[1850] | 1 | !> @file fft_xy_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy_mod.f90 4069 2019-07-01 14:05:51Z gronemeier $ |
---|
[4069] | 27 | ! Code added to avoid compiler warnings |
---|
| 28 | ! |
---|
| 29 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 30 | ! OpenACC port for SPEC |
---|
| 31 | ! |
---|
| 32 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 33 | ! preprocessor switches for variables that are required on NEC only |
---|
| 34 | ! |
---|
| 35 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 36 | ! Error messages revised |
---|
| 37 | ! |
---|
| 38 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 39 | ! Corrected "Former revisions" section |
---|
| 40 | ! |
---|
| 41 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 42 | ! Change in file header (GPL part) |
---|
| 43 | ! |
---|
| 44 | ! 2300 2017-06-29 13:31:14Z raasch |
---|
[2300] | 45 | ! NEC related code partly removed, host replaced by loop_optimization |
---|
| 46 | ! |
---|
| 47 | ! 2274 2017-06-09 13:27:48Z Giersch |
---|
[2274] | 48 | ! Changed error messages |
---|
| 49 | ! |
---|
| 50 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
[1321] | 51 | ! |
---|
[2119] | 52 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 53 | ! OpenACC directives and CUDA-fft related code removed |
---|
| 54 | ! |
---|
[2001] | 55 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 56 | ! Forced header and separation lines into 80 columns |
---|
| 57 | ! |
---|
[1851] | 58 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 59 | ! Module renamed |
---|
| 60 | ! |
---|
[1816] | 61 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 62 | ! cpp-directives for ibmy removed |
---|
| 63 | ! |
---|
[1750] | 64 | ! 1749 2016-02-09 12:19:56Z raasch |
---|
| 65 | ! small OpenACC bugfix |
---|
| 66 | ! |
---|
[1683] | 67 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 68 | ! Code annotations made doxygen readable |
---|
| 69 | ! |
---|
[1601] | 70 | ! 1600 2015-06-11 15:50:12Z raasch |
---|
| 71 | ! bugfix: openMP threadprivate statement moved after variable declaration |
---|
| 72 | ! |
---|
[1483] | 73 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
| 74 | ! cudafft workaround for data declaration of ar_tmp because of PGI 14.1 bug |
---|
| 75 | ! |
---|
[1403] | 76 | ! 1402 2014-05-09 14:25:13Z raasch |
---|
| 77 | ! fortran bugfix for r1392 |
---|
| 78 | ! |
---|
[1399] | 79 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 80 | ! bugfix: typo removed for KIND in CMPLX function |
---|
| 81 | ! |
---|
[1393] | 82 | ! 1392 2014-05-06 09:10:05Z raasch |
---|
| 83 | ! bugfix: KIND attribute added to CMPLX functions |
---|
| 84 | ! |
---|
[1375] | 85 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 86 | ! bugfixes: missing variables added to ONLY list, dpk renamed dp |
---|
| 87 | ! |
---|
[1373] | 88 | ! 1372 2014-04-24 06:29:32Z raasch |
---|
| 89 | ! openMP-bugfix for fftw: some arrays defined as threadprivate |
---|
| 90 | ! |
---|
[1354] | 91 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 92 | ! REAL constants provided with KIND-attribute |
---|
| 93 | ! |
---|
[1343] | 94 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 95 | ! REAL constants defined as wp-kind |
---|
| 96 | ! |
---|
[1323] | 97 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 98 | ! REAL functions provided with KIND-attribute |
---|
| 99 | ! |
---|
[1321] | 100 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 101 | ! ONLY-attribute added to USE-statements, |
---|
| 102 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 103 | ! kinds are defined in new module kinds, |
---|
| 104 | ! old module precision_kind is removed, |
---|
| 105 | ! revision history before 2012 removed, |
---|
| 106 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 107 | ! all variable declaration statements |
---|
[1] | 108 | ! |
---|
[1305] | 109 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
| 110 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
| 111 | ! |
---|
[1258] | 112 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 113 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 114 | ! the FORTRAN declaration statement |
---|
| 115 | ! |
---|
[1220] | 116 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
| 117 | ! bugfix: use own branch for fftw |
---|
| 118 | ! |
---|
[1217] | 119 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 120 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
| 121 | ! transpositions, |
---|
| 122 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
| 123 | ! |
---|
[1211] | 124 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 125 | ! fftw added |
---|
| 126 | ! |
---|
[1167] | 127 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 128 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 129 | ! |
---|
[1154] | 130 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 131 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 132 | ! |
---|
[1112] | 133 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 134 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 135 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 136 | ! used total domain) |
---|
| 137 | ! |
---|
[1107] | 138 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 139 | ! CUDA fft added |
---|
| 140 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 141 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 142 | ! |
---|
[1093] | 143 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 144 | ! variable sizw declared for NEC case only |
---|
| 145 | ! |
---|
[1037] | 146 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 147 | ! code put under GPL (PALM 3.9) |
---|
| 148 | ! |
---|
[1] | 149 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 150 | ! Initial revision |
---|
| 151 | ! |
---|
| 152 | ! |
---|
| 153 | ! Description: |
---|
| 154 | ! ------------ |
---|
[1682] | 155 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 156 | !> Original version: Klaus Ketelsen (May 2002) |
---|
[1] | 157 | !------------------------------------------------------------------------------! |
---|
[1682] | 158 | MODULE fft_xy |
---|
| 159 | |
---|
[1] | 160 | |
---|
[1320] | 161 | USE control_parameters, & |
---|
| 162 | ONLY: fft_method, message_string |
---|
| 163 | |
---|
[3634] | 164 | USE cuda_fft_interfaces |
---|
| 165 | |
---|
[1320] | 166 | USE indices, & |
---|
| 167 | ONLY: nx, ny, nz |
---|
| 168 | |
---|
[3634] | 169 | #if defined( __cuda_fft ) |
---|
| 170 | USE ISO_C_BINDING |
---|
| 171 | #elif defined( __fftw ) |
---|
[1210] | 172 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 173 | #endif |
---|
[1320] | 174 | |
---|
| 175 | USE kinds |
---|
| 176 | |
---|
| 177 | USE singleton, & |
---|
| 178 | ONLY: fftn |
---|
| 179 | |
---|
[1] | 180 | USE temperton_fft |
---|
[1320] | 181 | |
---|
| 182 | USE transpose_indices, & |
---|
[1374] | 183 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 184 | |
---|
| 185 | IMPLICIT NONE |
---|
| 186 | |
---|
| 187 | PRIVATE |
---|
[1106] | 188 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 189 | |
---|
[1682] | 190 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
| 191 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
[1] | 192 | |
---|
[1682] | 193 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
[1] | 194 | |
---|
[1682] | 195 | REAL(wp), SAVE :: dnx !< |
---|
| 196 | REAL(wp), SAVE :: dny !< |
---|
| 197 | REAL(wp), SAVE :: sqr_dnx !< |
---|
| 198 | REAL(wp), SAVE :: sqr_dny !< |
---|
[1320] | 199 | |
---|
[1682] | 200 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
| 201 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
[1] | 202 | |
---|
| 203 | #if defined( __ibm ) |
---|
[1682] | 204 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
| 205 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
[1] | 206 | ! |
---|
| 207 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 208 | !-- shared in OpenMP sense |
---|
[1682] | 209 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
| 210 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
| 211 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
| 212 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
[1320] | 213 | |
---|
[1] | 214 | #elif defined( __nec ) |
---|
[1682] | 215 | INTEGER(iwp), SAVE :: nz1 !< |
---|
[1320] | 216 | |
---|
[1682] | 217 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
| 218 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
| 219 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
| 220 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
[1320] | 221 | |
---|
[3634] | 222 | #elif defined( __cuda_fft ) |
---|
| 223 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
