ISO_C_BINDING |
---|
64 | #elif defined( __fftw ) |
---|
65 | USE, INTRINSIC :: ISO_C_BINDING |
---|
66 | #endif |
---|
67 | |
---|
68 | USE kinds |
---|
69 | |
---|
70 | USE singleton, & |
---|
71 | ONLY: fftn |
---|
72 | |
---|
73 | USE temperton_fft |
---|
74 | |
---|
75 | USE transpose_indices, & |
---|
76 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
77 | |
---|
78 | IMPLICIT NONE |
---|
79 | |
---|
80 | PRIVATE |
---|
81 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m, f_vec_x, temperton_fft_vec |
---|
82 | |
---|
83 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
84 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
85 | |
---|
86 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
87 | LOGICAL, SAVE :: temperton_fft_vec = .FALSE. !< |
---|
88 | |
---|
89 | REAL(wp), SAVE :: dnx !< |
---|
90 | REAL(wp), SAVE :: dny !< |
---|
91 | REAL(wp), SAVE :: sqr_dnx !< |
---|
92 | REAL(wp), SAVE :: sqr_dny !< |
---|
93 | |
---|
94 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
95 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
96 | |
---|
97 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: f_vec_x |
---|
98 | |
---|
99 | #if defined( __ibm ) |
---|
100 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
101 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
102 | ! |
---|
103 | !-- The following working arrays contain tables and have to be "save" and |
---|
104 | !-- shared in OpenMP sense |
---|
105 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
106 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
107 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
108 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
109 | |
---|
110 | #elif defined( __nec_fft ) |
---|
111 | INTEGER(iwp), SAVE :: nz1 !< |
---|
112 | |
---|
113 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
114 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
115 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
116 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
117 | |
---|
118 | #elif defined( __cuda_fft ) |
---|
119 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
120 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
121 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
122 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
123 | |
---|
124 | #endif |
---|
125 | |
---|
126 | #if defined( __fftw ) |
---|
127 | INCLUDE 'fftw3.f03' |
---|
128 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
129 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
130 | |
---|
131 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
132 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
133 | y_out !< |
---|
134 | |
---|
135 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
136 | x_in !< |
---|
137 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
138 | y_in !< |
---|
139 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
140 | |
---|
141 | |
---|
142 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
143 | #endif |
---|
144 | |
---|
145 | ! |
---|
146 | !-- Public interfaces |
---|
147 | INTERFACE fft_init |
---|
148 | MODULE PROCEDURE fft_init |
---|
149 | END INTERFACE fft_init |
---|
150 | |
---|
151 | INTERFACE fft_x |
---|
152 | MODULE PROCEDURE fft_x |
---|
153 | END INTERFACE fft_x |
---|
154 | |
---|
155 | INTERFACE fft_x_1d |
---|
156 | MODULE PROCEDURE fft_x_1d |
---|
157 | END INTERFACE fft_x_1d |
---|
158 | |
---|
159 | INTERFACE fft_y |
---|
160 | MODULE PROCEDURE fft_y |
---|
161 | END INTERFACE fft_y |
---|
162 | |
---|
163 | INTERFACE fft_y_1d |
---|
164 | MODULE PROCEDURE fft_y_1d |
---|
165 | END INTERFACE fft_y_1d |
---|
166 | |
---|
167 | INTERFACE fft_x_m |
---|
168 | MODULE PROCEDURE fft_x_m |
---|
169 | END INTERFACE fft_x_m |
---|
170 | |
---|
171 | INTERFACE fft_y_m |
---|
172 | MODULE PROCEDURE fft_y_m |
---|
173 | END INTERFACE fft_y_m |
---|
174 | |
---|
175 | CONTAINS |
---|
176 | |
---|
177 | |
---|
178 | !------------------------------------------------------------------------------! |
---|
179 | ! Description: |
---|
180 | ! ------------ |
---|
181 | !> @todo Missing subroutine description. |
---|
182 | !------------------------------------------------------------------------------! |
---|
183 | SUBROUTINE fft_init |
---|
184 | |
---|
185 | USE pegrid, & |
---|
186 | ONLY: pdims |
---|
187 | |
---|
188 | IMPLICIT NONE |
---|
189 | |
---|
190 | ! |
---|
191 | !-- The following temporary working arrays have to be on stack or private |
---|
192 | !-- in OpenMP sense |
---|
193 | #if defined( __ibm ) |
---|
194 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
195 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
196 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
197 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
198 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
199 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
200 | #elif defined( __nec_fft ) |
---|
201 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
202 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
203 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
204 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
205 | #endif |
---|
206 | |
---|
207 | ! |
---|
208 | !-- Return, if already called |
---|
209 | IF ( init_fft ) THEN |
---|
210 | RETURN |
---|
211 | ELSE |
---|
212 | init_fft = .TRUE. |
---|
213 | ENDIF |
---|
214 | |
---|
215 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
216 | fft_method = 'system-specific' |
---|
217 | #endif |
---|
218 | |
---|
219 | ! |
---|
220 | !-- Switch to tell the Poisson-solver that the vectorized version of Temperton-fft is to be used. |
---|
221 | IF ( fft_method == 'temperton-algorithm' .AND. loop_optimization == 'vector' .AND. & |
---|
222 | pdims(1) /= 1 .AND. pdims(2) /= 1 ) THEN |
---|
223 | temperton_fft_vec = .TRUE. |
---|
224 | ENDIF |
---|
225 | |
---|
226 | IF ( fft_method == 'system-specific' ) THEN |
---|
227 | |
---|
228 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
229 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
230 | sqr_dnx = SQRT( dnx ) |
---|
231 | sqr_dny = SQRT( dny ) |
---|
232 | #if defined( __ibm ) |
---|
233 | ! |
---|
234 | !-- Initialize tables for fft along x |
---|
235 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
236 | aux2, nau2 ) |
---|
237 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
238 | aux4, nau2 ) |
---|
239 | ! |
---|
240 | !-- Initialize tables for fft along y |
---|
241 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
242 | auy2, nau2 ) |
---|
243 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
244 | auy4, nau2 ) |
---|
245 | #elif defined( __nec_fft ) |
---|
246 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
247 | '" currently does not work on NEC' |
---|
248 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
249 | |
---|
250 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
251 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
252 | |
---|
253 | work_x = 0.0_wp |
---|
254 | work_y = 0.0_wp |
---|
255 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
256 | ! when using the NEC ffts |
---|
257 | |
---|
258 | ! |
---|
259 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
260 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
261 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
262 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
263 | trig_xf, workx, 0 ) |
---|
264 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
265 | trig_xb, workx, 0 ) |
---|
266 | ! |
---|
267 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
268 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
269 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
270 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
271 | trig_yf, worky, 0 ) |
---|
272 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
273 | trig_yb, worky, 0 ) |
---|
274 | #elif defined( __cuda_fft ) |
---|
275 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
