[1850] | 1 | !> @file fft_xy_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy_mod.f90 4182 2019-08-22 15:20:23Z monakurppa $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 4069 2019-07-01 14:05:51Z Giersch |
---|
[4069] | 30 | ! Code added to avoid compiler warnings |
---|
| 31 | ! |
---|
| 32 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 33 | ! OpenACC port for SPEC |
---|
[2716] | 34 | ! |
---|
[4182] | 35 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 36 | ! Initial revision |
---|
| 37 | ! |
---|
| 38 | ! |
---|
[1] | 39 | ! Description: |
---|
| 40 | ! ------------ |
---|
[1682] | 41 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 42 | !> Original version: Klaus Ketelsen (May 2002) |
---|
[1] | 43 | !------------------------------------------------------------------------------! |
---|
[1682] | 44 | MODULE fft_xy |
---|
| 45 | |
---|
[1] | 46 | |
---|
[1320] | 47 | USE control_parameters, & |
---|
| 48 | ONLY: fft_method, message_string |
---|
| 49 | |
---|
[3634] | 50 | USE cuda_fft_interfaces |
---|
| 51 | |
---|
[1320] | 52 | USE indices, & |
---|
| 53 | ONLY: nx, ny, nz |
---|
| 54 | |
---|
[3634] | 55 | #if defined( __cuda_fft ) |
---|
| 56 | USE ISO_C_BINDING |
---|
| 57 | #elif defined( __fftw ) |
---|
[1210] | 58 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 59 | #endif |
---|
[1320] | 60 | |
---|
| 61 | USE kinds |
---|
| 62 | |
---|
| 63 | USE singleton, & |
---|
| 64 | ONLY: fftn |
---|
| 65 | |
---|
[1] | 66 | USE temperton_fft |
---|
[1320] | 67 | |
---|
| 68 | USE transpose_indices, & |
---|
[1374] | 69 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 70 | |
---|
| 71 | IMPLICIT NONE |
---|
| 72 | |
---|
| 73 | PRIVATE |
---|
[1106] | 74 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 75 | |
---|
[1682] | 76 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
| 77 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
[1] | 78 | |
---|
[1682] | 79 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
[1] | 80 | |
---|
[1682] | 81 | REAL(wp), SAVE :: dnx !< |
---|
| 82 | REAL(wp), SAVE :: dny !< |
---|
| 83 | REAL(wp), SAVE :: sqr_dnx !< |
---|
| 84 | REAL(wp), SAVE :: sqr_dny !< |
---|
[1320] | 85 | |
---|
[1682] | 86 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
| 87 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
[1] | 88 | |
---|
| 89 | #if defined( __ibm ) |
---|
[1682] | 90 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
| 91 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
[1] | 92 | ! |
---|
| 93 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 94 | !-- shared in OpenMP sense |
---|
[1682] | 95 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
| 96 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
| 97 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
| 98 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
[1320] | 99 | |
---|
[1] | 100 | #elif defined( __nec ) |
---|
[1682] | 101 | INTEGER(iwp), SAVE :: nz1 !< |
---|
[1320] | 102 | |
---|
[1682] | 103 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
| 104 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
| 105 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
| 106 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
[1320] | 107 | |
---|
[3634] | 108 | #elif defined( __cuda_fft ) |
---|
| 109 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
| 110 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
| 111 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
| 112 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
| 113 | |
---|
[1219] | 114 | #endif |
---|
| 115 | |
---|
| 116 | #if defined( __fftw ) |
---|
[1210] | 117 | INCLUDE 'fftw3.f03' |
---|
[1682] | 118 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
| 119 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
[1320] | 120 | |
---|
[1682] | 121 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
[1320] | 122 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 123 | y_out !< |
---|
[1320] | 124 | |
---|
| 125 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 126 | x_in !< |
---|
[1320] | 127 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 128 | y_in !< |
---|
[1600] | 129 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[1320] | 130 | |
---|
| 131 | |
---|
[1210] | 132 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 133 | #endif |
---|
| 134 | |
---|
| 135 | ! |
---|
| 136 | !-- Public interfaces |
---|
| 137 | INTERFACE fft_init |
---|
| 138 | MODULE PROCEDURE fft_init |
---|
| 139 | END INTERFACE fft_init |
---|
| 140 | |
---|
| 141 | INTERFACE fft_x |
---|
| 142 | MODULE PROCEDURE fft_x |
---|
| 143 | END INTERFACE fft_x |
---|
| 144 | |
---|
[1106] | 145 | INTERFACE fft_x_1d |
---|
| 146 | MODULE PROCEDURE fft_x_1d |
---|
| 147 | END INTERFACE fft_x_1d |
---|
| 148 | |
---|
[1] | 149 | INTERFACE fft_y |
---|
| 150 | MODULE PROCEDURE fft_y |
---|
| 151 | END INTERFACE fft_y |
---|
| 152 | |
---|
[1106] | 153 | INTERFACE fft_y_1d |
---|
| 154 | MODULE PROCEDURE fft_y_1d |
---|
| 155 | END INTERFACE fft_y_1d |
---|
| 156 | |
---|
[1] | 157 | INTERFACE fft_x_m |
---|
| 158 | MODULE PROCEDURE fft_x_m |
---|
| 159 | END INTERFACE fft_x_m |
---|
| 160 | |
---|
| 161 | INTERFACE fft_y_m |
---|
| 162 | MODULE PROCEDURE fft_y_m |
---|
| 163 | END INTERFACE fft_y_m |
---|
| 164 | |
---|
| 165 | CONTAINS |
---|
| 166 | |
---|
| 167 | |
---|
[1682] | 168 | !------------------------------------------------------------------------------! |
---|
| 169 | ! Description: |
---|
| 170 | ! ------------ |
---|
| 171 | !> @todo Missing subroutine description. |
---|
| 172 | !------------------------------------------------------------------------------! |
---|
[1] | 173 | SUBROUTINE fft_init |
---|
| 174 | |
---|
| 175 | IMPLICIT NONE |
---|
| 176 | |
---|
| 177 | ! |
---|
| 178 | !-- The following temporary working arrays have to be on stack or private |
---|
| 179 | !-- in OpenMP sense |
---|
| 180 | #if defined( __ibm ) |
---|
[1682] | 181 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
| 182 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
| 183 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 184 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 185 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
| 186 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 187 | #elif defined( __nec ) |
---|
[1682] | 188 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
| 189 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
| 190 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
| 191 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
[1] | 192 | #endif |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- Return, if already called |
---|
| 196 | IF ( init_fft ) THEN |
---|
| 197 | RETURN |
---|
| 198 | ELSE |
---|
| 199 | init_fft = .TRUE. |
---|
| 200 | ENDIF |
---|
| 201 | |
---|
[3634] | 202 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
| 203 | fft_method = 'system-specific' |
---|
| 204 | #endif |
---|
| 205 | |
---|
[1] | 206 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 207 | |
---|
[1342] | 208 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 209 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 210 | sqr_dnx = SQRT( dnx ) |
---|
| 211 | sqr_dny = SQRT( dny ) |
---|
[1815] | 212 | #if defined( __ibm ) |
---|
[1] | 213 | ! |
---|
| 214 | !-- Initialize tables for fft along x |
---|
[1106] | 215 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 216 | aux2, nau2 ) |
---|
[1106] | 217 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 218 | aux4, nau2 ) |
---|
| 219 | ! |
---|
| 220 | !-- Initialize tables for fft along y |
---|
[1106] | 221 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 222 | auy2, nau2 ) |
---|
[1106] | 223 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 224 | auy4, nau2 ) |
---|
| 225 | #elif defined( __nec ) |
---|
[254] | 226 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 227 | '" currently does not work on NEC' |
---|
