[1850] | 1 | !> @file fft_xy_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy_mod.f90 3655 2019-01-07 16:51:22Z raasch $ |
---|
[3634] | 27 | ! OpenACC port for SPEC |
---|
| 28 | ! |
---|
| 29 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 30 | ! preprocessor switches for variables that are required on NEC only |
---|
| 31 | ! |
---|
| 32 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 33 | ! Error messages revised |
---|
| 34 | ! |
---|
| 35 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 36 | ! Corrected "Former revisions" section |
---|
| 37 | ! |
---|
| 38 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 39 | ! Change in file header (GPL part) |
---|
| 40 | ! |
---|
| 41 | ! 2300 2017-06-29 13:31:14Z raasch |
---|
[2300] | 42 | ! NEC related code partly removed, host replaced by loop_optimization |
---|
| 43 | ! |
---|
| 44 | ! 2274 2017-06-09 13:27:48Z Giersch |
---|
[2274] | 45 | ! Changed error messages |
---|
| 46 | ! |
---|
| 47 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
[1321] | 48 | ! |
---|
[2119] | 49 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 50 | ! OpenACC directives and CUDA-fft related code removed |
---|
| 51 | ! |
---|
[2001] | 52 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 53 | ! Forced header and separation lines into 80 columns |
---|
| 54 | ! |
---|
[1851] | 55 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 56 | ! Module renamed |
---|
| 57 | ! |
---|
[1816] | 58 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 59 | ! cpp-directives for ibmy removed |
---|
| 60 | ! |
---|
[1750] | 61 | ! 1749 2016-02-09 12:19:56Z raasch |
---|
| 62 | ! small OpenACC bugfix |
---|
| 63 | ! |
---|
[1683] | 64 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 65 | ! Code annotations made doxygen readable |
---|
| 66 | ! |
---|
[1601] | 67 | ! 1600 2015-06-11 15:50:12Z raasch |
---|
| 68 | ! bugfix: openMP threadprivate statement moved after variable declaration |
---|
| 69 | ! |
---|
[1483] | 70 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
| 71 | ! cudafft workaround for data declaration of ar_tmp because of PGI 14.1 bug |
---|
| 72 | ! |
---|
[1403] | 73 | ! 1402 2014-05-09 14:25:13Z raasch |
---|
| 74 | ! fortran bugfix for r1392 |
---|
| 75 | ! |
---|
[1399] | 76 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 77 | ! bugfix: typo removed for KIND in CMPLX function |
---|
| 78 | ! |
---|
[1393] | 79 | ! 1392 2014-05-06 09:10:05Z raasch |
---|
| 80 | ! bugfix: KIND attribute added to CMPLX functions |
---|
| 81 | ! |
---|
[1375] | 82 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 83 | ! bugfixes: missing variables added to ONLY list, dpk renamed dp |
---|
| 84 | ! |
---|
[1373] | 85 | ! 1372 2014-04-24 06:29:32Z raasch |
---|
| 86 | ! openMP-bugfix for fftw: some arrays defined as threadprivate |
---|
| 87 | ! |
---|
[1354] | 88 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 89 | ! REAL constants provided with KIND-attribute |
---|
| 90 | ! |
---|
[1343] | 91 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 92 | ! REAL constants defined as wp-kind |
---|
| 93 | ! |
---|
[1323] | 94 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 95 | ! REAL functions provided with KIND-attribute |
---|
| 96 | ! |
---|
[1321] | 97 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 98 | ! ONLY-attribute added to USE-statements, |
---|
| 99 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 100 | ! kinds are defined in new module kinds, |
---|
| 101 | ! old module precision_kind is removed, |
---|
| 102 | ! revision history before 2012 removed, |
---|
| 103 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 104 | ! all variable declaration statements |
---|
[1] | 105 | ! |
---|
[1305] | 106 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
| 107 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
| 108 | ! |
---|
[1258] | 109 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 110 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 111 | ! the FORTRAN declaration statement |
---|
| 112 | ! |
---|
[1220] | 113 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
| 114 | ! bugfix: use own branch for fftw |