276 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
277 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
278 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
279 | #else |
---|
280 | message_string = 'no system-specific fft-call available' |
---|
281 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
282 | #endif |
---|
283 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
284 | ! |
---|
285 | !-- Temperton-algorithm |
---|
286 | !-- Initialize tables for fft along x and y |
---|
287 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
288 | |
---|
289 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
290 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
291 | |
---|
292 | IF ( temperton_fft_vec ) THEN |
---|
293 | ALLOCATE( f_vec_x((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),0:nx+2) ) |
---|
294 | ENDIF |
---|
295 | |
---|
296 | |
---|
297 | |
---|
298 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
299 | ! |
---|
300 | !-- FFTW |
---|
301 | #if defined( __fftw ) |
---|
302 | nx_c = nx+1 |
---|
303 | ny_c = ny+1 |
---|
304 | !$OMP PARALLEL |
---|
305 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
306 | y_out(0:(ny+1)/2) ) |
---|
307 | !$OMP END PARALLEL |
---|
308 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
309 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
310 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
311 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
312 | #else |
---|
313 | message_string = 'preprocessor switch for fftw is missing' |
---|
314 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
315 | #endif |
---|
316 | |
---|
317 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
318 | |
---|
319 | CONTINUE |
---|
320 | |
---|
321 | ELSE |
---|
322 | |
---|
323 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
324 | '" not available' |
---|
325 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
326 | ENDIF |
---|
327 | |
---|
328 | END SUBROUTINE fft_init |
---|
329 | |
---|
330 | |
---|
331 | !------------------------------------------------------------------------------! |
---|
332 | ! Description: |
---|
333 | ! ------------ |
---|
334 | !> Fourier-transformation along x-direction. |
---|
335 | !> Version for 2D-decomposition. |
---|
336 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
337 | !> system-specific routines, if they are available |
---|
338 | !------------------------------------------------------------------------------! |
---|
339 | |
---|
340 | SUBROUTINE fft_x( ar, direction, ar_2d, ar_inv ) |
---|
341 | |
---|
342 | |
---|
343 | IMPLICIT NONE |
---|
344 | |
---|
345 | CHARACTER (LEN=*) :: direction !< |
---|
346 | |
---|
347 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
348 | |
---|
349 | INTEGER(iwp) :: i !< |
---|
350 | INTEGER(iwp) :: ishape(1) !< |
---|
351 | INTEGER(iwp) :: j !< |
---|
352 | INTEGER(iwp) :: k !< |
---|
353 | INTEGER(iwp) :: mm !< |
---|
354 | |
---|
355 | LOGICAL :: forward_fft !< |
---|
356 | |
---|
357 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
358 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
359 | |
---|
360 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec !< |
---|
361 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: ar_2d !< |
---|
362 | |
---|
363 | REAL(wp), DIMENSION(nys_x:nyn_x,nzb_x:nzt_x,0:nx), OPTIONAL :: ar_inv !< |
---|
364 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: ar !< |
---|
365 | |
---|
366 | #if defined( __ibm ) |
---|
367 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
368 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
369 | #elif defined( __nec_fft ) |
---|
370 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
371 | #elif defined( __cuda_fft ) |
---|
372 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: ar_tmp !< |
---|
373 | !$ACC DECLARE CREATE(ar_tmp) |
---|
374 | #endif |
---|
375 | |
---|
376 | ! |
---|
377 | !-- To avoid compiler warning: Unused dummy argument âar_2dâ |
---|
378 | IF ( PRESENT( ar_2d ) ) CONTINUE |
---|
379 | |
---|
380 | IF ( direction == 'forward' ) THEN |
---|
381 | forward_fft = .TRUE. |
---|
382 | ELSE |
---|
383 | forward_fft = .FALSE. |
---|
384 | ENDIF |
---|
385 | |
---|
386 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
387 | |
---|
388 | ! |
---|
389 | !-- Performing the fft with singleton's software works on every system, |
---|
390 | !-- since it is part of the model |
---|
391 | ALLOCATE( cwork(0:nx) ) |
---|
392 | |
---|
393 | IF ( forward_fft ) then |
---|
394 | |
---|
395 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
396 | !$OMP DO |
---|
397 | DO k = nzb_x, nzt_x |
---|
398 | DO j = nys_x, nyn_x |
---|
399 | |
---|
400 | DO i = 0, nx |
---|
401 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
402 | ENDDO |
---|
403 | |
---|
404 | ishape = SHAPE( cwork ) |
---|
405 | CALL FFTN( cwork, ishape ) |
---|
406 | |
---|
407 | DO i = 0, (nx+1)/2 |
---|
408 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
409 | ENDDO |
---|
410 | DO i = 1, (nx+1)/2 - 1 |
---|
411 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
412 | ENDDO |
---|
413 | |
---|
414 | ENDDO |
---|
415 | ENDDO |
---|
416 | !$OMP END PARALLEL |
---|
417 | |
---|
418 | ELSE |
---|
419 | |
---|
420 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
421 | !$OMP DO |
---|
422 | DO k = nzb_x, nzt_x |
---|
423 | DO j = nys_x, nyn_x |
---|
424 | |
---|
425 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
426 | DO i = 1, (nx+1)/2 - 1 |
---|
427 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
428 | KIND=wp ) |
---|
429 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
430 | KIND=wp ) |
---|
431 | ENDDO |
---|
432 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
433 | |
---|
434 | ishape = SHAPE( cwork ) |
---|
435 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
436 | |
---|
437 | DO i = 0, nx |
---|
438 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
439 | ENDDO |
---|
440 | |
---|
441 | ENDDO |
---|
442 | ENDDO |
---|
443 | !$OMP END PARALLEL |
---|
444 | |
---|
445 | ENDIF |
---|
446 | |
---|
447 | DEALLOCATE( cwork ) |
---|
448 | |
---|
449 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
450 | |
---|
451 | ! |
---|
452 | !-- Performing the fft with Temperton's software works on every system, |
---|
453 | !-- since it is part of the model |
---|
454 | IF ( forward_fft ) THEN |
---|
455 | |
---|
456 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
457 | |
---|
458 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
459 | !$OMP DO |
---|
460 | DO k = nzb_x, nzt_x |
---|
461 | DO j = nys_x, nyn_x |
---|
462 | |
---|
463 | work(0:nx) = ar(0:nx,j,k) |
---|
464 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
465 | |
---|
466 | DO i = 0, (nx+1)/2 |
---|
467 | ar(i,j,k) = work(2*i) |
---|
468 | ENDDO |
---|
469 | DO i = 1, (nx+1)/2 - 1 |
---|
470 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
471 | ENDDO |
---|
472 | |
---|
473 | ENDDO |
---|
474 | ENDDO |
---|
475 | !$OMP END PARALLEL |
---|
476 | |
---|
477 | ELSE |
---|
478 | |
---|
479 | ! |
---|
480 | !-- Vector version of the Temperton-algorithm. Computes multiple 1-D FFT's. |
---|
481 | ALLOCATE( work_vec( (nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
482 | ! |
---|
483 | !-- f_vec_x is already set in transpose_zx |
---|
484 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, -1 ) |
---|
485 | DEALLOCATE( work_vec ) |
---|
486 | |
---|
487 | IF ( PRESENT( ar_inv ) ) THEN |
---|
488 | |
---|
489 | DO k = nzb_x, nzt_x |
---|
490 | DO j = nys_x, nyn_x |
---|
491 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
492 | DO i = 0, (nx+1)/2 |
---|
493 | ar_inv(j,k,i) = f_vec_x(mm,2*i) |
---|
494 | ENDDO |
---|
495 | DO i = 1, (nx+1)/2-1 |
---|
496 | ar_inv(j,k,nx+1-i) = f_vec_x(mm,2*i+1) |
---|
497 | ENDDO |
---|
498 | ENDDO |
---|
499 | ENDDO |
---|
500 | |
---|
501 | ELSE |
---|
502 | |
---|
503 | DO k = nzb_x, nzt_x |
---|
504 | DO j = nys_x, nyn_x |
---|
