[1850] | 1 | !> @file fft_xy_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy_mod.f90 4370 2020-01-10 14:00:44Z moh.hefny $ |
---|
[4370] | 27 | ! bugfix for Temperton-fft usage on GPU |
---|
| 28 | ! |
---|
| 29 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4366] | 30 | ! Vectorized Temperton-fft added |
---|
| 31 | ! |
---|
| 32 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 33 | ! Corrected "Former revisions" section |
---|
| 34 | ! |
---|
| 35 | ! 4069 2019-07-01 14:05:51Z Giersch |
---|
[4069] | 36 | ! Code added to avoid compiler warnings |
---|
| 37 | ! |
---|
| 38 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 39 | ! OpenACC port for SPEC |
---|
[2716] | 40 | ! |
---|
[4182] | 41 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 42 | ! Initial revision |
---|
| 43 | ! |
---|
| 44 | ! |
---|
[1] | 45 | ! Description: |
---|
| 46 | ! ------------ |
---|
[1682] | 47 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 48 | !> Original version: Klaus Ketelsen (May 2002) |
---|
[4366] | 49 | !> @todo openmp support for vectorized Temperton fft |
---|
[1] | 50 | !------------------------------------------------------------------------------! |
---|
[1682] | 51 | MODULE fft_xy |
---|
| 52 | |
---|
[1] | 53 | |
---|
[1320] | 54 | USE control_parameters, & |
---|
[4366] | 55 | ONLY: fft_method, loop_optimization, message_string |
---|
[1320] | 56 | |
---|
[3634] | 57 | USE cuda_fft_interfaces |
---|
| 58 | |
---|
[1320] | 59 | USE indices, & |
---|
| 60 | ONLY: nx, ny, nz |
---|
[4366] | 61 | |
---|
[3634] | 62 | #if defined( __cuda_fft ) |
---|
| 63 | USE ISO_C_BINDING |
---|
| 64 | #elif defined( __fftw ) |
---|
[1210] | 65 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 66 | #endif |
---|
[1320] | 67 | |
---|
| 68 | USE kinds |
---|
| 69 | |
---|
| 70 | USE singleton, & |
---|
| 71 | ONLY: fftn |
---|
| 72 | |
---|
[1] | 73 | USE temperton_fft |
---|
[1320] | 74 | |
---|
| 75 | USE transpose_indices, & |
---|
[1374] | 76 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 77 | |
---|
| 78 | IMPLICIT NONE |
---|
| 79 | |
---|
| 80 | PRIVATE |
---|
[4370] | 81 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m, f_vec_x, temperton_fft_vec |
---|
[1] | 82 | |
---|
[1682] | 83 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
| 84 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
[1] | 85 | |
---|
[4366] | 86 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
| 87 | LOGICAL, SAVE :: temperton_fft_vec = .FALSE. !< |
---|
[1] | 88 | |
---|
[1682] | 89 | REAL(wp), SAVE :: dnx !< |
---|
| 90 | REAL(wp), SAVE :: dny !< |
---|
| 91 | REAL(wp), SAVE :: sqr_dnx !< |
---|
| 92 | REAL(wp), SAVE :: sqr_dny !< |
---|
[1320] | 93 | |
---|
[1682] | 94 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
| 95 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
[1] | 96 | |
---|
[4370] | 97 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: f_vec_x |
---|
[4366] | 98 | |
---|
[1] | 99 | #if defined( __ibm ) |
---|
[1682] | 100 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
| 101 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
[1] | 102 | ! |
---|
| 103 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 104 | !-- shared in OpenMP sense |
---|
[1682] | 105 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
| 106 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
| 107 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
| 108 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
[1320] | 109 | |
---|
[4370] | 110 | #elif defined( __nec_fft ) |
---|
[1682] | 111 | INTEGER(iwp), SAVE :: nz1 !< |
---|
[1320] | 112 | |
---|
[1682] | 113 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
| 114 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
| 115 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
| 116 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
[1320] | 117 | |
---|
[3634] | 118 | #elif defined( __cuda_fft ) |
---|
| 119 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
| 120 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
| 121 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
| 122 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
| 123 | |
---|
[1219] | 124 | #endif |
---|
| 125 | |
---|
| 126 | #if defined( __fftw ) |
---|
[1210] | 127 | INCLUDE 'fftw3.f03' |
---|
[1682] | 128 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
| 129 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
[1320] | 130 | |
---|
[1682] | 131 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
[1320] | 132 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 133 | y_out !< |
---|
[1320] | 134 | |
---|
| 135 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 136 | x_in !< |
---|
[1320] | 137 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 138 | y_in !< |
---|
[1600] | 139 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[1320] | 140 | |
---|
| 141 | |
---|
[1210] | 142 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 143 | #endif |
---|
| 144 | |
---|
| 145 | ! |
---|
| 146 | !-- Public interfaces |
---|
| 147 | INTERFACE fft_init |
---|
| 148 | MODULE PROCEDURE fft_init |
---|
| 149 | END INTERFACE fft_init |
---|
| 150 | |
---|
| 151 | INTERFACE fft_x |
---|
| 152 | MODULE PROCEDURE fft_x |
---|
| 153 | END INTERFACE fft_x |
---|
| 154 | |
---|
[1106] | 155 | INTERFACE fft_x_1d |
---|
| 156 | MODULE PROCEDURE fft_x_1d |
---|
| 157 | END INTERFACE fft_x_1d |
---|
| 158 | |
---|
[1] | 159 | INTERFACE fft_y |
---|
| 160 | MODULE PROCEDURE fft_y |
---|
| 161 | END INTERFACE fft_y |
---|
| 162 | |
---|
[1106] | 163 | INTERFACE fft_y_1d |
---|
| 164 | MODULE PROCEDURE fft_y_1d |
---|
| 165 | END INTERFACE fft_y_1d |
---|
| 166 | |
---|
[1] | 167 | INTERFACE fft_x_m |
---|
| 168 | MODULE PROCEDURE fft_x_m |
---|
| 169 | END INTERFACE fft_x_m |
---|
| 170 | |
---|
| 171 | INTERFACE fft_y_m |
---|
| 172 | MODULE PROCEDURE fft_y_m |
---|
| 173 | END INTERFACE fft_y_m |
---|
| 174 | |
---|
| 175 | CONTAINS |
---|
| 176 | |
---|
| 177 | |
---|
[1682] | 178 | !------------------------------------------------------------------------------! |
---|
| 179 | ! Description: |
---|
| 180 | ! ------------ |
---|
| 181 | !> @todo Missing subroutine description. |
---|
| 182 | !------------------------------------------------------------------------------! |
---|
[1] | 183 | SUBROUTINE fft_init |
---|
| 184 | |
---|
[4370] | 185 | USE pegrid, & |
---|
| 186 | ONLY: pdims |
---|
| 187 | |
---|
[1] | 188 | IMPLICIT NONE |
---|
| 189 | |
---|
| 190 | ! |
---|
| 191 | !-- The following temporary working arrays have to be on stack or private |
---|
| 192 | !-- in OpenMP sense |
---|
| 193 | #if defined( __ibm ) |
---|
[1682] | 194 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
| 195 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
| 196 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 197 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 198 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
| 199 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[4370] | 200 | #elif defined( __nec_fft ) |
---|
[1682] | 201 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
| 202 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
| 203 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
| 204 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
[1] | 205 | #endif |
---|
| 206 | |
---|
| 207 | ! |
---|
| 208 | !-- Return, if already called |
---|
| 209 | IF ( init_fft ) THEN |
---|
| 210 | RETURN |
---|
| 211 | ELSE |
---|
| 212 | init_fft = .TRUE. |
---|
| 213 | ENDIF |
---|
| 214 | |
---|
[4370] | 215 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
| 216 | fft_method = 'system-specific' |
---|
| 217 | #endif |
---|
| 218 | |
---|
[4366] | 219 | ! |
---|
| 220 | !-- Switch to tell the Poisson-solver that the vectorized version of Temperton-fft is to be used. |
---|
[4370] | 221 | IF ( fft_method == 'temperton-algorithm' .AND. loop_optimization == 'vector' .AND. & |
---|
| 222 | pdims(1) /= 1 .AND. pdims(2) /= 1 ) THEN |
---|
[4366] | 223 | temperton_fft_vec = .TRUE. |
---|
| 224 | ENDIF |
---|
| 225 | |
---|
[1] | 226 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 227 | |
---|
[1342] | 228 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 229 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 230 | sqr_dnx = SQRT( dnx ) |
---|
| 231 | sqr_dny = SQRT( dny ) |
---|
[1815] | 232 | #if defined( __ibm ) |
---|
[1] | 233 | ! |
---|
| 234 | !-- Initialize tables for fft along x |
---|
[1106] | 235 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 236 | aux2, nau2 ) |
---|
[1106] | 237 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 238 | aux4, nau2 ) |
---|
| 239 | ! |
---|
| 240 | !-- Initialize tables for fft along y |
---|
[1106] | 241 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 242 | auy2, nau2 ) |
---|
[1106] | 243 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 244 | auy4, nau2 ) |
---|
[4370] | 245 | #elif defined( __nec_fft ) |
---|
[254] | 246 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 247 | '" currently does not work on NEC' |
---|
| 248 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 249 | |