| 228 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 229 | |
---|
[1320] | 230 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 231 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 232 | |
---|
[1342] | 233 | work_x = 0.0_wp |
---|
| 234 | work_y = 0.0_wp |
---|
[1] | 235 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 236 | ! when using the NEC ffts |
---|
| 237 | |
---|
| 238 | ! |
---|
| 239 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 240 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 241 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 242 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 243 | trig_xf, workx, 0 ) |
---|
[1320] | 244 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 245 | trig_xb, workx, 0 ) |
---|
| 246 | ! |
---|
| 247 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 248 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 249 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 250 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 251 | trig_yf, worky, 0 ) |
---|
[1320] | 252 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 253 | trig_yb, worky, 0 ) |
---|
[3634] | 254 | #elif defined( __cuda_fft ) |
---|
| 255 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 256 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 257 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 258 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 259 | #else |
---|
[254] | 260 | message_string = 'no system-specific fft-call available' |
---|
| 261 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 262 | #endif |
---|
| 263 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 264 | ! |
---|
| 265 | !-- Temperton-algorithm |
---|
| 266 | !-- Initialize tables for fft along x and y |
---|
| 267 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 268 | |
---|
| 269 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 270 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 271 | |
---|
[1210] | 272 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 273 | ! |
---|
| 274 | !-- FFTW |
---|
| 275 | #if defined( __fftw ) |
---|
| 276 | nx_c = nx+1 |
---|
| 277 | ny_c = ny+1 |
---|
[1372] | 278 | !$OMP PARALLEL |
---|
[1320] | 279 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 280 | y_out(0:(ny+1)/2) ) |
---|
[1372] | 281 | !$OMP END PARALLEL |
---|
[1210] | 282 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 283 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 284 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 285 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 286 | #else |
---|
| 287 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 288 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 289 | #endif |
---|
| 290 | |
---|
[1] | 291 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 292 | |
---|
| 293 | CONTINUE |
---|
| 294 | |
---|
| 295 | ELSE |
---|
| 296 | |
---|
[254] | 297 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 298 | '" not available' |
---|
| 299 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 300 | ENDIF |
---|
| 301 | |
---|
| 302 | END SUBROUTINE fft_init |
---|
| 303 | |
---|
| 304 | |
---|
[1682] | 305 | !------------------------------------------------------------------------------! |
---|
| 306 | ! Description: |
---|
| 307 | ! ------------ |
---|
| 308 | !> Fourier-transformation along x-direction. |
---|
| 309 | !> Version for 2D-decomposition. |
---|
| 310 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 311 | !> system-specific routines, if they are available |
---|
| 312 | !------------------------------------------------------------------------------! |
---|
| 313 | |
---|
[1216] | 314 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 315 | |
---|
| 316 | |
---|
| 317 | IMPLICIT NONE |
---|
| 318 | |
---|
[1682] | 319 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 320 | |
---|
[1682] | 321 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1106] | 322 | |
---|
[1682] | 323 | INTEGER(iwp) :: i !< |
---|
| 324 | INTEGER(iwp) :: ishape(1) !< |
---|
| 325 | INTEGER(iwp) :: j !< |
---|
| 326 | INTEGER(iwp) :: k !< |
---|
[1106] | 327 | |
---|
[1682] | 328 | LOGICAL :: forward_fft !< |
---|
[1320] | 329 | |
---|
[1682] | 330 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 331 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 332 | |
---|
[1106] | 333 | #if defined( __ibm ) |
---|
[1682] | 334 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 335 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1106] | 336 | #elif defined( __nec ) |
---|
[1682] | 337 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[3634] | 338 | #elif defined( __cuda_fft ) |
---|
| 339 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 340 | ar_tmp !< |
---|
| 341 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 342 | #endif |
---|
| 343 | |
---|
[1320] | 344 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
[1682] | 345 | ar_2d !< |
---|
[1320] | 346 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
[1682] | 347 | ar !< |
---|
[1320] | 348 | |
---|
[4069] | 349 | ! |
---|
| 350 | !-- To avoid compiler warning: Unused dummy argument âar_2dâ |
---|
| 351 | IF ( PRESENT( ar_2d ) ) CONTINUE |
---|
| 352 | |
---|
[1106] | 353 | IF ( direction == 'forward' ) THEN |
---|
| 354 | forward_fft = .TRUE. |
---|
| 355 | ELSE |
---|
| 356 | forward_fft = .FALSE. |
---|
| 357 | ENDIF |
---|
| 358 | |
---|
| 359 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 360 | |
---|
| 361 | ! |
---|
| 362 | !-- Performing the fft with singleton's software works on every system, |
---|
| 363 | !-- since it is part of the model |
---|
| 364 | ALLOCATE( cwork(0:nx) ) |
---|
| 365 | |
---|
| 366 | IF ( forward_fft ) then |
---|
| 367 | |
---|
| 368 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 369 | !$OMP DO |
---|
| 370 | DO k = nzb_x, nzt_x |
---|
| 371 | DO j = nys_x, nyn_x |
---|
| 372 | |
---|
| 373 | DO i = 0, nx |
---|
[1392] | 374 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
[1106] | 375 | ENDDO |
---|
| 376 | |
---|
| 377 | ishape = SHAPE( cwork ) |
---|
| 378 | CALL FFTN( cwork, ishape ) |
---|
| 379 | |
---|
| 380 | DO i = 0, (nx+1)/2 |
---|
[1322] | 381 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 382 | ENDDO |
---|
| 383 | DO i = 1, (nx+1)/2 - 1 |
---|
| 384 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 385 | ENDDO |
---|
| 386 | |
---|
| 387 | ENDDO |
---|
| 388 | ENDDO |
---|
| 389 | !$OMP END PARALLEL |
---|
| 390 | |
---|
| 391 | ELSE |
---|
| 392 | |
---|
| 393 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 394 | !$OMP DO |
---|
| 395 | DO k = nzb_x, nzt_x |
---|
| 396 | DO j = nys_x, nyn_x |
---|
| 397 | |
---|
[1392] | 398 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 399 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 400 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
| 401 | KIND=wp ) |
---|
| 402 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 403 | KIND=wp ) |
---|
[1106] | 404 | ENDDO |
---|
[1392] | 405 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 406 | |
---|
| 407 | ishape = SHAPE( cwork ) |
---|
| 408 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 409 | |
---|
| 410 | DO i = 0, nx |
---|
[1322] | 411 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 412 | ENDDO |
---|
| 413 | |
---|
| 414 | ENDDO |
---|
| 415 | ENDDO |
---|
| 416 | !$OMP END PARALLEL |
---|
| 417 | |
---|
| 418 | ENDIF |
---|
| 419 | |
---|
| 420 | DEALLOCATE( cwork ) |
---|
| 421 | |
---|
| 422 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 423 | |
---|
| 424 | ! |
---|
| 425 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 426 | !-- since it is part of the model |
---|
| 427 | IF ( forward_fft ) THEN |
---|
| 428 | |
---|
[1304] | 429 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 430 | !$OMP DO |
---|
| 431 | DO k = nzb_x, nzt_x |
---|
| 432 | DO j = nys_x, nyn_x |
---|
| 433 | |
---|
| 434 | work(0:nx) = ar(0:nx,j,k) |
---|