---|
| 115 | ! |
---|
[1217] | 116 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 117 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
| 118 | ! transpositions, |
---|
| 119 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
| 120 | ! |
---|
[1211] | 121 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 122 | ! fftw added |
---|
| 123 | ! |
---|
[1167] | 124 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 125 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 126 | ! |
---|
[1154] | 127 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 128 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 129 | ! |
---|
[1112] | 130 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 131 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 132 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 133 | ! used total domain) |
---|
| 134 | ! |
---|
[1107] | 135 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 136 | ! CUDA fft added |
---|
| 137 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 138 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 139 | ! |
---|
[1093] | 140 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 141 | ! variable sizw declared for NEC case only |
---|
| 142 | ! |
---|
[1037] | 143 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 144 | ! code put under GPL (PALM 3.9) |
---|
| 145 | ! |
---|
[1] | 146 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 147 | ! Initial revision |
---|
| 148 | ! |
---|
| 149 | ! |
---|
| 150 | ! Description: |
---|
| 151 | ! ------------ |
---|
[1682] | 152 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 153 | !> Original version: Klaus Ketelsen (May 2002) |
---|
[1] | 154 | !------------------------------------------------------------------------------! |
---|
[1682] | 155 | MODULE fft_xy |
---|
| 156 | |
---|
[1] | 157 | |
---|
[1320] | 158 | USE control_parameters, & |
---|
| 159 | ONLY: fft_method, message_string |
---|
| 160 | |
---|
[3634] | 161 | USE cuda_fft_interfaces |
---|
| 162 | |
---|
[1320] | 163 | USE indices, & |
---|
| 164 | ONLY: nx, ny, nz |
---|
| 165 | |
---|
[3634] | 166 | #if defined( __cuda_fft ) |
---|
| 167 | USE ISO_C_BINDING |
---|
| 168 | #elif defined( __fftw ) |
---|
[1210] | 169 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 170 | #endif |
---|
[1320] | 171 | |
---|
| 172 | USE kinds |
---|
| 173 | |
---|
| 174 | USE singleton, & |
---|
| 175 | ONLY: fftn |
---|
| 176 | |
---|
[1] | 177 | USE temperton_fft |
---|
[1320] | 178 | |
---|
| 179 | USE transpose_indices, & |
---|
[1374] | 180 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 181 | |
---|
| 182 | IMPLICIT NONE |
---|
| 183 | |
---|
| 184 | PRIVATE |
---|
[1106] | 185 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 186 | |
---|
[1682] | 187 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
| 188 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
[1] | 189 | |
---|
[1682] | 190 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
[1] | 191 | |
---|
[1682] | 192 | REAL(wp), SAVE :: dnx !< |
---|
| 193 | REAL(wp), SAVE :: dny !< |
---|
| 194 | REAL(wp), SAVE :: sqr_dnx !< |
---|
| 195 | REAL(wp), SAVE :: sqr_dny !< |
---|
[1320] | 196 | |
---|
[1682] | 197 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
| 198 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
[1] | 199 | |
---|
| 200 | #if defined( __ibm ) |
---|
[1682] | 201 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
| 202 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
[1] | 203 | ! |
---|
| 204 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 205 | !-- shared in OpenMP sense |
---|
[1682] | 206 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
| 207 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
| 208 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
| 209 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
[1320] | 210 | |
---|
[1] | 211 | #elif defined( __nec ) |
---|
[1682] | 212 | INTEGER(iwp), SAVE :: nz1 !< |
---|
[1320] | 213 | |
---|
[1682] | 214 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
| 215 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