| 224 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
| 225 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
| 226 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
| 227 | |
---|
[1219] | 228 | #endif |
---|
| 229 | |
---|
| 230 | #if defined( __fftw ) |
---|
[1210] | 231 | INCLUDE 'fftw3.f03' |
---|
[1682] | 232 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
| 233 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
[1320] | 234 | |
---|
[1682] | 235 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
[1320] | 236 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 237 | y_out !< |
---|
[1320] | 238 | |
---|
| 239 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 240 | x_in !< |
---|
[1320] | 241 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 242 | y_in !< |
---|
[1600] | 243 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[1320] | 244 | |
---|
| 245 | |
---|
[1210] | 246 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 247 | #endif |
---|
| 248 | |
---|
| 249 | ! |
---|
| 250 | !-- Public interfaces |
---|
| 251 | INTERFACE fft_init |
---|
| 252 | MODULE PROCEDURE fft_init |
---|
| 253 | END INTERFACE fft_init |
---|
| 254 | |
---|
| 255 | INTERFACE fft_x |
---|
| 256 | MODULE PROCEDURE fft_x |
---|
| 257 | END INTERFACE fft_x |
---|
| 258 | |
---|
[1106] | 259 | INTERFACE fft_x_1d |
---|
| 260 | MODULE PROCEDURE fft_x_1d |
---|
| 261 | END INTERFACE fft_x_1d |
---|
| 262 | |
---|
[1] | 263 | INTERFACE fft_y |
---|
| 264 | MODULE PROCEDURE fft_y |
---|
| 265 | END INTERFACE fft_y |
---|
| 266 | |
---|
[1106] | 267 | INTERFACE fft_y_1d |
---|
| 268 | MODULE PROCEDURE fft_y_1d |
---|
| 269 | END INTERFACE fft_y_1d |
---|
| 270 | |
---|
[1] | 271 | INTERFACE fft_x_m |
---|
| 272 | MODULE PROCEDURE fft_x_m |
---|
| 273 | END INTERFACE fft_x_m |
---|
| 274 | |
---|
| 275 | INTERFACE fft_y_m |
---|
| 276 | MODULE PROCEDURE fft_y_m |
---|
| 277 | END INTERFACE fft_y_m |
---|
| 278 | |
---|
| 279 | CONTAINS |
---|
| 280 | |
---|
| 281 | |
---|
[1682] | 282 | !------------------------------------------------------------------------------! |
---|
| 283 | ! Description: |
---|
| 284 | ! ------------ |
---|
| 285 | !> @todo Missing subroutine description. |
---|
| 286 | !------------------------------------------------------------------------------! |
---|
[1] | 287 | SUBROUTINE fft_init |
---|
| 288 | |
---|
| 289 | IMPLICIT NONE |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- The following temporary working arrays have to be on stack or private |
---|
| 293 | !-- in OpenMP sense |
---|
| 294 | #if defined( __ibm ) |
---|
[1682] | 295 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
| 296 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
| 297 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 298 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 299 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
| 300 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 301 | #elif defined( __nec ) |
---|
[1682] | 302 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
| 303 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
| 304 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
| 305 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
[1] | 306 | #endif |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- Return, if already called |
---|
| 310 | IF ( init_fft ) THEN |
---|
| 311 | RETURN |
---|
| 312 | ELSE |
---|
| 313 | init_fft = .TRUE. |
---|
| 314 | ENDIF |
---|
| 315 | |
---|
[3634] | 316 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
| 317 | fft_method = 'system-specific' |
---|
| 318 | #endif |
---|
| 319 | |
---|
[1] | 320 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 321 | |
---|
[1342] | 322 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 323 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 324 | sqr_dnx = SQRT( dnx ) |
---|
| 325 | sqr_dny = SQRT( dny ) |
---|
[1815] | 326 | #if defined( __ibm ) |
---|
[1] | 327 | ! |
---|
| 328 | !-- Initialize tables for fft along x |
---|
[1106] | 329 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 330 | aux2, nau2 ) |
---|
[1106] | 331 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 332 | aux4, nau2 ) |
---|
| 333 | ! |
---|
| 334 | !-- Initialize tables for fft along y |
---|
[1106] | 335 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 336 | auy2, nau2 ) |
---|
[1106] | 337 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 338 | auy4, nau2 ) |
---|
| 339 | #elif defined( __nec ) |
---|
[254] | 340 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 341 | '" currently does not work on NEC' |
---|
| 342 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 343 | |
---|
[1320] | 344 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 345 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 346 | |
---|
[1342] | 347 | work_x = 0.0_wp |
---|
| 348 | work_y = 0.0_wp |
---|
[1] | 349 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 350 | ! when using the NEC ffts |
---|
| 351 | |
---|
| 352 | ! |
---|
| 353 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 354 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 355 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 356 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 357 | trig_xf, workx, 0 ) |
---|
[1320] | 358 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 359 | trig_xb, workx, 0 ) |
---|
| 360 | ! |
---|
| 361 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 362 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 363 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 364 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 365 | trig_yf, worky, 0 ) |
---|
[1320] | 366 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 367 | trig_yb, worky, 0 ) |
---|
[3634] | 368 | #elif defined( __cuda_fft ) |
---|
| 369 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 370 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 371 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 372 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 373 | #else |
---|
[254] | 374 | message_string = 'no system-specific fft-call available' |
---|
| 375 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 376 | #endif |
---|
| 377 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 378 | ! |
---|
| 379 | !-- Temperton-algorithm |
---|
| 380 | !-- Initialize tables for fft along x and y |
---|
| 381 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 382 | |
---|
| 383 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 384 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 385 | |
---|
[1210] | 386 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 387 | ! |
---|
| 388 | !-- FFTW |
---|
| 389 | #if defined( __fftw ) |
---|
| 390 | nx_c = nx+1 |
---|
| 391 | ny_c = ny+1 |
---|
[1372] | 392 | !$OMP PARALLEL |
---|
[1320] | 393 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 394 | y_out(0:(ny+1)/2) ) |
---|
[1372] | 395 | !$OMP END PARALLEL |
---|
[1210] | 396 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 397 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 398 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 399 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 400 | #else |
---|
| 401 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 402 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 403 | #endif |
---|
| 404 | |
---|
[1] | 405 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 406 | |
---|
| 407 | CONTINUE |
---|
| 408 | |
---|
| 409 | ELSE |
---|
| 410 | |
---|
[254] | 411 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 412 | '" not available' |
---|
| 413 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 414 | ENDIF |
---|
| 415 | |
---|
| 416 | END SUBROUTINE fft_init |
---|
| 417 | |
---|
| 418 | |
---|
[1682] | 419 | !------------------------------------------------------------------------------! |
---|
| 420 | ! Description: |
---|
| 421 | ! ------------ |
---|
| 422 | !> Fourier-transformation along x-direction. |
---|
| 423 | !> Version for 2D-decomposition. |
---|
| 424 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 425 | !> system-specific routines, if they are available |
---|
| 426 | !------------------------------------------------------------------------------! |
---|
| 427 | |
---|
[1216] | 428 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 429 | |
---|
| 430 | |
---|
| 431 | IMPLICIT NONE |
---|
| 432 | |
---|
[1682] | 433 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 434 | |
---|
[1682] | 435 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1106] | 436 | |
---|
[1682] | 437 | INTEGER(iwp) :: i !< |