---|
[1320] | 250 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 251 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 252 | |
---|
[1342] | 253 | work_x = 0.0_wp |
---|
| 254 | work_y = 0.0_wp |
---|
[1] | 255 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 256 | ! when using the NEC ffts |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 260 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 261 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 262 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 263 | trig_xf, workx, 0 ) |
---|
[1320] | 264 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 265 | trig_xb, workx, 0 ) |
---|
| 266 | ! |
---|
| 267 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 268 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 269 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 270 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 271 | trig_yf, worky, 0 ) |
---|
[1320] | 272 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 273 | trig_yb, worky, 0 ) |
---|
[3634] | 274 | #elif defined( __cuda_fft ) |
---|
| 275 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 276 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 277 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 278 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 279 | #else |
---|
[254] | 280 | message_string = 'no system-specific fft-call available' |
---|
| 281 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 282 | #endif |
---|
| 283 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 284 | ! |
---|
| 285 | !-- Temperton-algorithm |
---|
| 286 | !-- Initialize tables for fft along x and y |
---|
| 287 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 288 | |
---|
| 289 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 290 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 291 | |
---|
[4366] | 292 | IF ( temperton_fft_vec ) THEN |
---|
[4370] | 293 | ALLOCATE( f_vec_x((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),0:nx+2) ) |
---|
[4366] | 294 | ENDIF |
---|
| 295 | |
---|
| 296 | |
---|
| 297 | |
---|
[1210] | 298 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 299 | ! |
---|
| 300 | !-- FFTW |
---|
| 301 | #if defined( __fftw ) |
---|
| 302 | nx_c = nx+1 |
---|
| 303 | ny_c = ny+1 |
---|
[1372] | 304 | !$OMP PARALLEL |
---|
[1320] | 305 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 306 | y_out(0:(ny+1)/2) ) |
---|
[1372] | 307 | !$OMP END PARALLEL |
---|
[1210] | 308 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 309 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 310 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 311 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 312 | #else |
---|
| 313 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 314 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 315 | #endif |
---|
| 316 | |
---|
[1] | 317 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 318 | |
---|
| 319 | CONTINUE |
---|
| 320 | |
---|
| 321 | ELSE |
---|
| 322 | |
---|
[254] | 323 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 324 | '" not available' |
---|
| 325 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 326 | ENDIF |
---|
| 327 | |
---|
| 328 | END SUBROUTINE fft_init |
---|
| 329 | |
---|
| 330 | |
---|
[1682] | 331 | !------------------------------------------------------------------------------! |
---|
| 332 | ! Description: |
---|
| 333 | ! ------------ |
---|
| 334 | !> Fourier-transformation along x-direction. |
---|
| 335 | !> Version for 2D-decomposition. |
---|
| 336 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 337 | !> system-specific routines, if they are available |
---|
| 338 | !------------------------------------------------------------------------------! |
---|
| 339 | |
---|
[4366] | 340 | SUBROUTINE fft_x( ar, direction, ar_2d, ar_inv ) |
---|
[1] | 341 | |
---|
| 342 | |
---|
| 343 | IMPLICIT NONE |
---|
| 344 | |
---|
[1682] | 345 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 346 | |
---|
[1682] | 347 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1106] | 348 | |
---|
[1682] | 349 | INTEGER(iwp) :: i !< |
---|
| 350 | INTEGER(iwp) :: ishape(1) !< |
---|
| 351 | INTEGER(iwp) :: j !< |
---|
| 352 | INTEGER(iwp) :: k !< |
---|
[4366] | 353 | INTEGER(iwp) :: mm !< |
---|
[1106] | 354 | |
---|
[1682] | 355 | LOGICAL :: forward_fft !< |
---|
[1320] | 356 | |
---|
[1682] | 357 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 358 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 359 | |
---|
[4366] | 360 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec !< |
---|
| 361 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: ar_2d !< |
---|
| 362 | |
---|
| 363 | REAL(wp), DIMENSION(nys_x:nyn_x,nzb_x:nzt_x,0:nx), OPTIONAL :: ar_inv !< |
---|
| 364 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: ar !< |
---|
| 365 | |
---|
[1106] | 366 | #if defined( __ibm ) |
---|
[1682] | 367 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 368 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[4370] | 369 | #elif defined( __nec_fft ) |
---|
[1682] | 370 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[3634] | 371 | #elif defined( __cuda_fft ) |
---|
[4366] | 372 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: ar_tmp !< |
---|
[3634] | 373 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 374 | #endif |
---|
| 375 | |
---|
[4069] | 376 | ! |
---|
| 377 | !-- To avoid compiler warning: Unused dummy argument âar_2dâ |
---|
| 378 | IF ( PRESENT( ar_2d ) ) CONTINUE |
---|
| 379 | |
---|
[1106] | 380 | IF ( direction == 'forward' ) THEN |
---|
| 381 | forward_fft = .TRUE. |
---|
| 382 | ELSE |
---|
| 383 | forward_fft = .FALSE. |
---|
| 384 | ENDIF |
---|
| 385 | |
---|
| 386 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 387 | |
---|
| 388 | ! |
---|
| 389 | !-- Performing the fft with singleton's software works on every system, |
---|
| 390 | !-- since it is part of the model |
---|
| 391 | ALLOCATE( cwork(0:nx) ) |
---|
| 392 | |
---|
| 393 | IF ( forward_fft ) then |
---|
| 394 | |
---|
| 395 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 396 | !$OMP DO |
---|
| 397 | DO k = nzb_x, nzt_x |
---|
| 398 | DO j = nys_x, nyn_x |
---|
| 399 | |
---|
| 400 | DO i = 0, nx |
---|
[1392] | 401 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
[1106] | 402 | ENDDO |
---|
| 403 | |
---|
| 404 | ishape = SHAPE( cwork ) |
---|
| 405 | CALL FFTN( cwork, ishape ) |
---|
| 406 | |
---|
| 407 | DO i = 0, (nx+1)/2 |
---|
[1322] | 408 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 409 | ENDDO |
---|
| 410 | DO i = 1, (nx+1)/2 - 1 |
---|
| 411 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 412 | ENDDO |
---|
| 413 | |
---|
| 414 | ENDDO |
---|
| 415 | ENDDO |
---|
| 416 | !$OMP END PARALLEL |
---|
| 417 | |
---|
| 418 | ELSE |
---|
| 419 | |
---|
| 420 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 421 | !$OMP DO |
---|
| 422 | DO k = nzb_x, nzt_x |
---|
| 423 | DO j = nys_x, nyn_x |
---|
| 424 | |
---|
[1392] | 425 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 426 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 427 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
| 428 | KIND=wp ) |
---|
| 429 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 430 | KIND=wp ) |
---|
[1106] | 431 | ENDDO |
---|
[1392] | 432 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 433 | |
---|
| 434 | ishape = SHAPE( cwork ) |
---|
| 435 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 436 | |
---|
| 437 | DO i = 0, nx |
---|
[1322] | 438 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 439 | ENDDO |
---|
| 440 | |
---|
| 441 | ENDDO |
---|
| 442 | ENDDO |
---|
| 443 | !$OMP END PARALLEL |
---|
| 444 | |
---|
| 445 | ENDIF |
---|
| 446 | |
---|
| 447 | DEALLOCATE( cwork ) |
---|
| 448 | |
---|
| 449 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 450 | |
---|
| 451 | ! |
---|
| 452 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 453 | !-- since it is part of the model |
---|
| 454 | IF ( forward_fft ) THEN |
---|
| 455 | |
---|
[4366] | 456 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 457 | |
---|
[4366] | 458 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 459 | !$OMP DO |
---|
| 460 | DO k = nzb_x, nzt_x |
---|
| 461 | DO j = nys_x, nyn_x |
---|
[1106] | 462 | |
---|
[4366] | 463 | work(0:nx) = ar(0:nx,j,k) |
---|
| 464 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 465 | |
---|
| 466 | DO i = 0, (nx+1)/2 |
---|
| 467 | ar(i,j,k) = work(2*i) |
---|
| 468 | ENDDO |
---|
| 469 | DO i = 1, (nx+1)/2 - 1 |
---|
| 470 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 471 | ENDDO |
---|
| 472 | |
---|
[1106] | 473 | ENDDO |
---|
[4366] | 474 | ENDDO |
---|
| 475 | !$OMP END PARALLEL |
---|
| 476 | |
---|
| 477 | ELSE |
---|
| 478 | |
---|
| 479 | ! |
---|
| 480 | !-- Vector version of the Temperton-algorithm. Computes multiple 1-D FFT's. |
---|
| 481 | ALLOCATE( work_vec( (nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
| 482 | ! |
---|
[4370] | 483 | !-- f_vec_x is already set in transpose_zx |
---|
