1 | !> @file fft_xy_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: fft_xy_mod.f90 3655 2019-01-07 16:51:22Z eckhard $ |
---|
27 | ! OpenACC port for SPEC |
---|
28 | ! |
---|
29 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
30 | ! preprocessor switches for variables that are required on NEC only |
---|
31 | ! |
---|
32 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
33 | ! Error messages revised |
---|
34 | ! |
---|
35 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
36 | ! Corrected "Former revisions" section |
---|
37 | ! |
---|
38 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
39 | ! Change in file header (GPL part) |
---|
40 | ! |
---|
41 | ! 2300 2017-06-29 13:31:14Z raasch |
---|
42 | ! NEC related code partly removed, host replaced by loop_optimization |
---|
43 | ! |
---|
44 | ! 2274 2017-06-09 13:27:48Z Giersch |
---|
45 | ! Changed error messages |
---|
46 | ! |
---|
47 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
48 | ! |
---|
49 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
50 | ! OpenACC directives and CUDA-fft related code removed |
---|
51 | ! |
---|
52 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
53 | ! Forced header and separation lines into 80 columns |
---|
54 | ! |
---|
55 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
56 | ! Module renamed |
---|
57 | ! |
---|
58 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
59 | ! cpp-directives for ibmy removed |
---|
60 | ! |
---|
61 | ! 1749 2016-02-09 12:19:56Z raasch |
---|
62 | ! small OpenACC bugfix |
---|
63 | ! |
---|
64 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
65 | ! Code annotations made doxygen readable |
---|
66 | ! |
---|
67 | ! 1600 2015-06-11 15:50:12Z raasch |
---|
68 | ! bugfix: openMP threadprivate statement moved after variable declaration |
---|
69 | ! |
---|
70 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
71 | ! cudafft workaround for data declaration of ar_tmp because of PGI 14.1 bug |
---|
72 | ! |
---|
73 | ! 1402 2014-05-09 14:25:13Z raasch |
---|
74 | ! fortran bugfix for r1392 |
---|
75 | ! |
---|
76 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
77 | ! bugfix: typo removed for KIND in CMPLX function |
---|
78 | ! |
---|
79 | ! 1392 2014-05-06 09:10:05Z raasch |
---|
80 | ! bugfix: KIND attribute added to CMPLX functions |
---|
81 | ! |
---|
82 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
83 | ! bugfixes: missing variables added to ONLY list, dpk renamed dp |
---|
84 | ! |
---|
85 | ! 1372 2014-04-24 06:29:32Z raasch |
---|
86 | ! openMP-bugfix for fftw: some arrays defined as threadprivate |
---|
87 | ! |
---|
88 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
89 | ! REAL constants provided with KIND-attribute |
---|
90 | ! |
---|
91 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
92 | ! REAL constants defined as wp-kind |
---|
93 | ! |
---|
94 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
95 | ! REAL functions provided with KIND-attribute |
---|
96 | ! |
---|
97 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
98 | ! ONLY-attribute added to USE-statements, |
---|
99 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
100 | ! kinds are defined in new module kinds, |
---|
101 | ! old module precision_kind is removed, |
---|
102 | ! revision history before 2012 removed, |
---|
103 | ! comment fields (!:) to be used for variable explanations added to |
---|
104 | ! all variable declaration statements |
---|
105 | ! |
---|
106 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
107 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
108 | ! |
---|
109 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
110 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
111 | ! the FORTRAN declaration statement |
---|
112 | ! |
---|
113 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
114 | ! bugfix: use own branch for fftw |
---|
115 | ! |
---|
116 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
117 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
118 | ! transpositions, |
---|
119 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
120 | ! |
---|
121 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
122 | ! fftw added |
---|
123 | ! |
---|
124 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
125 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
126 | ! |
---|
127 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
128 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
129 | ! |
---|
130 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
131 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
132 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
133 | ! used total domain) |
---|
134 | ! |
---|
135 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
136 | ! CUDA fft added |
---|
137 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
138 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
139 | ! |
---|
140 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
141 | ! variable sizw declared for NEC case only |
---|
142 | ! |
---|
143 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
144 | ! code put under GPL (PALM 3.9) |
---|
145 | ! |
---|
146 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
147 | ! Initial revision |
---|
148 | ! |
---|
149 | ! |
---|
150 | ! Description: |
---|
151 | ! ------------ |
---|
152 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
153 | !> Original version: Klaus Ketelsen (May 2002) |
---|
154 | !------------------------------------------------------------------------------! |
---|
155 | MODULE fft_xy |
---|
156 | |
---|
157 | |
---|
158 | USE control_parameters, & |
---|
159 | ONLY: fft_method, message_string |
---|
160 | |
---|
161 | USE cuda_fft_interfaces |
---|
162 | |
---|
163 | USE indices, & |
---|
164 | ONLY: nx, ny, nz |
---|
165 | |
---|
166 | #if defined( __cuda_fft ) |
---|
167 | USE ISO_C_BINDING |
---|
168 | #elif defined( __fftw ) |
---|
169 | USE, INTRINSIC :: ISO_C_BINDING |
---|
170 | #endif |
---|
171 | |
---|
172 | USE kinds |
---|
173 | |
---|
174 | USE singleton, & |
---|
175 | ONLY: fftn |
---|
176 | |
---|
177 | USE temperton_fft |
---|
178 | |
---|
179 | USE transpose_indices, & |
---|
180 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
181 | |
---|
182 | IMPLICIT NONE |
---|
183 | |
---|
184 | PRIVATE |
---|
185 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
186 | |
---|
187 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
188 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
189 | |
---|
190 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
191 | |
---|
192 | REAL(wp), SAVE :: dnx !< |
---|
193 | REAL(wp), SAVE :: dny !< |
---|
194 | REAL(wp), SAVE :: sqr_dnx !< |
---|
195 | REAL(wp), SAVE :: sqr_dny !< |
---|
196 | |
---|
197 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
198 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
199 | |
---|
200 | #if defined( __ibm ) |
---|
201 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
202 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
203 | ! |
---|
204 | !-- The following working arrays contain tables and have to be "save" and |
---|
205 | !-- shared in OpenMP sense |
---|
206 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
207 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
208 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
209 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
210 | |
---|
211 | #elif defined( __nec ) |
---|
212 | INTEGER(iwp), SAVE :: nz1 !< |
---|
213 | |
---|
214 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
215 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
216 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
217 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