---|
| 438 | INTEGER(iwp) :: ishape(1) !< |
---|
| 439 | INTEGER(iwp) :: j !< |
---|
| 440 | INTEGER(iwp) :: k !< |
---|
[1106] | 441 | |
---|
[1682] | 442 | LOGICAL :: forward_fft !< |
---|
[1320] | 443 | |
---|
[1682] | 444 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 445 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 446 | |
---|
[1106] | 447 | #if defined( __ibm ) |
---|
[1682] | 448 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 449 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1106] | 450 | #elif defined( __nec ) |
---|
[1682] | 451 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[3634] | 452 | #elif defined( __cuda_fft ) |
---|
| 453 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 454 | ar_tmp !< |
---|
| 455 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 456 | #endif |
---|
| 457 | |
---|
[1320] | 458 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
[1682] | 459 | ar_2d !< |
---|
[1320] | 460 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
[1682] | 461 | ar !< |
---|
[1320] | 462 | |
---|
[4069] | 463 | ! |
---|
| 464 | !-- To avoid compiler warning: Unused dummy argument âar_2dâ |
---|
| 465 | IF ( PRESENT( ar_2d ) ) CONTINUE |
---|
| 466 | |
---|
[1106] | 467 | IF ( direction == 'forward' ) THEN |
---|
| 468 | forward_fft = .TRUE. |
---|
| 469 | ELSE |
---|
| 470 | forward_fft = .FALSE. |
---|
| 471 | ENDIF |
---|
| 472 | |
---|
| 473 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 474 | |
---|
| 475 | ! |
---|
| 476 | !-- Performing the fft with singleton's software works on every system, |
---|
| 477 | !-- since it is part of the model |
---|
| 478 | ALLOCATE( cwork(0:nx) ) |
---|
| 479 | |
---|
| 480 | IF ( forward_fft ) then |
---|
| 481 | |
---|
| 482 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 483 | !$OMP DO |
---|
| 484 | DO k = nzb_x, nzt_x |
---|
| 485 | DO j = nys_x, nyn_x |
---|
| 486 | |
---|
| 487 | DO i = 0, nx |
---|
[1392] | 488 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
[1106] | 489 | ENDDO |
---|
| 490 | |
---|
| 491 | ishape = SHAPE( cwork ) |
---|
| 492 | CALL FFTN( cwork, ishape ) |
---|
| 493 | |
---|
| 494 | DO i = 0, (nx+1)/2 |
---|
[1322] | 495 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 496 | ENDDO |
---|
| 497 | DO i = 1, (nx+1)/2 - 1 |
---|
| 498 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 499 | ENDDO |
---|
| 500 | |
---|
| 501 | ENDDO |
---|
| 502 | ENDDO |
---|
| 503 | !$OMP END PARALLEL |
---|
| 504 | |
---|
| 505 | ELSE |
---|
| 506 | |
---|
| 507 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 508 | !$OMP DO |
---|
| 509 | DO k = nzb_x, nzt_x |
---|
| 510 | DO j = nys_x, nyn_x |
---|
| 511 | |
---|
[1392] | 512 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 513 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 514 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
| 515 | KIND=wp ) |
---|
| 516 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 517 | KIND=wp ) |
---|
[1106] | 518 | ENDDO |
---|
[1392] | 519 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 520 | |
---|
| 521 | ishape = SHAPE( cwork ) |
---|
| 522 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 523 | |
---|
| 524 | DO i = 0, nx |
---|
[1322] | 525 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 526 | ENDDO |
---|
| 527 | |
---|
| 528 | ENDDO |
---|
| 529 | ENDDO |
---|
| 530 | !$OMP END PARALLEL |
---|
| 531 | |
---|
| 532 | ENDIF |
---|
| 533 | |
---|
| 534 | DEALLOCATE( cwork ) |
---|
| 535 | |
---|
| 536 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 537 | |
---|
| 538 | ! |
---|
| 539 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 540 | !-- since it is part of the model |
---|
| 541 | IF ( forward_fft ) THEN |
---|
| 542 | |
---|
[1304] | 543 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 544 | !$OMP DO |
---|
| 545 | DO k = nzb_x, nzt_x |
---|
| 546 | DO j = nys_x, nyn_x |
---|
| 547 | |
---|
| 548 | work(0:nx) = ar(0:nx,j,k) |
---|
| 549 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 550 | |
---|
| 551 | DO i = 0, (nx+1)/2 |
---|
| 552 | ar(i,j,k) = work(2*i) |
---|
| 553 | ENDDO |
---|
| 554 | DO i = 1, (nx+1)/2 - 1 |
---|
| 555 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 556 | ENDDO |
---|
| 557 | |
---|
| 558 | ENDDO |
---|
| 559 | ENDDO |
---|
| 560 | !$OMP END PARALLEL |
---|
| 561 | |
---|
| 562 | ELSE |
---|
| 563 | |
---|
[1304] | 564 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 565 | !$OMP DO |
---|
| 566 | DO k = nzb_x, nzt_x |
---|
| 567 | DO j = nys_x, nyn_x |
---|
| 568 | |
---|
| 569 | DO i = 0, (nx+1)/2 |
---|
| 570 | work(2*i) = ar(i,j,k) |
---|
| 571 | ENDDO |
---|
| 572 | DO i = 1, (nx+1)/2 - 1 |
---|
| 573 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 574 | ENDDO |
---|
[1342] | 575 | work(1) = 0.0_wp |
---|
| 576 | work(nx+2) = 0.0_wp |
---|
[1106] | 577 | |
---|
| 578 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 579 | ar(0:nx,j,k) = work(0:nx) |
---|
| 580 | |
---|
| 581 | ENDDO |
---|
| 582 | ENDDO |
---|
| 583 | !$OMP END PARALLEL |
---|
| 584 | |
---|
| 585 | ENDIF |
---|
| 586 | |
---|
[1210] | 587 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 588 | |
---|
| 589 | #if defined( __fftw ) |
---|
| 590 | IF ( forward_fft ) THEN |
---|
| 591 | |
---|
| 592 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 593 | !$OMP DO |
---|
| 594 | DO k = nzb_x, nzt_x |
---|
| 595 | DO j = nys_x, nyn_x |
---|
| 596 | |
---|
| 597 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 598 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 599 | |
---|
[1216] | 600 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 601 | |
---|
[1216] | 602 | DO i = 0, (nx+1)/2 |
---|
[1322] | 603 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 604 | ENDDO |
---|
| 605 | DO i = 1, (nx+1)/2 - 1 |
---|
| 606 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 607 | ENDDO |
---|
| 608 | |
---|
| 609 | ELSE |
---|
| 610 | |
---|
| 611 | DO i = 0, (nx+1)/2 |
---|
[1322] | 612 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 613 | ENDDO |
---|
| 614 | DO i = 1, (nx+1)/2 - 1 |
---|
| 615 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 616 | ENDDO |
---|
| 617 | |
---|
| 618 | ENDIF |
---|
| 619 | |
---|
[1210] | 620 | ENDDO |
---|
| 621 | ENDDO |
---|
| 622 | !$OMP END PARALLEL |
---|
| 623 | |
---|
[1216] | 624 | ELSE |
---|
[1210] | 625 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 626 | !$OMP DO |
---|
| 627 | DO k = nzb_x, nzt_x |
---|
| 628 | DO j = nys_x, nyn_x |
---|
| 629 | |
---|
[1216] | 630 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 631 | |
---|
[1392] | 632 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 633 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 634 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
| 635 | KIND=wp ) |
---|
[1216] | 636 | ENDDO |
---|
[1392] | 637 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
| 638 | KIND=wp ) |
---|
[1216] | 639 | |
---|
| 640 | ELSE |
---|
| 641 | |
---|
[1392] | 642 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 643 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 644 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1216] | 645 | ENDDO |
---|
[1392] | 646 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 647 | KIND=wp ) |
---|
[1216] | 648 | |
---|
| 649 | ENDIF |
---|
| 650 | |
---|
[1210] | 651 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 652 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 653 | |
---|
| 654 | ENDDO |
---|
| 655 | ENDDO |
---|
| 656 | !$OMP END PARALLEL |
---|
| 657 | |
---|
[1216] | 658 | ENDIF |
---|
[1210] | 659 | #endif |
---|
| 660 | |
---|
[1106] | 661 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 662 | |
---|
[1815] | 663 | #if defined( __ibm ) |
---|
[1106] | 664 | IF ( forward_fft ) THEN |
---|
| 665 | |
---|
| 666 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 667 | !$OMP DO |
---|
| 668 | DO k = nzb_x, nzt_x |
---|
| 669 | DO j = nys_x, nyn_x |
---|
| 670 | |
---|
[1320] | 671 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 672 | nau1, aux2, nau2 ) |
---|
[1106] | 673 | |
---|
| 674 | DO i = 0, (nx+1)/2 |
---|
| 675 | ar(i,j,k) = work(2*i) |
---|
| 676 | ENDDO |
---|
| 677 | DO i = 1, (nx+1)/2 - 1 |
---|
| 678 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 679 | ENDDO |
---|
| 680 | |
---|
| 681 | ENDDO |
---|
| 682 | ENDDO |
---|
| 683 | !$OMP END PARALLEL |
---|
| 684 | |
---|
| 685 | ELSE |
---|
| 686 | |
---|
| 687 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 688 | !$OMP DO |
---|
| 689 | DO k = nzb_x, nzt_x |
---|
| 690 | DO j = nys_x, nyn_x |
---|
| 691 | |
---|
| 692 | DO i = 0, (nx+1)/2 |
---|
| 693 | work(2*i) = ar(i,j,k) |