| 435 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 436 | |
---|
| 437 | DO i = 0, (nx+1)/2 |
---|
| 438 | ar(i,j,k) = work(2*i) |
---|
| 439 | ENDDO |
---|
| 440 | DO i = 1, (nx+1)/2 - 1 |
---|
| 441 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 442 | ENDDO |
---|
| 443 | |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | !$OMP END PARALLEL |
---|
| 447 | |
---|
| 448 | ELSE |
---|
| 449 | |
---|
[1304] | 450 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 451 | !$OMP DO |
---|
| 452 | DO k = nzb_x, nzt_x |
---|
| 453 | DO j = nys_x, nyn_x |
---|
| 454 | |
---|
| 455 | DO i = 0, (nx+1)/2 |
---|
| 456 | work(2*i) = ar(i,j,k) |
---|
| 457 | ENDDO |
---|
| 458 | DO i = 1, (nx+1)/2 - 1 |
---|
| 459 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 460 | ENDDO |
---|
[1342] | 461 | work(1) = 0.0_wp |
---|
| 462 | work(nx+2) = 0.0_wp |
---|
[1106] | 463 | |
---|
| 464 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 465 | ar(0:nx,j,k) = work(0:nx) |
---|
| 466 | |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | !$OMP END PARALLEL |
---|
| 470 | |
---|
| 471 | ENDIF |
---|
| 472 | |
---|
[1210] | 473 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 474 | |
---|
| 475 | #if defined( __fftw ) |
---|
| 476 | IF ( forward_fft ) THEN |
---|
| 477 | |
---|
| 478 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 479 | !$OMP DO |
---|
| 480 | DO k = nzb_x, nzt_x |
---|
| 481 | DO j = nys_x, nyn_x |
---|
| 482 | |
---|
| 483 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 484 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 485 | |
---|
[1216] | 486 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 487 | |
---|
[1216] | 488 | DO i = 0, (nx+1)/2 |
---|
[1322] | 489 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 490 | ENDDO |
---|
| 491 | DO i = 1, (nx+1)/2 - 1 |
---|
| 492 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 493 | ENDDO |
---|
| 494 | |
---|
| 495 | ELSE |
---|
| 496 | |
---|
| 497 | DO i = 0, (nx+1)/2 |
---|
[1322] | 498 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 499 | ENDDO |
---|
| 500 | DO i = 1, (nx+1)/2 - 1 |
---|
| 501 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 502 | ENDDO |
---|
| 503 | |
---|
| 504 | ENDIF |
---|
| 505 | |
---|
[1210] | 506 | ENDDO |
---|
| 507 | ENDDO |
---|
| 508 | !$OMP END PARALLEL |
---|
| 509 | |
---|
[1216] | 510 | ELSE |
---|
[1210] | 511 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 512 | !$OMP DO |
---|
| 513 | DO k = nzb_x, nzt_x |
---|
| 514 | DO j = nys_x, nyn_x |
---|
| 515 | |
---|
[1216] | 516 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 517 | |
---|
[1392] | 518 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 519 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 520 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
| 521 | KIND=wp ) |
---|
[1216] | 522 | ENDDO |
---|
[1392] | 523 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
| 524 | KIND=wp ) |
---|
[1216] | 525 | |
---|
| 526 | ELSE |
---|
| 527 | |
---|
[1392] | 528 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 529 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 530 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1216] | 531 | ENDDO |
---|
[1392] | 532 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 533 | KIND=wp ) |
---|
[1216] | 534 | |
---|
| 535 | ENDIF |
---|
| 536 | |
---|
[1210] | 537 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 538 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 539 | |
---|
| 540 | ENDDO |
---|
| 541 | ENDDO |
---|
| 542 | !$OMP END PARALLEL |
---|
| 543 | |
---|
[1216] | 544 | ENDIF |
---|
[1210] | 545 | #endif |
---|
| 546 | |
---|
[1106] | 547 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 548 | |
---|
[1815] | 549 | #if defined( __ibm ) |
---|
[1106] | 550 | IF ( forward_fft ) THEN |
---|
| 551 | |
---|
| 552 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 553 | !$OMP DO |
---|
| 554 | DO k = nzb_x, nzt_x |
---|
| 555 | DO j = nys_x, nyn_x |
---|
| 556 | |
---|
[1320] | 557 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 558 | nau1, aux2, nau2 ) |
---|
[1106] | 559 | |
---|
| 560 | DO i = 0, (nx+1)/2 |
---|
| 561 | ar(i,j,k) = work(2*i) |
---|
| 562 | ENDDO |
---|
| 563 | DO i = 1, (nx+1)/2 - 1 |
---|
| 564 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 565 | ENDDO |
---|
| 566 | |
---|
| 567 | ENDDO |
---|
| 568 | ENDDO |
---|
| 569 | !$OMP END PARALLEL |
---|
| 570 | |
---|
| 571 | ELSE |
---|
| 572 | |
---|
| 573 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 574 | !$OMP DO |
---|
| 575 | DO k = nzb_x, nzt_x |
---|
| 576 | DO j = nys_x, nyn_x |
---|
| 577 | |
---|
| 578 | DO i = 0, (nx+1)/2 |
---|
| 579 | work(2*i) = ar(i,j,k) |
---|
| 580 | ENDDO |
---|
| 581 | DO i = 1, (nx+1)/2 - 1 |
---|
| 582 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 583 | ENDDO |
---|
[1342] | 584 | work(1) = 0.0_wp |
---|
| 585 | work(nx+2) = 0.0_wp |
---|
[1106] | 586 | |
---|
[1320] | 587 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 588 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 589 | |
---|
| 590 | DO i = 0, nx |
---|
| 591 | ar(i,j,k) = work(i) |
---|
| 592 | ENDDO |
---|
| 593 | |
---|
| 594 | ENDDO |
---|
| 595 | ENDDO |
---|
| 596 | !$OMP END PARALLEL |
---|
| 597 | |
---|
| 598 | ENDIF |
---|
| 599 | |
---|
| 600 | #elif defined( __nec ) |
---|
| 601 | |
---|
| 602 | IF ( forward_fft ) THEN |
---|
| 603 | |
---|
| 604 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 605 | !$OMP DO |
---|
| 606 | DO k = nzb_x, nzt_x |
---|
| 607 | DO j = nys_x, nyn_x |
---|
| 608 | |
---|
| 609 | work(0:nx) = ar(0:nx,j,k) |
---|
| 610 | |
---|
| 611 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 612 | |
---|
| 613 | DO i = 0, (nx+1)/2 |
---|
| 614 | ar(i,j,k) = work(2*i) |
---|
| 615 | ENDDO |
---|
| 616 | DO i = 1, (nx+1)/2 - 1 |
---|
| 617 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 618 | ENDDO |
---|
| 619 | |
---|
| 620 | ENDDO |
---|
| 621 | ENDDO |
---|
| 622 | !$END OMP PARALLEL |
---|
| 623 | |
---|
| 624 | ELSE |
---|
| 625 | |
---|
| 626 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 627 | !$OMP DO |
---|
| 628 | DO k = nzb_x, nzt_x |
---|
| 629 | DO j = nys_x, nyn_x |
---|
| 630 | |
---|
| 631 | DO i = 0, (nx+1)/2 |
---|
| 632 | work(2*i) = ar(i,j,k) |
---|
| 633 | ENDDO |
---|
| 634 | DO i = 1, (nx+1)/2 - 1 |
---|
| 635 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 636 | ENDDO |
---|
[1342] | 637 | work(1) = 0.0_wp |
---|
| 638 | work(nx+2) = 0.0_wp |
---|
[1106] | 639 | |
---|
| 640 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 641 | |
---|
| 642 | ar(0:nx,j,k) = work(0:nx) |
---|
| 643 | |
---|
| 644 | ENDDO |
---|
| 645 | ENDDO |
---|
| 646 | !$OMP END PARALLEL |
---|
| 647 | |
---|
| 648 | ENDIF |
---|
| 649 | |
---|
[3634] | 650 | #elif defined( __cuda_fft ) |
---|
| 651 | |
---|
| 652 | IF ( forward_fft ) THEN |
---|
| 653 | |
---|
| 654 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 655 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
| 656 | !$ACC END HOST_DATA |
---|
| 657 | |
---|
| 658 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 659 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 660 | DO k = nzb_x, nzt_x |
---|
| 661 | DO j = nys_x, nyn_x |
---|
| 662 | |
---|
| 663 | DO i = 0, (nx+1)/2 |
---|
| 664 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
| 665 | ENDDO |
---|
| 666 | |
---|
| 667 | DO i = 1, (nx+1)/2 - 1 |
---|
| 668 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
| 669 | ENDDO |
---|
| 670 | |
---|
| 671 | ENDDO |
---|
| 672 | ENDDO |
---|
| 673 | |
---|
| 674 | ELSE |
---|
| 675 | |
---|
| 676 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 677 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 678 | DO k = nzb_x, nzt_x |
---|
| 679 | DO j = nys_x, nyn_x |
---|
| 680 | |
---|
| 681 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
| 682 | |
---|
| 683 | DO i = 1, (nx+1)/2 - 1 |
---|
| 684 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 685 | KIND=wp ) |