218 | |
---|
219 | #elif defined( __cuda_fft ) |
---|
220 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
221 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
222 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
223 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
224 | |
---|
225 | #endif |
---|
226 | |
---|
227 | #if defined( __fftw ) |
---|
228 | INCLUDE 'fftw3.f03' |
---|
229 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
230 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
231 | |
---|
232 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
233 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
234 | y_out !< |
---|
235 | |
---|
236 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
237 | x_in !< |
---|
238 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
239 | y_in !< |
---|
240 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
241 | |
---|
242 | |
---|
243 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
244 | #endif |
---|
245 | |
---|
246 | ! |
---|
247 | !-- Public interfaces |
---|
248 | INTERFACE fft_init |
---|
249 | MODULE PROCEDURE fft_init |
---|
250 | END INTERFACE fft_init |
---|
251 | |
---|
252 | INTERFACE fft_x |
---|
253 | MODULE PROCEDURE fft_x |
---|
254 | END INTERFACE fft_x |
---|
255 | |
---|
256 | INTERFACE fft_x_1d |
---|
257 | MODULE PROCEDURE fft_x_1d |
---|
258 | END INTERFACE fft_x_1d |
---|
259 | |
---|
260 | INTERFACE fft_y |
---|
261 | MODULE PROCEDURE fft_y |
---|
262 | END INTERFACE fft_y |
---|
263 | |
---|
264 | INTERFACE fft_y_1d |
---|
265 | MODULE PROCEDURE fft_y_1d |
---|
266 | END INTERFACE fft_y_1d |
---|
267 | |
---|
268 | INTERFACE fft_x_m |
---|
269 | MODULE PROCEDURE fft_x_m |
---|
270 | END INTERFACE fft_x_m |
---|
271 | |
---|
272 | INTERFACE fft_y_m |
---|
273 | MODULE PROCEDURE fft_y_m |
---|
274 | END INTERFACE fft_y_m |
---|
275 | |
---|
276 | CONTAINS |
---|
277 | |
---|
278 | |
---|
279 | !------------------------------------------------------------------------------! |
---|
280 | ! Description: |
---|
281 | ! ------------ |
---|
282 | !> @todo Missing subroutine description. |
---|
283 | !------------------------------------------------------------------------------! |
---|
284 | SUBROUTINE fft_init |
---|
285 | |
---|
286 | IMPLICIT NONE |
---|
287 | |
---|
288 | ! |
---|
289 | !-- The following temporary working arrays have to be on stack or private |
---|
290 | !-- in OpenMP sense |
---|
291 | #if defined( __ibm ) |
---|
292 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
293 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
294 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
295 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
296 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
297 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
298 | #elif defined( __nec ) |
---|
299 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
300 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
301 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
302 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
303 | #endif |
---|
304 | |
---|
305 | ! |
---|
306 | !-- Return, if already called |
---|
307 | IF ( init_fft ) THEN |
---|
308 | RETURN |
---|
309 | ELSE |
---|
310 | init_fft = .TRUE. |
---|
311 | ENDIF |
---|
312 | |
---|
313 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
314 | fft_method = 'system-specific' |
---|
315 | #endif |
---|
316 | |
---|
317 | IF ( fft_method == 'system-specific' ) THEN |
---|
318 | |
---|
319 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
320 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
321 | sqr_dnx = SQRT( dnx ) |
---|
322 | sqr_dny = SQRT( dny ) |
---|
323 | #if defined( __ibm ) |
---|
324 | ! |
---|
325 | !-- Initialize tables for fft along x |
---|
326 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
327 | aux2, nau2 ) |
---|
328 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
329 | aux4, nau2 ) |
---|
330 | ! |
---|
331 | !-- Initialize tables for fft along y |
---|
332 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
333 | auy2, nau2 ) |
---|
334 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
335 | auy4, nau2 ) |
---|
336 | #elif defined( __nec ) |
---|
337 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
338 | '" currently does not work on NEC' |
---|
339 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
340 | |
---|
341 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
342 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
343 | |
---|
344 | work_x = 0.0_wp |
---|
345 | work_y = 0.0_wp |
---|
346 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
347 | ! when using the NEC ffts |
---|
348 | |
---|
349 | ! |
---|
350 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
351 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
352 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
353 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
354 | trig_xf, workx, 0 ) |
---|
355 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
356 | trig_xb, workx, 0 ) |
---|
357 | ! |
---|
358 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
359 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
360 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
361 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
362 | trig_yf, worky, 0 ) |
---|
363 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
364 | trig_yb, worky, 0 ) |
---|
365 | #elif defined( __cuda_fft ) |
---|
366 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
367 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
368 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
369 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
370 | #else |
---|
371 | message_string = 'no system-specific fft-call available' |
---|
372 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
373 | #endif |
---|
374 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
375 | ! |
---|
376 | !-- Temperton-algorithm |
---|
377 | !-- Initialize tables for fft along x and y |
---|
378 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
379 | |
---|
380 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
381 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
382 | |
---|
383 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
384 | ! |
---|
385 | !-- FFTW |
---|
386 | #if defined( __fftw ) |
---|
387 | nx_c = nx+1 |
---|
388 | ny_c = ny+1 |
---|
389 | !$OMP PARALLEL |
---|
390 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
391 | y_out(0:(ny+1)/2) ) |
---|
392 | !$OMP END PARALLEL |
---|
393 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
394 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
395 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
396 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
397 | #else |
---|
398 | message_string = 'preprocessor switch for fftw is missing' |
---|
399 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
400 | #endif |
---|
401 | |
---|
402 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
403 | |
---|
404 | CONTINUE |
---|
405 | |
---|
406 | ELSE |
---|
407 | |
---|
408 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
409 | '" not available' |
---|
410 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
411 | ENDIF |
---|
412 | |
---|
413 | END SUBROUTINE fft_init |
---|
414 | |
---|
415 | |
---|
416 | !------------------------------------------------------------------------------! |
---|
417 | ! Description: |
---|
418 | ! ------------ |
---|
419 | !> Fourier-transformation along x-direction. |
---|
420 | !> Version for 2D-decomposition. |
---|
421 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
422 | !> system-specific routines, if they are available |
---|