---|
| 694 | ENDDO |
---|
| 695 | DO i = 1, (nx+1)/2 - 1 |
---|
| 696 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 697 | ENDDO |
---|
[1342] | 698 | work(1) = 0.0_wp |
---|
| 699 | work(nx+2) = 0.0_wp |
---|
[1106] | 700 | |
---|
[1320] | 701 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 702 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 703 | |
---|
| 704 | DO i = 0, nx |
---|
| 705 | ar(i,j,k) = work(i) |
---|
| 706 | ENDDO |
---|
| 707 | |
---|
| 708 | ENDDO |
---|
| 709 | ENDDO |
---|
| 710 | !$OMP END PARALLEL |
---|
| 711 | |
---|
| 712 | ENDIF |
---|
| 713 | |
---|
| 714 | #elif defined( __nec ) |
---|
| 715 | |
---|
| 716 | IF ( forward_fft ) THEN |
---|
| 717 | |
---|
| 718 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 719 | !$OMP DO |
---|
| 720 | DO k = nzb_x, nzt_x |
---|
| 721 | DO j = nys_x, nyn_x |
---|
| 722 | |
---|
| 723 | work(0:nx) = ar(0:nx,j,k) |
---|
| 724 | |
---|
| 725 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 726 | |
---|
| 727 | DO i = 0, (nx+1)/2 |
---|
| 728 | ar(i,j,k) = work(2*i) |
---|
| 729 | ENDDO |
---|
| 730 | DO i = 1, (nx+1)/2 - 1 |
---|
| 731 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 732 | ENDDO |
---|
| 733 | |
---|
| 734 | ENDDO |
---|
| 735 | ENDDO |
---|
| 736 | !$END OMP PARALLEL |
---|
| 737 | |
---|
| 738 | ELSE |
---|
| 739 | |
---|
| 740 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 741 | !$OMP DO |
---|
| 742 | DO k = nzb_x, nzt_x |
---|
| 743 | DO j = nys_x, nyn_x |
---|
| 744 | |
---|
| 745 | DO i = 0, (nx+1)/2 |
---|
| 746 | work(2*i) = ar(i,j,k) |
---|
| 747 | ENDDO |
---|
| 748 | DO i = 1, (nx+1)/2 - 1 |
---|
| 749 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 750 | ENDDO |
---|
[1342] | 751 | work(1) = 0.0_wp |
---|
| 752 | work(nx+2) = 0.0_wp |
---|
[1106] | 753 | |
---|
| 754 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 755 | |
---|
| 756 | ar(0:nx,j,k) = work(0:nx) |
---|
| 757 | |
---|
| 758 | ENDDO |
---|
| 759 | ENDDO |
---|
| 760 | !$OMP END PARALLEL |
---|
| 761 | |
---|
| 762 | ENDIF |
---|
| 763 | |
---|
[3634] | 764 | #elif defined( __cuda_fft ) |
---|
| 765 | |
---|
| 766 | IF ( forward_fft ) THEN |
---|
| 767 | |
---|
| 768 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 769 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
| 770 | !$ACC END HOST_DATA |
---|
| 771 | |
---|
| 772 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 773 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 774 | DO k = nzb_x, nzt_x |
---|
| 775 | DO j = nys_x, nyn_x |
---|
| 776 | |
---|
| 777 | DO i = 0, (nx+1)/2 |
---|
| 778 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
| 779 | ENDDO |
---|
| 780 | |
---|
| 781 | DO i = 1, (nx+1)/2 - 1 |
---|
| 782 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
| 783 | ENDDO |
---|
| 784 | |
---|
| 785 | ENDDO |
---|
| 786 | ENDDO |
---|
| 787 | |
---|
| 788 | ELSE |
---|
| 789 | |
---|
| 790 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 791 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 792 | DO k = nzb_x, nzt_x |
---|
| 793 | DO j = nys_x, nyn_x |
---|
| 794 | |
---|
| 795 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
| 796 | |
---|
| 797 | DO i = 1, (nx+1)/2 - 1 |
---|
| 798 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 799 | KIND=wp ) |
---|
| 800 | ENDDO |
---|
| 801 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 802 | KIND=wp ) |
---|
| 803 | |
---|
| 804 | ENDDO |
---|
| 805 | ENDDO |
---|
| 806 | |
---|
| 807 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 808 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 809 | !$ACC END HOST_DATA |
---|
| 810 | |
---|
| 811 | ENDIF |
---|
| 812 | |
---|
[1106] | 813 | #endif |
---|
| 814 | |
---|
| 815 | ENDIF |
---|
| 816 | |
---|
| 817 | END SUBROUTINE fft_x |
---|
| 818 | |
---|
[1682] | 819 | !------------------------------------------------------------------------------! |
---|
| 820 | ! Description: |
---|
| 821 | ! ------------ |
---|
| 822 | !> Fourier-transformation along x-direction. |
---|
| 823 | !> Version for 1D-decomposition. |
---|
| 824 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 825 | !> system-specific routines, if they are available |
---|
| 826 | !------------------------------------------------------------------------------! |
---|
| 827 | |
---|
[1106] | 828 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 829 | |
---|
| 830 | |
---|
| 831 | IMPLICIT NONE |
---|
| 832 | |
---|
[1682] | 833 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 834 | |
---|
[1682] | 835 | INTEGER(iwp) :: i !< |
---|
| 836 | INTEGER(iwp) :: ishape(1) !< |
---|
[1] | 837 | |
---|
[1682] | 838 | LOGICAL :: forward_fft !< |
---|
[1106] | 839 | |
---|
[1682] | 840 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
| 841 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 842 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 843 | |
---|
[1682] | 844 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 845 | |
---|
[1] | 846 | #if defined( __ibm ) |
---|
[1682] | 847 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 848 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1] | 849 | #elif defined( __nec ) |
---|
[1682] | 850 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1] | 851 | #endif |
---|
| 852 | |
---|
[1106] | 853 | IF ( direction == 'forward' ) THEN |
---|
| 854 | forward_fft = .TRUE. |
---|
| 855 | ELSE |
---|
| 856 | forward_fft = .FALSE. |
---|
| 857 | ENDIF |
---|
| 858 | |
---|
[1] | 859 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 860 | |
---|
| 861 | ! |
---|
| 862 | !-- Performing the fft with singleton's software works on every system, |
---|
| 863 | !-- since it is part of the model |
---|
| 864 | ALLOCATE( cwork(0:nx) ) |
---|
| 865 | |
---|
[1106] | 866 | IF ( forward_fft ) then |
---|
[1] | 867 | |
---|
| 868 | DO i = 0, nx |
---|
[1392] | 869 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
[1] | 870 | ENDDO |
---|
| 871 | ishape = SHAPE( cwork ) |
---|
| 872 | CALL FFTN( cwork, ishape ) |
---|
| 873 | DO i = 0, (nx+1)/2 |
---|
[1322] | 874 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 875 | ENDDO |
---|
| 876 | DO i = 1, (nx+1)/2 - 1 |
---|
| 877 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 878 | ENDDO |
---|
| 879 | |
---|
| 880 | ELSE |
---|
| 881 | |
---|
[1392] | 882 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 883 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 884 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
| 885 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1] | 886 | ENDDO |
---|
[1392] | 887 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 888 | |
---|
| 889 | ishape = SHAPE( cwork ) |
---|
| 890 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 891 | |
---|
| 892 | DO i = 0, nx |
---|
[1322] | 893 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 894 | ENDDO |
---|
| 895 | |
---|
| 896 | ENDIF |
---|
| 897 | |
---|
| 898 | DEALLOCATE( cwork ) |
---|
| 899 | |
---|
| 900 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 901 | |
---|
| 902 | ! |
---|
| 903 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 904 | !-- since it is part of the model |
---|
[1106] | 905 | IF ( forward_fft ) THEN |
---|
[1] | 906 | |
---|
| 907 | work(0:nx) = ar |
---|
| 908 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 909 | |
---|
| 910 | DO i = 0, (nx+1)/2 |
---|
| 911 | ar(i) = work(2*i) |
---|
| 912 | ENDDO |
---|
| 913 | DO i = 1, (nx+1)/2 - 1 |
---|
| 914 | ar(nx+1-i) = work(2*i+1) |
---|
| 915 | ENDDO |
---|
| 916 | |
---|
| 917 | ELSE |
---|
| 918 | |
---|
| 919 | DO i = 0, (nx+1)/2 |
---|
| 920 | work(2*i) = ar(i) |
---|
| 921 | ENDDO |
---|
| 922 | DO i = 1, (nx+1)/2 - 1 |
---|
| 923 | work(2*i+1) = ar(nx+1-i) |
---|
| 924 | ENDDO |
---|
[1342] | 925 | work(1) = 0.0_wp |
---|
| 926 | work(nx+2) = 0.0_wp |
---|
[1] | 927 | |
---|
| 928 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 929 | ar = work(0:nx) |
---|
| 930 | |
---|
| 931 | ENDIF |
---|
| 932 | |
---|
[1216] | 933 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 934 | |
---|
| 935 | #if defined( __fftw ) |
---|
| 936 | IF ( forward_fft ) THEN |
---|
| 937 | |
---|
| 938 | x_in(0:nx) = ar(0:nx) |
---|
| 939 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 940 | |
---|
| 941 | DO i = 0, (nx+1)/2 |
---|
[1322] | 942 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 943 | ENDDO |
---|
| 944 | DO i = 1, (nx+1)/2 - 1 |
---|
| 945 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 946 | ENDDO |
---|
| 947 | |
---|
| 948 | ELSE |
---|
| 949 | |
---|