---|
| 686 | ENDDO |
---|
| 687 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 688 | KIND=wp ) |
---|
| 689 | |
---|
| 690 | ENDDO |
---|
| 691 | ENDDO |
---|
| 692 | |
---|
| 693 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 694 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 695 | !$ACC END HOST_DATA |
---|
| 696 | |
---|
| 697 | ENDIF |
---|
| 698 | |
---|
[1106] | 699 | #endif |
---|
| 700 | |
---|
| 701 | ENDIF |
---|
| 702 | |
---|
| 703 | END SUBROUTINE fft_x |
---|
| 704 | |
---|
[1682] | 705 | !------------------------------------------------------------------------------! |
---|
| 706 | ! Description: |
---|
| 707 | ! ------------ |
---|
| 708 | !> Fourier-transformation along x-direction. |
---|
| 709 | !> Version for 1D-decomposition. |
---|
| 710 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 711 | !> system-specific routines, if they are available |
---|
| 712 | !------------------------------------------------------------------------------! |
---|
| 713 | |
---|
[1106] | 714 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | IMPLICIT NONE |
---|
| 718 | |
---|
[1682] | 719 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 720 | |
---|
[1682] | 721 | INTEGER(iwp) :: i !< |
---|
| 722 | INTEGER(iwp) :: ishape(1) !< |
---|
[1] | 723 | |
---|
[1682] | 724 | LOGICAL :: forward_fft !< |
---|
[1106] | 725 | |
---|
[1682] | 726 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
| 727 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 728 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 729 | |
---|
[1682] | 730 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 731 | |
---|
[1] | 732 | #if defined( __ibm ) |
---|
[1682] | 733 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 734 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1] | 735 | #elif defined( __nec ) |
---|
[1682] | 736 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1] | 737 | #endif |
---|
| 738 | |
---|
[1106] | 739 | IF ( direction == 'forward' ) THEN |
---|
| 740 | forward_fft = .TRUE. |
---|
| 741 | ELSE |
---|
| 742 | forward_fft = .FALSE. |
---|
| 743 | ENDIF |
---|
| 744 | |
---|
[1] | 745 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 746 | |
---|
| 747 | ! |
---|
| 748 | !-- Performing the fft with singleton's software works on every system, |
---|
| 749 | !-- since it is part of the model |
---|
| 750 | ALLOCATE( cwork(0:nx) ) |
---|
| 751 | |
---|
[1106] | 752 | IF ( forward_fft ) then |
---|
[1] | 753 | |
---|
| 754 | DO i = 0, nx |
---|
[1392] | 755 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
[1] | 756 | ENDDO |
---|
| 757 | ishape = SHAPE( cwork ) |
---|
| 758 | CALL FFTN( cwork, ishape ) |
---|
| 759 | DO i = 0, (nx+1)/2 |
---|
[1322] | 760 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 761 | ENDDO |
---|
| 762 | DO i = 1, (nx+1)/2 - 1 |
---|
| 763 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 764 | ENDDO |
---|
| 765 | |
---|
| 766 | ELSE |
---|
| 767 | |
---|
[1392] | 768 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 769 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 770 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
| 771 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1] | 772 | ENDDO |
---|
[1392] | 773 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 774 | |
---|
| 775 | ishape = SHAPE( cwork ) |
---|
| 776 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 777 | |
---|
| 778 | DO i = 0, nx |
---|
[1322] | 779 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 780 | ENDDO |
---|
| 781 | |
---|
| 782 | ENDIF |
---|
| 783 | |
---|
| 784 | DEALLOCATE( cwork ) |
---|
| 785 | |
---|
| 786 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 787 | |
---|
| 788 | ! |
---|
| 789 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 790 | !-- since it is part of the model |
---|
[1106] | 791 | IF ( forward_fft ) THEN |
---|
[1] | 792 | |
---|
| 793 | work(0:nx) = ar |
---|
| 794 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 795 | |
---|
| 796 | DO i = 0, (nx+1)/2 |
---|
| 797 | ar(i) = work(2*i) |
---|
| 798 | ENDDO |
---|
| 799 | DO i = 1, (nx+1)/2 - 1 |
---|
| 800 | ar(nx+1-i) = work(2*i+1) |
---|
| 801 | ENDDO |
---|
| 802 | |
---|
| 803 | ELSE |
---|
| 804 | |
---|
| 805 | DO i = 0, (nx+1)/2 |
---|
| 806 | work(2*i) = ar(i) |
---|
| 807 | ENDDO |
---|
| 808 | DO i = 1, (nx+1)/2 - 1 |
---|
| 809 | work(2*i+1) = ar(nx+1-i) |
---|
| 810 | ENDDO |
---|
[1342] | 811 | work(1) = 0.0_wp |
---|
| 812 | work(nx+2) = 0.0_wp |
---|
[1] | 813 | |
---|
| 814 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 815 | ar = work(0:nx) |
---|
| 816 | |
---|
| 817 | ENDIF |
---|
| 818 | |
---|
[1216] | 819 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 820 | |
---|
| 821 | #if defined( __fftw ) |
---|
| 822 | IF ( forward_fft ) THEN |
---|
| 823 | |
---|
| 824 | x_in(0:nx) = ar(0:nx) |
---|
| 825 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 826 | |
---|
| 827 | DO i = 0, (nx+1)/2 |
---|
[1322] | 828 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 829 | ENDDO |
---|
| 830 | DO i = 1, (nx+1)/2 - 1 |
---|
| 831 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 832 | ENDDO |
---|
| 833 | |
---|
| 834 | ELSE |
---|
| 835 | |
---|
[1392] | 836 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 837 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 838 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1216] | 839 | ENDDO |
---|
[1392] | 840 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 841 | |
---|
| 842 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 843 | ar(0:nx) = x_in(0:nx) |
---|
| 844 | |
---|
| 845 | ENDIF |
---|
| 846 | #endif |
---|
| 847 | |
---|
[1] | 848 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 849 | |
---|
[1815] | 850 | #if defined( __ibm ) |
---|
[1106] | 851 | IF ( forward_fft ) THEN |
---|
[1] | 852 | |
---|
[1320] | 853 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 854 | aux2, nau2 ) |
---|
| 855 | |
---|
| 856 | DO i = 0, (nx+1)/2 |
---|
| 857 | ar(i) = work(2*i) |
---|
| 858 | ENDDO |
---|
| 859 | DO i = 1, (nx+1)/2 - 1 |
---|
| 860 | ar(nx+1-i) = work(2*i+1) |
---|
| 861 | ENDDO |
---|
| 862 | |
---|
| 863 | ELSE |
---|
| 864 | |
---|
| 865 | DO i = 0, (nx+1)/2 |
---|
| 866 | work(2*i) = ar(i) |
---|
| 867 | ENDDO |
---|
| 868 | DO i = 1, (nx+1)/2 - 1 |
---|
| 869 | work(2*i+1) = ar(nx+1-i) |
---|
| 870 | ENDDO |
---|
[1342] | 871 | work(1) = 0.0_wp |
---|
| 872 | work(nx+2) = 0.0_wp |
---|
[1] | 873 | |
---|
[1106] | 874 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 875 | aux4, nau2 ) |
---|
| 876 | |
---|
| 877 | DO i = 0, nx |
---|
| 878 | ar(i) = work(i) |
---|
| 879 | ENDDO |
---|
| 880 | |
---|
| 881 | ENDIF |
---|
| 882 | #elif defined( __nec ) |
---|
[1106] | 883 | IF ( forward_fft ) THEN |
---|
[1] | 884 | |
---|
| 885 | work(0:nx) = ar(0:nx) |
---|
| 886 | |
---|
[1106] | 887 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 888 | |
---|
[1] | 889 | DO i = 0, (nx+1)/2 |
---|
| 890 | ar(i) = work(2*i) |
---|
| 891 | ENDDO |
---|
| 892 | DO i = 1, (nx+1)/2 - 1 |
---|
| 893 | ar(nx+1-i) = work(2*i+1) |
---|
| 894 | ENDDO |
---|
| 895 | |
---|
| 896 | ELSE |
---|
| 897 | |
---|
| 898 | DO i = 0, (nx+1)/2 |
---|
| 899 | work(2*i) = ar(i) |
---|
| 900 | ENDDO |
---|
| 901 | DO i = 1, (nx+1)/2 - 1 |
---|
| 902 | work(2*i+1) = ar(nx+1-i) |
---|
| 903 | ENDDO |
---|
[1342] | 904 | work(1) = 0.0_wp |
---|
| 905 | work(nx+2) = 0.0_wp |
---|
[1] | 906 | |
---|
[1106] | 907 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 908 | |
---|
| 909 | ar(0:nx) = work(0:nx) |
---|
| 910 | |
---|
| 911 | ENDIF |
---|
| 912 | #endif |
---|
| 913 | |
---|
| 914 | ENDIF |
---|
| 915 | |
---|
[1106] | 916 | END SUBROUTINE fft_x_1d |
---|
[1] | 917 | |
---|
[1682] | 918 | !------------------------------------------------------------------------------! |
---|
| 919 | ! Description: |
---|
| 920 | ! ------------ |
---|
| 921 | !> Fourier-transformation along y-direction. |
---|