| 216 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
| 217 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
[1320] | 218 | |
---|
[3634] | 219 | #elif defined( __cuda_fft ) |
---|
| 220 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
| 221 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
| 222 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
| 223 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
| 224 | |
---|
[1219] | 225 | #endif |
---|
| 226 | |
---|
| 227 | #if defined( __fftw ) |
---|
[1210] | 228 | INCLUDE 'fftw3.f03' |
---|
[1682] | 229 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
| 230 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
[1320] | 231 | |
---|
[1682] | 232 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
[1320] | 233 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 234 | y_out !< |
---|
[1320] | 235 | |
---|
| 236 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 237 | x_in !< |
---|
[1320] | 238 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 239 | y_in !< |
---|
[1600] | 240 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[1320] | 241 | |
---|
| 242 | |
---|
[1210] | 243 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 244 | #endif |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- Public interfaces |
---|
| 248 | INTERFACE fft_init |
---|
| 249 | MODULE PROCEDURE fft_init |
---|
| 250 | END INTERFACE fft_init |
---|
| 251 | |
---|
| 252 | INTERFACE fft_x |
---|
| 253 | MODULE PROCEDURE fft_x |
---|
| 254 | END INTERFACE fft_x |
---|
| 255 | |
---|
[1106] | 256 | INTERFACE fft_x_1d |
---|
| 257 | MODULE PROCEDURE fft_x_1d |
---|
| 258 | END INTERFACE fft_x_1d |
---|
| 259 | |
---|
[1] | 260 | INTERFACE fft_y |
---|
| 261 | MODULE PROCEDURE fft_y |
---|
| 262 | END INTERFACE fft_y |
---|
| 263 | |
---|
[1106] | 264 | INTERFACE fft_y_1d |
---|
| 265 | MODULE PROCEDURE fft_y_1d |
---|
| 266 | END INTERFACE fft_y_1d |
---|
| 267 | |
---|
[1] | 268 | INTERFACE fft_x_m |
---|
| 269 | MODULE PROCEDURE fft_x_m |
---|
| 270 | END INTERFACE fft_x_m |
---|
| 271 | |
---|
| 272 | INTERFACE fft_y_m |
---|
| 273 | MODULE PROCEDURE fft_y_m |
---|
| 274 | END INTERFACE fft_y_m |
---|
| 275 | |
---|
| 276 | CONTAINS |
---|
| 277 | |
---|
| 278 | |
---|
[1682] | 279 | !------------------------------------------------------------------------------! |
---|
| 280 | ! Description: |
---|
| 281 | ! ------------ |
---|
| 282 | !> @todo Missing subroutine description. |
---|
| 283 | !------------------------------------------------------------------------------! |
---|
[1] | 284 | SUBROUTINE fft_init |
---|
| 285 | |
---|
| 286 | IMPLICIT NONE |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- The following temporary working arrays have to be on stack or private |
---|
| 290 | !-- in OpenMP sense |
---|
| 291 | #if defined( __ibm ) |
---|
[1682] | 292 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
| 293 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
| 294 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 295 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 296 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
| 297 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 298 | #elif defined( __nec ) |
---|
[1682] | 299 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
| 300 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
| 301 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
| 302 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
[1] | 303 | #endif |
---|
| 304 | |
---|
| 305 | ! |
---|
| 306 | !-- Return, if already called |
---|
| 307 | IF ( init_fft ) THEN |
---|
| 308 | RETURN |
---|
| 309 | ELSE |
---|
| 310 | init_fft = .TRUE. |
---|
| 311 | ENDIF |
---|
| 312 | |
---|
[3634] | 313 | #if defined( _OPENACC ) && defined( __cuda_fft ) |
---|
| 314 | fft_method = 'system-specific' |
---|
| 315 | #endif |
---|
| 316 | |
---|
[1] | 317 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 318 | |
---|
[1342] | 319 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 320 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 321 | sqr_dnx = SQRT( dnx ) |
---|
| 322 | sqr_dny = SQRT( dny ) |