505 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
506 | DO i = 0, (nx+1)/2 |
---|
507 | ar(i,j,k) = f_vec_x(mm,2*i) |
---|
508 | ENDDO |
---|
509 | DO i = 1, (nx+1)/2-1 |
---|
510 | ar(nx+1-i,j,k) = f_vec_x(mm,2*i+1) |
---|
511 | ENDDO |
---|
512 | ENDDO |
---|
513 | ENDDO |
---|
514 | |
---|
515 | ENDIF |
---|
516 | |
---|
517 | ENDIF |
---|
518 | |
---|
519 | ELSE |
---|
520 | |
---|
521 | ! |
---|
522 | !-- Backward fft |
---|
523 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
524 | |
---|
525 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
526 | !$OMP DO |
---|
527 | DO k = nzb_x, nzt_x |
---|
528 | DO j = nys_x, nyn_x |
---|
529 | |
---|
530 | DO i = 0, (nx+1)/2 |
---|
531 | work(2*i) = ar(i,j,k) |
---|
532 | ENDDO |
---|
533 | DO i = 1, (nx+1)/2 - 1 |
---|
534 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
535 | ENDDO |
---|
536 | work(1) = 0.0_wp |
---|
537 | work(nx+2) = 0.0_wp |
---|
538 | |
---|
539 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
540 | ar(0:nx,j,k) = work(0:nx) |
---|
541 | |
---|
542 | ENDDO |
---|
543 | ENDDO |
---|
544 | !$OMP END PARALLEL |
---|
545 | |
---|
546 | ELSE |
---|
547 | |
---|
548 | IF ( PRESENT( ar_inv ) ) THEN |
---|
549 | |
---|
550 | DO k = nzb_x, nzt_x |
---|
551 | DO j = nys_x, nyn_x |
---|
552 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
553 | DO i = 0, (nx+1)/2 |
---|
554 | f_vec_x(mm,2*i) = ar_inv(j,k,i) |
---|
555 | ENDDO |
---|
556 | DO i = 1, (nx+1)/2-1 |
---|
557 | f_vec_x(mm,2*i+1) = ar_inv(j,k,nx+1-i) |
---|
558 | ENDDO |
---|
559 | ENDDO |
---|
560 | ENDDO |
---|
561 | |
---|
562 | ELSE |
---|
563 | |
---|
564 | DO k = nzb_x, nzt_x |
---|
565 | DO j = nys_x, nyn_x |
---|
566 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
567 | DO i = 0, (nx+1)/2 |
---|
568 | f_vec_x(mm,2*i) = ar(i,j,k) |
---|
569 | ENDDO |
---|
570 | DO i = 1, (nx+1)/2-1 |
---|
571 | f_vec_x(mm,2*i+1) = ar(nx+1-i,j,k) |
---|
572 | ENDDO |
---|
573 | ENDDO |
---|
574 | ENDDO |
---|
575 | |
---|
576 | ENDIF |
---|
577 | f_vec_x(:,1) = 0.0_wp |
---|
578 | f_vec_x(:,nx+2) = 0.0_wp |
---|
579 | |
---|
580 | ALLOCATE( work_vec((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
581 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, 1 ) |
---|
582 | DEALLOCATE( work_vec ) |
---|
583 | |
---|
584 | ENDIF |
---|
585 | |
---|
586 | ENDIF |
---|
587 | |
---|
588 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
589 | |
---|
590 | #if defined( __fftw ) |
---|
591 | IF ( forward_fft ) THEN |
---|
592 | |
---|
593 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
594 | !$OMP DO |
---|
595 | DO k = nzb_x, nzt_x |
---|
596 | DO j = nys_x, nyn_x |
---|
597 | |
---|
598 | x_in(0:nx) = ar(0:nx,j,k) |
---|
599 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
600 | |
---|
601 | IF ( PRESENT( ar_2d ) ) THEN |
---|
602 | |
---|
603 | DO i = 0, (nx+1)/2 |
---|
604 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
605 | ENDDO |
---|
606 | DO i = 1, (nx+1)/2 - 1 |
---|
607 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
608 | ENDDO |
---|
609 | |
---|
610 | ELSE |
---|
611 | |
---|
612 | DO i = 0, (nx+1)/2 |
---|
613 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
614 | ENDDO |
---|
615 | DO i = 1, (nx+1)/2 - 1 |
---|
616 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
617 | ENDDO |
---|
618 | |
---|
619 | ENDIF |
---|
620 | |
---|
621 | ENDDO |
---|
622 | ENDDO |
---|
623 | !$OMP END PARALLEL |
---|
624 | |
---|
625 | ELSE |
---|
626 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
627 | !$OMP DO |
---|
628 | DO k = nzb_x, nzt_x |
---|
629 | DO j = nys_x, nyn_x |
---|
630 | |
---|
631 | IF ( PRESENT( ar_2d ) ) THEN |
---|
632 | |
---|
633 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
634 | DO i = 1, (nx+1)/2 - 1 |
---|
635 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
636 | KIND=wp ) |
---|
637 | ENDDO |
---|
638 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
639 | KIND=wp ) |
---|
640 | |
---|
641 | ELSE |
---|
642 | |
---|
643 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
644 | DO i = 1, (nx+1)/2 - 1 |
---|
645 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
646 | ENDDO |
---|
647 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
648 | KIND=wp ) |
---|
649 | |
---|
650 | ENDIF |
---|
651 | |
---|
652 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
653 | ar(0:nx,j,k) = x_in(0:nx) |
---|
654 | |
---|
655 | ENDDO |
---|
656 | ENDDO |
---|
657 | !$OMP END PARALLEL |
---|
658 | |
---|
659 | ENDIF |
---|
660 | #endif |
---|
661 | |
---|
662 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
663 | |
---|
664 | #if defined( __ibm ) |
---|
665 | IF ( forward_fft ) THEN |
---|
666 | |
---|
667 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
668 | !$OMP DO |
---|
669 | DO k = nzb_x, nzt_x |
---|
670 | DO j = nys_x, nyn_x |
---|
671 | |
---|
672 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
673 | nau1, aux2, nau2 ) |
---|
674 | |
---|
675 | DO i = 0, (nx+1)/2 |
---|
676 | ar(i,j,k) = work(2*i) |
---|
677 | ENDDO |
---|
678 | DO i = 1, (nx+1)/2 - 1 |
---|
679 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
680 | ENDDO |
---|
681 | |
---|
682 | ENDDO |
---|
683 | ENDDO |
---|
684 | !$OMP END PARALLEL |
---|
685 | |
---|
686 | ELSE |
---|
687 | |
---|
688 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
689 | !$OMP DO |
---|
690 | DO k = nzb_x, nzt_x |
---|
691 | DO j = nys_x, nyn_x |
---|
692 | |
---|
693 | DO i = 0, (nx+1)/2 |
---|
694 | work(2*i) = ar(i,j,k) |
---|
695 | ENDDO |
---|
696 | DO i = 1, (nx+1)/2 - 1 |
---|
697 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
698 | ENDDO |
---|
699 | work(1) = 0.0_wp |
---|
700 | work(nx+2) = 0.0_wp |
---|
701 | |
---|
702 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
703 | aux3, nau1, aux4, nau2 ) |
---|
704 | |
---|
705 | DO i = 0, nx |
---|
706 | ar(i,j,k) = work(i) |
---|
707 | ENDDO |
---|
708 | |
---|
709 | ENDDO |
---|
710 | ENDDO |
---|
711 | !$OMP END PARALLEL |
---|
712 | |
---|
713 | ENDIF |
---|
714 | |
---|
715 | #elif defined( __nec_fft ) |
---|
716 | |
---|
717 | IF ( forward_fft ) THEN |
---|
718 | |
---|
719 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
720 | !$OMP DO |
---|
721 | DO k = nzb_x, nzt_x |
---|
722 | DO j = nys_x, nyn_x |
---|
723 | |
---|
724 | work(0:nx) = ar(0:nx,j,k) |
---|
725 | |
---|
726 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
727 | |
---|
728 | DO i = 0, (nx+1)/2 |
---|
729 | ar(i,j,k) = work(2*i) |
---|
730 | ENDDO |
---|
731 | DO i = 1, (nx+1)/2 - 1 |
---|
732 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
733 | ENDDO |
---|
734 | |
---|
735 | ENDDO |
---|
736 | ENDDO |
---|
737 | !$END OMP PARALLEL |
---|
738 | |
---|
739 | ELSE |
---|
740 | |
---|
741 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
742 | !$OMP DO |
---|
743 | DO k = nzb_x, nzt_x |
---|
744 | DO j = nys_x, nyn_x |
---|
745 | |
---|
746 | DO i = 0, (nx+1)/2 |
---|
747 | work(2*i) = ar(i,j,k) |
---|
748 | ENDDO |
---|
749 | DO i = 1, (nx+1)/2 - 1 |
---|
750 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
751 | ENDDO |
---|
752 | work(1) = 0.0_wp |
---|
753 | work(nx+2) = 0.0_wp |
---|
754 | |
---|
755 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
756 | |
---|
757 | ar(0:nx,j,k) = work(0:nx) |
---|
758 | |
---|
759 | ENDDO |
---|
760 | ENDDO |
---|
761 | !$OMP END PARALLEL |
---|
762 | |
---|
763 | ENDIF |
---|
764 | |
---|
765 | #elif defined( __cuda_fft ) |
---|
766 | |
---|
767 | IF ( forward_fft ) THEN |
---|
768 | |
---|
769 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
770 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
771 | !$ACC END HOST_DATA |
---|
772 | |
---|
773 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
774 | !$ACC PRESENT(ar, ar_tmp) |
---|
775 | DO k = nzb_x, nzt_x |
---|
776 | DO j = nys_x, nyn_x |
---|
777 | |
---|
778 | DO i = 0, (nx+1)/2 |
---|
779 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
780 | ENDDO |
---|
781 | |
---|
782 | DO i = 1, (nx+1)/2 - 1 |