423 | !------------------------------------------------------------------------------! |
---|
424 | |
---|
425 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
426 | |
---|
427 | |
---|
428 | IMPLICIT NONE |
---|
429 | |
---|
430 | CHARACTER (LEN=*) :: direction !< |
---|
431 | |
---|
432 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
433 | |
---|
434 | INTEGER(iwp) :: i !< |
---|
435 | INTEGER(iwp) :: ishape(1) !< |
---|
436 | INTEGER(iwp) :: j !< |
---|
437 | INTEGER(iwp) :: k !< |
---|
438 | |
---|
439 | LOGICAL :: forward_fft !< |
---|
440 | |
---|
441 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
442 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
443 | |
---|
444 | #if defined( __ibm ) |
---|
445 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
446 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
447 | #elif defined( __nec ) |
---|
448 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
449 | #elif defined( __cuda_fft ) |
---|
450 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
451 | ar_tmp !< |
---|
452 | !$ACC DECLARE CREATE(ar_tmp) |
---|
453 | #endif |
---|
454 | |
---|
455 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
456 | ar_2d !< |
---|
457 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
458 | ar !< |
---|
459 | |
---|
460 | IF ( direction == 'forward' ) THEN |
---|
461 | forward_fft = .TRUE. |
---|
462 | ELSE |
---|
463 | forward_fft = .FALSE. |
---|
464 | ENDIF |
---|
465 | |
---|
466 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Performing the fft with singleton's software works on every system, |
---|
470 | !-- since it is part of the model |
---|
471 | ALLOCATE( cwork(0:nx) ) |
---|
472 | |
---|
473 | IF ( forward_fft ) then |
---|
474 | |
---|
475 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
476 | !$OMP DO |
---|
477 | DO k = nzb_x, nzt_x |
---|
478 | DO j = nys_x, nyn_x |
---|
479 | |
---|
480 | DO i = 0, nx |
---|
481 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
482 | ENDDO |
---|
483 | |
---|
484 | ishape = SHAPE( cwork ) |
---|
485 | CALL FFTN( cwork, ishape ) |
---|
486 | |
---|
487 | DO i = 0, (nx+1)/2 |
---|
488 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
489 | ENDDO |
---|
490 | DO i = 1, (nx+1)/2 - 1 |
---|
491 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
492 | ENDDO |
---|
493 | |
---|
494 | ENDDO |
---|
495 | ENDDO |
---|
496 | !$OMP END PARALLEL |
---|
497 | |
---|
498 | ELSE |
---|
499 | |
---|
500 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
501 | !$OMP DO |
---|
502 | DO k = nzb_x, nzt_x |
---|
503 | DO j = nys_x, nyn_x |
---|
504 | |
---|
505 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
506 | DO i = 1, (nx+1)/2 - 1 |
---|
507 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
508 | KIND=wp ) |
---|
509 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
510 | KIND=wp ) |
---|
511 | ENDDO |
---|
512 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
513 | |
---|
514 | ishape = SHAPE( cwork ) |
---|
515 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
516 | |
---|
517 | DO i = 0, nx |
---|
518 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
519 | ENDDO |
---|
520 | |
---|
521 | ENDDO |
---|
522 | ENDDO |
---|
523 | !$OMP END PARALLEL |
---|
524 | |
---|
525 | ENDIF |
---|
526 | |
---|
527 | DEALLOCATE( cwork ) |
---|
528 | |
---|
529 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Performing the fft with Temperton's software works on every system, |
---|
533 | !-- since it is part of the model |
---|
534 | IF ( forward_fft ) THEN |
---|
535 | |
---|
536 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
537 | !$OMP DO |
---|
538 | DO k = nzb_x, nzt_x |
---|
539 | DO j = nys_x, nyn_x |
---|
540 | |
---|
541 | work(0:nx) = ar(0:nx,j,k) |
---|
542 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
543 | |
---|
544 | DO i = 0, (nx+1)/2 |
---|
545 | ar(i,j,k) = work(2*i) |
---|
546 | ENDDO |
---|
547 | DO i = 1, (nx+1)/2 - 1 |
---|
548 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
549 | ENDDO |
---|
550 | |
---|
551 | ENDDO |
---|
552 | ENDDO |
---|
553 | !$OMP END PARALLEL |
---|
554 | |
---|
555 | ELSE |
---|
556 | |
---|
557 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
558 | !$OMP DO |
---|
559 | DO k = nzb_x, nzt_x |
---|
560 | DO j = nys_x, nyn_x |
---|
561 | |
---|
562 | DO i = 0, (nx+1)/2 |
---|
563 | work(2*i) = ar(i,j,k) |
---|
564 | ENDDO |
---|
565 | DO i = 1, (nx+1)/2 - 1 |
---|
566 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
567 | ENDDO |
---|
568 | work(1) = 0.0_wp |
---|
569 | work(nx+2) = 0.0_wp |
---|
570 | |
---|
571 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
572 | ar(0:nx,j,k) = work(0:nx) |
---|
573 | |
---|
574 | ENDDO |
---|
575 | ENDDO |
---|
576 | !$OMP END PARALLEL |
---|
577 | |
---|
578 | ENDIF |
---|
579 | |
---|
580 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
581 | |
---|
582 | #if defined( __fftw ) |
---|
583 | IF ( forward_fft ) THEN |
---|
584 | |
---|
585 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
586 | !$OMP DO |
---|
587 | DO k = nzb_x, nzt_x |
---|
588 | DO j = nys_x, nyn_x |
---|
589 | |
---|
590 | x_in(0:nx) = ar(0:nx,j,k) |
---|
591 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
592 | |
---|
593 | IF ( PRESENT( ar_2d ) ) THEN |
---|
594 | |
---|
595 | DO i = 0, (nx+1)/2 |
---|
596 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
597 | ENDDO |
---|
598 | DO i = 1, (nx+1)/2 - 1 |
---|
599 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
600 | ENDDO |
---|
601 | |
---|
602 | ELSE |
---|
603 | |
---|
604 | DO i = 0, (nx+1)/2 |
---|
605 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
606 | ENDDO |
---|
607 | DO i = 1, (nx+1)/2 - 1 |
---|
608 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
609 | ENDDO |
---|
610 | |
---|
611 | ENDIF |
---|
612 | |
---|
613 | ENDDO |
---|
614 | ENDDO |
---|
615 | !$OMP END PARALLEL |
---|
616 | |
---|
617 | ELSE |
---|
618 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
619 | !$OMP DO |
---|
620 | DO k = nzb_x, nzt_x |
---|
621 | DO j = nys_x, nyn_x |
---|
622 | |
---|
623 | IF ( PRESENT( ar_2d ) ) THEN |
---|
624 | |
---|
625 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
626 | DO i = 1, (nx+1)/2 - 1 |
---|
627 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
628 | KIND=wp ) |
---|
629 | ENDDO |
---|
630 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
631 | KIND=wp ) |
---|
632 | |
---|
633 | ELSE |
---|
634 | |
---|
635 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
636 | DO i = 1, (nx+1)/2 - 1 |
---|
637 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
638 | ENDDO |
---|
639 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
640 | KIND=wp ) |
---|
641 | |
---|
642 | ENDIF |
---|
643 | |
---|
644 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
645 | ar(0:nx,j,k) = x_in(0:nx) |
---|
646 | |
---|
647 | ENDDO |
---|
648 | ENDDO |
---|
649 | !$OMP END PARALLEL |
---|
650 | |
---|
651 | ENDIF |
---|
652 | #endif |
---|
653 | |
---|
654 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
655 | |
---|
656 | #if defined( __ibm ) |
---|
657 | IF ( forward_fft ) THEN |
---|
658 | |
---|
659 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
660 | !$OMP DO |
---|
661 | DO k = nzb_x, nzt_x |
---|
662 | DO j = nys_x, nyn_x |
---|
663 | |
---|
664 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
665 | nau1, aux2, nau2 ) |
---|
666 | |
---|
667 | DO i = 0, (nx+1)/2 |
---|
668 | ar(i,j,k) = work(2*i) |
---|
669 | ENDDO |
---|
670 | DO i = 1, (nx+1)/2 - 1 |
---|
671 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
672 | ENDDO |
---|
673 | |
---|
674 | ENDDO |
---|
675 | ENDDO |
---|
676 | !$OMP END PARALLEL |
---|
677 | |
---|
678 | ELSE |
---|
679 | |
---|
680 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