| 484 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, -1 ) |
---|
[4366] | 485 | DEALLOCATE( work_vec ) |
---|
| 486 | |
---|
| 487 | IF ( PRESENT( ar_inv ) ) THEN |
---|
| 488 | |
---|
| 489 | DO k = nzb_x, nzt_x |
---|
| 490 | DO j = nys_x, nyn_x |
---|
| 491 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 492 | DO i = 0, (nx+1)/2 |
---|
[4370] | 493 | ar_inv(j,k,i) = f_vec_x(mm,2*i) |
---|
[4366] | 494 | ENDDO |
---|
| 495 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 496 | ar_inv(j,k,nx+1-i) = f_vec_x(mm,2*i+1) |
---|
[4366] | 497 | ENDDO |
---|
| 498 | ENDDO |
---|
[1106] | 499 | ENDDO |
---|
| 500 | |
---|
[4366] | 501 | ELSE |
---|
[1106] | 502 | |
---|
[4366] | 503 | DO k = nzb_x, nzt_x |
---|
| 504 | DO j = nys_x, nyn_x |
---|
| 505 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 506 | DO i = 0, (nx+1)/2 |
---|
[4370] | 507 | ar(i,j,k) = f_vec_x(mm,2*i) |
---|
[4366] | 508 | ENDDO |
---|
| 509 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 510 | ar(nx+1-i,j,k) = f_vec_x(mm,2*i+1) |
---|
[4366] | 511 | ENDDO |
---|
| 512 | ENDDO |
---|
| 513 | ENDDO |
---|
| 514 | |
---|
| 515 | ENDIF |
---|
| 516 | |
---|
| 517 | ENDIF |
---|
| 518 | |
---|
[1106] | 519 | ELSE |
---|
| 520 | |
---|
[4366] | 521 | ! |
---|
| 522 | !-- Backward fft |
---|
| 523 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 524 | |
---|
[4366] | 525 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 526 | !$OMP DO |
---|
| 527 | DO k = nzb_x, nzt_x |
---|
| 528 | DO j = nys_x, nyn_x |
---|
| 529 | |
---|
| 530 | DO i = 0, (nx+1)/2 |
---|
| 531 | work(2*i) = ar(i,j,k) |
---|
| 532 | ENDDO |
---|
| 533 | DO i = 1, (nx+1)/2 - 1 |
---|
| 534 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 535 | ENDDO |
---|
| 536 | work(1) = 0.0_wp |
---|
| 537 | work(nx+2) = 0.0_wp |
---|
| 538 | |
---|
| 539 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 540 | ar(0:nx,j,k) = work(0:nx) |
---|
| 541 | |
---|
[1106] | 542 | ENDDO |
---|
[4366] | 543 | ENDDO |
---|
| 544 | !$OMP END PARALLEL |
---|
| 545 | |
---|
| 546 | ELSE |
---|
| 547 | |
---|
| 548 | IF ( PRESENT( ar_inv ) ) THEN |
---|
| 549 | |
---|
| 550 | DO k = nzb_x, nzt_x |
---|
| 551 | DO j = nys_x, nyn_x |
---|
| 552 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 553 | DO i = 0, (nx+1)/2 |
---|
[4370] | 554 | f_vec_x(mm,2*i) = ar_inv(j,k,i) |
---|
[4366] | 555 | ENDDO |
---|
| 556 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 557 | f_vec_x(mm,2*i+1) = ar_inv(j,k,nx+1-i) |
---|
[4366] | 558 | ENDDO |
---|
| 559 | ENDDO |
---|
[1106] | 560 | ENDDO |
---|
| 561 | |
---|
[4366] | 562 | ELSE |
---|
[1106] | 563 | |
---|
[4366] | 564 | DO k = nzb_x, nzt_x |
---|
| 565 | DO j = nys_x, nyn_x |
---|
| 566 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
| 567 | DO i = 0, (nx+1)/2 |
---|
[4370] | 568 | f_vec_x(mm,2*i) = ar(i,j,k) |
---|
[4366] | 569 | ENDDO |
---|
| 570 | DO i = 1, (nx+1)/2-1 |
---|
[4370] | 571 | f_vec_x(mm,2*i+1) = ar(nx+1-i,j,k) |
---|
[4366] | 572 | ENDDO |
---|
| 573 | ENDDO |
---|
| 574 | ENDDO |
---|
[1106] | 575 | |
---|
[4366] | 576 | ENDIF |
---|
[4370] | 577 | f_vec_x(:,1) = 0.0_wp |
---|
| 578 | f_vec_x(:,nx+2) = 0.0_wp |
---|
[4366] | 579 | |
---|
| 580 | ALLOCATE( work_vec((nyn_x-nys_x+1)*(nzt_x-nzb_x+1),nx+2) ) |
---|
[4370] | 581 | CALL fft991cy_vec( f_vec_x, work_vec, trigs_x, ifax_x, nx+1, 1 ) |
---|
[4366] | 582 | DEALLOCATE( work_vec ) |
---|
| 583 | |
---|
| 584 | ENDIF |
---|
| 585 | |
---|
[1106] | 586 | ENDIF |
---|
| 587 | |
---|
[1210] | 588 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 589 | |
---|
| 590 | #if defined( __fftw ) |
---|
| 591 | IF ( forward_fft ) THEN |
---|
| 592 | |
---|
| 593 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 594 | !$OMP DO |
---|
| 595 | DO k = nzb_x, nzt_x |
---|
| 596 | DO j = nys_x, nyn_x |
---|
| 597 | |
---|
| 598 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 599 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 600 | |
---|
[1216] | 601 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 602 | |
---|
[1216] | 603 | DO i = 0, (nx+1)/2 |
---|
[1322] | 604 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 605 | ENDDO |
---|
| 606 | DO i = 1, (nx+1)/2 - 1 |
---|
| 607 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 608 | ENDDO |
---|
| 609 | |
---|
| 610 | ELSE |
---|
| 611 | |
---|
| 612 | DO i = 0, (nx+1)/2 |
---|
[1322] | 613 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 614 | ENDDO |
---|
| 615 | DO i = 1, (nx+1)/2 - 1 |
---|
| 616 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 617 | ENDDO |
---|
| 618 | |
---|
| 619 | ENDIF |
---|
| 620 | |
---|
[1210] | 621 | ENDDO |
---|
| 622 | ENDDO |
---|
| 623 | !$OMP END PARALLEL |
---|
| 624 | |
---|
[1216] | 625 | ELSE |
---|
[1210] | 626 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 627 | !$OMP DO |
---|
| 628 | DO k = nzb_x, nzt_x |
---|
| 629 | DO j = nys_x, nyn_x |
---|
| 630 | |
---|
[1216] | 631 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 632 | |
---|
[1392] | 633 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 634 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 635 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
| 636 | KIND=wp ) |
---|
[1216] | 637 | ENDDO |
---|
[1392] | 638 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
| 639 | KIND=wp ) |
---|
[1216] | 640 | |
---|
| 641 | ELSE |
---|
| 642 | |
---|
[1392] | 643 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 644 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 645 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1216] | 646 | ENDDO |
---|
[1392] | 647 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 648 | KIND=wp ) |
---|
[1216] | 649 | |
---|
| 650 | ENDIF |
---|
| 651 | |
---|
[1210] | 652 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 653 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 654 | |
---|
| 655 | ENDDO |
---|
| 656 | ENDDO |
---|
| 657 | !$OMP END PARALLEL |
---|
| 658 | |
---|
[1216] | 659 | ENDIF |
---|
[1210] | 660 | #endif |
---|
| 661 | |
---|
[1106] | 662 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 663 | |
---|
[1815] | 664 | #if defined( __ibm ) |
---|
[1106] | 665 | IF ( forward_fft ) THEN |
---|
| 666 | |
---|
| 667 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 668 | !$OMP DO |
---|
| 669 | DO k = nzb_x, nzt_x |
---|
| 670 | DO j = nys_x, nyn_x |
---|
| 671 | |
---|
[1320] | 672 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 673 | nau1, aux2, nau2 ) |
---|
[1106] | 674 | |
---|
| 675 | DO i = 0, (nx+1)/2 |
---|
| 676 | ar(i,j,k) = work(2*i) |
---|
| 677 | ENDDO |
---|
| 678 | DO i = 1, (nx+1)/2 - 1 |
---|
| 679 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 680 | ENDDO |
---|
| 681 | |
---|
| 682 | ENDDO |
---|
| 683 | ENDDO |
---|
| 684 | !$OMP END PARALLEL |
---|
| 685 | |
---|
| 686 | ELSE |
---|
| 687 | |
---|
| 688 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 689 | !$OMP DO |
---|
| 690 | DO k = nzb_x, nzt_x |
---|
| 691 | DO j = nys_x, nyn_x |
---|
| 692 | |
---|
| 693 | DO i = 0, (nx+1)/2 |
---|
| 694 | work(2*i) = ar(i,j,k) |
---|
| 695 | ENDDO |
---|
| 696 | DO i = 1, (nx+1)/2 - 1 |
---|
| 697 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 698 | ENDDO |
---|
[1342] | 699 | work(1) = 0.0_wp |
---|
| 700 | work(nx+2) = 0.0_wp |
---|
[1106] | 701 | |
---|
[1320] | 702 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 703 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 704 | |
---|
| 705 | DO i = 0, nx |
---|
| 706 | ar(i,j,k) = work(i) |
---|
| 707 | ENDDO |
---|
| 708 | |
---|
| 709 | ENDDO |
---|
| 710 | ENDDO |
---|
| 711 | !$OMP END PARALLEL |
---|
| 712 | |
---|
| 713 | ENDIF |
---|
| 714 | |
---|
[4370] | 715 | #elif defined( __nec_fft ) |
---|
[1106] | 716 | |
---|
| 717 | IF ( forward_fft ) THEN |
---|
| 718 | |
---|
| 719 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 720 | !$OMP DO |
---|
| 721 | DO k = nzb_x, nzt_x |
---|
| 722 | DO j = nys_x, nyn_x |
---|
| 723 | |
---|
| 724 | work(0:nx) = ar(0:nx,j,k) |
---|
| 725 | |
---|
| 726 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 727 | |
---|
| 728 | DO i = 0, (nx+1)/2 |
---|
| 729 | ar(i,j,k) = work(2*i) |
---|
| 730 | ENDDO |
---|
| 731 | DO i = 1, (nx+1)/2 - 1 |
---|
| 732 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 733 | ENDDO |
---|
| 734 | |
---|
| 735 | ENDDO |
---|
| 736 | ENDDO |
---|
| 737 | !$END OMP PARALLEL |
---|
| 738 | |
---|
| 739 | ELSE |
---|
| 740 | |
---|
| 741 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 742 | !$OMP DO |
---|
| 743 | DO k = nzb_x, nzt_x |
---|
| 744 | DO j = nys_x, nyn_x |
---|
| 745 | |
---|
| 746 | DO i = 0, (nx+1)/2 |
---|
| 747 | work(2*i) = ar(i,j,k) |
---|
| 748 | ENDDO |
---|
| 749 | DO i = 1, (nx+1)/2 - 1 |
---|
| 750 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 751 | ENDDO |
---|
[1342] | 752 | work(1) = 0.0_wp |
---|
| 753 | work(nx+2) = 0.0_wp |
---|
[1106] | 754 | |
---|
| 755 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 756 | |
---|
| 757 | ar(0:nx,j,k) = work(0:nx) |
---|
| 758 | |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
| 761 | !$OMP END PARALLEL |
---|
| 762 | |
---|