---|
[1815] | 323 | #if defined( __ibm ) |
---|
[1] | 324 | ! |
---|
| 325 | !-- Initialize tables for fft along x |
---|
[1106] | 326 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 327 | aux2, nau2 ) |
---|
[1106] | 328 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 329 | aux4, nau2 ) |
---|
| 330 | ! |
---|
| 331 | !-- Initialize tables for fft along y |
---|
[1106] | 332 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 333 | auy2, nau2 ) |
---|
[1106] | 334 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 335 | auy4, nau2 ) |
---|
| 336 | #elif defined( __nec ) |
---|
[254] | 337 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 338 | '" currently does not work on NEC' |
---|
| 339 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 340 | |
---|
[1320] | 341 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 342 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 343 | |
---|
[1342] | 344 | work_x = 0.0_wp |
---|
| 345 | work_y = 0.0_wp |
---|
[1] | 346 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 347 | ! when using the NEC ffts |
---|
| 348 | |
---|
| 349 | ! |
---|
| 350 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 351 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 352 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 353 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 354 | trig_xf, workx, 0 ) |
---|
[1320] | 355 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 356 | trig_xb, workx, 0 ) |
---|
| 357 | ! |
---|
| 358 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 359 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 360 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 361 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 362 | trig_yf, worky, 0 ) |
---|
[1320] | 363 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 364 | trig_yb, worky, 0 ) |
---|
[3634] | 365 | #elif defined( __cuda_fft ) |
---|
| 366 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 367 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 368 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 369 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 370 | #else |
---|
[254] | 371 | message_string = 'no system-specific fft-call available' |
---|
| 372 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 373 | #endif |
---|
| 374 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 375 | ! |
---|
| 376 | !-- Temperton-algorithm |
---|
| 377 | !-- Initialize tables for fft along x and y |
---|
| 378 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 379 | |
---|
| 380 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 381 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 382 | |
---|
[1210] | 383 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 384 | ! |
---|
| 385 | !-- FFTW |
---|
| 386 | #if defined( __fftw ) |
---|
| 387 | nx_c = nx+1 |
---|
| 388 | ny_c = ny+1 |
---|
[1372] | 389 | !$OMP PARALLEL |
---|
[1320] | 390 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 391 | y_out(0:(ny+1)/2) ) |
---|
[1372] | 392 | !$OMP END PARALLEL |
---|
[1210] | 393 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 394 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 395 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 396 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 397 | #else |
---|
| 398 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 399 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 400 | #endif |
---|
| 401 | |
---|
[1] | 402 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 403 | |
---|
| 404 | CONTINUE |
---|
| 405 | |
---|
| 406 | ELSE |
---|
| 407 | |
---|
[254] | 408 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 409 | '" not available' |
---|
| 410 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 411 | ENDIF |
---|
| 412 | |
---|
| 413 | END SUBROUTINE fft_init |
---|
| 414 | |
---|
| 415 | |
---|
[1682] | 416 | !------------------------------------------------------------------------------! |
---|
| 417 | ! Description: |
---|
| 418 | ! ------------ |
---|
| 419 | !> Fourier-transformation along x-direction. |
---|
| 420 | !> Version for 2D-decomposition. |