681 | !$OMP DO |
---|
682 | DO k = nzb_x, nzt_x |
---|
683 | DO j = nys_x, nyn_x |
---|
684 | |
---|
685 | DO i = 0, (nx+1)/2 |
---|
686 | work(2*i) = ar(i,j,k) |
---|
687 | ENDDO |
---|
688 | DO i = 1, (nx+1)/2 - 1 |
---|
689 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
690 | ENDDO |
---|
691 | work(1) = 0.0_wp |
---|
692 | work(nx+2) = 0.0_wp |
---|
693 | |
---|
694 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
695 | aux3, nau1, aux4, nau2 ) |
---|
696 | |
---|
697 | DO i = 0, nx |
---|
698 | ar(i,j,k) = work(i) |
---|
699 | ENDDO |
---|
700 | |
---|
701 | ENDDO |
---|
702 | ENDDO |
---|
703 | !$OMP END PARALLEL |
---|
704 | |
---|
705 | ENDIF |
---|
706 | |
---|
707 | #elif defined( __nec ) |
---|
708 | |
---|
709 | IF ( forward_fft ) THEN |
---|
710 | |
---|
711 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
712 | !$OMP DO |
---|
713 | DO k = nzb_x, nzt_x |
---|
714 | DO j = nys_x, nyn_x |
---|
715 | |
---|
716 | work(0:nx) = ar(0:nx,j,k) |
---|
717 | |
---|
718 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
719 | |
---|
720 | DO i = 0, (nx+1)/2 |
---|
721 | ar(i,j,k) = work(2*i) |
---|
722 | ENDDO |
---|
723 | DO i = 1, (nx+1)/2 - 1 |
---|
724 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
725 | ENDDO |
---|
726 | |
---|
727 | ENDDO |
---|
728 | ENDDO |
---|
729 | !$END OMP PARALLEL |
---|
730 | |
---|
731 | ELSE |
---|
732 | |
---|
733 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
734 | !$OMP DO |
---|
735 | DO k = nzb_x, nzt_x |
---|
736 | DO j = nys_x, nyn_x |
---|
737 | |
---|
738 | DO i = 0, (nx+1)/2 |
---|
739 | work(2*i) = ar(i,j,k) |
---|
740 | ENDDO |
---|
741 | DO i = 1, (nx+1)/2 - 1 |
---|
742 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
743 | ENDDO |
---|
744 | work(1) = 0.0_wp |
---|
745 | work(nx+2) = 0.0_wp |
---|
746 | |
---|
747 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
748 | |
---|
749 | ar(0:nx,j,k) = work(0:nx) |
---|
750 | |
---|
751 | ENDDO |
---|
752 | ENDDO |
---|
753 | !$OMP END PARALLEL |
---|
754 | |
---|
755 | ENDIF |
---|
756 | |
---|
757 | #elif defined( __cuda_fft ) |
---|
758 | |
---|
759 | IF ( forward_fft ) THEN |
---|
760 | |
---|
761 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
762 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
763 | !$ACC END HOST_DATA |
---|
764 | |
---|
765 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
766 | !$ACC PRESENT(ar, ar_tmp) |
---|
767 | DO k = nzb_x, nzt_x |
---|
768 | DO j = nys_x, nyn_x |
---|
769 | |
---|
770 | DO i = 0, (nx+1)/2 |
---|
771 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
772 | ENDDO |
---|
773 | |
---|
774 | DO i = 1, (nx+1)/2 - 1 |
---|
775 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
776 | ENDDO |
---|
777 | |
---|
778 | ENDDO |
---|
779 | ENDDO |
---|
780 | |
---|
781 | ELSE |
---|
782 | |
---|
783 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
784 | !$ACC PRESENT(ar, ar_tmp) |
---|
785 | DO k = nzb_x, nzt_x |
---|
786 | DO j = nys_x, nyn_x |
---|
787 | |
---|
788 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
789 | |
---|
790 | DO i = 1, (nx+1)/2 - 1 |
---|
791 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
792 | KIND=wp ) |
---|
793 | ENDDO |
---|
794 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
795 | KIND=wp ) |
---|
796 | |
---|
797 | ENDDO |
---|
798 | ENDDO |
---|
799 | |
---|
800 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
801 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
802 | !$ACC END HOST_DATA |
---|
803 | |
---|
804 | ENDIF |
---|
805 | |
---|
806 | #endif |
---|
807 | |
---|
808 | ENDIF |
---|
809 | |
---|
810 | END SUBROUTINE fft_x |
---|
811 | |
---|
812 | !------------------------------------------------------------------------------! |
---|
813 | ! Description: |
---|
814 | ! ------------ |
---|
815 | !> Fourier-transformation along x-direction. |
---|
816 | !> Version for 1D-decomposition. |
---|
817 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
818 | !> system-specific routines, if they are available |
---|
819 | !------------------------------------------------------------------------------! |
---|
820 | |
---|
821 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
822 | |
---|
823 | |
---|
824 | IMPLICIT NONE |
---|
825 | |
---|
826 | CHARACTER (LEN=*) :: direction !< |
---|
827 | |
---|
828 | INTEGER(iwp) :: i !< |
---|
829 | INTEGER(iwp) :: ishape(1) !< |
---|
830 | |
---|
831 | LOGICAL :: forward_fft !< |
---|
832 | |
---|
833 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
834 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
835 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
836 | |
---|
837 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
838 | |
---|
839 | #if defined( __ibm ) |
---|
840 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
841 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
842 | #elif defined( __nec ) |
---|
843 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
844 | #endif |
---|
845 | |
---|
846 | IF ( direction == 'forward' ) THEN |
---|
847 | forward_fft = .TRUE. |
---|
848 | ELSE |
---|
849 | forward_fft = .FALSE. |
---|
850 | ENDIF |
---|
851 | |
---|
852 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
853 | |
---|
854 | ! |
---|
855 | !-- Performing the fft with singleton's software works on every system, |
---|
856 | !-- since it is part of the model |
---|
857 | ALLOCATE( cwork(0:nx) ) |
---|
858 | |
---|
859 | IF ( forward_fft ) then |
---|
860 | |
---|
861 | DO i = 0, nx |
---|
862 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
863 | ENDDO |
---|
864 | ishape = SHAPE( cwork ) |
---|
865 | CALL FFTN( cwork, ishape ) |
---|
866 | DO i = 0, (nx+1)/2 |
---|
867 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
868 | ENDDO |
---|
869 | DO i = 1, (nx+1)/2 - 1 |
---|
870 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
871 | ENDDO |
---|
872 | |
---|
873 | ELSE |
---|
874 | |
---|
875 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
876 | DO i = 1, (nx+1)/2 - 1 |
---|
877 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
878 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
879 | ENDDO |
---|
880 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
881 | |
---|
882 | ishape = SHAPE( cwork ) |
---|
883 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
884 | |
---|
885 | DO i = 0, nx |
---|
886 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
887 | ENDDO |
---|
888 | |
---|
889 | ENDIF |
---|
890 | |
---|
891 | DEALLOCATE( cwork ) |
---|
892 | |
---|
893 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
894 | |
---|
895 | ! |
---|
896 | !-- Performing the fft with Temperton's software works on every system, |
---|
897 | !-- since it is part of the model |
---|
898 | IF ( forward_fft ) THEN |
---|
899 | |
---|
900 | work(0:nx) = ar |
---|
901 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
902 | |
---|
903 | DO i = 0, (nx+1)/2 |
---|
904 | ar(i) = work(2*i) |
---|
905 | ENDDO |
---|
906 | DO i = 1, (nx+1)/2 - 1 |
---|
907 | ar(nx+1-i) = work(2*i+1) |
---|
908 | ENDDO |
---|
909 | |
---|
910 | ELSE |
---|
911 | |
---|
912 | DO i = 0, (nx+1)/2 |
---|
913 | work(2*i) = ar(i) |
---|
914 | ENDDO |
---|
915 | DO i = 1, (nx+1)/2 - 1 |
---|
916 | work(2*i+1) = ar(nx+1-i) |
---|
917 | ENDDO |
---|
918 | work(1) = 0.0_wp |
---|
919 | work(nx+2) = 0.0_wp |
---|
920 | |
---|
921 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
922 | ar = work(0:nx) |
---|
923 | |
---|
924 | ENDIF |
---|
925 | |
---|
926 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
927 | |
---|
928 | #if defined( __fftw ) |
---|
929 | IF ( forward_fft ) THEN |
---|
930 | |
---|
931 | x_in(0:nx) = ar(0:nx) |
---|
932 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
933 | |
---|
934 | DO i = 0, (nx+1)/2 |