| 763 | ENDIF |
---|
| 764 | |
---|
[3634] | 765 | #elif defined( __cuda_fft ) |
---|
| 766 | |
---|
| 767 | IF ( forward_fft ) THEN |
---|
| 768 | |
---|
| 769 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 770 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
| 771 | !$ACC END HOST_DATA |
---|
| 772 | |
---|
| 773 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 774 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 775 | DO k = nzb_x, nzt_x |
---|
| 776 | DO j = nys_x, nyn_x |
---|
| 777 | |
---|
| 778 | DO i = 0, (nx+1)/2 |
---|
| 779 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
| 780 | ENDDO |
---|
| 781 | |
---|
| 782 | DO i = 1, (nx+1)/2 - 1 |
---|
| 783 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
| 784 | ENDDO |
---|
| 785 | |
---|
| 786 | ENDDO |
---|
| 787 | ENDDO |
---|
| 788 | |
---|
| 789 | ELSE |
---|
| 790 | |
---|
| 791 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 792 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 793 | DO k = nzb_x, nzt_x |
---|
| 794 | DO j = nys_x, nyn_x |
---|
| 795 | |
---|
| 796 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
| 797 | |
---|
| 798 | DO i = 1, (nx+1)/2 - 1 |
---|
| 799 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 800 | KIND=wp ) |
---|
| 801 | ENDDO |
---|
| 802 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 803 | KIND=wp ) |
---|
| 804 | |
---|
| 805 | ENDDO |
---|
| 806 | ENDDO |
---|
| 807 | |
---|
| 808 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 809 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 810 | !$ACC END HOST_DATA |
---|
| 811 | |
---|
| 812 | ENDIF |
---|
| 813 | |
---|
[1106] | 814 | #endif |
---|
| 815 | |
---|
| 816 | ENDIF |
---|
| 817 | |
---|
| 818 | END SUBROUTINE fft_x |
---|
| 819 | |
---|
[1682] | 820 | !------------------------------------------------------------------------------! |
---|
| 821 | ! Description: |
---|
| 822 | ! ------------ |
---|
| 823 | !> Fourier-transformation along x-direction. |
---|
| 824 | !> Version for 1D-decomposition. |
---|
| 825 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 826 | !> system-specific routines, if they are available |
---|
| 827 | !------------------------------------------------------------------------------! |
---|
| 828 | |
---|
[1106] | 829 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | IMPLICIT NONE |
---|
| 833 | |
---|
[1682] | 834 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 835 | |
---|
[1682] | 836 | INTEGER(iwp) :: i !< |
---|
| 837 | INTEGER(iwp) :: ishape(1) !< |
---|
[1] | 838 | |
---|
[1682] | 839 | LOGICAL :: forward_fft !< |
---|
[1106] | 840 | |
---|
[1682] | 841 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
| 842 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 843 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 844 | |
---|
[1682] | 845 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 846 | |
---|
[1] | 847 | #if defined( __ibm ) |
---|
[1682] | 848 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 849 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[4370] | 850 | #elif defined( __nec_fft ) |
---|
[1682] | 851 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1] | 852 | #endif |
---|
| 853 | |
---|
[1106] | 854 | IF ( direction == 'forward' ) THEN |
---|
| 855 | forward_fft = .TRUE. |
---|
| 856 | ELSE |
---|
| 857 | forward_fft = .FALSE. |
---|
| 858 | ENDIF |
---|
| 859 | |
---|
[1] | 860 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 861 | |
---|
| 862 | ! |
---|
| 863 | !-- Performing the fft with singleton's software works on every system, |
---|
| 864 | !-- since it is part of the model |
---|
| 865 | ALLOCATE( cwork(0:nx) ) |
---|
| 866 | |
---|
[1106] | 867 | IF ( forward_fft ) then |
---|
[1] | 868 | |
---|
| 869 | DO i = 0, nx |
---|
[1392] | 870 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
[1] | 871 | ENDDO |
---|
| 872 | ishape = SHAPE( cwork ) |
---|
| 873 | CALL FFTN( cwork, ishape ) |
---|
| 874 | DO i = 0, (nx+1)/2 |
---|
[1322] | 875 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 876 | ENDDO |
---|
| 877 | DO i = 1, (nx+1)/2 - 1 |
---|
| 878 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 879 | ENDDO |
---|
| 880 | |
---|
| 881 | ELSE |
---|
| 882 | |
---|
[1392] | 883 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 884 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 885 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
| 886 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1] | 887 | ENDDO |
---|
[1392] | 888 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 889 | |
---|
| 890 | ishape = SHAPE( cwork ) |
---|
| 891 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 892 | |
---|
| 893 | DO i = 0, nx |
---|
[1322] | 894 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 895 | ENDDO |
---|
| 896 | |
---|
| 897 | ENDIF |
---|
| 898 | |
---|
| 899 | DEALLOCATE( cwork ) |
---|
| 900 | |
---|
| 901 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 902 | |
---|
| 903 | ! |
---|
| 904 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 905 | !-- since it is part of the model |
---|
[1106] | 906 | IF ( forward_fft ) THEN |
---|
[1] | 907 | |
---|
| 908 | work(0:nx) = ar |
---|
| 909 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 910 | |
---|
| 911 | DO i = 0, (nx+1)/2 |
---|
| 912 | ar(i) = work(2*i) |
---|
| 913 | ENDDO |
---|
| 914 | DO i = 1, (nx+1)/2 - 1 |
---|
| 915 | ar(nx+1-i) = work(2*i+1) |
---|
| 916 | ENDDO |
---|
| 917 | |
---|
| 918 | ELSE |
---|
| 919 | |
---|
| 920 | DO i = 0, (nx+1)/2 |
---|
| 921 | work(2*i) = ar(i) |
---|
| 922 | ENDDO |
---|
| 923 | DO i = 1, (nx+1)/2 - 1 |
---|
| 924 | work(2*i+1) = ar(nx+1-i) |
---|
| 925 | ENDDO |
---|
[1342] | 926 | work(1) = 0.0_wp |
---|
| 927 | work(nx+2) = 0.0_wp |
---|
[1] | 928 | |
---|
| 929 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 930 | ar = work(0:nx) |
---|
| 931 | |
---|
| 932 | ENDIF |
---|
| 933 | |
---|
[1216] | 934 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 935 | |
---|
| 936 | #if defined( __fftw ) |
---|
| 937 | IF ( forward_fft ) THEN |
---|
| 938 | |
---|
| 939 | x_in(0:nx) = ar(0:nx) |
---|
| 940 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 941 | |
---|
| 942 | DO i = 0, (nx+1)/2 |
---|
[1322] | 943 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 944 | ENDDO |
---|
| 945 | DO i = 1, (nx+1)/2 - 1 |
---|
| 946 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 947 | ENDDO |
---|
| 948 | |
---|
| 949 | ELSE |
---|
| 950 | |
---|
[1392] | 951 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 952 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 953 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1216] | 954 | ENDDO |
---|
[1392] | 955 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 956 | |
---|
| 957 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 958 | ar(0:nx) = x_in(0:nx) |
---|
| 959 | |
---|
| 960 | ENDIF |
---|
| 961 | #endif |
---|
| 962 | |
---|
[1] | 963 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 964 | |
---|
[1815] | 965 | #if defined( __ibm ) |
---|
[1106] | 966 | IF ( forward_fft ) THEN |
---|
[1] | 967 | |
---|
[1320] | 968 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 969 | aux2, nau2 ) |
---|
| 970 | |
---|
| 971 | DO i = 0, (nx+1)/2 |
---|
| 972 | ar(i) = work(2*i) |
---|
| 973 | ENDDO |
---|
| 974 | DO i = 1, (nx+1)/2 - 1 |
---|
| 975 | ar(nx+1-i) = work(2*i+1) |
---|
| 976 | ENDDO |
---|
| 977 | |
---|
| 978 | ELSE |
---|
| 979 | |
---|
| 980 | DO i = 0, (nx+1)/2 |
---|
| 981 | work(2*i) = ar(i) |
---|
| 982 | ENDDO |
---|
| 983 | DO i = 1, (nx+1)/2 - 1 |
---|
| 984 | work(2*i+1) = ar(nx+1-i) |
---|
| 985 | ENDDO |
---|
[1342] | 986 | work(1) = 0.0_wp |
---|
| 987 | work(nx+2) = 0.0_wp |
---|
[1] | 988 | |
---|
[1106] | 989 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 990 | aux4, nau2 ) |
---|
| 991 | |
---|
| 992 | DO i = 0, nx |
---|
| 993 | ar(i) = work(i) |
---|
| 994 | ENDDO |
---|
| 995 | |
---|
| 996 | ENDIF |
---|
[4370] | 997 | #elif defined( __nec_fft ) |
---|
[1106] | 998 | IF ( forward_fft ) THEN |
---|
[1] | 999 | |
---|
| 1000 | work(0:nx) = ar(0:nx) |
---|
| 1001 | |
---|
[1106] | 1002 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 1003 | |
---|
[1] | 1004 | DO i = 0, (nx+1)/2 |
---|
| 1005 | ar(i) = work(2*i) |
---|
| 1006 | ENDDO |
---|
| 1007 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1008 | ar(nx+1-i) = work(2*i+1) |
---|
| 1009 | ENDDO |
---|
| 1010 | |
---|
| 1011 | ELSE |
---|
| 1012 | |
---|
| 1013 | DO i = 0, (nx+1)/2 |
---|
| 1014 | work(2*i) = ar(i) |
---|
| 1015 | ENDDO |
---|
| 1016 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1017 | work(2*i+1) = ar(nx+1-i) |
---|
| 1018 | ENDDO |
---|
[1342] | 1019 | work(1) = 0.0_wp |
---|
| 1020 | work(nx+2) = 0.0_wp |
---|
[1] | 1021 | |
---|
[1106] | 1022 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 1023 | |
---|
| 1024 | ar(0:nx) = work(0:nx) |
---|
| 1025 | |
---|
| 1026 | ENDIF |
---|
| 1027 | #endif |
---|
| 1028 | |
---|
| 1029 | ENDIF |
---|
| 1030 | |
---|
[1106] | 1031 | END SUBROUTINE fft_x_1d |
---|
[1] | 1032 | |
---|