[1392] | 950 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 951 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 952 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1216] | 953 | ENDDO |
---|
[1392] | 954 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 955 | |
---|
| 956 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 957 | ar(0:nx) = x_in(0:nx) |
---|
| 958 | |
---|
| 959 | ENDIF |
---|
| 960 | #endif |
---|
| 961 | |
---|
[1] | 962 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 963 | |
---|
[1815] | 964 | #if defined( __ibm ) |
---|
[1106] | 965 | IF ( forward_fft ) THEN |
---|
[1] | 966 | |
---|
[1320] | 967 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 968 | aux2, nau2 ) |
---|
| 969 | |
---|
| 970 | DO i = 0, (nx+1)/2 |
---|
| 971 | ar(i) = work(2*i) |
---|
| 972 | ENDDO |
---|
| 973 | DO i = 1, (nx+1)/2 - 1 |
---|
| 974 | ar(nx+1-i) = work(2*i+1) |
---|
| 975 | ENDDO |
---|
| 976 | |
---|
| 977 | ELSE |
---|
| 978 | |
---|
| 979 | DO i = 0, (nx+1)/2 |
---|
| 980 | work(2*i) = ar(i) |
---|
| 981 | ENDDO |
---|
| 982 | DO i = 1, (nx+1)/2 - 1 |
---|
| 983 | work(2*i+1) = ar(nx+1-i) |
---|
| 984 | ENDDO |
---|
[1342] | 985 | work(1) = 0.0_wp |
---|
| 986 | work(nx+2) = 0.0_wp |
---|
[1] | 987 | |
---|
[1106] | 988 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 989 | aux4, nau2 ) |
---|
| 990 | |
---|
| 991 | DO i = 0, nx |
---|
| 992 | ar(i) = work(i) |
---|
| 993 | ENDDO |
---|
| 994 | |
---|
| 995 | ENDIF |
---|
| 996 | #elif defined( __nec ) |
---|
[1106] | 997 | IF ( forward_fft ) THEN |
---|
[1] | 998 | |
---|
| 999 | work(0:nx) = ar(0:nx) |
---|
| 1000 | |
---|
[1106] | 1001 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 1002 | |
---|
[1] | 1003 | DO i = 0, (nx+1)/2 |
---|
| 1004 | ar(i) = work(2*i) |
---|
| 1005 | ENDDO |
---|
| 1006 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1007 | ar(nx+1-i) = work(2*i+1) |
---|
| 1008 | ENDDO |
---|
| 1009 | |
---|
| 1010 | ELSE |
---|
| 1011 | |
---|
| 1012 | DO i = 0, (nx+1)/2 |
---|
| 1013 | work(2*i) = ar(i) |
---|
| 1014 | ENDDO |
---|
| 1015 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1016 | work(2*i+1) = ar(nx+1-i) |
---|
| 1017 | ENDDO |
---|
[1342] | 1018 | work(1) = 0.0_wp |
---|
| 1019 | work(nx+2) = 0.0_wp |
---|
[1] | 1020 | |
---|
[1106] | 1021 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 1022 | |
---|
| 1023 | ar(0:nx) = work(0:nx) |
---|
| 1024 | |
---|
| 1025 | ENDIF |
---|
| 1026 | #endif |
---|
| 1027 | |
---|
| 1028 | ENDIF |
---|
| 1029 | |
---|
[1106] | 1030 | END SUBROUTINE fft_x_1d |
---|
[1] | 1031 | |
---|
[1682] | 1032 | !------------------------------------------------------------------------------! |
---|
| 1033 | ! Description: |
---|
| 1034 | ! ------------ |
---|
| 1035 | !> Fourier-transformation along y-direction. |
---|
| 1036 | !> Version for 2D-decomposition. |
---|
| 1037 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1038 | !> system-specific routines, if they are available. |
---|
| 1039 | !> |
---|
| 1040 | !> direction: 'forward' or 'backward' |
---|
| 1041 | !> ar, ar_tr: 3D data arrays |
---|
| 1042 | !> forward: ar: before ar_tr: after transformation |
---|
| 1043 | !> backward: ar_tr: before ar: after transfosition |
---|
| 1044 | !> |
---|
| 1045 | !> In case of non-overlapping transposition/transformation: |
---|
| 1046 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
| 1047 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
| 1048 | !> |
---|
| 1049 | !> In case of overlapping transposition/transformation |
---|
| 1050 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
| 1051 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
| 1052 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
| 1053 | !> transformation is carried out for a 2D-plane only. |
---|
| 1054 | !------------------------------------------------------------------------------! |
---|
| 1055 | |
---|
[1216] | 1056 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 1057 | nxr_y_l ) |
---|
[1] | 1058 | |
---|
| 1059 | |
---|
| 1060 | IMPLICIT NONE |
---|
| 1061 | |
---|
[1682] | 1062 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1063 | |
---|
[1682] | 1064 | INTEGER(iwp) :: i !< |
---|
| 1065 | INTEGER(iwp) :: j !< |
---|
| 1066 | INTEGER(iwp) :: jshape(1) !< |
---|
| 1067 | INTEGER(iwp) :: k !< |
---|
| 1068 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 1069 | INTEGER(iwp) :: nxl_y_l !< |
---|
| 1070 | INTEGER(iwp) :: nxr_y_bound !< |
---|
| 1071 | INTEGER(iwp) :: nxr_y_l !< |
---|
[1106] | 1072 | |
---|
[1682] | 1073 | LOGICAL :: forward_fft !< |
---|
[1106] | 1074 | |
---|
[1682] | 1075 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1076 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1077 | |
---|
[1682] | 1078 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1079 | |
---|
[1106] | 1080 | #if defined( __ibm ) |
---|
[1682] | 1081 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1082 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1106] | 1083 | #elif defined( __nec ) |
---|
[1682] | 1084 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[3634] | 1085 | #elif defined( __cuda_fft ) |
---|
| 1086 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
| 1087 | ar_tmp !< |
---|
| 1088 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 1089 | #endif |
---|
| 1090 | |
---|
[1320] | 1091 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
[1682] | 1092 | ar !< |
---|
[1320] | 1093 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
[1682] | 1094 | ar_tr !< |
---|
[1320] | 1095 | |
---|
[1106] | 1096 | IF ( direction == 'forward' ) THEN |
---|
| 1097 | forward_fft = .TRUE. |
---|
| 1098 | ELSE |
---|
| 1099 | forward_fft = .FALSE. |
---|
| 1100 | ENDIF |
---|
| 1101 | |
---|
| 1102 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1106 | !-- since it is part of the model |
---|
| 1107 | ALLOCATE( cwork(0:ny) ) |
---|
| 1108 | |
---|
| 1109 | IF ( forward_fft ) then |
---|
| 1110 | |
---|
| 1111 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1112 | !$OMP DO |
---|
| 1113 | DO k = nzb_y, nzt_y |
---|
[1216] | 1114 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1115 | |
---|
| 1116 | DO j = 0, ny |
---|
[1392] | 1117 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
[1106] | 1118 | ENDDO |
---|
| 1119 | |
---|
| 1120 | jshape = SHAPE( cwork ) |
---|
| 1121 | CALL FFTN( cwork, jshape ) |
---|
| 1122 | |
---|
| 1123 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1124 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1125 | ENDDO |
---|
| 1126 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1127 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1128 | ENDDO |
---|
| 1129 | |
---|
| 1130 | ENDDO |
---|
| 1131 | ENDDO |
---|
| 1132 | !$OMP END PARALLEL |
---|
| 1133 | |
---|
| 1134 | ELSE |
---|
| 1135 | |
---|
| 1136 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1137 | !$OMP DO |
---|
| 1138 | DO k = nzb_y, nzt_y |
---|
[1216] | 1139 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1140 | |
---|
[1392] | 1141 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1142 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1143 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
| 1144 | KIND=wp ) |
---|
| 1145 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1146 | KIND=wp ) |
---|
[1106] | 1147 | ENDDO |
---|
[1392] | 1148 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1149 | KIND=wp ) |
---|
[1106] | 1150 | |
---|
| 1151 | jshape = SHAPE( cwork ) |
---|
| 1152 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1153 | |
---|
| 1154 | DO j = 0, ny |
---|
[1322] | 1155 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1156 | ENDDO |
---|
| 1157 | |
---|
| 1158 | ENDDO |
---|
| 1159 | ENDDO |
---|
| 1160 | !$OMP END PARALLEL |
---|
| 1161 | |
---|
| 1162 | ENDIF |
---|
| 1163 | |
---|
| 1164 | DEALLOCATE( cwork ) |
---|
| 1165 | |
---|
| 1166 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1167 | |
---|
| 1168 | ! |
---|
| 1169 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1170 | !-- since it is part of the model |
---|
| 1171 | IF ( forward_fft ) THEN |
---|
| 1172 | |
---|
[1304] | 1173 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1174 | !$OMP DO |
---|
| 1175 | DO k = nzb_y, nzt_y |
---|
[1216] | 1176 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1177 | |
---|
| 1178 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1179 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1180 | |
---|
| 1181 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1182 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1183 | ENDDO |
---|
| 1184 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1185 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1186 | ENDDO |
---|
| 1187 | |
---|