| 922 | !> Version for 2D-decomposition. |
---|
| 923 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 924 | !> system-specific routines, if they are available. |
---|
| 925 | !> |
---|
| 926 | !> direction: 'forward' or 'backward' |
---|
| 927 | !> ar, ar_tr: 3D data arrays |
---|
| 928 | !> forward: ar: before ar_tr: after transformation |
---|
| 929 | !> backward: ar_tr: before ar: after transfosition |
---|
| 930 | !> |
---|
| 931 | !> In case of non-overlapping transposition/transformation: |
---|
| 932 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
| 933 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
| 934 | !> |
---|
| 935 | !> In case of overlapping transposition/transformation |
---|
| 936 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
| 937 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
| 938 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
| 939 | !> transformation is carried out for a 2D-plane only. |
---|
| 940 | !------------------------------------------------------------------------------! |
---|
| 941 | |
---|
[1216] | 942 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 943 | nxr_y_l ) |
---|
[1] | 944 | |
---|
| 945 | |
---|
| 946 | IMPLICIT NONE |
---|
| 947 | |
---|
[1682] | 948 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 949 | |
---|
[1682] | 950 | INTEGER(iwp) :: i !< |
---|
| 951 | INTEGER(iwp) :: j !< |
---|
| 952 | INTEGER(iwp) :: jshape(1) !< |
---|
| 953 | INTEGER(iwp) :: k !< |
---|
| 954 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 955 | INTEGER(iwp) :: nxl_y_l !< |
---|
| 956 | INTEGER(iwp) :: nxr_y_bound !< |
---|
| 957 | INTEGER(iwp) :: nxr_y_l !< |
---|
[1106] | 958 | |
---|
[1682] | 959 | LOGICAL :: forward_fft !< |
---|
[1106] | 960 | |
---|
[1682] | 961 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 962 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 963 | |
---|
[1682] | 964 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 965 | |
---|
[1106] | 966 | #if defined( __ibm ) |
---|
[1682] | 967 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 968 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1106] | 969 | #elif defined( __nec ) |
---|
[1682] | 970 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[3634] | 971 | #elif defined( __cuda_fft ) |
---|
| 972 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
| 973 | ar_tmp !< |
---|
| 974 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 975 | #endif |
---|
| 976 | |
---|
[1320] | 977 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
[1682] | 978 | ar !< |
---|
[1320] | 979 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
[1682] | 980 | ar_tr !< |
---|
[1320] | 981 | |
---|
[1106] | 982 | IF ( direction == 'forward' ) THEN |
---|
| 983 | forward_fft = .TRUE. |
---|
| 984 | ELSE |
---|
| 985 | forward_fft = .FALSE. |
---|
| 986 | ENDIF |
---|
| 987 | |
---|
| 988 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 989 | |
---|
| 990 | ! |
---|
| 991 | !-- Performing the fft with singleton's software works on every system, |
---|
| 992 | !-- since it is part of the model |
---|
| 993 | ALLOCATE( cwork(0:ny) ) |
---|
| 994 | |
---|
| 995 | IF ( forward_fft ) then |
---|
| 996 | |
---|
| 997 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 998 | !$OMP DO |
---|
| 999 | DO k = nzb_y, nzt_y |
---|
[1216] | 1000 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1001 | |
---|
| 1002 | DO j = 0, ny |
---|
[1392] | 1003 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
[1106] | 1004 | ENDDO |
---|
| 1005 | |
---|
| 1006 | jshape = SHAPE( cwork ) |
---|
| 1007 | CALL FFTN( cwork, jshape ) |
---|
| 1008 | |
---|
| 1009 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1010 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1011 | ENDDO |
---|
| 1012 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1013 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1014 | ENDDO |
---|
| 1015 | |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | !$OMP END PARALLEL |
---|
| 1019 | |
---|
| 1020 | ELSE |
---|
| 1021 | |
---|
| 1022 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1023 | !$OMP DO |
---|
| 1024 | DO k = nzb_y, nzt_y |
---|
[1216] | 1025 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1026 | |
---|
[1392] | 1027 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1028 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1029 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
| 1030 | KIND=wp ) |
---|
| 1031 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1032 | KIND=wp ) |
---|
[1106] | 1033 | ENDDO |
---|
[1392] | 1034 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1035 | KIND=wp ) |
---|
[1106] | 1036 | |
---|
| 1037 | jshape = SHAPE( cwork ) |
---|
| 1038 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1039 | |
---|
| 1040 | DO j = 0, ny |
---|
[1322] | 1041 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1042 | ENDDO |
---|
| 1043 | |
---|
| 1044 | ENDDO |
---|
| 1045 | ENDDO |
---|
| 1046 | !$OMP END PARALLEL |
---|
| 1047 | |
---|
| 1048 | ENDIF |
---|
| 1049 | |
---|
| 1050 | DEALLOCATE( cwork ) |
---|
| 1051 | |
---|
| 1052 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1053 | |
---|
| 1054 | ! |
---|
| 1055 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1056 | !-- since it is part of the model |
---|
| 1057 | IF ( forward_fft ) THEN |
---|
| 1058 | |
---|
[1304] | 1059 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1060 | !$OMP DO |
---|
| 1061 | DO k = nzb_y, nzt_y |
---|
[1216] | 1062 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1063 | |
---|
| 1064 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1065 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1066 | |
---|
| 1067 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1068 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1069 | ENDDO |
---|
| 1070 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1071 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1072 | ENDDO |
---|
| 1073 | |
---|
| 1074 | ENDDO |
---|
| 1075 | ENDDO |
---|
| 1076 | !$OMP END PARALLEL |
---|
| 1077 | |
---|
| 1078 | ELSE |
---|
| 1079 | |
---|
[1304] | 1080 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1081 | !$OMP DO |
---|
| 1082 | DO k = nzb_y, nzt_y |
---|
[1216] | 1083 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1084 | |
---|
| 1085 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1086 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1087 | ENDDO |
---|
| 1088 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1089 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1090 | ENDDO |
---|
[1342] | 1091 | work(1) = 0.0_wp |
---|
| 1092 | work(ny+2) = 0.0_wp |
---|
[1106] | 1093 | |
---|
| 1094 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1095 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1096 | |
---|
| 1097 | ENDDO |
---|
| 1098 | ENDDO |
---|
| 1099 | !$OMP END PARALLEL |
---|
| 1100 | |
---|
| 1101 | ENDIF |
---|
| 1102 | |
---|
[1210] | 1103 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1104 | |
---|
| 1105 | #if defined( __fftw ) |
---|
| 1106 | IF ( forward_fft ) THEN |
---|
| 1107 | |
---|
| 1108 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1109 | !$OMP DO |
---|
| 1110 | DO k = nzb_y, nzt_y |
---|
[1216] | 1111 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1112 | |
---|
| 1113 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1114 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1115 | |
---|
| 1116 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1117 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1118 | ENDDO |
---|
| 1119 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1120 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1121 | ENDDO |
---|
| 1122 | |
---|
| 1123 | ENDDO |
---|
| 1124 | ENDDO |
---|
| 1125 | !$OMP END PARALLEL |
---|
| 1126 | |
---|
| 1127 | ELSE |
---|
| 1128 | |
---|
| 1129 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1130 | !$OMP DO |
---|
| 1131 | DO k = nzb_y, nzt_y |