---|
935 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
936 | ENDDO |
---|
937 | DO i = 1, (nx+1)/2 - 1 |
---|
938 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
939 | ENDDO |
---|
940 | |
---|
941 | ELSE |
---|
942 | |
---|
943 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
944 | DO i = 1, (nx+1)/2 - 1 |
---|
945 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
946 | ENDDO |
---|
947 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
948 | |
---|
949 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
950 | ar(0:nx) = x_in(0:nx) |
---|
951 | |
---|
952 | ENDIF |
---|
953 | #endif |
---|
954 | |
---|
955 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
956 | |
---|
957 | #if defined( __ibm ) |
---|
958 | IF ( forward_fft ) THEN |
---|
959 | |
---|
960 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
961 | aux2, nau2 ) |
---|
962 | |
---|
963 | DO i = 0, (nx+1)/2 |
---|
964 | ar(i) = work(2*i) |
---|
965 | ENDDO |
---|
966 | DO i = 1, (nx+1)/2 - 1 |
---|
967 | ar(nx+1-i) = work(2*i+1) |
---|
968 | ENDDO |
---|
969 | |
---|
970 | ELSE |
---|
971 | |
---|
972 | DO i = 0, (nx+1)/2 |
---|
973 | work(2*i) = ar(i) |
---|
974 | ENDDO |
---|
975 | DO i = 1, (nx+1)/2 - 1 |
---|
976 | work(2*i+1) = ar(nx+1-i) |
---|
977 | ENDDO |
---|
978 | work(1) = 0.0_wp |
---|
979 | work(nx+2) = 0.0_wp |
---|
980 | |
---|
981 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
982 | aux4, nau2 ) |
---|
983 | |
---|
984 | DO i = 0, nx |
---|
985 | ar(i) = work(i) |
---|
986 | ENDDO |
---|
987 | |
---|
988 | ENDIF |
---|
989 | #elif defined( __nec ) |
---|
990 | IF ( forward_fft ) THEN |
---|
991 | |
---|
992 | work(0:nx) = ar(0:nx) |
---|
993 | |
---|
994 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
995 | |
---|
996 | DO i = 0, (nx+1)/2 |
---|
997 | ar(i) = work(2*i) |
---|
998 | ENDDO |
---|
999 | DO i = 1, (nx+1)/2 - 1 |
---|
1000 | ar(nx+1-i) = work(2*i+1) |
---|
1001 | ENDDO |
---|
1002 | |
---|
1003 | ELSE |
---|
1004 | |
---|
1005 | DO i = 0, (nx+1)/2 |
---|
1006 | work(2*i) = ar(i) |
---|
1007 | ENDDO |
---|
1008 | DO i = 1, (nx+1)/2 - 1 |
---|
1009 | work(2*i+1) = ar(nx+1-i) |
---|
1010 | ENDDO |
---|
1011 | work(1) = 0.0_wp |
---|
1012 | work(nx+2) = 0.0_wp |
---|
1013 | |
---|
1014 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
1015 | |
---|
1016 | ar(0:nx) = work(0:nx) |
---|
1017 | |
---|
1018 | ENDIF |
---|
1019 | #endif |
---|
1020 | |
---|
1021 | ENDIF |
---|
1022 | |
---|
1023 | END SUBROUTINE fft_x_1d |
---|
1024 | |
---|
1025 | !------------------------------------------------------------------------------! |
---|
1026 | ! Description: |
---|
1027 | ! ------------ |
---|
1028 | !> Fourier-transformation along y-direction. |
---|
1029 | !> Version for 2D-decomposition. |
---|
1030 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
1031 | !> system-specific routines, if they are available. |
---|
1032 | !> |
---|
1033 | !> direction: 'forward' or 'backward' |
---|
1034 | !> ar, ar_tr: 3D data arrays |
---|
1035 | !> forward: ar: before ar_tr: after transformation |
---|
1036 | !> backward: ar_tr: before ar: after transfosition |
---|
1037 | !> |
---|
1038 | !> In case of non-overlapping transposition/transformation: |
---|
1039 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
1040 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
1041 | !> |
---|
1042 | !> In case of overlapping transposition/transformation |
---|
1043 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
1044 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
1045 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
1046 | !> transformation is carried out for a 2D-plane only. |
---|
1047 | !------------------------------------------------------------------------------! |
---|
1048 | |
---|
1049 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
1050 | nxr_y_l ) |
---|
1051 | |
---|
1052 | |
---|
1053 | IMPLICIT NONE |
---|
1054 | |
---|
1055 | CHARACTER (LEN=*) :: direction !< |
---|
1056 | |
---|
1057 | INTEGER(iwp) :: i !< |
---|
1058 | INTEGER(iwp) :: j !< |
---|
1059 | INTEGER(iwp) :: jshape(1) !< |
---|
1060 | INTEGER(iwp) :: k !< |
---|
1061 | INTEGER(iwp) :: nxl_y_bound !< |
---|
1062 | INTEGER(iwp) :: nxl_y_l !< |
---|
1063 | INTEGER(iwp) :: nxr_y_bound !< |
---|
1064 | INTEGER(iwp) :: nxr_y_l !< |
---|
1065 | |
---|
1066 | LOGICAL :: forward_fft !< |
---|
1067 | |
---|
1068 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
1069 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
1070 | |
---|
1071 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
1072 | |
---|
1073 | #if defined( __ibm ) |
---|
1074 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
1075 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
1076 | #elif defined( __nec ) |
---|
1077 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
1078 | #elif defined( __cuda_fft ) |
---|
1079 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
1080 | ar_tmp !< |
---|
1081 | !$ACC DECLARE CREATE(ar_tmp) |
---|
1082 | #endif |
---|
1083 | |
---|
1084 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
1085 | ar !< |
---|
1086 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
1087 | ar_tr !< |
---|
1088 | |
---|
1089 | IF ( direction == 'forward' ) THEN |
---|
1090 | forward_fft = .TRUE. |
---|
1091 | ELSE |
---|
1092 | forward_fft = .FALSE. |
---|
1093 | ENDIF |
---|
1094 | |
---|
1095 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
1096 | |
---|
1097 | ! |
---|
1098 | !-- Performing the fft with singleton's software works on every system, |
---|
1099 | !-- since it is part of the model |
---|
1100 | ALLOCATE( cwork(0:ny) ) |
---|
1101 | |
---|
1102 | IF ( forward_fft ) then |
---|
1103 | |
---|
1104 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
1105 | !$OMP DO |
---|
1106 | DO k = nzb_y, nzt_y |
---|
1107 | DO i = nxl_y_l, nxr_y_l |
---|
1108 | |
---|
1109 | DO j = 0, ny |
---|
1110 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
1111 | ENDDO |
---|
1112 | |
---|
1113 | jshape = SHAPE( cwork ) |
---|
1114 | CALL FFTN( cwork, jshape ) |
---|
1115 | |
---|
1116 | DO j = 0, (ny+1)/2 |
---|
1117 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
1118 | ENDDO |
---|
1119 | DO j = 1, (ny+1)/2 - 1 |
---|
1120 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
1121 | ENDDO |
---|
1122 | |
---|
1123 | ENDDO |
---|
1124 | ENDDO |
---|
1125 | !$OMP END PARALLEL |
---|
1126 | |
---|
1127 | ELSE |
---|
1128 | |
---|
1129 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
1130 | !$OMP DO |
---|
1131 | DO k = nzb_y, nzt_y |
---|
1132 | DO i = nxl_y_l, nxr_y_l |
---|
1133 | |
---|
1134 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
1135 | DO j = 1, (ny+1)/2 - 1 |
---|
1136 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
1137 | KIND=wp ) |
---|
1138 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
1139 | KIND=wp ) |
---|
1140 | ENDDO |
---|
1141 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
1142 | KIND=wp ) |
---|
1143 | |
---|
1144 | jshape = SHAPE( cwork ) |
---|
1145 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1146 | |
---|
1147 | DO j = 0, ny |
---|
1148 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
1149 | ENDDO |
---|
1150 | |
---|
1151 | ENDDO |
---|
1152 | ENDDO |
---|
1153 | !$OMP END PARALLEL |
---|
1154 | |
---|
1155 | ENDIF |
---|
1156 | |
---|
1157 | DEALLOCATE( cwork ) |
---|
1158 | |
---|
1159 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1160 | |
---|
1161 | ! |
---|
1162 | !-- Performing the fft with Temperton's software works on every system, |
---|
1163 | !-- since it is part of the model |
---|
1164 | IF ( forward_fft ) THEN |
---|
1165 | |
---|
1166 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
1167 | !$OMP DO |
---|
1168 | DO k = nzb_y, nzt_y |