---|
783 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
784 | ENDDO |
---|
785 | |
---|
786 | ENDDO |
---|
787 | ENDDO |
---|
788 | |
---|
789 | ELSE |
---|
790 | |
---|
791 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
792 | !$ACC PRESENT(ar, ar_tmp) |
---|
793 | DO k = nzb_x, nzt_x |
---|
794 | DO j = nys_x, nyn_x |
---|
795 | |
---|
796 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
797 | |
---|
798 | DO i = 1, (nx+1)/2 - 1 |
---|
799 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
800 | KIND=wp ) |
---|
801 | ENDDO |
---|
802 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
803 | KIND=wp ) |
---|
804 | |
---|
805 | ENDDO |
---|
806 | ENDDO |
---|
807 | |
---|
808 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
809 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
810 | !$ACC END HOST_DATA |
---|
811 | |
---|
812 | ENDIF |
---|
813 | |
---|
814 | #endif |
---|
815 | |
---|
816 | ENDIF |
---|
817 | |
---|
818 | END SUBROUTINE fft_x |
---|
819 | |
---|
820 | !------------------------------------------------------------------------------! |
---|
821 | ! Description: |
---|
822 | ! ------------ |
---|
823 | !> Fourier-transformation along x-direction. |
---|
824 | !> Version for 1D-decomposition. |
---|
825 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
826 | !> system-specific routines, if they are available |
---|
827 | !------------------------------------------------------------------------------! |
---|
828 | |
---|
829 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
830 | |
---|
831 | |
---|
832 | IMPLICIT NONE |
---|
833 | |
---|
834 | CHARACTER (LEN=*) :: direction !< |
---|
835 | |
---|
836 | INTEGER(iwp) :: i !< |
---|
837 | INTEGER(iwp) :: ishape(1) !< |
---|
838 | |
---|
839 | LOGICAL :: forward_fft !< |
---|
840 | |
---|
841 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
842 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
843 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
844 | |
---|
845 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
846 | |
---|
847 | #if defined( __ibm ) |
---|
848 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
849 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
850 | #elif defined( __nec_fft ) |
---|
851 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
852 | #endif |
---|
853 | |
---|
854 | IF ( direction == 'forward' ) THEN |
---|
855 | forward_fft = .TRUE. |
---|
856 | ELSE |
---|
857 | forward_fft = .FALSE. |
---|
858 | ENDIF |
---|
859 | |
---|
860 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
861 | |
---|
862 | ! |
---|
863 | !-- Performing the fft with singleton's software works on every system, |
---|
864 | !-- since it is part of the model |
---|
865 | ALLOCATE( cwork(0:nx) ) |
---|
866 | |
---|
867 | IF ( forward_fft ) then |
---|
868 | |
---|
869 | DO i = 0, nx |
---|
870 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
871 | ENDDO |
---|
872 | ishape = SHAPE( cwork ) |
---|
873 | CALL FFTN( cwork, ishape ) |
---|
874 | DO i = 0, (nx+1)/2 |
---|
875 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
876 | ENDDO |
---|
877 | DO i = 1, (nx+1)/2 - 1 |
---|
878 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
879 | ENDDO |
---|
880 | |
---|
881 | ELSE |
---|
882 | |
---|
883 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
884 | DO i = 1, (nx+1)/2 - 1 |
---|
885 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
886 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
887 | ENDDO |
---|
888 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
889 | |
---|
890 | ishape = SHAPE( cwork ) |
---|
891 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
892 | |
---|
893 | DO i = 0, nx |
---|
894 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
895 | ENDDO |
---|
896 | |
---|
897 | ENDIF |
---|
898 | |
---|
899 | DEALLOCATE( cwork ) |
---|
900 | |
---|
901 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
902 | |
---|
903 | ! |
---|
904 | !-- Performing the fft with Temperton's software works on every system, |
---|
905 | !-- since it is part of the model |
---|
906 | IF ( forward_fft ) THEN |
---|
907 | |
---|
908 | work(0:nx) = ar |
---|
909 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
910 | |
---|
911 | DO i = 0, (nx+1)/2 |
---|
912 | ar(i) = work(2*i) |
---|
913 | ENDDO |
---|
914 | DO i = 1, (nx+1)/2 - 1 |
---|
915 | ar(nx+1-i) = work(2*i+1) |
---|
916 | ENDDO |
---|
917 | |
---|
918 | ELSE |
---|
919 | |
---|
920 | DO i = 0, (nx+1)/2 |
---|
921 | work(2*i) = ar(i) |
---|
922 | ENDDO |
---|
923 | DO i = 1, (nx+1)/2 - 1 |
---|
924 | work(2*i+1) = ar(nx+1-i) |
---|
925 | ENDDO |
---|
926 | work(1) = 0.0_wp |
---|
927 | work(nx+2) = 0.0_wp |
---|
928 | |
---|
929 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
930 | ar = work(0:nx) |
---|
931 | |
---|
932 | ENDIF |
---|
933 | |
---|
934 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
935 | |
---|
936 | #if defined( __fftw ) |
---|
937 | IF ( forward_fft ) THEN |
---|
938 | |
---|
939 | x_in(0:nx) = ar(0:nx) |
---|
940 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
941 | |
---|
942 | DO i = 0, (nx+1)/2 |
---|
943 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
944 | ENDDO |
---|
945 | DO i = 1, (nx+1)/2 - 1 |
---|
946 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
947 | ENDDO |
---|
948 | |
---|
949 | ELSE |
---|
950 | |
---|
951 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
952 | DO i = 1, (nx+1)/2 - 1 |
---|
953 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
954 | ENDDO |
---|
955 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
956 | |
---|
957 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
958 | ar(0:nx) = x_in(0:nx) |
---|
959 | |
---|
960 | ENDIF |
---|
961 | #endif |
---|
962 | |
---|
963 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
964 | |
---|
965 | #if defined( __ibm ) |
---|
966 | IF ( forward_fft ) THEN |
---|
967 | |
---|
968 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
969 | aux2, nau2 ) |
---|
970 | |
---|
971 | DO i = 0, (nx+1)/2 |
---|
972 | ar(i) = work(2*i) |
---|
973 | ENDDO |
---|
974 | DO i = 1, (nx+1)/2 - 1 |
---|
975 | ar(nx+1-i) = work(2*i+1) |
---|
976 | ENDDO |
---|
977 | |
---|
978 | ELSE |
---|
979 | |
---|
980 | DO i = 0, (nx+1)/2 |
---|
981 | work(2*i) = ar(i) |
---|
982 | ENDDO |
---|
983 | DO i = 1, (nx+1)/2 - 1 |
---|
984 | work(2*i+1) = ar(nx+1-i) |
---|
985 | ENDDO |
---|
986 | work(1) = 0.0_wp |
---|
987 | work(nx+2) = 0.0_wp |
---|
988 | |
---|
989 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
990 | aux4, nau2 ) |
---|
991 | |
---|
992 | DO i = 0, nx |
---|
993 | ar(i) = work(i) |
---|
994 | ENDDO |
---|
995 | |
---|
996 | ENDIF |
---|
997 | #elif defined( __nec_fft ) |
---|
998 | IF ( forward_fft ) THEN |
---|
999 | |
---|
1000 | work(0:nx) = ar(0:nx) |
---|
1001 | |
---|
1002 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
1003 | |
---|
1004 | DO i = 0, (nx+1)/2 |
---|
1005 | ar(i) = work(2*i) |
---|
1006 | ENDDO |
---|
1007 | DO i = 1, (nx+1)/2 - 1 |
---|
1008 | ar(nx+1-i) = work(2*i+1) |
---|
1009 | ENDDO |
---|
1010 | |
---|
1011 | ELSE |
---|
1012 | |
---|
1013 | DO i = 0, (nx+1)/2 |
---|
1014 | work(2*i) = ar(i) |
---|
1015 | ENDDO |
---|
1016 | DO i = 1, (nx+1)/2 - 1 |
---|
1017 | work(2*i+1) = ar(nx+1-i) |
---|
1018 | ENDDO |
---|
1019 | work(1) = 0.0_wp |
---|
1020 | work(nx+2) = 0.0_wp |
---|
1021 | |
---|
1022 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
1023 | |
---|
1024 | ar(0:nx) = work(0:nx) |
---|
1025 | |
---|
1026 | ENDIF |
---|
1027 | #endif |
---|
1028 | |
---|
1029 | ENDIF |
---|
1030 | |
---|
1031 | END SUBROUTINE fft_x_1d |
---|
1032 | |
---|
1033 | !------------------------------------------------------------------------------! |
---|
1034 | ! Description: |
---|
1035 | ! ------------ |
---|
1036 | !> Fourier-transformation along y-direction. |
---|
1037 | !> Version for 2D-decomposition. |
---|
1038 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