---|
[1216] | 1132 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1133 | |
---|
[1392] | 1134 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1135 | DO j = 1, (ny+1)/2 - 1 |
---|
[1398] | 1136 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1137 | KIND=wp ) |
---|
[1210] | 1138 | ENDDO |
---|
[1392] | 1139 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1140 | KIND=wp ) |
---|
[1210] | 1141 | |
---|
| 1142 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1143 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1144 | |
---|
| 1145 | ENDDO |
---|
| 1146 | ENDDO |
---|
| 1147 | !$OMP END PARALLEL |
---|
| 1148 | |
---|
| 1149 | ENDIF |
---|
| 1150 | #endif |
---|
| 1151 | |
---|
[1106] | 1152 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1153 | |
---|
[1815] | 1154 | #if defined( __ibm ) |
---|
[1106] | 1155 | IF ( forward_fft) THEN |
---|
| 1156 | |
---|
| 1157 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1158 | !$OMP DO |
---|
| 1159 | DO k = nzb_y, nzt_y |
---|
[1216] | 1160 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1161 | |
---|
[1320] | 1162 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1163 | nau1, auy2, nau2 ) |
---|
[1106] | 1164 | |
---|
| 1165 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1166 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1167 | ENDDO |
---|
| 1168 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1169 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1170 | ENDDO |
---|
| 1171 | |
---|
| 1172 | ENDDO |
---|
| 1173 | ENDDO |
---|
| 1174 | !$OMP END PARALLEL |
---|
| 1175 | |
---|
| 1176 | ELSE |
---|
| 1177 | |
---|
| 1178 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1179 | !$OMP DO |
---|
| 1180 | DO k = nzb_y, nzt_y |
---|
[1216] | 1181 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1182 | |
---|
| 1183 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1184 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1185 | ENDDO |
---|
| 1186 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1187 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1188 | ENDDO |
---|
[1342] | 1189 | work(1) = 0.0_wp |
---|
| 1190 | work(ny+2) = 0.0_wp |
---|
[1106] | 1191 | |
---|
[1320] | 1192 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1193 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1194 | |
---|
| 1195 | DO j = 0, ny |
---|
| 1196 | ar(j,i,k) = work(j) |
---|
| 1197 | ENDDO |
---|
| 1198 | |
---|
| 1199 | ENDDO |
---|
| 1200 | ENDDO |
---|
| 1201 | !$OMP END PARALLEL |
---|
| 1202 | |
---|
| 1203 | ENDIF |
---|
| 1204 | #elif defined( __nec ) |
---|
| 1205 | IF ( forward_fft ) THEN |
---|
| 1206 | |
---|
| 1207 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1208 | !$OMP DO |
---|
| 1209 | DO k = nzb_y, nzt_y |
---|
[1216] | 1210 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1211 | |
---|
| 1212 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1213 | |
---|
| 1214 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1215 | |
---|
| 1216 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1217 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1218 | ENDDO |
---|
| 1219 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1220 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1221 | ENDDO |
---|
| 1222 | |
---|
| 1223 | ENDDO |
---|
| 1224 | ENDDO |
---|
| 1225 | !$END OMP PARALLEL |
---|
| 1226 | |
---|
| 1227 | ELSE |
---|
| 1228 | |
---|
| 1229 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1230 | !$OMP DO |
---|
| 1231 | DO k = nzb_y, nzt_y |
---|
[1216] | 1232 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1233 | |
---|
| 1234 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1235 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1236 | ENDDO |
---|
| 1237 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1238 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1239 | ENDDO |
---|
[1342] | 1240 | work(1) = 0.0_wp |
---|
| 1241 | work(ny+2) = 0.0_wp |
---|
[1106] | 1242 | |
---|
| 1243 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1244 | |
---|
| 1245 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1246 | |
---|
| 1247 | ENDDO |
---|
| 1248 | ENDDO |
---|
| 1249 | !$OMP END PARALLEL |
---|
| 1250 | |
---|
| 1251 | ENDIF |
---|
[3634] | 1252 | #elif defined( __cuda_fft ) |
---|
| 1253 | |
---|
| 1254 | IF ( forward_fft ) THEN |
---|
| 1255 | |
---|
| 1256 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1257 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
| 1258 | !$ACC END HOST_DATA |
---|
| 1259 | |
---|
| 1260 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1261 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1262 | DO k = nzb_y, nzt_y |
---|
| 1263 | DO i = nxl_y, nxr_y |
---|
| 1264 | |
---|
| 1265 | DO j = 0, (ny+1)/2 |
---|
| 1266 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
| 1267 | ENDDO |
---|
| 1268 | |
---|
| 1269 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1270 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
| 1271 | ENDDO |
---|
| 1272 | |
---|
| 1273 | ENDDO |
---|
| 1274 | ENDDO |
---|
| 1275 | |
---|
| 1276 | ELSE |
---|
| 1277 | |
---|
| 1278 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1279 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1280 | DO k = nzb_y, nzt_y |
---|
| 1281 | DO i = nxl_y, nxr_y |
---|
| 1282 | |
---|
| 1283 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
| 1284 | |
---|
| 1285 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1286 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), & |
---|
| 1287 | KIND=wp ) |
---|
| 1288 | ENDDO |
---|
| 1289 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1290 | KIND=wp ) |
---|
| 1291 | |
---|
| 1292 | ENDDO |
---|
| 1293 | ENDDO |
---|
| 1294 | |
---|
| 1295 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1296 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1297 | !$ACC END HOST_DATA |
---|
| 1298 | |
---|
| 1299 | ENDIF |
---|
| 1300 | |
---|
[1106] | 1301 | #endif |
---|
| 1302 | |
---|
| 1303 | ENDIF |
---|
| 1304 | |
---|
| 1305 | END SUBROUTINE fft_y |
---|
| 1306 | |
---|
[1682] | 1307 | !------------------------------------------------------------------------------! |
---|
| 1308 | ! Description: |
---|
| 1309 | ! ------------ |
---|
| 1310 | !> Fourier-transformation along y-direction. |
---|
| 1311 | !> Version for 1D-decomposition. |
---|
| 1312 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1313 | !> system-specific routines, if they are available. |
---|
| 1314 | !------------------------------------------------------------------------------! |
---|
| 1315 | |
---|
[1106] | 1316 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1317 | |
---|
| 1318 | |
---|
| 1319 | IMPLICIT NONE |
---|
| 1320 | |
---|
| 1321 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1322 | |
---|
[1682] | 1323 | INTEGER(iwp) :: j !< |
---|
| 1324 | INTEGER(iwp) :: jshape(1) !< |
---|
[1] | 1325 | |
---|
[1682] | 1326 | LOGICAL :: forward_fft !< |
---|
[1106] | 1327 | |
---|
[1682] | 1328 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
| 1329 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1330 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1331 | |
---|
[1682] | 1332 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1333 | |
---|
[1] | 1334 | #if defined( __ibm ) |
---|
[1682] | 1335 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1336 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 1337 | #elif defined( __nec ) |
---|
[1682] | 1338 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1] | 1339 | #endif |
---|
| 1340 | |
---|
[1106] | 1341 | IF ( direction == 'forward' ) THEN |
---|
| 1342 | forward_fft = .TRUE. |
---|
| 1343 | ELSE |
---|
| 1344 | forward_fft = .FALSE. |
---|
| 1345 | ENDIF |
---|
| 1346 | |
---|
[1] | 1347 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1348 | |
---|
| 1349 | ! |
---|
| 1350 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1351 | !-- since it is part of the model |
---|