---|
1169 | DO i = nxl_y_l, nxr_y_l |
---|
1170 | |
---|
1171 | work(0:ny) = ar(0:ny,i,k) |
---|
1172 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1173 | |
---|
1174 | DO j = 0, (ny+1)/2 |
---|
1175 | ar_tr(j,i,k) = work(2*j) |
---|
1176 | ENDDO |
---|
1177 | DO j = 1, (ny+1)/2 - 1 |
---|
1178 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1179 | ENDDO |
---|
1180 | |
---|
1181 | ENDDO |
---|
1182 | ENDDO |
---|
1183 | !$OMP END PARALLEL |
---|
1184 | |
---|
1185 | ELSE |
---|
1186 | |
---|
1187 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
1188 | !$OMP DO |
---|
1189 | DO k = nzb_y, nzt_y |
---|
1190 | DO i = nxl_y_l, nxr_y_l |
---|
1191 | |
---|
1192 | DO j = 0, (ny+1)/2 |
---|
1193 | work(2*j) = ar_tr(j,i,k) |
---|
1194 | ENDDO |
---|
1195 | DO j = 1, (ny+1)/2 - 1 |
---|
1196 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1197 | ENDDO |
---|
1198 | work(1) = 0.0_wp |
---|
1199 | work(ny+2) = 0.0_wp |
---|
1200 | |
---|
1201 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1202 | ar(0:ny,i,k) = work(0:ny) |
---|
1203 | |
---|
1204 | ENDDO |
---|
1205 | ENDDO |
---|
1206 | !$OMP END PARALLEL |
---|
1207 | |
---|
1208 | ENDIF |
---|
1209 | |
---|
1210 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1211 | |
---|
1212 | #if defined( __fftw ) |
---|
1213 | IF ( forward_fft ) THEN |
---|
1214 | |
---|
1215 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1216 | !$OMP DO |
---|
1217 | DO k = nzb_y, nzt_y |
---|
1218 | DO i = nxl_y_l, nxr_y_l |
---|
1219 | |
---|
1220 | y_in(0:ny) = ar(0:ny,i,k) |
---|
1221 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1222 | |
---|
1223 | DO j = 0, (ny+1)/2 |
---|
1224 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
1225 | ENDDO |
---|
1226 | DO j = 1, (ny+1)/2 - 1 |
---|
1227 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
1228 | ENDDO |
---|
1229 | |
---|
1230 | ENDDO |
---|
1231 | ENDDO |
---|
1232 | !$OMP END PARALLEL |
---|
1233 | |
---|
1234 | ELSE |
---|
1235 | |
---|
1236 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1237 | !$OMP DO |
---|
1238 | DO k = nzb_y, nzt_y |
---|
1239 | DO i = nxl_y_l, nxr_y_l |
---|
1240 | |
---|
1241 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
1242 | DO j = 1, (ny+1)/2 - 1 |
---|
1243 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
1244 | KIND=wp ) |
---|
1245 | ENDDO |
---|
1246 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
1247 | KIND=wp ) |
---|
1248 | |
---|
1249 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1250 | ar(0:ny,i,k) = y_in(0:ny) |
---|
1251 | |
---|
1252 | ENDDO |
---|
1253 | ENDDO |
---|
1254 | !$OMP END PARALLEL |
---|
1255 | |
---|
1256 | ENDIF |
---|
1257 | #endif |
---|
1258 | |
---|
1259 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1260 | |
---|
1261 | #if defined( __ibm ) |
---|
1262 | IF ( forward_fft) THEN |
---|
1263 | |
---|
1264 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1265 | !$OMP DO |
---|
1266 | DO k = nzb_y, nzt_y |
---|
1267 | DO i = nxl_y_l, nxr_y_l |
---|
1268 | |
---|
1269 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
1270 | nau1, auy2, nau2 ) |
---|
1271 | |
---|
1272 | DO j = 0, (ny+1)/2 |
---|
1273 | ar_tr(j,i,k) = work(2*j) |
---|
1274 | ENDDO |
---|
1275 | DO j = 1, (ny+1)/2 - 1 |
---|
1276 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1277 | ENDDO |
---|
1278 | |
---|
1279 | ENDDO |
---|
1280 | ENDDO |
---|
1281 | !$OMP END PARALLEL |
---|
1282 | |
---|
1283 | ELSE |
---|
1284 | |
---|
1285 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1286 | !$OMP DO |
---|
1287 | DO k = nzb_y, nzt_y |
---|
1288 | DO i = nxl_y_l, nxr_y_l |
---|
1289 | |
---|
1290 | DO j = 0, (ny+1)/2 |
---|
1291 | work(2*j) = ar_tr(j,i,k) |
---|
1292 | ENDDO |
---|
1293 | DO j = 1, (ny+1)/2 - 1 |
---|
1294 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1295 | ENDDO |
---|
1296 | work(1) = 0.0_wp |
---|
1297 | work(ny+2) = 0.0_wp |
---|
1298 | |
---|
1299 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
1300 | auy3, nau1, auy4, nau2 ) |
---|
1301 | |
---|
1302 | DO j = 0, ny |
---|
1303 | ar(j,i,k) = work(j) |
---|
1304 | ENDDO |
---|
1305 | |
---|
1306 | ENDDO |
---|
1307 | ENDDO |
---|
1308 | !$OMP END PARALLEL |
---|
1309 | |
---|
1310 | ENDIF |
---|
1311 | #elif defined( __nec ) |
---|
1312 | IF ( forward_fft ) THEN |
---|
1313 | |
---|
1314 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1315 | !$OMP DO |
---|
1316 | DO k = nzb_y, nzt_y |
---|
1317 | DO i = nxl_y_l, nxr_y_l |
---|
1318 | |
---|
1319 | work(0:ny) = ar(0:ny,i,k) |
---|
1320 | |
---|
1321 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1322 | |
---|
1323 | DO j = 0, (ny+1)/2 |
---|
1324 | ar_tr(j,i,k) = work(2*j) |
---|
1325 | ENDDO |
---|
1326 | DO j = 1, (ny+1)/2 - 1 |
---|
1327 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1328 | ENDDO |
---|
1329 | |
---|
1330 | ENDDO |
---|
1331 | ENDDO |
---|
1332 | !$END OMP PARALLEL |
---|
1333 | |
---|
1334 | ELSE |
---|
1335 | |
---|
1336 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1337 | !$OMP DO |
---|
1338 | DO k = nzb_y, nzt_y |
---|
1339 | DO i = nxl_y_l, nxr_y_l |
---|
1340 | |
---|
1341 | DO j = 0, (ny+1)/2 |
---|
1342 | work(2*j) = ar_tr(j,i,k) |
---|
1343 | ENDDO |
---|
1344 | DO j = 1, (ny+1)/2 - 1 |
---|
1345 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1346 | ENDDO |
---|
1347 | work(1) = 0.0_wp |
---|
1348 | work(ny+2) = 0.0_wp |
---|
1349 | |
---|
1350 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1351 | |
---|
1352 | ar(0:ny,i,k) = work(0:ny) |
---|
1353 | |
---|
1354 | ENDDO |
---|
1355 | ENDDO |
---|
1356 | !$OMP END PARALLEL |
---|
1357 | |
---|
1358 | ENDIF |
---|
1359 | #elif defined( __cuda_fft ) |
---|
1360 | |
---|
1361 | IF ( forward_fft ) THEN |
---|
1362 | |
---|
1363 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
1364 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
1365 | !$ACC END HOST_DATA |
---|
1366 | |
---|
1367 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
1368 | !$ACC PRESENT(ar, ar_tmp) |
---|
1369 | DO k = nzb_y, nzt_y |
---|
1370 | DO i = nxl_y, nxr_y |
---|
1371 | |
---|
1372 | DO j = 0, (ny+1)/2 |
---|
1373 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
1374 | ENDDO |
---|
1375 | |
---|
1376 | DO j = 1, (ny+1)/2 - 1 |
---|
1377 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
1378 | ENDDO |
---|
1379 | |
---|
1380 | ENDDO |
---|
1381 | ENDDO |
---|
1382 | |
---|
1383 | ELSE |
---|
1384 | |
---|
1385 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
1386 | !$ACC PRESENT(ar, ar_tmp) |
---|
1387 | DO k = nzb_y, nzt_y |
---|
1388 | DO i = nxl_y, nxr_y |
---|
1389 | |
---|
1390 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
1391 | |
---|
1392 | DO j = 1, (ny+1)/2 - 1 |
---|
1393 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), & |
---|
1394 | KIND=wp ) |
---|
1395 | ENDDO |
---|
1396 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, & |
---|
1397 | KIND=wp ) |
---|
1398 | |
---|
1399 | ENDDO |
---|
1400 | ENDDO |
---|
1401 | |
---|
1402 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
1403 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
1404 | !$ACC END HOST_DATA |
---|
1405 | |
---|
1406 | ENDIF |
---|
1407 | |
---|
1408 | #endif |
---|
1409 | |
---|
1410 | ENDIF |
---|
1411 | |
---|
1412 | END SUBROUTINE fft_y |
---|
1413 | |
---|
1414 | !------------------------------------------------------------------------------! |
---|
1415 | ! Description: |
---|
1416 | ! ------------ |
---|
1417 | !> Fourier-transformation along y-direction. |
---|
1418 | !> Version for 1D-decomposition. |
---|
1419 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
1420 | !> system-specific routines, if they are available. |
---|
1421 | !------------------------------------------------------------------------------! |