[1682] | 1033 | !------------------------------------------------------------------------------! |
---|
| 1034 | ! Description: |
---|
| 1035 | ! ------------ |
---|
| 1036 | !> Fourier-transformation along y-direction. |
---|
| 1037 | !> Version for 2D-decomposition. |
---|
| 1038 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1039 | !> system-specific routines, if they are available. |
---|
| 1040 | !> |
---|
| 1041 | !> direction: 'forward' or 'backward' |
---|
| 1042 | !> ar, ar_tr: 3D data arrays |
---|
| 1043 | !> forward: ar: before ar_tr: after transformation |
---|
| 1044 | !> backward: ar_tr: before ar: after transfosition |
---|
| 1045 | !> |
---|
| 1046 | !> In case of non-overlapping transposition/transformation: |
---|
| 1047 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
| 1048 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
| 1049 | !> |
---|
| 1050 | !> In case of overlapping transposition/transformation |
---|
| 1051 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
| 1052 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
| 1053 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
| 1054 | !> transformation is carried out for a 2D-plane only. |
---|
| 1055 | !------------------------------------------------------------------------------! |
---|
| 1056 | |
---|
[1216] | 1057 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
[4366] | 1058 | nxr_y_l, ar_inv ) |
---|
[1] | 1059 | |
---|
| 1060 | |
---|
| 1061 | IMPLICIT NONE |
---|
| 1062 | |
---|
[1682] | 1063 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1064 | |
---|
[1682] | 1065 | INTEGER(iwp) :: i !< |
---|
| 1066 | INTEGER(iwp) :: j !< |
---|
| 1067 | INTEGER(iwp) :: jshape(1) !< |
---|
| 1068 | INTEGER(iwp) :: k !< |
---|
[4366] | 1069 | INTEGER(iwp) :: mm !< |
---|
[1682] | 1070 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 1071 | INTEGER(iwp) :: nxl_y_l !< |
---|
| 1072 | INTEGER(iwp) :: nxr_y_bound !< |
---|
| 1073 | INTEGER(iwp) :: nxr_y_l !< |
---|
[1106] | 1074 | |
---|
[1682] | 1075 | LOGICAL :: forward_fft !< |
---|
[1106] | 1076 | |
---|
[1682] | 1077 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1078 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1079 | |
---|
[4370] | 1080 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: f_vec_y |
---|
[4366] | 1081 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_vec |
---|
| 1082 | |
---|
| 1083 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: ar !< |
---|
| 1084 | REAL(wp), DIMENSION(nxl_y:nxr_y,nzb_y:nzt_y,0:ny), OPTIONAL :: ar_inv !< |
---|
| 1085 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y), OPTIONAL :: ar_tr !< |
---|
| 1086 | |
---|
[1682] | 1087 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1088 | |
---|
[1106] | 1089 | #if defined( __ibm ) |
---|
[1682] | 1090 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1091 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[4370] | 1092 | #elif defined( __nec_fft ) |
---|
[1682] | 1093 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[3634] | 1094 | #elif defined( __cuda_fft ) |
---|
| 1095 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
| 1096 | ar_tmp !< |
---|
| 1097 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 1098 | #endif |
---|
| 1099 | |
---|
[1320] | 1100 | |
---|
[1106] | 1101 | IF ( direction == 'forward' ) THEN |
---|
| 1102 | forward_fft = .TRUE. |
---|
| 1103 | ELSE |
---|
| 1104 | forward_fft = .FALSE. |
---|
| 1105 | ENDIF |
---|
| 1106 | |
---|
| 1107 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1108 | |
---|
| 1109 | ! |
---|
| 1110 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1111 | !-- since it is part of the model |
---|
| 1112 | ALLOCATE( cwork(0:ny) ) |
---|
| 1113 | |
---|
| 1114 | IF ( forward_fft ) then |
---|
| 1115 | |
---|
| 1116 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1117 | !$OMP DO |
---|
| 1118 | DO k = nzb_y, nzt_y |
---|
[1216] | 1119 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1120 | |
---|
| 1121 | DO j = 0, ny |
---|
[1392] | 1122 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
[1106] | 1123 | ENDDO |
---|
| 1124 | |
---|
| 1125 | jshape = SHAPE( cwork ) |
---|
| 1126 | CALL FFTN( cwork, jshape ) |
---|
| 1127 | |
---|
| 1128 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1129 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1130 | ENDDO |
---|
| 1131 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1132 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1133 | ENDDO |
---|
| 1134 | |
---|
| 1135 | ENDDO |
---|
| 1136 | ENDDO |
---|
| 1137 | !$OMP END PARALLEL |
---|
| 1138 | |
---|
| 1139 | ELSE |
---|
| 1140 | |
---|
| 1141 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1142 | !$OMP DO |
---|
| 1143 | DO k = nzb_y, nzt_y |
---|
[1216] | 1144 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1145 | |
---|
[1392] | 1146 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1147 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1148 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
| 1149 | KIND=wp ) |
---|
| 1150 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1151 | KIND=wp ) |
---|
[1106] | 1152 | ENDDO |
---|
[1392] | 1153 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1154 | KIND=wp ) |
---|
[1106] | 1155 | |
---|
| 1156 | jshape = SHAPE( cwork ) |
---|
| 1157 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1158 | |
---|
| 1159 | DO j = 0, ny |
---|
[1322] | 1160 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1161 | ENDDO |
---|
| 1162 | |
---|
| 1163 | ENDDO |
---|
| 1164 | ENDDO |
---|
| 1165 | !$OMP END PARALLEL |
---|
| 1166 | |
---|
| 1167 | ENDIF |
---|
| 1168 | |
---|
| 1169 | DEALLOCATE( cwork ) |
---|
| 1170 | |
---|
| 1171 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1172 | |
---|
| 1173 | ! |
---|
| 1174 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1175 | !-- since it is part of the model |
---|
| 1176 | IF ( forward_fft ) THEN |
---|
| 1177 | |
---|
[4366] | 1178 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 1179 | |
---|
[4366] | 1180 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 1181 | !$OMP DO |
---|
| 1182 | DO k = nzb_y, nzt_y |
---|
| 1183 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1184 | |
---|
[4366] | 1185 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1186 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1187 | |
---|
| 1188 | DO j = 0, (ny+1)/2 |
---|
| 1189 | ar_tr(j,i,k) = work(2*j) |
---|
| 1190 | ENDDO |
---|
| 1191 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1192 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
| 1193 | ENDDO |
---|
| 1194 | |
---|
[1106] | 1195 | ENDDO |
---|
[4366] | 1196 | ENDDO |
---|
| 1197 | !$OMP END PARALLEL |
---|
| 1198 | |
---|
| 1199 | ELSE |
---|
| 1200 | ! |
---|
| 1201 | !-- Vector version of Temperton-fft. Computes multiple 1-D FFT's. |
---|
[4370] | 1202 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
[4366] | 1203 | |
---|
| 1204 | mm = 1 |
---|
| 1205 | DO k = nzb_y, nzt_y |
---|
| 1206 | DO i = nxl_y_l, nxr_y_l |
---|
[4370] | 1207 | f_vec_y(mm,0:nx) = ar(0:nx,i,k) |
---|
[4366] | 1208 | mm = mm+1 |
---|
[1106] | 1209 | ENDDO |
---|
| 1210 | ENDDO |
---|
| 1211 | |
---|
[4366] | 1212 | ALLOCATE( work_vec( (nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
[4370] | 1213 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, -1 ) |
---|
[4366] | 1214 | DEALLOCATE( work_vec ) |
---|
| 1215 | |
---|
| 1216 | IF( PRESENT( ar_inv ) ) THEN |
---|
| 1217 | |
---|
| 1218 | DO k = nzb_y, nzt_y |
---|
| 1219 | DO i = nxl_y_l, nxr_y_l |
---|
| 1220 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1221 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1222 | ar_inv(i,k,j) = f_vec_y(mm,2*j) |
---|
[4366] | 1223 | ENDDO |
---|
| 1224 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1225 | ar_inv(i,k,ny+1-j) = f_vec_y(mm,2*j+1) |
---|
[4366] | 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | ENDDO |
---|
| 1229 | |
---|
| 1230 | ELSE |
---|
| 1231 | |
---|
| 1232 | DO k = nzb_y, nzt_y |
---|
| 1233 | DO i = nxl_y_l, nxr_y_l |
---|
| 1234 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1235 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1236 | ar(j,i,k) = f_vec_y(mm,2*j) |
---|
[4366] | 1237 | ENDDO |
---|
| 1238 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1239 | ar(ny+1-j,i,k) = f_vec_y(mm,2*j+1) |
---|
[4366] | 1240 | ENDDO |
---|
| 1241 | ENDDO |
---|
| 1242 | ENDDO |
---|
| 1243 | |
---|
| 1244 | ENDIF |
---|
| 1245 | |
---|
[4370] | 1246 | DEALLOCATE( f_vec_y ) |
---|
[4366] | 1247 | |
---|
| 1248 | ENDIF |
---|
| 1249 | |
---|
[1106] | 1250 | ELSE |
---|
| 1251 | |
---|
[4366] | 1252 | IF ( .NOT. temperton_fft_vec ) THEN |
---|
[1106] | 1253 | |
---|
[4366] | 1254 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
| 1255 | !$OMP DO |
---|
| 1256 | DO k = nzb_y, nzt_y |
---|
| 1257 | DO i = nxl_y_l, nxr_y_l |
---|
| 1258 | |
---|
| 1259 | DO j = 0, (ny+1)/2 |
---|
| 1260 | work(2*j) = ar_tr(j,i,k) |
---|
| 1261 | ENDDO |
---|
| 1262 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1263 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
| 1264 | ENDDO |
---|
| 1265 | work(1) = 0.0_wp |