| 1352 | ALLOCATE( cwork(0:ny) ) |
---|
| 1353 | |
---|
[1106] | 1354 | IF ( forward_fft ) THEN |
---|
[1] | 1355 | |
---|
| 1356 | DO j = 0, ny |
---|
[1392] | 1357 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
[1] | 1358 | ENDDO |
---|
| 1359 | |
---|
| 1360 | jshape = SHAPE( cwork ) |
---|
| 1361 | CALL FFTN( cwork, jshape ) |
---|
| 1362 | |
---|
| 1363 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1364 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1365 | ENDDO |
---|
| 1366 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1367 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1368 | ENDDO |
---|
| 1369 | |
---|
| 1370 | ELSE |
---|
| 1371 | |
---|
[1392] | 1372 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 1373 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1374 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
| 1375 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1] | 1376 | ENDDO |
---|
[1392] | 1377 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 1378 | |
---|
| 1379 | jshape = SHAPE( cwork ) |
---|
| 1380 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1381 | |
---|
| 1382 | DO j = 0, ny |
---|
[1322] | 1383 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1384 | ENDDO |
---|
| 1385 | |
---|
| 1386 | ENDIF |
---|
| 1387 | |
---|
| 1388 | DEALLOCATE( cwork ) |
---|
| 1389 | |
---|
| 1390 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1391 | |
---|
| 1392 | ! |
---|
| 1393 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1394 | !-- since it is part of the model |
---|
[1106] | 1395 | IF ( forward_fft ) THEN |
---|
[1] | 1396 | |
---|
| 1397 | work(0:ny) = ar |
---|
| 1398 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1399 | |
---|
| 1400 | DO j = 0, (ny+1)/2 |
---|
| 1401 | ar(j) = work(2*j) |
---|
| 1402 | ENDDO |
---|
| 1403 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1404 | ar(ny+1-j) = work(2*j+1) |
---|
| 1405 | ENDDO |
---|
| 1406 | |
---|
| 1407 | ELSE |
---|
| 1408 | |
---|
| 1409 | DO j = 0, (ny+1)/2 |
---|
| 1410 | work(2*j) = ar(j) |
---|
| 1411 | ENDDO |
---|
| 1412 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1413 | work(2*j+1) = ar(ny+1-j) |
---|
| 1414 | ENDDO |
---|
[1342] | 1415 | work(1) = 0.0_wp |
---|
| 1416 | work(ny+2) = 0.0_wp |
---|
[1] | 1417 | |
---|
| 1418 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1419 | ar = work(0:ny) |
---|
| 1420 | |
---|
| 1421 | ENDIF |
---|
| 1422 | |
---|
[1216] | 1423 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1424 | |
---|
| 1425 | #if defined( __fftw ) |
---|
| 1426 | IF ( forward_fft ) THEN |
---|
| 1427 | |
---|
| 1428 | y_in(0:ny) = ar(0:ny) |
---|
| 1429 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1430 | |
---|
| 1431 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1432 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1433 | ENDDO |
---|
| 1434 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1435 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1436 | ENDDO |
---|
| 1437 | |
---|
| 1438 | ELSE |
---|
| 1439 | |
---|
[1392] | 1440 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 1441 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1442 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1216] | 1443 | ENDDO |
---|
[1392] | 1444 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 1445 | |
---|
| 1446 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1447 | ar(0:ny) = y_in(0:ny) |
---|
| 1448 | |
---|
| 1449 | ENDIF |
---|
| 1450 | #endif |
---|
| 1451 | |
---|
[1] | 1452 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1453 | |
---|
[1815] | 1454 | #if defined( __ibm ) |
---|
[1106] | 1455 | IF ( forward_fft ) THEN |
---|
[1] | 1456 | |
---|
[1320] | 1457 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1458 | auy2, nau2 ) |
---|
| 1459 | |
---|
| 1460 | DO j = 0, (ny+1)/2 |
---|
| 1461 | ar(j) = work(2*j) |
---|
| 1462 | ENDDO |
---|
| 1463 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1464 | ar(ny+1-j) = work(2*j+1) |
---|
| 1465 | ENDDO |
---|
| 1466 | |
---|
| 1467 | ELSE |
---|
| 1468 | |
---|
| 1469 | DO j = 0, (ny+1)/2 |
---|
| 1470 | work(2*j) = ar(j) |
---|
| 1471 | ENDDO |
---|
| 1472 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1473 | work(2*j+1) = ar(ny+1-j) |
---|
| 1474 | ENDDO |
---|
[1342] | 1475 | work(1) = 0.0_wp |
---|
| 1476 | work(ny+2) = 0.0_wp |
---|
[1] | 1477 | |
---|
[1320] | 1478 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1479 | nau1, auy4, nau2 ) |
---|
[1] | 1480 | |
---|
| 1481 | DO j = 0, ny |
---|
| 1482 | ar(j) = work(j) |
---|
| 1483 | ENDDO |
---|
| 1484 | |
---|
| 1485 | ENDIF |
---|
| 1486 | #elif defined( __nec ) |
---|
[1106] | 1487 | IF ( forward_fft ) THEN |
---|
[1] | 1488 | |
---|
| 1489 | work(0:ny) = ar(0:ny) |
---|
| 1490 | |
---|
[1106] | 1491 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1492 | |
---|
| 1493 | DO j = 0, (ny+1)/2 |
---|
| 1494 | ar(j) = work(2*j) |
---|
| 1495 | ENDDO |
---|
| 1496 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1497 | ar(ny+1-j) = work(2*j+1) |
---|
| 1498 | ENDDO |
---|
| 1499 | |
---|
| 1500 | ELSE |
---|
| 1501 | |
---|
| 1502 | DO j = 0, (ny+1)/2 |
---|
| 1503 | work(2*j) = ar(j) |
---|
| 1504 | ENDDO |
---|
| 1505 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1506 | work(2*j+1) = ar(ny+1-j) |
---|
| 1507 | ENDDO |
---|
[1342] | 1508 | work(1) = 0.0_wp |
---|
| 1509 | work(ny+2) = 0.0_wp |
---|
[1] | 1510 | |
---|
[1106] | 1511 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1512 | |
---|
| 1513 | ar(0:ny) = work(0:ny) |
---|
| 1514 | |
---|
| 1515 | ENDIF |
---|
| 1516 | #endif |
---|
| 1517 | |
---|
| 1518 | ENDIF |
---|
| 1519 | |
---|
[1106] | 1520 | END SUBROUTINE fft_y_1d |
---|
[1] | 1521 | |
---|
[1682] | 1522 | !------------------------------------------------------------------------------! |
---|
| 1523 | ! Description: |
---|
| 1524 | ! ------------ |
---|
| 1525 | !> Fourier-transformation along x-direction. |
---|
| 1526 | !> Version for 1d domain decomposition |
---|
| 1527 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1528 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1529 | !------------------------------------------------------------------------------! |
---|
| 1530 | |
---|
[1] | 1531 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1532 | |
---|
| 1533 | |
---|
| 1534 | IMPLICIT NONE |
---|
| 1535 | |
---|
[1682] | 1536 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1537 | |
---|
[1682] | 1538 | INTEGER(iwp) :: i !< |
---|
| 1539 | INTEGER(iwp) :: k !< |
---|
| 1540 | INTEGER(iwp) :: siza !< |
---|
[3241] | 1541 | #if defined( __nec ) |
---|
| 1542 | INTEGER(iwp) :: sizw |
---|
| 1543 | #endif |
---|
[1] | 1544 | |
---|
[1682] | 1545 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 1546 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
| 1547 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
[1320] | 1548 | |
---|
[3241] | 1549 | #if defined( __nec ) |
---|
| 1550 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1551 | #endif |
---|
[1] | 1552 | |
---|
| 1553 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1554 | |
---|
| 1555 | siza = SIZE( ai, 1 ) |
---|
| 1556 | |
---|
| 1557 | IF ( direction == 'forward') THEN |
---|
| 1558 | |
---|
| 1559 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1560 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1561 | |
---|
| 1562 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1563 | |
---|
| 1564 | DO k = 1, nz |
---|
| 1565 | DO i = 0, (nx+1)/2 |
---|
| 1566 | ar(i,k) = ai(2*i,k) |
---|
| 1567 | ENDDO |
---|
| 1568 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1569 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1570 | ENDDO |
---|
| 1571 | ENDDO |
---|
| 1572 | |
---|
| 1573 | ELSE |
---|
| 1574 | |
---|
| 1575 | DO k = 1, nz |
---|
| 1576 | DO i = 0, (nx+1)/2 |
---|
| 1577 | ai(2*i,k) = ar(i,k) |
---|
| 1578 | ENDDO |
---|
| 1579 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1580 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1581 | ENDDO |