---|
1422 | |
---|
1423 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
1424 | |
---|
1425 | |
---|
1426 | IMPLICIT NONE |
---|
1427 | |
---|
1428 | CHARACTER (LEN=*) :: direction |
---|
1429 | |
---|
1430 | INTEGER(iwp) :: j !< |
---|
1431 | INTEGER(iwp) :: jshape(1) !< |
---|
1432 | |
---|
1433 | LOGICAL :: forward_fft !< |
---|
1434 | |
---|
1435 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
1436 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
1437 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
1438 | |
---|
1439 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
1440 | |
---|
1441 | #if defined( __ibm ) |
---|
1442 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
1443 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
1444 | #elif defined( __nec ) |
---|
1445 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
1446 | #endif |
---|
1447 | |
---|
1448 | IF ( direction == 'forward' ) THEN |
---|
1449 | forward_fft = .TRUE. |
---|
1450 | ELSE |
---|
1451 | forward_fft = .FALSE. |
---|
1452 | ENDIF |
---|
1453 | |
---|
1454 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
1455 | |
---|
1456 | ! |
---|
1457 | !-- Performing the fft with singleton's software works on every system, |
---|
1458 | !-- since it is part of the model |
---|
1459 | ALLOCATE( cwork(0:ny) ) |
---|
1460 | |
---|
1461 | IF ( forward_fft ) THEN |
---|
1462 | |
---|
1463 | DO j = 0, ny |
---|
1464 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
1465 | ENDDO |
---|
1466 | |
---|
1467 | jshape = SHAPE( cwork ) |
---|
1468 | CALL FFTN( cwork, jshape ) |
---|
1469 | |
---|
1470 | DO j = 0, (ny+1)/2 |
---|
1471 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
1472 | ENDDO |
---|
1473 | DO j = 1, (ny+1)/2 - 1 |
---|
1474 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
1475 | ENDDO |
---|
1476 | |
---|
1477 | ELSE |
---|
1478 | |
---|
1479 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
1480 | DO j = 1, (ny+1)/2 - 1 |
---|
1481 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
1482 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
1483 | ENDDO |
---|
1484 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
1485 | |
---|
1486 | jshape = SHAPE( cwork ) |
---|
1487 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1488 | |
---|
1489 | DO j = 0, ny |
---|
1490 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
1491 | ENDDO |
---|
1492 | |
---|
1493 | ENDIF |
---|
1494 | |
---|
1495 | DEALLOCATE( cwork ) |
---|
1496 | |
---|
1497 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1498 | |
---|
1499 | ! |
---|
1500 | !-- Performing the fft with Temperton's software works on every system, |
---|
1501 | !-- since it is part of the model |
---|
1502 | IF ( forward_fft ) THEN |
---|
1503 | |
---|
1504 | work(0:ny) = ar |
---|
1505 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1506 | |
---|
1507 | DO j = 0, (ny+1)/2 |
---|
1508 | ar(j) = work(2*j) |
---|
1509 | ENDDO |
---|
1510 | DO j = 1, (ny+1)/2 - 1 |
---|
1511 | ar(ny+1-j) = work(2*j+1) |
---|
1512 | ENDDO |
---|
1513 | |
---|
1514 | ELSE |
---|
1515 | |
---|
1516 | DO j = 0, (ny+1)/2 |
---|
1517 | work(2*j) = ar(j) |
---|
1518 | ENDDO |
---|
1519 | DO j = 1, (ny+1)/2 - 1 |
---|
1520 | work(2*j+1) = ar(ny+1-j) |
---|
1521 | ENDDO |
---|
1522 | work(1) = 0.0_wp |
---|
1523 | work(ny+2) = 0.0_wp |
---|
1524 | |
---|
1525 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1526 | ar = work(0:ny) |
---|
1527 | |
---|
1528 | ENDIF |
---|
1529 | |
---|
1530 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1531 | |
---|
1532 | #if defined( __fftw ) |
---|
1533 | IF ( forward_fft ) THEN |
---|
1534 | |
---|
1535 | y_in(0:ny) = ar(0:ny) |
---|
1536 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1537 | |
---|
1538 | DO j = 0, (ny+1)/2 |
---|
1539 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
1540 | ENDDO |
---|
1541 | DO j = 1, (ny+1)/2 - 1 |
---|
1542 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
1543 | ENDDO |
---|
1544 | |
---|
1545 | ELSE |
---|
1546 | |
---|
1547 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
1548 | DO j = 1, (ny+1)/2 - 1 |
---|
1549 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
1550 | ENDDO |
---|
1551 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
1552 | |
---|
1553 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1554 | ar(0:ny) = y_in(0:ny) |
---|
1555 | |
---|
1556 | ENDIF |
---|
1557 | #endif |
---|
1558 | |
---|
1559 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1560 | |
---|
1561 | #if defined( __ibm ) |
---|
1562 | IF ( forward_fft ) THEN |
---|
1563 | |
---|
1564 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
1565 | auy2, nau2 ) |
---|
1566 | |
---|
1567 | DO j = 0, (ny+1)/2 |
---|
1568 | ar(j) = work(2*j) |
---|
1569 | ENDDO |
---|
1570 | DO j = 1, (ny+1)/2 - 1 |
---|
1571 | ar(ny+1-j) = work(2*j+1) |
---|
1572 | ENDDO |
---|
1573 | |
---|
1574 | ELSE |
---|
1575 | |
---|
1576 | DO j = 0, (ny+1)/2 |
---|
1577 | work(2*j) = ar(j) |
---|
1578 | ENDDO |
---|
1579 | DO j = 1, (ny+1)/2 - 1 |
---|
1580 | work(2*j+1) = ar(ny+1-j) |
---|
1581 | ENDDO |
---|
1582 | work(1) = 0.0_wp |
---|
1583 | work(ny+2) = 0.0_wp |
---|
1584 | |
---|
1585 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
1586 | nau1, auy4, nau2 ) |
---|
1587 | |
---|
1588 | DO j = 0, ny |
---|
1589 | ar(j) = work(j) |
---|
1590 | ENDDO |
---|
1591 | |
---|
1592 | ENDIF |
---|
1593 | #elif defined( __nec ) |
---|
1594 | IF ( forward_fft ) THEN |
---|
1595 | |
---|
1596 | work(0:ny) = ar(0:ny) |
---|
1597 | |
---|
1598 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1599 | |
---|
1600 | DO j = 0, (ny+1)/2 |
---|
1601 | ar(j) = work(2*j) |
---|
1602 | ENDDO |
---|
1603 | DO j = 1, (ny+1)/2 - 1 |
---|
1604 | ar(ny+1-j) = work(2*j+1) |
---|
1605 | ENDDO |
---|
1606 | |
---|
1607 | ELSE |
---|
1608 | |
---|
1609 | DO j = 0, (ny+1)/2 |
---|
1610 | work(2*j) = ar(j) |
---|
1611 | ENDDO |
---|
1612 | DO j = 1, (ny+1)/2 - 1 |
---|
1613 | work(2*j+1) = ar(ny+1-j) |
---|
1614 | ENDDO |
---|
1615 | work(1) = 0.0_wp |
---|
1616 | work(ny+2) = 0.0_wp |
---|
1617 | |
---|
1618 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1619 | |
---|
1620 | ar(0:ny) = work(0:ny) |
---|
1621 | |
---|
1622 | ENDIF |
---|
1623 | #endif |
---|
1624 | |
---|
1625 | ENDIF |
---|
1626 | |
---|
1627 | END SUBROUTINE fft_y_1d |
---|
1628 | |
---|
1629 | !------------------------------------------------------------------------------! |
---|
1630 | ! Description: |
---|
1631 | ! ------------ |
---|
1632 | !> Fourier-transformation along x-direction. |
---|
1633 | !> Version for 1d domain decomposition |
---|
1634 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
1635 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
1636 | !------------------------------------------------------------------------------! |
---|
1637 | |
---|
1638 | SUBROUTINE fft_x_m( ar, direction ) |
---|
1639 | |
---|
1640 | |
---|
1641 | IMPLICIT NONE |
---|
1642 | |
---|
1643 | CHARACTER (LEN=*) :: direction !< |
---|
1644 | |
---|
1645 | INTEGER(iwp) :: i !< |
---|
1646 | INTEGER(iwp) :: k !< |
---|
1647 | INTEGER(iwp) :: siza !< |
---|
1648 | #if defined( __nec ) |
---|
1649 | INTEGER(iwp) :: sizw |
---|
1650 | #endif |
---|
1651 | |
---|
1652 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
1653 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
1654 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
1655 | |
---|
1656 | #if defined( __nec ) |
---|
1657 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
1658 | #endif |
---|
1659 | |
---|
1660 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1661 | |
---|
1662 | siza = SIZE( ai, 1 ) |
---|
1663 | |
---|
1664 | IF ( direction == 'forward') THEN |
---|
1665 | |
---|