---|
| 1266 | work(ny+2) = 0.0_wp |
---|
| 1267 | |
---|
| 1268 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1269 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1270 | |
---|
[1106] | 1271 | ENDDO |
---|
[4366] | 1272 | ENDDO |
---|
| 1273 | !$OMP END PARALLEL |
---|
| 1274 | |
---|
| 1275 | ELSE |
---|
| 1276 | |
---|
[4370] | 1277 | ALLOCATE( f_vec_y((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),0:ny+2) ) |
---|
[4366] | 1278 | |
---|
| 1279 | IF ( PRESENT( ar_inv ) ) THEN |
---|
| 1280 | |
---|
| 1281 | DO k = nzb_y, nzt_y |
---|
| 1282 | DO i = nxl_y_l, nxr_y_l |
---|
| 1283 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1284 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1285 | f_vec_y(mm,2*j) = ar_inv(i,k,j) |
---|
[4366] | 1286 | ENDDO |
---|
| 1287 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1288 | f_vec_y(mm,2*j+1) = ar_inv(i,k,ny+1-j) |
---|
[4366] | 1289 | ENDDO |
---|
| 1290 | ENDDO |
---|
[1106] | 1291 | ENDDO |
---|
| 1292 | |
---|
[4366] | 1293 | ELSE |
---|
[1106] | 1294 | |
---|
[4366] | 1295 | DO k = nzb_y, nzt_y |
---|
| 1296 | DO i = nxl_y_l, nxr_y_l |
---|
| 1297 | mm = i-nxl_y_l+1+(k-nzb_y)*(nxr_y_l-nxl_y_l+1) |
---|
| 1298 | DO j = 0, (ny+1)/2 |
---|
[4370] | 1299 | f_vec_y(mm,2*j) = ar(j,i,k) |
---|
[4366] | 1300 | ENDDO |
---|
| 1301 | DO j = 1, (ny+1)/2 - 1 |
---|
[4370] | 1302 | f_vec_y(mm,2*j+1) = ar(ny+1-j,i,k) |
---|
[4366] | 1303 | ENDDO |
---|
| 1304 | ENDDO |
---|
| 1305 | ENDDO |
---|
| 1306 | |
---|
| 1307 | ENDIF |
---|
| 1308 | |
---|
[4370] | 1309 | f_vec_y(:,1) = 0.0_wp |
---|
| 1310 | f_vec_y(:,ny+2) = 0.0_wp |
---|
[4366] | 1311 | |
---|
| 1312 | ALLOCATE( work_vec((nxr_y_l-nxl_y_l+1)*(nzt_y-nzb_y+1),ny+2) ) |
---|
[4370] | 1313 | CALL fft991cy_vec( f_vec_y, work_vec, trigs_y, ifax_y, ny+1, 1 ) |
---|
[4366] | 1314 | DEALLOCATE( work_vec ) |
---|
| 1315 | |
---|
| 1316 | mm = 1 |
---|
| 1317 | DO k = nzb_y, nzt_y |
---|
| 1318 | DO i = nxl_y_l, nxr_y_l |
---|
[4370] | 1319 | ar(0:ny,i,k) = f_vec_y(mm,0:ny) |
---|
[4366] | 1320 | mm = mm+1 |
---|
| 1321 | ENDDO |
---|
[1106] | 1322 | ENDDO |
---|
| 1323 | |
---|
[4370] | 1324 | DEALLOCATE( f_vec_y ) |
---|
[4366] | 1325 | |
---|
| 1326 | ENDIF |
---|
| 1327 | |
---|
[1106] | 1328 | ENDIF |
---|
| 1329 | |
---|
[1210] | 1330 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1331 | |
---|
| 1332 | #if defined( __fftw ) |
---|
| 1333 | IF ( forward_fft ) THEN |
---|
| 1334 | |
---|
| 1335 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1336 | !$OMP DO |
---|
| 1337 | DO k = nzb_y, nzt_y |
---|
[1216] | 1338 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1339 | |
---|
| 1340 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1341 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1342 | |
---|
| 1343 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1344 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1345 | ENDDO |
---|
| 1346 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1347 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1348 | ENDDO |
---|
| 1349 | |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | !$OMP END PARALLEL |
---|
| 1353 | |
---|
| 1354 | ELSE |
---|
| 1355 | |
---|
| 1356 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1357 | !$OMP DO |
---|
| 1358 | DO k = nzb_y, nzt_y |
---|
[1216] | 1359 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1360 | |
---|
[1392] | 1361 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1362 | DO j = 1, (ny+1)/2 - 1 |
---|
[1398] | 1363 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1364 | KIND=wp ) |
---|
[1210] | 1365 | ENDDO |
---|
[1392] | 1366 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1367 | KIND=wp ) |
---|
[1210] | 1368 | |
---|
| 1369 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1370 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1371 | |
---|
| 1372 | ENDDO |
---|
| 1373 | ENDDO |
---|
| 1374 | !$OMP END PARALLEL |
---|
| 1375 | |
---|
| 1376 | ENDIF |
---|
| 1377 | #endif |
---|
| 1378 | |
---|
[1106] | 1379 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1380 | |
---|
[1815] | 1381 | #if defined( __ibm ) |
---|
[1106] | 1382 | IF ( forward_fft) THEN |
---|
| 1383 | |
---|
| 1384 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1385 | !$OMP DO |
---|
| 1386 | DO k = nzb_y, nzt_y |
---|
[1216] | 1387 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1388 | |
---|
[1320] | 1389 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1390 | nau1, auy2, nau2 ) |
---|
[1106] | 1391 | |
---|
| 1392 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1393 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1394 | ENDDO |
---|
| 1395 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1396 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1397 | ENDDO |
---|
| 1398 | |
---|
| 1399 | ENDDO |
---|
| 1400 | ENDDO |
---|
| 1401 | !$OMP END PARALLEL |
---|
| 1402 | |
---|
| 1403 | ELSE |
---|
| 1404 | |
---|
| 1405 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1406 | !$OMP DO |
---|
| 1407 | DO k = nzb_y, nzt_y |
---|
[1216] | 1408 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1409 | |
---|
| 1410 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1411 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1412 | ENDDO |
---|
| 1413 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1414 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1415 | ENDDO |
---|
[1342] | 1416 | work(1) = 0.0_wp |
---|
| 1417 | work(ny+2) = 0.0_wp |
---|
[1106] | 1418 | |
---|
[1320] | 1419 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1420 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1421 | |
---|
| 1422 | DO j = 0, ny |
---|
| 1423 | ar(j,i,k) = work(j) |
---|
| 1424 | ENDDO |
---|
| 1425 | |
---|
| 1426 | ENDDO |
---|
| 1427 | ENDDO |
---|
| 1428 | !$OMP END PARALLEL |
---|
| 1429 | |
---|
| 1430 | ENDIF |
---|
[4370] | 1431 | #elif defined( __nec_fft ) |
---|
[1106] | 1432 | IF ( forward_fft ) THEN |
---|
| 1433 | |
---|
| 1434 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1435 | !$OMP DO |
---|
| 1436 | DO k = nzb_y, nzt_y |
---|
[1216] | 1437 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1438 | |
---|
| 1439 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1440 | |
---|
| 1441 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1442 | |
---|
| 1443 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1444 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1445 | ENDDO |
---|
| 1446 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1447 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1448 | ENDDO |
---|
| 1449 | |
---|
| 1450 | ENDDO |
---|
| 1451 | ENDDO |
---|
| 1452 | !$END OMP PARALLEL |
---|
| 1453 | |
---|
| 1454 | ELSE |
---|
| 1455 | |
---|
| 1456 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1457 | !$OMP DO |
---|
| 1458 | DO k = nzb_y, nzt_y |
---|
[1216] | 1459 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1460 | |
---|
| 1461 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1462 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1463 | ENDDO |
---|
| 1464 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1465 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1466 | ENDDO |
---|
[1342] | 1467 | work(1) = 0.0_wp |
---|
| 1468 | work(ny+2) = 0.0_wp |
---|
[1106] | 1469 | |
---|
| 1470 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1471 | |
---|
| 1472 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1473 | |
---|
| 1474 | ENDDO |
---|
| 1475 | ENDDO |
---|
| 1476 | !$OMP END PARALLEL |
---|
| 1477 | |
---|
| 1478 | ENDIF |
---|
[3634] | 1479 | #elif defined( __cuda_fft ) |
---|
| 1480 | |
---|
| 1481 | IF ( forward_fft ) THEN |
---|
| 1482 | |
---|
| 1483 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1484 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
| 1485 | !$ACC END HOST_DATA |
---|
| 1486 | |
---|
| 1487 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1488 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1489 | DO k = nzb_y, nzt_y |
---|
| 1490 | DO i = nxl_y, nxr_y |
---|
| 1491 | |
---|
| 1492 | DO j = 0, (ny+1)/2 |
---|
| 1493 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
| 1494 | ENDDO |
---|
| 1495 | |
---|
| 1496 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1497 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
| 1498 | ENDDO |
---|
| 1499 | |
---|
| 1500 | ENDDO |
---|
| 1501 | ENDDO |
---|
| 1502 | |
---|
| 1503 | ELSE |
---|
| 1504 | |
---|
| 1505 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1506 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1507 | DO k = nzb_y, nzt_y |
---|
| 1508 | DO i = nxl_y, nxr_y |
---|
| 1509 | |
---|
| 1510 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
| 1511 | |
---|
| 1512 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1513 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), & |
---|
| 1514 | KIND=wp ) |
---|
| 1515 | ENDDO |
---|
| 1516 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1517 | KIND=wp ) |
---|
| 1518 | |
---|
| 1519 | ENDDO |
---|
| 1520 | ENDDO |
---|
| 1521 | |
---|