1039 | !> system-specific routines, if they are available. |
---|
1040 | !> |
---|
1041 | !> direction: 'forward' or 'backward' |
---|
1042 | !> ar, ar_tr: 3D data arrays |
---|
1043 | !> forward: ar: before ar_tr: after transformation |
---|
1044 | !> backward: ar_tr: before ar: after transfosition |
---|
1045 | !> |
---|
1046 | !> In case of non-overlapping transposition/transformation: |
---|
1047 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
1048 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
1049 | !> |
---|
1050 | !> In case of overlapping transposition/transformation |
---|
1051 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
1052 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
1053 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
1054 | !> transformation is carried out for a 2D-plane only. |
---|
1055 | !------------------------------------------------------------------------------! |
---|
1056 | |
---|
1057 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
1058 | nxr_y_l, ar_inv ) |
---|
1059 | |
---|
1060 | |
---|
1061 | IMPLICIT NONE |
---|
1062 | |
---|
1063 | CHARACTER (LEN=*) :: direction !< |
---|
1064 | |
---|
1065 | INTEGER(iwp) :: i !< |
---|
1066 | INTEGER(iwp) :: j !< |
---|
1067 | INTEGER(iwp) :: jshape(1) !< |
---|
1068 | INTEGER(iwp) :: k !< |
---|
1069 | INTEGER(iwp) :: mm !< |
---|
1070 | INTEGER(iwp) :: nxl_y_bound !< |
---|
1071 | INTEGER(iwp) :: nxl_y_l !< |
---|
1072 | INTEGER(iwp) :: nxr_y_bound !< |
---|
1073 | INTEGER(iwp) :: nxr_y_l !< |
---|
1074 | |
---|
1075 | LOGICAL :: forward_fft !< |
---|
1076 | |
---|
1077 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
1078 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
1079 | |
---|
1080 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: f_vec_y |
---|
1081 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec |
---|
1082 | |
---|
1083 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: ar !< |
---|
1084 | REAL(wp), DIMENSION(nxl_y:nxr_y,nzb_y:nzt_y,0:ny), OPTIONAL :: ar_inv !< |
---|
1085 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y), OPTIONAL :: ar_tr !< |
---|
1086 | |
---|
1087 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
1088 | |
---|
1089 | #if defined( __ibm ) |
---|
1090 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
1091 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
1092 | #elif defined( __nec_fft ) |
---|
1093 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
1094 | #elif defined( __cuda_fft ) |
---|
1095 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
1096 | ar_tmp !< |
---|
1097 | !$ACC DECLARE CREATE(ar_tmp) |
---|
1098 | #endif |
---|
1099 | |
---|
1100 | |
---|
1101 | IF ( direction == 'forward' ) THEN |
---|
1102 | forward_fft = .TRUE. |
---|
1103 | ELSE |
---|
1104 | forward_fft = .FALSE. |
---|
1105 | ENDIF |
---|
1106 | |
---|
1107 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
1108 | |
---|
1109 | ! |
---|
1110 | !-- Performing the fft with singleton's software works on every system, |
---|
1111 | !-- since it is part of the model |
---|
1112 | ALLOCATE( cwork(0:ny) ) |
---|
1113 | |
---|
1114 | IF ( forward_fft ) then |
---|
1115 | |
---|
1116 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
1117 | !$OMP DO |
---|
1118 | DO k = nzb_y, nzt_y |
---|
1119 | DO i = nxl_y_l, nxr_y_l |
---|
1120 | |
---|
1121 | DO j = 0, ny |
---|
1122 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
1123 | ENDDO |
---|
1124 | |
---|
1125 | jshape = SHAPE( cwork ) |
---|
1126 | CALL FFTN( cwork, jshape ) |
---|
1127 | |
---|
1128 | DO j = 0, (ny+1)/2 |
---|
1129 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
1130 | ENDDO |
---|
1131 | DO j = 1, (ny+1)/2 - 1 |
---|
1132 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
1133 | ENDDO |
---|
1134 | |
---|
1135 | ENDDO |
---|
1136 | ENDDO |
---|
1137 | !$OMP END PARALLEL |
---|
1138 | |
---|
1139 | ELSE |
---|
1140 | |
---|
1141 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
1142 | !$OMP DO |
---|
1143 | DO k = nzb_y, nzt_y |
---|
1144 | DO i = nxl_y_l, nxr_y_l |
---|
1145 | |
---|
1146 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
1147 | DO j = 1, (ny+1)/2 - 1 |
---|
1148 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
1149 | KIND=wp ) |
---|
1150 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
1151 | KIND=wp ) |
---|
1152 | ENDDO |
---|
1153 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
1154 | KIND=wp ) |
---|
1155 | |
---|
1156 | jshape = SHAPE( cwork ) |
---|
1157 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1158 | |
---|
1159 | DO j = 0, ny |
---|
1160 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
1161 | ENDDO |
---|
1162 | |
---|
1163 | ENDDO |
---|
1164 | ENDDO |
---|
1165 | !$OMP END PARALLEL |
---|
1166 | |
---|
1167 | ENDIF |
---|
1168 | |
---|
1169 | DEALLOCATE( cwork ) |
---|
1170 | |
---|
1171 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1172 | |
---|
1173 | ! |
---|
1174 | !-- Performing the fft with Temperton's software works on every system, |
---|
1175 | !-- since it is part of the model |
---|
1176 | IF ( forward_fft ) THEN |
---|
1177 | |
---|
1178 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
1179 | |
---|
1180 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
1181 | !$OMP DO |
---|
1182 | DO k = nzb_y, nzt_y |
---|
1183 | DO i = nxl_y_l, nxr_y_l |
---|
1184 | |
---|
1185 | work(0:ny) = ar(0:ny,i,k) |
---|
1186 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1187 | |
---|
1188 | DO j = 0, (ny+1)/2 |
---|
1189 | ar_tr(j,i,k) = work(2*j) |
---|
1190 | ENDDO |
---|
1191 | DO j = 1, (ny+1)/2 - 1 |
---|
1192 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1193 | ENDDO |
---|
1194 | |
---|
1195 | ENDDO |
---|
1196 | ENDDO |
---|
1197 | !$OMP END PARALLEL |
---|
1198 | |
---|
1199 | ELSE |
---|
1200 | ! |
---|
1201 | !-- Vector version of Temperton-fft. Computes multiple 1-D FFT's. |
---|
1202 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
1203 | |
---|
1204 | mm = 1 |
---|
1205 | DO k = nzb_y, nzt_y |
---|
1206 | DO i = nxl_y_l, nxr_y_l |
---|
1207 | f_vec_y(mm,0:nx) = ar(0:nx,i,k) |
---|
1208 | mm = mm+1 |
---|
1209 | ENDDO |
---|
1210 | ENDDO |
---|
1211 | |
---|
1212 | ALLOCATE( work_vec( (nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
1213 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, -1 ) |
---|
1214 | DEALLOCATE( work_vec ) |
---|
1215 | |
---|
1216 | IF( PRESENT( ar_inv ) ) THEN |
---|
1217 | |
---|
1218 | DO k = nzb_y, nzt_y |
---|
1219 | DO i = nxl_y_l, nxr_y_l |
---|
1220 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1221 | DO j = 0, (ny+1)/2 |
---|
1222 | ar_inv(i,k,j) = f_vec_y(mm,2*j) |
---|
1223 | ENDDO |
---|
1224 | DO j = 1, (ny+1)/2 - 1 |
---|
1225 | ar_inv(i,k,ny+1-j) = f_vec_y(mm,2*j+1) |
---|
1226 | ENDDO |
---|
1227 | ENDDO |
---|
1228 | ENDDO |
---|
1229 | |
---|
1230 | ELSE |
---|
1231 | |
---|
1232 | DO k = nzb_y, nzt_y |
---|
1233 | DO i = nxl_y_l, nxr_y_l |
---|
1234 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1235 | DO j = 0, (ny+1)/2 |
---|
1236 | ar(j,i,k) = f_vec_y(mm,2*j) |
---|
1237 | ENDDO |
---|
1238 | DO j = 1, (ny+1)/2 - 1 |
---|
1239 | ar(ny+1-j,i,k) = f_vec_y(mm,2*j+1) |
---|
1240 | ENDDO |
---|
1241 | ENDDO |
---|
1242 | ENDDO |
---|
1243 | |
---|
1244 | ENDIF |
---|
1245 | |
---|
1246 | DEALLOCATE( f_vec_y ) |
---|
1247 | |
---|
1248 | ENDIF |
---|
1249 | |
---|
1250 | ELSE |
---|
1251 | |
---|
1252 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
1253 | |
---|
1254 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
1255 | !$OMP DO |
---|
1256 | DO k = nzb_y, nzt_y |
---|
1257 | DO i = nxl_y_l, nxr_y_l |
---|
1258 | |
---|
1259 | DO j = 0, (ny+1)/2 |
---|
1260 | work(2*j) = ar_tr(j,i,k) |
---|
1261 | ENDDO |
---|
1262 | DO j = 1, (ny+1)/2 - 1 |
---|
1263 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1264 | ENDDO |
---|
1265 | work(1) = 0.0_wp |
---|
1266 | work(ny+2) = 0.0_wp |
---|
1267 | |
---|