| 1188 | ENDDO |
---|
| 1189 | ENDDO |
---|
| 1190 | !$OMP END PARALLEL |
---|
| 1191 | |
---|
| 1192 | ELSE |
---|
| 1193 | |
---|
[1304] | 1194 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1195 | !$OMP DO |
---|
| 1196 | DO k = nzb_y, nzt_y |
---|
[1216] | 1197 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1198 | |
---|
| 1199 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1200 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1201 | ENDDO |
---|
| 1202 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1203 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1204 | ENDDO |
---|
[1342] | 1205 | work(1) = 0.0_wp |
---|
| 1206 | work(ny+2) = 0.0_wp |
---|
[1106] | 1207 | |
---|
| 1208 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1209 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1210 | |
---|
| 1211 | ENDDO |
---|
| 1212 | ENDDO |
---|
| 1213 | !$OMP END PARALLEL |
---|
| 1214 | |
---|
| 1215 | ENDIF |
---|
| 1216 | |
---|
[1210] | 1217 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1218 | |
---|
| 1219 | #if defined( __fftw ) |
---|
| 1220 | IF ( forward_fft ) THEN |
---|
| 1221 | |
---|
| 1222 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1223 | !$OMP DO |
---|
| 1224 | DO k = nzb_y, nzt_y |
---|
[1216] | 1225 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1226 | |
---|
| 1227 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1228 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1229 | |
---|
| 1230 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1231 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1232 | ENDDO |
---|
| 1233 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1234 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1235 | ENDDO |
---|
| 1236 | |
---|
| 1237 | ENDDO |
---|
| 1238 | ENDDO |
---|
| 1239 | !$OMP END PARALLEL |
---|
| 1240 | |
---|
| 1241 | ELSE |
---|
| 1242 | |
---|
| 1243 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1244 | !$OMP DO |
---|
| 1245 | DO k = nzb_y, nzt_y |
---|
[1216] | 1246 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1247 | |
---|
[1392] | 1248 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1249 | DO j = 1, (ny+1)/2 - 1 |
---|
[1398] | 1250 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1251 | KIND=wp ) |
---|
[1210] | 1252 | ENDDO |
---|
[1392] | 1253 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1254 | KIND=wp ) |
---|
[1210] | 1255 | |
---|
| 1256 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1257 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1258 | |
---|
| 1259 | ENDDO |
---|
| 1260 | ENDDO |
---|
| 1261 | !$OMP END PARALLEL |
---|
| 1262 | |
---|
| 1263 | ENDIF |
---|
| 1264 | #endif |
---|
| 1265 | |
---|
[1106] | 1266 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1267 | |
---|
[1815] | 1268 | #if defined( __ibm ) |
---|
[1106] | 1269 | IF ( forward_fft) THEN |
---|
| 1270 | |
---|
| 1271 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1272 | !$OMP DO |
---|
| 1273 | DO k = nzb_y, nzt_y |
---|
[1216] | 1274 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1275 | |
---|
[1320] | 1276 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1277 | nau1, auy2, nau2 ) |
---|
[1106] | 1278 | |
---|
| 1279 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1280 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1281 | ENDDO |
---|
| 1282 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1283 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1284 | ENDDO |
---|
| 1285 | |
---|
| 1286 | ENDDO |
---|
| 1287 | ENDDO |
---|
| 1288 | !$OMP END PARALLEL |
---|
| 1289 | |
---|
| 1290 | ELSE |
---|
| 1291 | |
---|
| 1292 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1293 | !$OMP DO |
---|
| 1294 | DO k = nzb_y, nzt_y |
---|
[1216] | 1295 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1296 | |
---|
| 1297 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1298 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1299 | ENDDO |
---|
| 1300 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1301 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1302 | ENDDO |
---|
[1342] | 1303 | work(1) = 0.0_wp |
---|
| 1304 | work(ny+2) = 0.0_wp |
---|
[1106] | 1305 | |
---|
[1320] | 1306 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1307 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1308 | |
---|
| 1309 | DO j = 0, ny |
---|
| 1310 | ar(j,i,k) = work(j) |
---|
| 1311 | ENDDO |
---|
| 1312 | |
---|
| 1313 | ENDDO |
---|
| 1314 | ENDDO |
---|
| 1315 | !$OMP END PARALLEL |
---|
| 1316 | |
---|
| 1317 | ENDIF |
---|
| 1318 | #elif defined( __nec ) |
---|
| 1319 | IF ( forward_fft ) THEN |
---|
| 1320 | |
---|
| 1321 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1322 | !$OMP DO |
---|
| 1323 | DO k = nzb_y, nzt_y |
---|
[1216] | 1324 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1325 | |
---|
| 1326 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1327 | |
---|
| 1328 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1329 | |
---|
| 1330 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1331 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1332 | ENDDO |
---|
| 1333 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1334 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1335 | ENDDO |
---|
| 1336 | |
---|
| 1337 | ENDDO |
---|
| 1338 | ENDDO |
---|
| 1339 | !$END OMP PARALLEL |
---|
| 1340 | |
---|
| 1341 | ELSE |
---|
| 1342 | |
---|
| 1343 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1344 | !$OMP DO |
---|
| 1345 | DO k = nzb_y, nzt_y |
---|
[1216] | 1346 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1347 | |
---|
| 1348 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1349 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1350 | ENDDO |
---|
| 1351 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1352 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1353 | ENDDO |
---|
[1342] | 1354 | work(1) = 0.0_wp |
---|
| 1355 | work(ny+2) = 0.0_wp |
---|
[1106] | 1356 | |
---|
| 1357 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1358 | |
---|
| 1359 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1360 | |
---|
| 1361 | ENDDO |
---|
| 1362 | ENDDO |
---|
| 1363 | !$OMP END PARALLEL |
---|
| 1364 | |
---|
| 1365 | ENDIF |
---|
[3634] | 1366 | #elif defined( __cuda_fft ) |
---|
| 1367 | |
---|
| 1368 | IF ( forward_fft ) THEN |
---|
| 1369 | |
---|
| 1370 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1371 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
| 1372 | !$ACC END HOST_DATA |
---|
| 1373 | |
---|
| 1374 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1375 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1376 | DO k = nzb_y, nzt_y |
---|
| 1377 | DO i = nxl_y, nxr_y |
---|
| 1378 | |
---|
| 1379 | DO j = 0, (ny+1)/2 |
---|
| 1380 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
| 1381 | ENDDO |
---|
| 1382 | |
---|
| 1383 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1384 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
| 1385 | ENDDO |
---|
| 1386 | |
---|
| 1387 | ENDDO |
---|
| 1388 | ENDDO |
---|
| 1389 | |
---|
| 1390 | ELSE |
---|
| 1391 | |
---|
| 1392 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1393 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1394 | DO k = nzb_y, nzt_y |
---|
| 1395 | DO i = nxl_y, nxr_y |
---|
| 1396 | |
---|
| 1397 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
| 1398 | |
---|
| 1399 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1400 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), & |
---|
| 1401 | KIND=wp ) |
---|
| 1402 | ENDDO |
---|
| 1403 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1404 | KIND=wp ) |
---|
| 1405 | |
---|
| 1406 | ENDDO |
---|
| 1407 | ENDDO |
---|
| 1408 | |
---|
| 1409 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1410 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1411 | !$ACC END HOST_DATA |
---|
| 1412 | |
---|
| 1413 | ENDIF |
---|
| 1414 | |
---|
[1106] | 1415 | #endif |
---|
| 1416 | |
---|
| 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | END SUBROUTINE fft_y |
---|
| 1420 | |
---|
[1682] | 1421 | !------------------------------------------------------------------------------! |
---|
| 1422 | ! Description: |
---|
| 1423 | ! ------------ |
---|
| 1424 | !> Fourier-transformation along y-direction. |
---|
| 1425 | !> Version for 1D-decomposition. |
---|
| 1426 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1427 | !> system-specific routines, if they are available. |
---|
| 1428 | !------------------------------------------------------------------------------! |
---|
| 1429 | |
---|
[1106] | 1430 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1431 | |