---|
[1342] | 1582 | ai(1,k) = 0.0_wp |
---|
| 1583 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1584 | ENDDO |
---|
| 1585 | |
---|
| 1586 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1587 | |
---|
| 1588 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1589 | |
---|
| 1590 | ENDIF |
---|
| 1591 | |
---|
| 1592 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1593 | |
---|
| 1594 | #if defined( __nec ) |
---|
[2300] | 1595 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
[1] | 1596 | siza = SIZE( ai, 1 ) |
---|
| 1597 | sizw = SIZE( work, 1 ) |
---|
| 1598 | |
---|
| 1599 | IF ( direction == 'forward') THEN |
---|
| 1600 | |
---|
| 1601 | ! |
---|
| 1602 | !-- Tables are initialized once more. This call should not be |
---|
| 1603 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1604 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1605 | trig_xf, work1, 0 ) |
---|
| 1606 | |
---|
| 1607 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1608 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1609 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1610 | ENDIF |
---|
| 1611 | |
---|
[1320] | 1612 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1613 | trig_xf, work1, 0 ) |
---|
| 1614 | |
---|
| 1615 | DO k = 1, nz |
---|
| 1616 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1617 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1618 | ENDDO |
---|
| 1619 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1620 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1621 | ENDDO |
---|
| 1622 | ENDDO |
---|
| 1623 | |
---|
| 1624 | ELSE |
---|
| 1625 | |
---|
| 1626 | ! |
---|
| 1627 | !-- Tables are initialized once more. This call should not be |
---|
| 1628 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1629 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1630 | trig_xb, work1, 0 ) |
---|
| 1631 | |
---|
| 1632 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1633 | work(:,nz1) = 0.0_wp |
---|
[1] | 1634 | ENDIF |
---|
| 1635 | DO k = 1, nz |
---|
[1392] | 1636 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1637 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 1638 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
[1] | 1639 | ENDDO |
---|
[1392] | 1640 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1641 | ENDDO |
---|
| 1642 | |
---|
[1106] | 1643 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1644 | trig_xb, work1, 0 ) |
---|
| 1645 | |
---|
| 1646 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1647 | |
---|
| 1648 | ENDIF |
---|
| 1649 | |
---|
[2300] | 1650 | DEALLOCATE( work ) |
---|
[1] | 1651 | #endif |
---|
| 1652 | |
---|
| 1653 | ENDIF |
---|
| 1654 | |
---|
| 1655 | END SUBROUTINE fft_x_m |
---|
| 1656 | |
---|
[1682] | 1657 | !------------------------------------------------------------------------------! |
---|
| 1658 | ! Description: |
---|
| 1659 | ! ------------ |
---|
| 1660 | !> Fourier-transformation along y-direction. |
---|
| 1661 | !> Version for 1d domain decomposition |
---|
| 1662 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1663 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1664 | !------------------------------------------------------------------------------! |
---|
| 1665 | |
---|
[1] | 1666 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1667 | |
---|
| 1668 | |
---|
| 1669 | IMPLICIT NONE |
---|
| 1670 | |
---|
[1682] | 1671 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1672 | |
---|
[1682] | 1673 | INTEGER(iwp) :: j !< |
---|
| 1674 | INTEGER(iwp) :: k !< |
---|
| 1675 | INTEGER(iwp) :: ny1 !< |
---|
| 1676 | INTEGER(iwp) :: siza !< |
---|
[3241] | 1677 | #if defined( __nec ) |
---|
| 1678 | INTEGER(iwp) :: sizw |
---|
| 1679 | #endif |
---|
[1] | 1680 | |
---|
[1682] | 1681 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
| 1682 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
| 1683 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
[1] | 1684 | |
---|
[3241] | 1685 | #if defined( __nec ) |
---|
| 1686 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1687 | #endif |
---|
[2300] | 1688 | |
---|
[3241] | 1689 | |
---|
[1] | 1690 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1691 | |
---|
| 1692 | siza = SIZE( ai, 1 ) |
---|
| 1693 | |
---|
| 1694 | IF ( direction == 'forward') THEN |
---|
| 1695 | |
---|
| 1696 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1697 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1698 | |
---|
| 1699 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1700 | |
---|
| 1701 | DO k = 1, nz |
---|
| 1702 | DO j = 0, (ny+1)/2 |
---|
| 1703 | ar(j,k) = ai(2*j,k) |
---|
| 1704 | ENDDO |
---|
| 1705 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1706 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1707 | ENDDO |
---|
| 1708 | ENDDO |
---|
| 1709 | |
---|
| 1710 | ELSE |
---|
| 1711 | |
---|
| 1712 | DO k = 1, nz |
---|
| 1713 | DO j = 0, (ny+1)/2 |
---|
| 1714 | ai(2*j,k) = ar(j,k) |
---|
| 1715 | ENDDO |
---|
| 1716 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1717 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1718 | ENDDO |
---|
[1342] | 1719 | ai(1,k) = 0.0_wp |
---|
| 1720 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1721 | ENDDO |
---|
| 1722 | |
---|
| 1723 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1724 | |
---|
| 1725 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1726 | |
---|
| 1727 | ENDIF |
---|
| 1728 | |
---|
| 1729 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1730 | |
---|
| 1731 | #if defined( __nec ) |
---|
[2300] | 1732 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
[1] | 1733 | siza = SIZE( ai, 1 ) |
---|
| 1734 | sizw = SIZE( work, 1 ) |
---|
| 1735 | |
---|
| 1736 | IF ( direction == 'forward') THEN |
---|
| 1737 | |
---|
| 1738 | ! |
---|
| 1739 | !-- Tables are initialized once more. This call should not be |
---|
| 1740 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1741 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1742 | trig_yf, work1, 0 ) |
---|
| 1743 | |
---|
| 1744 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1745 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1746 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1747 | ENDIF |
---|
| 1748 | |
---|
[1106] | 1749 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1750 | trig_yf, work1, 0 ) |
---|
| 1751 | |
---|
| 1752 | DO k = 1, nz |
---|
| 1753 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1754 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1755 | ENDDO |
---|
| 1756 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1757 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1758 | ENDDO |
---|
| 1759 | ENDDO |
---|
| 1760 | |
---|
| 1761 | ELSE |
---|
| 1762 | |
---|
| 1763 | ! |
---|
| 1764 | !-- Tables are initialized once more. This call should not be |
---|
| 1765 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1766 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1767 | trig_yb, work1, 0 ) |
---|
| 1768 | |
---|
| 1769 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1770 | work(:,nz1) = 0.0_wp |
---|
[1] | 1771 | ENDIF |
---|
| 1772 | DO k = 1, nz |
---|
[1392] | 1773 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1774 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1775 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
[1] | 1776 | ENDDO |
---|
[1392] | 1777 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1778 | ENDDO |
---|
| 1779 | |
---|
[1106] | 1780 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1781 | trig_yb, work1, 0 ) |
---|
| 1782 | |
---|
| 1783 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1784 | |
---|
| 1785 | ENDIF |
---|
| 1786 | |
---|
[2300] | 1787 | DEALLOCATE( work ) |
---|
[1] | 1788 | #endif |
---|
| 1789 | |
---|
| 1790 | ENDIF |
---|
| 1791 | |
---|
| 1792 | END SUBROUTINE fft_y_m |
---|
| 1793 | |
---|
[1106] | 1794 | |
---|
[1] | 1795 | END MODULE fft_xy |
---|