1268 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1269 | ar(0:ny,i,k) = work(0:ny) |
---|
1270 | |
---|
1271 | ENDDO |
---|
1272 | ENDDO |
---|
1273 | !$OMP END PARALLEL |
---|
1274 | |
---|
1275 | ELSE |
---|
1276 | |
---|
1277 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
1278 | |
---|
1279 | IF ( PRESENT( ar_inv ) ) THEN |
---|
1280 | |
---|
1281 | DO k = nzb_y, nzt_y |
---|
1282 | DO i = nxl_y_l, nxr_y_l |
---|
1283 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1284 | DO j = 0, (ny+1)/2 |
---|
1285 | f_vec_y(mm,2*j) = ar_inv(i,k,j) |
---|
1286 | ENDDO |
---|
1287 | DO j = 1, (ny+1)/2 - 1 |
---|
1288 | f_vec_y(mm,2*j+1) = ar_inv(i,k,ny+1-j) |
---|
1289 | ENDDO |
---|
1290 | ENDDO |
---|
1291 | ENDDO |
---|
1292 | |
---|
1293 | ELSE |
---|
1294 | |
---|
1295 | DO k = nzb_y, nzt_y |
---|
1296 | DO i = nxl_y_l, nxr_y_l |
---|
1297 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
1298 | DO j = 0, (ny+1)/2 |
---|
1299 | f_vec_y(mm,2*j) = ar(j,i,k) |
---|
1300 | ENDDO |
---|
1301 | DO j = 1, (ny+1)/2 - 1 |
---|
1302 | f_vec_y(mm,2*j+1) = ar(ny+1-j,i,k) |
---|
1303 | ENDDO |
---|
1304 | ENDDO |
---|
1305 | ENDDO |
---|
1306 | |
---|
1307 | ENDIF |
---|
1308 | |
---|
1309 | f_vec_y(:,1) = 0.0_wp |
---|
1310 | f_vec_y(:,ny+2) = 0.0_wp |
---|
1311 | |
---|
1312 | ALLOCATE( work_vec((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
1313 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, 1 ) |
---|
1314 | DEALLOCATE( work_vec ) |
---|
1315 | |
---|
1316 | mm = 1 |
---|
1317 | DO k = nzb_y, nzt_y |
---|
1318 | DO i = nxl_y_l, nxr_y_l |
---|
1319 | ar(0:ny,i,k) = f_vec_y(mm,0:ny) |
---|
1320 | mm = mm+1 |
---|
1321 | ENDDO |
---|
1322 | ENDDO |
---|
1323 | |
---|
1324 | DEALLOCATE( f_vec_y ) |
---|
1325 | |
---|
1326 | ENDIF |
---|
1327 | |
---|
1328 | ENDIF |
---|
1329 | |
---|
1330 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1331 | |
---|
1332 | #if defined( __fftw ) |
---|
1333 | IF ( forward_fft ) THEN |
---|
1334 | |
---|
1335 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1336 | !$OMP DO |
---|
1337 | DO k = nzb_y, nzt_y |
---|
1338 | DO i = nxl_y_l, nxr_y_l |
---|
1339 | |
---|
1340 | y_in(0:ny) = ar(0:ny,i,k) |
---|
1341 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1342 | |
---|
1343 | DO j = 0, (ny+1)/2 |
---|
1344 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
1345 | ENDDO |
---|
1346 | DO j = 1, (ny+1)/2 - 1 |
---|
1347 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
1348 | ENDDO |
---|
1349 | |
---|
1350 | ENDDO |
---|
1351 | ENDDO |
---|
1352 | !$OMP END PARALLEL |
---|
1353 | |
---|
1354 | ELSE |
---|
1355 | |
---|
1356 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1357 | !$OMP DO |
---|
1358 | DO k = nzb_y, nzt_y |
---|
1359 | DO i = nxl_y_l, nxr_y_l |
---|
1360 | |
---|
1361 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
1362 | DO j = 1, (ny+1)/2 - 1 |
---|
1363 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
1364 | KIND=wp ) |
---|
1365 | ENDDO |
---|
1366 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
1367 | KIND=wp ) |
---|
1368 | |
---|
1369 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1370 | ar(0:ny,i,k) = y_in(0:ny) |
---|
1371 | |
---|
1372 | ENDDO |
---|
1373 | ENDDO |
---|
1374 | !$OMP END PARALLEL |
---|
1375 | |
---|
1376 | ENDIF |
---|
1377 | #endif |
---|
1378 | |
---|
1379 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1380 | |
---|
1381 | #if defined( __ibm ) |
---|
1382 | IF ( forward_fft) THEN |
---|
1383 | |
---|
1384 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1385 | !$OMP DO |
---|
1386 | DO k = nzb_y, nzt_y |
---|
1387 | DO i = nxl_y_l, nxr_y_l |
---|
1388 | |
---|
1389 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
1390 | nau1, auy2, nau2 ) |
---|
1391 | |
---|
1392 | DO j = 0, (ny+1)/2 |
---|
1393 | ar_tr(j,i,k) = work(2*j) |
---|
1394 | ENDDO |
---|
1395 | DO j = 1, (ny+1)/2 - 1 |
---|
1396 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1397 | ENDDO |
---|
1398 | |
---|
1399 | ENDDO |
---|
1400 | ENDDO |
---|
1401 | !$OMP END PARALLEL |
---|
1402 | |
---|
1403 | ELSE |
---|
1404 | |
---|
1405 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1406 | !$OMP DO |
---|
1407 | DO k = nzb_y, nzt_y |
---|
1408 | DO i = nxl_y_l, nxr_y_l |
---|
1409 | |
---|
1410 | DO j = 0, (ny+1)/2 |
---|
1411 | work(2*j) = ar_tr(j,i,k) |
---|
1412 | ENDDO |
---|
1413 | DO j = 1, (ny+1)/2 - 1 |
---|
1414 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1415 | ENDDO |
---|
1416 | work(1) = 0.0_wp |
---|
1417 | work(ny+2) = 0.0_wp |
---|
1418 | |
---|
1419 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
1420 | auy3, nau1, auy4, nau2 ) |
---|
1421 | |
---|
1422 | DO j = 0, ny |
---|
1423 | ar(j,i,k) = work(j) |
---|
1424 | ENDDO |
---|
1425 | |
---|
1426 | ENDDO |
---|
1427 | ENDDO |
---|
1428 | !$OMP END PARALLEL |
---|
1429 | |
---|
1430 | ENDIF |
---|
1431 | #elif defined( __nec_fft ) |
---|
1432 | IF ( forward_fft ) THEN |
---|
1433 | |
---|
1434 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1435 | !$OMP DO |
---|
1436 | DO k = nzb_y, nzt_y |
---|
1437 | DO i = nxl_y_l, nxr_y_l |
---|
1438 | |
---|
1439 | work(0:ny) = ar(0:ny,i,k) |
---|
1440 | |
---|
1441 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1442 | |
---|
1443 | DO j = 0, (ny+1)/2 |
---|
1444 | ar_tr(j,i,k) = work(2*j) |
---|
1445 | ENDDO |
---|
1446 | DO j = 1, (ny+1)/2 - 1 |
---|
1447 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1448 | ENDDO |
---|
1449 | |
---|
1450 | ENDDO |
---|
1451 | ENDDO |
---|
1452 | !$END OMP PARALLEL |
---|
1453 | |
---|
1454 | ELSE |
---|
1455 | |
---|
1456 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1457 | !$OMP DO |
---|
1458 | DO k = nzb_y, nzt_y |
---|
1459 | DO i = nxl_y_l, nxr_y_l |
---|
1460 | |
---|
1461 | DO j = 0, (ny+1)/2 |
---|
1462 | work(2*j) = ar_tr(j,i,k) |
---|
1463 | ENDDO |
---|
1464 | DO j = 1, (ny+1)/2 - 1 |
---|
1465 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1466 | ENDDO |
---|
1467 | work(1) = 0.0_wp |
---|
1468 | work(ny+2) = 0.0_wp |
---|
1469 | |
---|
1470 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1471 | |
---|
1472 | ar(0:ny,i,k) = work(0:ny) |
---|
1473 | |
---|
1474 | ENDDO |
---|
1475 | ENDDO |
---|
1476 | !$OMP END PARALLEL |
---|
1477 | |
---|
1478 | ENDIF |
---|
1479 | #elif defined( __cuda_fft ) |
---|
1480 | |
---|
1481 | IF ( forward_fft ) THEN |
---|
1482 | |
---|
1483 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
1484 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
1485 | !$ACC END HOST_DATA |
---|
1486 | |
---|
1487 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
1488 | !$ACC PRESENT(ar, ar_tmp) |
---|
1489 | DO k = nzb_y, nzt_y |
---|
1490 | DO i = nxl_y, nxr_y |
---|
1491 | |
---|
1492 | DO j = 0, (ny+1)/2 |
---|
1493 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
1494 | ENDDO |
---|
1495 | |
---|
1496 | DO j = 1, (ny+1)/2 - 1 |
---|
1497 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
1498 | ENDDO |
---|
1499 | |
---|
1500 | ENDDO |
---|
1501 | ENDDO |
---|
1502 | |
---|
1503 | ELSE |
---|
1504 | |
---|
1505 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
1506 | !$ACC PRESENT(ar, ar_tmp) |
---|
1507 | DO k = nzb_y, nzt_y |
---|
1508 | DO i = nxl_y, nxr_y |
---|
1509 | |
---|
1510 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
1511 | |
---|
1512 | DO j = 1, (ny+1)/2 - 1 |
---|
1513 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), & |
---|
1514 | KIND=wp ) |
---|
1515 | ENDDO |
---|
1516 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, & |
---|
1517 | KIND=wp ) |
---|
1518 | |
---|
1519 | ENDDO |
---|
1520 | ENDDO |
---|
1521 | |
---|
1522 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
1523 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
1524 | !$ACC END HOST_DATA |
---|
1525 | |
---|
1526 | ENDIF |
---|
1527 | |
---|
1528 | #endif |
---|
1529 | |
---|
1530 | ENDIF |
---|
1531 | |
---|
1532 | END SUBROUTINE fft_y |
---|
1533 | |
---|
1534 | !------------------------------------------------------------------------------! |