1666 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1667 | ai(nx+1:,:) = 0.0_wp |
---|
1668 | |
---|
1669 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
1670 | |
---|
1671 | DO k = 1, nz |
---|
1672 | DO i = 0, (nx+1)/2 |
---|
1673 | ar(i,k) = ai(2*i,k) |
---|
1674 | ENDDO |
---|
1675 | DO i = 1, (nx+1)/2 - 1 |
---|
1676 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
1677 | ENDDO |
---|
1678 | ENDDO |
---|
1679 | |
---|
1680 | ELSE |
---|
1681 | |
---|
1682 | DO k = 1, nz |
---|
1683 | DO i = 0, (nx+1)/2 |
---|
1684 | ai(2*i,k) = ar(i,k) |
---|
1685 | ENDDO |
---|
1686 | DO i = 1, (nx+1)/2 - 1 |
---|
1687 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
1688 | ENDDO |
---|
1689 | ai(1,k) = 0.0_wp |
---|
1690 | ai(nx+2,k) = 0.0_wp |
---|
1691 | ENDDO |
---|
1692 | |
---|
1693 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
1694 | |
---|
1695 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1696 | |
---|
1697 | ENDIF |
---|
1698 | |
---|
1699 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1700 | |
---|
1701 | #if defined( __nec ) |
---|
1702 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
1703 | siza = SIZE( ai, 1 ) |
---|
1704 | sizw = SIZE( work, 1 ) |
---|
1705 | |
---|
1706 | IF ( direction == 'forward') THEN |
---|
1707 | |
---|
1708 | ! |
---|
1709 | !-- Tables are initialized once more. This call should not be |
---|
1710 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1711 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
1712 | trig_xf, work1, 0 ) |
---|
1713 | |
---|
1714 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1715 | IF ( nz1 > nz ) THEN |
---|
1716 | ai(:,nz1) = 0.0_wp |
---|
1717 | ENDIF |
---|
1718 | |
---|
1719 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
1720 | trig_xf, work1, 0 ) |
---|
1721 | |
---|
1722 | DO k = 1, nz |
---|
1723 | DO i = 0, (nx+1)/2 |
---|
1724 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
1725 | ENDDO |
---|
1726 | DO i = 1, (nx+1)/2 - 1 |
---|
1727 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
1728 | ENDDO |
---|
1729 | ENDDO |
---|
1730 | |
---|
1731 | ELSE |
---|
1732 | |
---|
1733 | ! |
---|
1734 | !-- Tables are initialized once more. This call should not be |
---|
1735 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1736 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
1737 | trig_xb, work1, 0 ) |
---|
1738 | |
---|
1739 | IF ( nz1 > nz ) THEN |
---|
1740 | work(:,nz1) = 0.0_wp |
---|
1741 | ENDIF |
---|
1742 | DO k = 1, nz |
---|
1743 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
1744 | DO i = 1, (nx+1)/2 - 1 |
---|
1745 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
1746 | ENDDO |
---|
1747 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
1748 | ENDDO |
---|
1749 | |
---|
1750 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
1751 | trig_xb, work1, 0 ) |
---|
1752 | |
---|
1753 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1754 | |
---|
1755 | ENDIF |
---|
1756 | |
---|
1757 | DEALLOCATE( work ) |
---|
1758 | #endif |
---|
1759 | |
---|
1760 | ENDIF |
---|
1761 | |
---|
1762 | END SUBROUTINE fft_x_m |
---|
1763 | |
---|
1764 | !------------------------------------------------------------------------------! |
---|
1765 | ! Description: |
---|
1766 | ! ------------ |
---|
1767 | !> Fourier-transformation along y-direction. |
---|
1768 | !> Version for 1d domain decomposition |
---|
1769 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
1770 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
1771 | !------------------------------------------------------------------------------! |
---|
1772 | |
---|
1773 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
1774 | |
---|
1775 | |
---|
1776 | IMPLICIT NONE |
---|
1777 | |
---|
1778 | CHARACTER (LEN=*) :: direction !< |
---|
1779 | |
---|
1780 | INTEGER(iwp) :: j !< |
---|
1781 | INTEGER(iwp) :: k !< |
---|
1782 | INTEGER(iwp) :: ny1 !< |
---|
1783 | INTEGER(iwp) :: siza !< |
---|
1784 | #if defined( __nec ) |
---|
1785 | INTEGER(iwp) :: sizw |
---|
1786 | #endif |
---|
1787 | |
---|
1788 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
1789 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
1790 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
1791 | |
---|
1792 | #if defined( __nec ) |
---|
1793 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
1794 | #endif |
---|
1795 | |
---|
1796 | |
---|
1797 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1798 | |
---|
1799 | siza = SIZE( ai, 1 ) |
---|
1800 | |
---|
1801 | IF ( direction == 'forward') THEN |
---|
1802 | |
---|
1803 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1804 | ai(ny+1:,:) = 0.0_wp |
---|
1805 | |
---|
1806 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
1807 | |
---|
1808 | DO k = 1, nz |
---|
1809 | DO j = 0, (ny+1)/2 |
---|
1810 | ar(j,k) = ai(2*j,k) |
---|
1811 | ENDDO |
---|
1812 | DO j = 1, (ny+1)/2 - 1 |
---|
1813 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
1814 | ENDDO |
---|
1815 | ENDDO |
---|
1816 | |
---|
1817 | ELSE |
---|
1818 | |
---|
1819 | DO k = 1, nz |
---|
1820 | DO j = 0, (ny+1)/2 |
---|
1821 | ai(2*j,k) = ar(j,k) |
---|
1822 | ENDDO |
---|
1823 | DO j = 1, (ny+1)/2 - 1 |
---|
1824 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
1825 | ENDDO |
---|
1826 | ai(1,k) = 0.0_wp |
---|
1827 | ai(ny+2,k) = 0.0_wp |
---|
1828 | ENDDO |
---|
1829 | |
---|
1830 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
1831 | |
---|
1832 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
1833 | |
---|
1834 | ENDIF |
---|
1835 | |
---|
1836 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1837 | |
---|
1838 | #if defined( __nec ) |
---|
1839 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
1840 | siza = SIZE( ai, 1 ) |
---|
1841 | sizw = SIZE( work, 1 ) |
---|
1842 | |
---|
1843 | IF ( direction == 'forward') THEN |
---|
1844 | |
---|
1845 | ! |
---|
1846 | !-- Tables are initialized once more. This call should not be |
---|
1847 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1848 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
1849 | trig_yf, work1, 0 ) |
---|
1850 | |
---|
1851 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1852 | IF ( nz1 > nz ) THEN |
---|
1853 | ai(:,nz1) = 0.0_wp |
---|
1854 | ENDIF |
---|
1855 | |
---|
1856 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
1857 | trig_yf, work1, 0 ) |
---|
1858 | |
---|
1859 | DO k = 1, nz |
---|
1860 | DO j = 0, (ny+1)/2 |
---|
1861 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
1862 | ENDDO |
---|
1863 | DO j = 1, (ny+1)/2 - 1 |
---|
1864 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
1865 | ENDDO |
---|
1866 | ENDDO |
---|
1867 | |
---|
1868 | ELSE |
---|
1869 | |
---|
1870 | ! |
---|
1871 | !-- Tables are initialized once more. This call should not be |
---|
1872 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1873 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
1874 | trig_yb, work1, 0 ) |
---|
1875 | |
---|
1876 | IF ( nz1 > nz ) THEN |
---|
1877 | work(:,nz1) = 0.0_wp |
---|
1878 | ENDIF |
---|
1879 | DO k = 1, nz |
---|
1880 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
1881 | DO j = 1, (ny+1)/2 - 1 |
---|
1882 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
1883 | ENDDO |
---|
1884 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
1885 | ENDDO |
---|
1886 | |
---|
1887 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
1888 | trig_yb, work1, 0 ) |
---|
1889 | |
---|
1890 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
1891 | |
---|
1892 | ENDIF |
---|
1893 | |
---|
1894 | DEALLOCATE( work ) |
---|
1895 | #endif |
---|
1896 | |
---|
1897 | ENDIF |
---|
1898 | |
---|
1899 | END SUBROUTINE fft_y_m |
---|
1900 | |
---|
1901 | |
---|
1902 | END MODULE fft_xy |
---|