| 1522 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1523 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1524 | !$ACC END HOST_DATA |
---|
| 1525 | |
---|
| 1526 | ENDIF |
---|
| 1527 | |
---|
[1106] | 1528 | #endif |
---|
| 1529 | |
---|
| 1530 | ENDIF |
---|
| 1531 | |
---|
| 1532 | END SUBROUTINE fft_y |
---|
| 1533 | |
---|
[1682] | 1534 | !------------------------------------------------------------------------------! |
---|
| 1535 | ! Description: |
---|
| 1536 | ! ------------ |
---|
| 1537 | !> Fourier-transformation along y-direction. |
---|
| 1538 | !> Version for 1D-decomposition. |
---|
| 1539 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1540 | !> system-specific routines, if they are available. |
---|
| 1541 | !------------------------------------------------------------------------------! |
---|
| 1542 | |
---|
[1106] | 1543 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1544 | |
---|
| 1545 | |
---|
| 1546 | IMPLICIT NONE |
---|
| 1547 | |
---|
| 1548 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1549 | |
---|
[1682] | 1550 | INTEGER(iwp) :: j !< |
---|
| 1551 | INTEGER(iwp) :: jshape(1) !< |
---|
[1] | 1552 | |
---|
[1682] | 1553 | LOGICAL :: forward_fft !< |
---|
[1106] | 1554 | |
---|
[1682] | 1555 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
| 1556 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1557 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1558 | |
---|
[1682] | 1559 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1560 | |
---|
[1] | 1561 | #if defined( __ibm ) |
---|
[1682] | 1562 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1563 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[4370] | 1564 | #elif defined( __nec_fft ) |
---|
[1682] | 1565 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1] | 1566 | #endif |
---|
| 1567 | |
---|
[1106] | 1568 | IF ( direction == 'forward' ) THEN |
---|
| 1569 | forward_fft = .TRUE. |
---|
| 1570 | ELSE |
---|
| 1571 | forward_fft = .FALSE. |
---|
| 1572 | ENDIF |
---|
| 1573 | |
---|
[1] | 1574 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1575 | |
---|
| 1576 | ! |
---|
| 1577 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1578 | !-- since it is part of the model |
---|
| 1579 | ALLOCATE( cwork(0:ny) ) |
---|
| 1580 | |
---|
[1106] | 1581 | IF ( forward_fft ) THEN |
---|
[1] | 1582 | |
---|
| 1583 | DO j = 0, ny |
---|
[1392] | 1584 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
[1] | 1585 | ENDDO |
---|
| 1586 | |
---|
| 1587 | jshape = SHAPE( cwork ) |
---|
| 1588 | CALL FFTN( cwork, jshape ) |
---|
| 1589 | |
---|
| 1590 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1591 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1592 | ENDDO |
---|
| 1593 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1594 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1595 | ENDDO |
---|
| 1596 | |
---|
| 1597 | ELSE |
---|
| 1598 | |
---|
[1392] | 1599 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 1600 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1601 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
| 1602 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1] | 1603 | ENDDO |
---|
[1392] | 1604 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 1605 | |
---|
| 1606 | jshape = SHAPE( cwork ) |
---|
| 1607 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1608 | |
---|
| 1609 | DO j = 0, ny |
---|
[1322] | 1610 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1611 | ENDDO |
---|
| 1612 | |
---|
| 1613 | ENDIF |
---|
| 1614 | |
---|
| 1615 | DEALLOCATE( cwork ) |
---|
| 1616 | |
---|
| 1617 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1618 | |
---|
| 1619 | ! |
---|
| 1620 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1621 | !-- since it is part of the model |
---|
[1106] | 1622 | IF ( forward_fft ) THEN |
---|
[1] | 1623 | |
---|
| 1624 | work(0:ny) = ar |
---|
| 1625 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1626 | |
---|
| 1627 | DO j = 0, (ny+1)/2 |
---|
| 1628 | ar(j) = work(2*j) |
---|
| 1629 | ENDDO |
---|
| 1630 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1631 | ar(ny+1-j) = work(2*j+1) |
---|
| 1632 | ENDDO |
---|
| 1633 | |
---|
| 1634 | ELSE |
---|
| 1635 | |
---|
| 1636 | DO j = 0, (ny+1)/2 |
---|
| 1637 | work(2*j) = ar(j) |
---|
| 1638 | ENDDO |
---|
| 1639 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1640 | work(2*j+1) = ar(ny+1-j) |
---|
| 1641 | ENDDO |
---|
[1342] | 1642 | work(1) = 0.0_wp |
---|
| 1643 | work(ny+2) = 0.0_wp |
---|
[1] | 1644 | |
---|
| 1645 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1646 | ar = work(0:ny) |
---|
| 1647 | |
---|
| 1648 | ENDIF |
---|
| 1649 | |
---|
[1216] | 1650 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1651 | |
---|
| 1652 | #if defined( __fftw ) |
---|
| 1653 | IF ( forward_fft ) THEN |
---|
| 1654 | |
---|
| 1655 | y_in(0:ny) = ar(0:ny) |
---|
| 1656 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1657 | |
---|
| 1658 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1659 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1660 | ENDDO |
---|
| 1661 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1662 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1663 | ENDDO |
---|
| 1664 | |
---|
| 1665 | ELSE |
---|
| 1666 | |
---|
[1392] | 1667 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 1668 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1669 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1216] | 1670 | ENDDO |
---|
[1392] | 1671 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 1672 | |
---|
| 1673 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1674 | ar(0:ny) = y_in(0:ny) |
---|
| 1675 | |
---|
| 1676 | ENDIF |
---|
| 1677 | #endif |
---|
| 1678 | |
---|
[1] | 1679 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1680 | |
---|
[1815] | 1681 | #if defined( __ibm ) |
---|
[1106] | 1682 | IF ( forward_fft ) THEN |
---|
[1] | 1683 | |
---|
[1320] | 1684 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1685 | auy2, nau2 ) |
---|
| 1686 | |
---|
| 1687 | DO j = 0, (ny+1)/2 |
---|
| 1688 | ar(j) = work(2*j) |
---|
| 1689 | ENDDO |
---|
| 1690 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1691 | ar(ny+1-j) = work(2*j+1) |
---|
| 1692 | ENDDO |
---|
| 1693 | |
---|
| 1694 | ELSE |
---|
| 1695 | |
---|
| 1696 | DO j = 0, (ny+1)/2 |
---|
| 1697 | work(2*j) = ar(j) |
---|
| 1698 | ENDDO |
---|
| 1699 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1700 | work(2*j+1) = ar(ny+1-j) |
---|
| 1701 | ENDDO |
---|
[1342] | 1702 | work(1) = 0.0_wp |
---|
| 1703 | work(ny+2) = 0.0_wp |
---|
[1] | 1704 | |
---|
[1320] | 1705 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1706 | nau1, auy4, nau2 ) |
---|
[1] | 1707 | |
---|
| 1708 | DO j = 0, ny |
---|
| 1709 | ar(j) = work(j) |
---|
| 1710 | ENDDO |
---|
| 1711 | |
---|
| 1712 | ENDIF |
---|
[4370] | 1713 | #elif defined( __nec_fft ) |
---|
[1106] | 1714 | IF ( forward_fft ) THEN |
---|
[1] | 1715 | |
---|
| 1716 | work(0:ny) = ar(0:ny) |
---|
| 1717 | |
---|
[1106] | 1718 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1719 | |
---|
| 1720 | DO j = 0, (ny+1)/2 |
---|
| 1721 | ar(j) = work(2*j) |
---|
| 1722 | ENDDO |
---|
| 1723 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1724 | ar(ny+1-j) = work(2*j+1) |
---|
| 1725 | ENDDO |
---|
| 1726 | |
---|
| 1727 | ELSE |
---|
| 1728 | |
---|
| 1729 | DO j = 0, (ny+1)/2 |
---|
| 1730 | work(2*j) = ar(j) |
---|
| 1731 | ENDDO |
---|
| 1732 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1733 | work(2*j+1) = ar(ny+1-j) |
---|
| 1734 | ENDDO |
---|
[1342] | 1735 | work(1) = 0.0_wp |
---|
| 1736 | work(ny+2) = 0.0_wp |
---|
[1] | 1737 | |
---|
[1106] | 1738 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1739 | |
---|
| 1740 | ar(0:ny) = work(0:ny) |
---|
| 1741 | |
---|
| 1742 | ENDIF |
---|
| 1743 | #endif |
---|
| 1744 | |
---|
| 1745 | ENDIF |
---|
| 1746 | |
---|
[1106] | 1747 | END SUBROUTINE fft_y_1d |
---|
[1] | 1748 | |
---|
[1682] | 1749 | !------------------------------------------------------------------------------! |
---|
| 1750 | ! Description: |
---|
| 1751 | ! ------------ |
---|
| 1752 | !> Fourier-transformation along x-direction. |
---|
| 1753 | !> Version for 1d domain decomposition |
---|
| 1754 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1755 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1756 | !------------------------------------------------------------------------------! |
---|
| 1757 | |
---|
[1] | 1758 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1759 | |
---|
| 1760 | |
---|
| 1761 | IMPLICIT NONE |
---|
| 1762 | |
---|
[1682] | 1763 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1764 | |
---|
[1682] | 1765 | INTEGER(iwp) :: i !< |
---|
| 1766 | INTEGER(iwp) :: k !< |
---|
| 1767 | INTEGER(iwp) :: siza !< |
---|
[4370] | 1768 | #if defined( __nec_fft ) |
---|
[3241] | 1769 | INTEGER(iwp) :: sizw |
---|
| 1770 | #endif |
---|
[1] | 1771 | |
---|
[1682] | 1772 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 1773 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
| 1774 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
[1320] | 1775 | |
---|