---|
| 1432 | |
---|
| 1433 | IMPLICIT NONE |
---|
| 1434 | |
---|
| 1435 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1436 | |
---|
[1682] | 1437 | INTEGER(iwp) :: j !< |
---|
| 1438 | INTEGER(iwp) :: jshape(1) !< |
---|
[1] | 1439 | |
---|
[1682] | 1440 | LOGICAL :: forward_fft !< |
---|
[1106] | 1441 | |
---|
[1682] | 1442 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
| 1443 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1444 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1445 | |
---|
[1682] | 1446 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1447 | |
---|
[1] | 1448 | #if defined( __ibm ) |
---|
[1682] | 1449 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1450 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 1451 | #elif defined( __nec ) |
---|
[1682] | 1452 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1] | 1453 | #endif |
---|
| 1454 | |
---|
[1106] | 1455 | IF ( direction == 'forward' ) THEN |
---|
| 1456 | forward_fft = .TRUE. |
---|
| 1457 | ELSE |
---|
| 1458 | forward_fft = .FALSE. |
---|
| 1459 | ENDIF |
---|
| 1460 | |
---|
[1] | 1461 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1462 | |
---|
| 1463 | ! |
---|
| 1464 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1465 | !-- since it is part of the model |
---|
| 1466 | ALLOCATE( cwork(0:ny) ) |
---|
| 1467 | |
---|
[1106] | 1468 | IF ( forward_fft ) THEN |
---|
[1] | 1469 | |
---|
| 1470 | DO j = 0, ny |
---|
[1392] | 1471 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
[1] | 1472 | ENDDO |
---|
| 1473 | |
---|
| 1474 | jshape = SHAPE( cwork ) |
---|
| 1475 | CALL FFTN( cwork, jshape ) |
---|
| 1476 | |
---|
| 1477 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1478 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1479 | ENDDO |
---|
| 1480 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1481 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1482 | ENDDO |
---|
| 1483 | |
---|
| 1484 | ELSE |
---|
| 1485 | |
---|
[1392] | 1486 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 1487 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1488 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
| 1489 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1] | 1490 | ENDDO |
---|
[1392] | 1491 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 1492 | |
---|
| 1493 | jshape = SHAPE( cwork ) |
---|
| 1494 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1495 | |
---|
| 1496 | DO j = 0, ny |
---|
[1322] | 1497 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1498 | ENDDO |
---|
| 1499 | |
---|
| 1500 | ENDIF |
---|
| 1501 | |
---|
| 1502 | DEALLOCATE( cwork ) |
---|
| 1503 | |
---|
| 1504 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1505 | |
---|
| 1506 | ! |
---|
| 1507 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1508 | !-- since it is part of the model |
---|
[1106] | 1509 | IF ( forward_fft ) THEN |
---|
[1] | 1510 | |
---|
| 1511 | work(0:ny) = ar |
---|
| 1512 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1513 | |
---|
| 1514 | DO j = 0, (ny+1)/2 |
---|
| 1515 | ar(j) = work(2*j) |
---|
| 1516 | ENDDO |
---|
| 1517 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1518 | ar(ny+1-j) = work(2*j+1) |
---|
| 1519 | ENDDO |
---|
| 1520 | |
---|
| 1521 | ELSE |
---|
| 1522 | |
---|
| 1523 | DO j = 0, (ny+1)/2 |
---|
| 1524 | work(2*j) = ar(j) |
---|
| 1525 | ENDDO |
---|
| 1526 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1527 | work(2*j+1) = ar(ny+1-j) |
---|
| 1528 | ENDDO |
---|
[1342] | 1529 | work(1) = 0.0_wp |
---|
| 1530 | work(ny+2) = 0.0_wp |
---|
[1] | 1531 | |
---|
| 1532 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1533 | ar = work(0:ny) |
---|
| 1534 | |
---|
| 1535 | ENDIF |
---|
| 1536 | |
---|
[1216] | 1537 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1538 | |
---|
| 1539 | #if defined( __fftw ) |
---|
| 1540 | IF ( forward_fft ) THEN |
---|
| 1541 | |
---|
| 1542 | y_in(0:ny) = ar(0:ny) |
---|
| 1543 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1544 | |
---|
| 1545 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1546 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1547 | ENDDO |
---|
| 1548 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1549 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1550 | ENDDO |
---|
| 1551 | |
---|
| 1552 | ELSE |
---|
| 1553 | |
---|
[1392] | 1554 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 1555 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1556 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1216] | 1557 | ENDDO |
---|
[1392] | 1558 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 1559 | |
---|
| 1560 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1561 | ar(0:ny) = y_in(0:ny) |
---|
| 1562 | |
---|
| 1563 | ENDIF |
---|
| 1564 | #endif |
---|
| 1565 | |
---|
[1] | 1566 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1567 | |
---|
[1815] | 1568 | #if defined( __ibm ) |
---|
[1106] | 1569 | IF ( forward_fft ) THEN |
---|
[1] | 1570 | |
---|
[1320] | 1571 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1572 | auy2, nau2 ) |
---|
| 1573 | |
---|
| 1574 | DO j = 0, (ny+1)/2 |
---|
| 1575 | ar(j) = work(2*j) |
---|
| 1576 | ENDDO |
---|
| 1577 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1578 | ar(ny+1-j) = work(2*j+1) |
---|
| 1579 | ENDDO |
---|
| 1580 | |
---|
| 1581 | ELSE |
---|
| 1582 | |
---|
| 1583 | DO j = 0, (ny+1)/2 |
---|
| 1584 | work(2*j) = ar(j) |
---|
| 1585 | ENDDO |
---|
| 1586 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1587 | work(2*j+1) = ar(ny+1-j) |
---|
| 1588 | ENDDO |
---|
[1342] | 1589 | work(1) = 0.0_wp |
---|
| 1590 | work(ny+2) = 0.0_wp |
---|
[1] | 1591 | |
---|
[1320] | 1592 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1593 | nau1, auy4, nau2 ) |
---|
[1] | 1594 | |
---|
| 1595 | DO j = 0, ny |
---|
| 1596 | ar(j) = work(j) |
---|
| 1597 | ENDDO |
---|
| 1598 | |
---|
| 1599 | ENDIF |
---|
| 1600 | #elif defined( __nec ) |
---|
[1106] | 1601 | IF ( forward_fft ) THEN |
---|
[1] | 1602 | |
---|
| 1603 | work(0:ny) = ar(0:ny) |
---|
| 1604 | |
---|
[1106] | 1605 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1606 | |
---|
| 1607 | DO j = 0, (ny+1)/2 |
---|
| 1608 | ar(j) = work(2*j) |
---|
| 1609 | ENDDO |
---|
| 1610 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1611 | ar(ny+1-j) = work(2*j+1) |
---|
| 1612 | ENDDO |
---|
| 1613 | |
---|
| 1614 | ELSE |
---|
| 1615 | |
---|
| 1616 | DO j = 0, (ny+1)/2 |
---|
| 1617 | work(2*j) = ar(j) |
---|
| 1618 | ENDDO |
---|
| 1619 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1620 | work(2*j+1) = ar(ny+1-j) |
---|
| 1621 | ENDDO |
---|
[1342] | 1622 | work(1) = 0.0_wp |
---|
| 1623 | work(ny+2) = 0.0_wp |
---|
[1] | 1624 | |
---|
[1106] | 1625 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1626 | |
---|
| 1627 | ar(0:ny) = work(0:ny) |
---|
| 1628 | |
---|
| 1629 | ENDIF |
---|
| 1630 | #endif |
---|
| 1631 | |
---|
| 1632 | ENDIF |
---|
| 1633 | |
---|
[1106] | 1634 | END SUBROUTINE fft_y_1d |
---|
[1] | 1635 | |
---|
[1682] | 1636 | !------------------------------------------------------------------------------! |
---|
| 1637 | ! Description: |
---|
| 1638 | ! ------------ |
---|
| 1639 | !> Fourier-transformation along x-direction. |
---|
| 1640 | !> Version for 1d domain decomposition |
---|
| 1641 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1642 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1643 | !------------------------------------------------------------------------------! |
---|
| 1644 | |
---|
[1] | 1645 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1646 | |
---|
| 1647 | |
---|
| 1648 | IMPLICIT NONE |
---|
| 1649 | |
---|
[1682] | 1650 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1651 | |
---|
[1682] | 1652 | INTEGER(iwp) :: i !< |
---|
| 1653 | INTEGER(iwp) :: k !< |
---|
| 1654 | INTEGER(iwp) :: siza !< |
---|
[3241] | 1655 | #if defined( __nec ) |
---|
| 1656 | INTEGER(iwp) :: sizw |
---|
| 1657 | #endif |
---|
[1] | 1658 | |
---|
[1682] | 1659 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 1660 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
| 1661 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
[1320] | 1662 | |
---|
[3241] | 1663 | #if defined( __nec ) |
---|
| 1664 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1665 | #endif |
---|
[1] | 1666 | |
---|
| 1667 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1668 | |
---|
| 1669 | siza = SIZE( ai, 1 ) |
---|
| 1670 | |
---|
| 1671 | IF ( direction == 'forward') THEN |
---|
| 1672 | |
---|
| 1673 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1674 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1675 | |