---|
| 421 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 422 | !> system-specific routines, if they are available |
---|
| 423 | !------------------------------------------------------------------------------! |
---|
| 424 | |
---|
[1216] | 425 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 426 | |
---|
| 427 | |
---|
| 428 | IMPLICIT NONE |
---|
| 429 | |
---|
[1682] | 430 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 431 | |
---|
[1682] | 432 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1106] | 433 | |
---|
[1682] | 434 | INTEGER(iwp) :: i !< |
---|
| 435 | INTEGER(iwp) :: ishape(1) !< |
---|
| 436 | INTEGER(iwp) :: j !< |
---|
| 437 | INTEGER(iwp) :: k !< |
---|
[1106] | 438 | |
---|
[1682] | 439 | LOGICAL :: forward_fft !< |
---|
[1320] | 440 | |
---|
[1682] | 441 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 442 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 443 | |
---|
[1106] | 444 | #if defined( __ibm ) |
---|
[1682] | 445 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 446 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1106] | 447 | #elif defined( __nec ) |
---|
[1682] | 448 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[3634] | 449 | #elif defined( __cuda_fft ) |
---|
| 450 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 451 | ar_tmp !< |
---|
| 452 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 453 | #endif |
---|
| 454 | |
---|
[1320] | 455 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
[1682] | 456 | ar_2d !< |
---|
[1320] | 457 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
[1682] | 458 | ar !< |
---|
[1320] | 459 | |
---|
[1106] | 460 | IF ( direction == 'forward' ) THEN |
---|
| 461 | forward_fft = .TRUE. |
---|
| 462 | ELSE |
---|
| 463 | forward_fft = .FALSE. |
---|
| 464 | ENDIF |
---|
| 465 | |
---|
| 466 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 467 | |
---|
| 468 | ! |
---|
| 469 | !-- Performing the fft with singleton's software works on every system, |
---|
| 470 | !-- since it is part of the model |
---|
| 471 | ALLOCATE( cwork(0:nx) ) |
---|
| 472 | |
---|
| 473 | IF ( forward_fft ) then |
---|
| 474 | |
---|
| 475 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 476 | !$OMP DO |
---|
| 477 | DO k = nzb_x, nzt_x |
---|
| 478 | DO j = nys_x, nyn_x |
---|
| 479 | |
---|
| 480 | DO i = 0, nx |
---|
[1392] | 481 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
[1106] | 482 | ENDDO |
---|
| 483 | |
---|
| 484 | ishape = SHAPE( cwork ) |
---|
| 485 | CALL FFTN( cwork, ishape ) |
---|
| 486 | |
---|
| 487 | DO i = 0, (nx+1)/2 |
---|
[1322] | 488 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 489 | ENDDO |
---|
| 490 | DO i = 1, (nx+1)/2 - 1 |
---|
| 491 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 492 | ENDDO |
---|
| 493 | |
---|
| 494 | ENDDO |
---|
| 495 | ENDDO |
---|
| 496 | !$OMP END PARALLEL |
---|
| 497 | |
---|
| 498 | ELSE |
---|
| 499 | |
---|
| 500 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 501 | !$OMP DO |
---|
| 502 | DO k = nzb_x, nzt_x |
---|
| 503 | DO j = nys_x, nyn_x |
---|
| 504 | |
---|
[1392] | 505 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 506 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 507 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
| 508 | KIND=wp ) |
---|
| 509 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 510 | KIND=wp ) |
---|
[1106] | 511 | ENDDO |
---|
[1392] | 512 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 513 | |
---|
| 514 | ishape = SHAPE( cwork ) |
---|
| 515 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 516 | |
---|
| 517 | DO i = 0, nx |
---|
[1322] | 518 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 519 | ENDDO |
---|
| 520 | |
---|
| 521 | ENDDO |
---|
| 522 | ENDDO |
---|
| 523 | !$OMP END PARALLEL |
---|
| 524 | |
---|
| 525 | ENDIF |
---|
| 526 | |
---|
| 527 | DEALLOCATE( cwork ) |
---|
| 528 | |
---|
| 529 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 530 | |
---|
| 531 | ! |
---|
| 532 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 533 | !-- since it is part of the model |
---|
| 534 | IF ( forward_fft ) THEN |
---|
| 535 | |