[4370] | 1776 | #if defined( __nec_fft ) |
---|
[3241] | 1777 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1778 | #endif |
---|
[1] | 1779 | |
---|
| 1780 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1781 | |
---|
| 1782 | siza = SIZE( ai, 1 ) |
---|
| 1783 | |
---|
| 1784 | IF ( direction == 'forward') THEN |
---|
| 1785 | |
---|
| 1786 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1787 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1788 | |
---|
| 1789 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1790 | |
---|
| 1791 | DO k = 1, nz |
---|
| 1792 | DO i = 0, (nx+1)/2 |
---|
| 1793 | ar(i,k) = ai(2*i,k) |
---|
| 1794 | ENDDO |
---|
| 1795 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1796 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1797 | ENDDO |
---|
| 1798 | ENDDO |
---|
| 1799 | |
---|
| 1800 | ELSE |
---|
| 1801 | |
---|
| 1802 | DO k = 1, nz |
---|
| 1803 | DO i = 0, (nx+1)/2 |
---|
| 1804 | ai(2*i,k) = ar(i,k) |
---|
| 1805 | ENDDO |
---|
| 1806 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1807 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1808 | ENDDO |
---|
[1342] | 1809 | ai(1,k) = 0.0_wp |
---|
| 1810 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1811 | ENDDO |
---|
| 1812 | |
---|
| 1813 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1814 | |
---|
| 1815 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1816 | |
---|
| 1817 | ENDIF |
---|
| 1818 | |
---|
| 1819 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1820 | |
---|
[4370] | 1821 | #if defined( __nec_fft ) |
---|
[2300] | 1822 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
[1] | 1823 | siza = SIZE( ai, 1 ) |
---|
| 1824 | sizw = SIZE( work, 1 ) |
---|
| 1825 | |
---|
| 1826 | IF ( direction == 'forward') THEN |
---|
| 1827 | |
---|
| 1828 | ! |
---|
| 1829 | !-- Tables are initialized once more. This call should not be |
---|
| 1830 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1831 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1832 | trig_xf, work1, 0 ) |
---|
| 1833 | |
---|
| 1834 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1835 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1836 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1837 | ENDIF |
---|
| 1838 | |
---|
[1320] | 1839 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1840 | trig_xf, work1, 0 ) |
---|
| 1841 | |
---|
| 1842 | DO k = 1, nz |
---|
| 1843 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1844 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1845 | ENDDO |
---|
| 1846 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1847 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1848 | ENDDO |
---|
| 1849 | ENDDO |
---|
| 1850 | |
---|
| 1851 | ELSE |
---|
| 1852 | |
---|
| 1853 | ! |
---|
| 1854 | !-- Tables are initialized once more. This call should not be |
---|
| 1855 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1856 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1857 | trig_xb, work1, 0 ) |
---|
| 1858 | |
---|
| 1859 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1860 | work(:,nz1) = 0.0_wp |
---|
[1] | 1861 | ENDIF |
---|
| 1862 | DO k = 1, nz |
---|
[1392] | 1863 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1864 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 1865 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
[1] | 1866 | ENDDO |
---|
[1392] | 1867 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1868 | ENDDO |
---|
| 1869 | |
---|
[1106] | 1870 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1871 | trig_xb, work1, 0 ) |
---|
| 1872 | |
---|
| 1873 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1874 | |
---|
| 1875 | ENDIF |
---|
| 1876 | |
---|
[2300] | 1877 | DEALLOCATE( work ) |
---|
[1] | 1878 | #endif |
---|
| 1879 | |
---|
| 1880 | ENDIF |
---|
| 1881 | |
---|
| 1882 | END SUBROUTINE fft_x_m |
---|
| 1883 | |
---|
[1682] | 1884 | !------------------------------------------------------------------------------! |
---|
| 1885 | ! Description: |
---|
| 1886 | ! ------------ |
---|
| 1887 | !> Fourier-transformation along y-direction. |
---|
| 1888 | !> Version for 1d domain decomposition |
---|
| 1889 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1890 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1891 | !------------------------------------------------------------------------------! |
---|
| 1892 | |
---|
[1] | 1893 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1894 | |
---|
| 1895 | |
---|
| 1896 | IMPLICIT NONE |
---|
| 1897 | |
---|
[1682] | 1898 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1899 | |
---|
[1682] | 1900 | INTEGER(iwp) :: j !< |
---|
| 1901 | INTEGER(iwp) :: k !< |
---|
| 1902 | INTEGER(iwp) :: ny1 !< |
---|
| 1903 | INTEGER(iwp) :: siza !< |
---|
[4370] | 1904 | #if defined( __nec_fft ) |
---|
[3241] | 1905 | INTEGER(iwp) :: sizw |
---|
| 1906 | #endif |
---|
[1] | 1907 | |
---|
[1682] | 1908 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
| 1909 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
| 1910 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
[1] | 1911 | |
---|
[4370] | 1912 | #if defined( __nec_fft ) |
---|
[3241] | 1913 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1914 | #endif |
---|
[2300] | 1915 | |
---|
[3241] | 1916 | |
---|
[1] | 1917 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1918 | |
---|
| 1919 | siza = SIZE( ai, 1 ) |
---|
| 1920 | |
---|
| 1921 | IF ( direction == 'forward') THEN |
---|
| 1922 | |
---|
| 1923 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1924 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1925 | |
---|
| 1926 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1927 | |
---|
| 1928 | DO k = 1, nz |
---|
| 1929 | DO j = 0, (ny+1)/2 |
---|
| 1930 | ar(j,k) = ai(2*j,k) |
---|
| 1931 | ENDDO |
---|
| 1932 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1933 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1934 | ENDDO |
---|
| 1935 | ENDDO |
---|
| 1936 | |
---|
| 1937 | ELSE |
---|
| 1938 | |
---|
| 1939 | DO k = 1, nz |
---|
| 1940 | DO j = 0, (ny+1)/2 |
---|
| 1941 | ai(2*j,k) = ar(j,k) |
---|
| 1942 | ENDDO |
---|
| 1943 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1944 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1945 | ENDDO |
---|
[1342] | 1946 | ai(1,k) = 0.0_wp |
---|
| 1947 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1948 | ENDDO |
---|
| 1949 | |
---|
| 1950 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1951 | |
---|
| 1952 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1953 | |
---|
| 1954 | ENDIF |
---|
| 1955 | |
---|
| 1956 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1957 | |
---|
[4370] | 1958 | #if defined( __nec_fft ) |
---|
[2300] | 1959 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
[1] | 1960 | siza = SIZE( ai, 1 ) |
---|
| 1961 | sizw = SIZE( work, 1 ) |
---|
| 1962 | |
---|
| 1963 | IF ( direction == 'forward') THEN |
---|
| 1964 | |
---|
| 1965 | ! |
---|
| 1966 | !-- Tables are initialized once more. This call should not be |
---|
| 1967 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1968 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1969 | trig_yf, work1, 0 ) |
---|
| 1970 | |
---|
| 1971 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1972 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1973 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1974 | ENDIF |
---|
| 1975 | |
---|
[1106] | 1976 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1977 | trig_yf, work1, 0 ) |
---|
| 1978 | |
---|
| 1979 | DO k = 1, nz |
---|
| 1980 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1981 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1982 | ENDDO |
---|
| 1983 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1984 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1985 | ENDDO |
---|
| 1986 | ENDDO |
---|
| 1987 | |
---|
| 1988 | ELSE |
---|
| 1989 | |
---|
| 1990 | ! |
---|
| 1991 | !-- Tables are initialized once more. This call should not be |
---|
| 1992 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1993 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1994 | trig_yb, work1, 0 ) |
---|
| 1995 | |
---|
| 1996 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1997 | work(:,nz1) = 0.0_wp |
---|
[1] | 1998 | ENDIF |
---|
| 1999 | DO k = 1, nz |
---|
[1392] | 2000 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 2001 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 2002 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
[1] | 2003 | ENDDO |
---|
[1392] | 2004 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 2005 | ENDDO |
---|
| 2006 | |
---|
[1106] | 2007 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 2008 | trig_yb, work1, 0 ) |
---|
| 2009 | |
---|
| 2010 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 2011 | |
---|
| 2012 | ENDIF |
---|
| 2013 | |
---|
[2300] | 2014 | DEALLOCATE( work ) |
---|
[1] | 2015 | #endif |
---|
| 2016 | |
---|
| 2017 | ENDIF |
---|
| 2018 | |
---|
| 2019 | END SUBROUTINE fft_y_m |
---|
| 2020 | |
---|
[1106] | 2021 | |
---|
[1] | 2022 | END MODULE fft_xy |
---|