---|
1535 | ! Description: |
---|
1536 | ! ------------ |
---|
1537 | !> Fourier-transformation along y-direction. |
---|
1538 | !> Version for 1D-decomposition. |
---|
1539 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
1540 | !> system-specific routines, if they are available. |
---|
1541 | !------------------------------------------------------------------------------! |
---|
1542 | |
---|
1543 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
1544 | |
---|
1545 | |
---|
1546 | IMPLICIT NONE |
---|
1547 | |
---|
1548 | CHARACTER (LEN=*) :: direction |
---|
1549 | |
---|
1550 | INTEGER(iwp) :: j !< |
---|
1551 | INTEGER(iwp) :: jshape(1) !< |
---|
1552 | |
---|
1553 | LOGICAL :: forward_fft !< |
---|
1554 | |
---|
1555 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
1556 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
1557 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
1558 | |
---|
1559 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
1560 | |
---|
1561 | #if defined( __ibm ) |
---|
1562 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
1563 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
1564 | #elif defined( __nec_fft ) |
---|
1565 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
1566 | #endif |
---|
1567 | |
---|
1568 | IF ( direction == 'forward' ) THEN |
---|
1569 | forward_fft = .TRUE. |
---|
1570 | ELSE |
---|
1571 | forward_fft = .FALSE. |
---|
1572 | ENDIF |
---|
1573 | |
---|
1574 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
1575 | |
---|
1576 | ! |
---|
1577 | !-- Performing the fft with singleton's software works on every system, |
---|
1578 | !-- since it is part of the model |
---|
1579 | ALLOCATE( cwork(0:ny) ) |
---|
1580 | |
---|
1581 | IF ( forward_fft ) THEN |
---|
1582 | |
---|
1583 | DO j = 0, ny |
---|
1584 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
1585 | ENDDO |
---|
1586 | |
---|
1587 | jshape = SHAPE( cwork ) |
---|
1588 | CALL FFTN( cwork, jshape ) |
---|
1589 | |
---|
1590 | DO j = 0, (ny+1)/2 |
---|
1591 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
1592 | ENDDO |
---|
1593 | DO j = 1, (ny+1)/2 - 1 |
---|
1594 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
1595 | ENDDO |
---|
1596 | |
---|
1597 | ELSE |
---|
1598 | |
---|
1599 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
1600 | DO j = 1, (ny+1)/2 - 1 |
---|
1601 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
1602 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
1603 | ENDDO |
---|
1604 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
1605 | |
---|
1606 | jshape = SHAPE( cwork ) |
---|
1607 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1608 | |
---|
1609 | DO j = 0, ny |
---|
1610 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
1611 | ENDDO |
---|
1612 | |
---|
1613 | ENDIF |
---|
1614 | |
---|
1615 | DEALLOCATE( cwork ) |
---|
1616 | |
---|
1617 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1618 | |
---|
1619 | ! |
---|
1620 | !-- Performing the fft with Temperton's software works on every system, |
---|
1621 | !-- since it is part of the model |
---|
1622 | IF ( forward_fft ) THEN |
---|
1623 | |
---|
1624 | work(0:ny) = ar |
---|
1625 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1626 | |
---|
1627 | DO j = 0, (ny+1)/2 |
---|
1628 | ar(j) = work(2*j) |
---|
1629 | ENDDO |
---|
1630 | DO j = 1, (ny+1)/2 - 1 |
---|
1631 | ar(ny+1-j) = work(2*j+1) |
---|
1632 | ENDDO |
---|
1633 | |
---|
1634 | ELSE |
---|
1635 | |
---|
1636 | DO j = 0, (ny+1)/2 |
---|
1637 | work(2*j) = ar(j) |
---|
1638 | ENDDO |
---|
1639 | DO j = 1, (ny+1)/2 - 1 |
---|
1640 | work(2*j+1) = ar(ny+1-j) |
---|
1641 | ENDDO |
---|
1642 | work(1) = 0.0_wp |
---|
1643 | work(ny+2) = 0.0_wp |
---|
1644 | |
---|
1645 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1646 | ar = work(0:ny) |
---|
1647 | |
---|
1648 | ENDIF |
---|
1649 | |
---|
1650 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1651 | |
---|
1652 | #if defined( __fftw ) |
---|
1653 | IF ( forward_fft ) THEN |
---|
1654 | |
---|
1655 | y_in(0:ny) = ar(0:ny) |
---|
1656 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1657 | |
---|
1658 | DO j = 0, (ny+1)/2 |
---|
1659 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
1660 | ENDDO |
---|
1661 | DO j = 1, (ny+1)/2 - 1 |
---|
1662 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
1663 | ENDDO |
---|
1664 | |
---|
1665 | ELSE |
---|
1666 | |
---|
1667 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
1668 | DO j = 1, (ny+1)/2 - 1 |
---|
1669 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
1670 | ENDDO |
---|
1671 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
1672 | |
---|
1673 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1674 | ar(0:ny) = y_in(0:ny) |
---|
1675 | |
---|
1676 | ENDIF |
---|
1677 | #endif |
---|
1678 | |
---|
1679 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1680 | |
---|
1681 | #if defined( __ibm ) |
---|
1682 | IF ( forward_fft ) THEN |
---|
1683 | |
---|
1684 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
1685 | auy2, nau2 ) |
---|
1686 | |
---|
1687 | DO j = 0, (ny+1)/2 |
---|
1688 | ar(j) = work(2*j) |
---|
1689 | ENDDO |
---|
1690 | DO j = 1, (ny+1)/2 - 1 |
---|
1691 | ar(ny+1-j) = work(2*j+1) |
---|
1692 | ENDDO |
---|
1693 | |
---|
1694 | ELSE |
---|
1695 | |
---|
1696 | DO j = 0, (ny+1)/2 |
---|
1697 | work(2*j) = ar(j) |
---|
1698 | ENDDO |
---|
1699 | DO j = 1, (ny+1)/2 - 1 |
---|
1700 | work(2*j+1) = ar(ny+1-j) |
---|
1701 | ENDDO |
---|
1702 | work(1) = 0.0_wp |
---|
1703 | work(ny+2) = 0.0_wp |
---|
1704 | |
---|
1705 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
1706 | nau1, auy4, nau2 ) |
---|
1707 | |
---|
1708 | DO j = 0, ny |
---|
1709 | ar(j) = work(j) |
---|
1710 | ENDDO |
---|
1711 | |
---|
1712 | ENDIF |
---|
1713 | #elif defined( __nec_fft ) |
---|
1714 | IF ( forward_fft ) THEN |
---|
1715 | |
---|
1716 | work(0:ny) = ar(0:ny) |
---|
1717 | |
---|
1718 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1719 | |
---|
1720 | DO j = 0, (ny+1)/2 |
---|
1721 | ar(j) = work(2*j) |
---|
1722 | ENDDO |
---|
1723 | DO j = 1, (ny+1)/2 - 1 |
---|
1724 | ar(ny+1-j) = work(2*j+1) |
---|
1725 | ENDDO |
---|
1726 | |
---|
1727 | ELSE |
---|
1728 | |
---|
1729 | DO j = 0, (ny+1)/2 |
---|
1730 | work(2*j) = ar(j) |
---|
1731 | ENDDO |
---|
1732 | DO j = 1, (ny+1)/2 - 1 |
---|
1733 | work(2*j+1) = ar(ny+1-j) |
---|
1734 | ENDDO |
---|
1735 | work(1) = 0.0_wp |
---|
1736 | work(ny+2) = 0.0_wp |
---|
1737 | |
---|
1738 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1739 | |
---|
1740 | ar(0:ny) = work(0:ny) |
---|
1741 | |
---|
1742 | ENDIF |
---|
1743 | #endif |
---|
1744 | |
---|
1745 | ENDIF |
---|
1746 | |
---|
1747 | END SUBROUTINE fft_y_1d |
---|
1748 | |
---|
1749 | !------------------------------------------------------------------------------! |
---|
1750 | ! Description: |
---|
1751 | ! ------------ |
---|
1752 | !> Fourier-transformation along x-direction. |
---|
1753 | !> Version for 1d domain decomposition |
---|
1754 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
1755 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
1756 | !------------------------------------------------------------------------------! |
---|
1757 | |
---|
1758 | SUBROUTINE fft_x_m( ar, direction ) |
---|
1759 | |
---|
1760 | |
---|
1761 | IMPLICIT NONE |
---|
1762 | |
---|
1763 | CHARACTER (LEN=*) :: direction !< |
---|
1764 | |
---|
1765 | INTEGER(iwp) :: i !< |
---|
1766 | INTEGER(iwp) :: k !< |
---|
1767 | INTEGER(iwp) :: siza !< |
---|
1768 | #if defined( __nec_fft ) |
---|
1769 | INTEGER(iwp) :: sizw |
---|
1770 | #endif |
---|
1771 | |
---|
1772 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
1773 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
1774 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
1775 | |
---|
1776 | #if defined( __nec_fft ) |
---|
1777 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
1778 | #endif |
---|