---|
| 1676 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1677 | |
---|
| 1678 | DO k = 1, nz |
---|
| 1679 | DO i = 0, (nx+1)/2 |
---|
| 1680 | ar(i,k) = ai(2*i,k) |
---|
| 1681 | ENDDO |
---|
| 1682 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1683 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1684 | ENDDO |
---|
| 1685 | ENDDO |
---|
| 1686 | |
---|
| 1687 | ELSE |
---|
| 1688 | |
---|
| 1689 | DO k = 1, nz |
---|
| 1690 | DO i = 0, (nx+1)/2 |
---|
| 1691 | ai(2*i,k) = ar(i,k) |
---|
| 1692 | ENDDO |
---|
| 1693 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1694 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1695 | ENDDO |
---|
[1342] | 1696 | ai(1,k) = 0.0_wp |
---|
| 1697 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1698 | ENDDO |
---|
| 1699 | |
---|
| 1700 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1701 | |
---|
| 1702 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1703 | |
---|
| 1704 | ENDIF |
---|
| 1705 | |
---|
| 1706 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1707 | |
---|
| 1708 | #if defined( __nec ) |
---|
[2300] | 1709 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
[1] | 1710 | siza = SIZE( ai, 1 ) |
---|
| 1711 | sizw = SIZE( work, 1 ) |
---|
| 1712 | |
---|
| 1713 | IF ( direction == 'forward') THEN |
---|
| 1714 | |
---|
| 1715 | ! |
---|
| 1716 | !-- Tables are initialized once more. This call should not be |
---|
| 1717 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1718 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1719 | trig_xf, work1, 0 ) |
---|
| 1720 | |
---|
| 1721 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1722 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1723 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1724 | ENDIF |
---|
| 1725 | |
---|
[1320] | 1726 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1727 | trig_xf, work1, 0 ) |
---|
| 1728 | |
---|
| 1729 | DO k = 1, nz |
---|
| 1730 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1731 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1732 | ENDDO |
---|
| 1733 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1734 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1735 | ENDDO |
---|
| 1736 | ENDDO |
---|
| 1737 | |
---|
| 1738 | ELSE |
---|
| 1739 | |
---|
| 1740 | ! |
---|
| 1741 | !-- Tables are initialized once more. This call should not be |
---|
| 1742 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1743 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1744 | trig_xb, work1, 0 ) |
---|
| 1745 | |
---|
| 1746 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1747 | work(:,nz1) = 0.0_wp |
---|
[1] | 1748 | ENDIF |
---|
| 1749 | DO k = 1, nz |
---|
[1392] | 1750 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1751 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 1752 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
[1] | 1753 | ENDDO |
---|
[1392] | 1754 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1755 | ENDDO |
---|
| 1756 | |
---|
[1106] | 1757 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1758 | trig_xb, work1, 0 ) |
---|
| 1759 | |
---|
| 1760 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1761 | |
---|
| 1762 | ENDIF |
---|
| 1763 | |
---|
[2300] | 1764 | DEALLOCATE( work ) |
---|
[1] | 1765 | #endif |
---|
| 1766 | |
---|
| 1767 | ENDIF |
---|
| 1768 | |
---|
| 1769 | END SUBROUTINE fft_x_m |
---|
| 1770 | |
---|
[1682] | 1771 | !------------------------------------------------------------------------------! |
---|
| 1772 | ! Description: |
---|
| 1773 | ! ------------ |
---|
| 1774 | !> Fourier-transformation along y-direction. |
---|
| 1775 | !> Version for 1d domain decomposition |
---|
| 1776 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1777 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1778 | !------------------------------------------------------------------------------! |
---|
| 1779 | |
---|
[1] | 1780 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1781 | |
---|
| 1782 | |
---|
| 1783 | IMPLICIT NONE |
---|
| 1784 | |
---|
[1682] | 1785 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1786 | |
---|
[1682] | 1787 | INTEGER(iwp) :: j !< |
---|
| 1788 | INTEGER(iwp) :: k !< |
---|
| 1789 | INTEGER(iwp) :: ny1 !< |
---|
| 1790 | INTEGER(iwp) :: siza !< |
---|
[3241] | 1791 | #if defined( __nec ) |
---|
| 1792 | INTEGER(iwp) :: sizw |
---|
| 1793 | #endif |
---|
[1] | 1794 | |
---|
[1682] | 1795 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
| 1796 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
| 1797 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
[1] | 1798 | |
---|
[3241] | 1799 | #if defined( __nec ) |
---|
| 1800 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1801 | #endif |
---|
[2300] | 1802 | |
---|
[3241] | 1803 | |
---|
[1] | 1804 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1805 | |
---|
| 1806 | siza = SIZE( ai, 1 ) |
---|
| 1807 | |
---|
| 1808 | IF ( direction == 'forward') THEN |
---|
| 1809 | |
---|
| 1810 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1811 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1812 | |
---|
| 1813 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1814 | |
---|
| 1815 | DO k = 1, nz |
---|
| 1816 | DO j = 0, (ny+1)/2 |
---|
| 1817 | ar(j,k) = ai(2*j,k) |
---|
| 1818 | ENDDO |
---|
| 1819 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1820 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1821 | ENDDO |
---|
| 1822 | ENDDO |
---|
| 1823 | |
---|
| 1824 | ELSE |
---|
| 1825 | |
---|
| 1826 | DO k = 1, nz |
---|
| 1827 | DO j = 0, (ny+1)/2 |
---|
| 1828 | ai(2*j,k) = ar(j,k) |
---|
| 1829 | ENDDO |
---|
| 1830 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1831 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1832 | ENDDO |
---|
[1342] | 1833 | ai(1,k) = 0.0_wp |
---|
| 1834 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1835 | ENDDO |
---|
| 1836 | |
---|
| 1837 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1838 | |
---|
| 1839 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1840 | |
---|
| 1841 | ENDIF |
---|
| 1842 | |
---|
| 1843 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1844 | |
---|
| 1845 | #if defined( __nec ) |
---|
[2300] | 1846 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
[1] | 1847 | siza = SIZE( ai, 1 ) |
---|
| 1848 | sizw = SIZE( work, 1 ) |
---|
| 1849 | |
---|
| 1850 | IF ( direction == 'forward') THEN |
---|
| 1851 | |
---|
| 1852 | ! |
---|
| 1853 | !-- Tables are initialized once more. This call should not be |
---|
| 1854 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1855 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1856 | trig_yf, work1, 0 ) |
---|
| 1857 | |
---|
| 1858 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1859 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1860 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1861 | ENDIF |
---|
| 1862 | |
---|
[1106] | 1863 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1864 | trig_yf, work1, 0 ) |
---|
| 1865 | |
---|
| 1866 | DO k = 1, nz |
---|
| 1867 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1868 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1869 | ENDDO |
---|
| 1870 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1871 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1872 | ENDDO |
---|
| 1873 | ENDDO |
---|
| 1874 | |
---|
| 1875 | ELSE |
---|
| 1876 | |
---|
| 1877 | ! |
---|
| 1878 | !-- Tables are initialized once more. This call should not be |
---|
| 1879 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1880 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1881 | trig_yb, work1, 0 ) |
---|
| 1882 | |
---|
| 1883 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1884 | work(:,nz1) = 0.0_wp |
---|
[1] | 1885 | ENDIF |
---|
| 1886 | DO k = 1, nz |
---|
[1392] | 1887 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1888 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1889 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
[1] | 1890 | ENDDO |
---|
[1392] | 1891 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1892 | ENDDO |
---|
| 1893 | |
---|
[1106] | 1894 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1895 | trig_yb, work1, 0 ) |
---|
| 1896 | |
---|
| 1897 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1898 | |
---|
| 1899 | ENDIF |
---|
| 1900 | |
---|
[2300] | 1901 | DEALLOCATE( work ) |
---|
[1] | 1902 | #endif |
---|
| 1903 | |
---|
| 1904 | ENDIF |
---|
| 1905 | |
---|
| 1906 | END SUBROUTINE fft_y_m |
---|
| 1907 | |
---|
[1106] | 1908 | |
---|
[1] | 1909 | END MODULE fft_xy |
---|