1779 | |
---|
1780 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1781 | |
---|
1782 | siza = SIZE( ai, 1 ) |
---|
1783 | |
---|
1784 | IF ( direction == 'forward') THEN |
---|
1785 | |
---|
1786 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1787 | ai(nx+1:,:) = 0.0_wp |
---|
1788 | |
---|
1789 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
1790 | |
---|
1791 | DO k = 1, nz |
---|
1792 | DO i = 0, (nx+1)/2 |
---|
1793 | ar(i,k) = ai(2*i,k) |
---|
1794 | ENDDO |
---|
1795 | DO i = 1, (nx+1)/2 - 1 |
---|
1796 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
1797 | ENDDO |
---|
1798 | ENDDO |
---|
1799 | |
---|
1800 | ELSE |
---|
1801 | |
---|
1802 | DO k = 1, nz |
---|
1803 | DO i = 0, (nx+1)/2 |
---|
1804 | ai(2*i,k) = ar(i,k) |
---|
1805 | ENDDO |
---|
1806 | DO i = 1, (nx+1)/2 - 1 |
---|
1807 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
1808 | ENDDO |
---|
1809 | ai(1,k) = 0.0_wp |
---|
1810 | ai(nx+2,k) = 0.0_wp |
---|
1811 | ENDDO |
---|
1812 | |
---|
1813 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
1814 | |
---|
1815 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1816 | |
---|
1817 | ENDIF |
---|
1818 | |
---|
1819 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1820 | |
---|
1821 | #if defined( __nec_fft ) |
---|
1822 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
1823 | siza = SIZE( ai, 1 ) |
---|
1824 | sizw = SIZE( work, 1 ) |
---|
1825 | |
---|
1826 | IF ( direction == 'forward') THEN |
---|
1827 | |
---|
1828 | ! |
---|
1829 | !-- Tables are initialized once more. This call should not be |
---|
1830 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1831 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
1832 | trig_xf, work1, 0 ) |
---|
1833 | |
---|
1834 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1835 | IF ( nz1 > nz ) THEN |
---|
1836 | ai(:,nz1) = 0.0_wp |
---|
1837 | ENDIF |
---|
1838 | |
---|
1839 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
1840 | trig_xf, work1, 0 ) |
---|
1841 | |
---|
1842 | DO k = 1, nz |
---|
1843 | DO i = 0, (nx+1)/2 |
---|
1844 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
1845 | ENDDO |
---|
1846 | DO i = 1, (nx+1)/2 - 1 |
---|
1847 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
1848 | ENDDO |
---|
1849 | ENDDO |
---|
1850 | |
---|
1851 | ELSE |
---|
1852 | |
---|
1853 | ! |
---|
1854 | !-- Tables are initialized once more. This call should not be |
---|
1855 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1856 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
1857 | trig_xb, work1, 0 ) |
---|
1858 | |
---|
1859 | IF ( nz1 > nz ) THEN |
---|
1860 | work(:,nz1) = 0.0_wp |
---|
1861 | ENDIF |
---|
1862 | DO k = 1, nz |
---|
1863 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
1864 | DO i = 1, (nx+1)/2 - 1 |
---|
1865 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
1866 | ENDDO |
---|
1867 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
1868 | ENDDO |
---|
1869 | |
---|
1870 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
1871 | trig_xb, work1, 0 ) |
---|
1872 | |
---|
1873 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1874 | |
---|
1875 | ENDIF |
---|
1876 | |
---|
1877 | DEALLOCATE( work ) |
---|
1878 | #endif |
---|
1879 | |
---|
1880 | ENDIF |
---|
1881 | |
---|
1882 | END SUBROUTINE fft_x_m |
---|
1883 | |
---|
1884 | !------------------------------------------------------------------------------! |
---|
1885 | ! Description: |
---|
1886 | ! ------------ |
---|
1887 | !> Fourier-transformation along y-direction. |
---|
1888 | !> Version for 1d domain decomposition |
---|
1889 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
1890 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
1891 | !------------------------------------------------------------------------------! |
---|
1892 | |
---|
1893 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
1894 | |
---|
1895 | |
---|
1896 | IMPLICIT NONE |
---|
1897 | |
---|
1898 | CHARACTER (LEN=*) :: direction !< |
---|
1899 | |
---|
1900 | INTEGER(iwp) :: j !< |
---|
1901 | INTEGER(iwp) :: k !< |
---|
1902 | INTEGER(iwp) :: ny1 !< |
---|
1903 | INTEGER(iwp) :: siza !< |
---|
1904 | #if defined( __nec_fft ) |
---|
1905 | INTEGER(iwp) :: sizw |
---|
1906 | #endif |
---|
1907 | |
---|
1908 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
1909 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
1910 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
1911 | |
---|
1912 | #if defined( __nec_fft ) |
---|
1913 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
1914 | #endif |
---|
1915 | |
---|
1916 | |
---|
1917 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1918 | |
---|
1919 | siza = SIZE( ai, 1 ) |
---|
1920 | |
---|
1921 | IF ( direction == 'forward') THEN |
---|
1922 | |
---|
1923 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1924 | ai(ny+1:,:) = 0.0_wp |
---|
1925 | |
---|
1926 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
1927 | |
---|
1928 | DO k = 1, nz |
---|
1929 | DO j = 0, (ny+1)/2 |
---|
1930 | ar(j,k) = ai(2*j,k) |
---|
1931 | ENDDO |
---|
1932 | DO j = 1, (ny+1)/2 - 1 |
---|
1933 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
1934 | ENDDO |
---|
1935 | ENDDO |
---|
1936 | |
---|
1937 | ELSE |
---|
1938 | |
---|
1939 | DO k = 1, nz |
---|
1940 | DO j = 0, (ny+1)/2 |
---|
1941 | ai(2*j,k) = ar(j,k) |
---|
1942 | ENDDO |
---|
1943 | DO j = 1, (ny+1)/2 - 1 |
---|
1944 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
1945 | ENDDO |
---|
1946 | ai(1,k) = 0.0_wp |
---|
1947 | ai(ny+2,k) = 0.0_wp |
---|
1948 | ENDDO |
---|
1949 | |
---|
1950 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
1951 | |
---|
1952 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
1953 | |
---|
1954 | ENDIF |
---|
1955 | |
---|
1956 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1957 | |
---|
1958 | #if defined( __nec_fft ) |
---|
1959 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
1960 | siza = SIZE( ai, 1 ) |
---|
1961 | sizw = SIZE( work, 1 ) |
---|
1962 | |
---|
1963 | IF ( direction == 'forward') THEN |
---|
1964 | |
---|
1965 | ! |
---|
1966 | !-- Tables are initialized once more. This call should not be |
---|
1967 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1968 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
1969 | trig_yf, work1, 0 ) |
---|
1970 | |
---|
1971 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1972 | IF ( nz1 > nz ) THEN |
---|
1973 | ai(:,nz1) = 0.0_wp |
---|
1974 | ENDIF |
---|
1975 | |
---|
1976 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
1977 | trig_yf, work1, 0 ) |
---|
1978 | |
---|
1979 | DO k = 1, nz |
---|
1980 | DO j = 0, (ny+1)/2 |
---|
1981 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
1982 | ENDDO |
---|
1983 | DO j = 1, (ny+1)/2 - 1 |
---|
1984 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
1985 | ENDDO |
---|
1986 | ENDDO |
---|
1987 | |
---|
1988 | ELSE |
---|
1989 | |
---|
1990 | ! |
---|
1991 | !-- Tables are initialized once more. This call should not be |
---|
1992 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1993 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
1994 | trig_yb, work1, 0 ) |
---|
1995 | |
---|
1996 | IF ( nz1 > nz ) THEN |
---|
1997 | work(:,nz1) = 0.0_wp |
---|
1998 | ENDIF |
---|
1999 | DO k = 1, nz |
---|
2000 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
2001 | DO j = 1, (ny+1)/2 - 1 |
---|
2002 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
2003 | ENDDO |
---|
2004 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
2005 | ENDDO |
---|
2006 | |
---|
2007 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
2008 | trig_yb, work1, 0 ) |
---|
2009 | |
---|
2010 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
2011 | |
---|
2012 | ENDIF |
---|
2013 | |
---|
2014 | DEALLOCATE( work ) |
---|
2015 | #endif |
---|
2016 | |
---|
2017 | ENDIF |
---|
2018 | |
---|
2019 | END SUBROUTINE fft_y_m |
---|
2020 | |
---|
2021 | |
---|
2022 | END MODULE fft_xy |
---|