---|
[1304] | 536 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 537 | !$OMP DO |
---|
| 538 | DO k = nzb_x, nzt_x |
---|
| 539 | DO j = nys_x, nyn_x |
---|
| 540 | |
---|
| 541 | work(0:nx) = ar(0:nx,j,k) |
---|
| 542 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 543 | |
---|
| 544 | DO i = 0, (nx+1)/2 |
---|
| 545 | ar(i,j,k) = work(2*i) |
---|
| 546 | ENDDO |
---|
| 547 | DO i = 1, (nx+1)/2 - 1 |
---|
| 548 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 549 | ENDDO |
---|
| 550 | |
---|
| 551 | ENDDO |
---|
| 552 | ENDDO |
---|
| 553 | !$OMP END PARALLEL |
---|
| 554 | |
---|
| 555 | ELSE |
---|
| 556 | |
---|
[1304] | 557 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 558 | !$OMP DO |
---|
| 559 | DO k = nzb_x, nzt_x |
---|
| 560 | DO j = nys_x, nyn_x |
---|
| 561 | |
---|
| 562 | DO i = 0, (nx+1)/2 |
---|
| 563 | work(2*i) = ar(i,j,k) |
---|
| 564 | ENDDO |
---|
| 565 | DO i = 1, (nx+1)/2 - 1 |
---|
| 566 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 567 | ENDDO |
---|
[1342] | 568 | work(1) = 0.0_wp |
---|
| 569 | work(nx+2) = 0.0_wp |
---|
[1106] | 570 | |
---|
| 571 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 572 | ar(0:nx,j,k) = work(0:nx) |
---|
| 573 | |
---|
| 574 | ENDDO |
---|
| 575 | ENDDO |
---|
| 576 | !$OMP END PARALLEL |
---|
| 577 | |
---|
| 578 | ENDIF |
---|
| 579 | |
---|
[1210] | 580 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 581 | |
---|
| 582 | #if defined( __fftw ) |
---|
| 583 | IF ( forward_fft ) THEN |
---|
| 584 | |
---|
| 585 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 586 | !$OMP DO |
---|
| 587 | DO k = nzb_x, nzt_x |
---|
| 588 | DO j = nys_x, nyn_x |
---|
| 589 | |
---|
| 590 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 591 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 592 | |
---|
[1216] | 593 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 594 | |
---|
[1216] | 595 | DO i = 0, (nx+1)/2 |
---|
[1322] | 596 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 597 | ENDDO |
---|
| 598 | DO i = 1, (nx+1)/2 - 1 |
---|
| 599 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 600 | ENDDO |
---|
| 601 | |
---|
| 602 | ELSE |
---|
| 603 | |
---|
| 604 | DO i = 0, (nx+1)/2 |
---|
[1322] | 605 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 606 | ENDDO |
---|
| 607 | DO i = 1, (nx+1)/2 - 1 |
---|
| 608 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 609 | ENDDO |
---|
| 610 | |
---|
| 611 | ENDIF |
---|
| 612 | |
---|
[1210] | 613 | ENDDO |
---|
| 614 | ENDDO |
---|
| 615 | !$OMP END PARALLEL |
---|
| 616 | |
---|
[1216] | 617 | ELSE |
---|
[1210] | 618 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 619 | !$OMP DO |
---|
| 620 | DO k = nzb_x, nzt_x |
---|
| 621 | DO j = nys_x, nyn_x |
---|
| 622 | |
---|
[1216] | 623 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 624 | |
---|
[1392] | 625 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 626 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 627 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
| 628 | KIND=wp ) |
---|
[1216] | 629 | ENDDO |
---|
[1392] | 630 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
| 631 | KIND=wp ) |
---|
[1216] | 632 | |
---|
| 633 | ELSE |
---|
| 634 | |
---|
[1392] | 635 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 636 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 637 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1216] | 638 | ENDDO |
---|
[1392] | 639 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 640 | KIND=wp ) |
---|
[1216] | 641 | |
---|
| 642 | ENDIF |
---|
| 643 | |
---|
[1210] | 644 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 645 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 646 | |
---|
| 647 | ENDDO |
---|
| 648 | ENDDO |
---|
| 649 | !$OMP END PARALLEL |
---|
| 650 | |
---|
[1216] | 651 | ENDIF |
---|
[1210] | 652 | #endif |
---|
| 653 | |
---|
[1106] | 654 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 655 | |
---|
[1815] | 656 | #if defined( __ibm ) |
---|
[1106] | 657 | IF ( forward_fft ) THEN |
---|
| 658 | |
---|
| 659 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 660 | !$OMP DO |
---|
| 661 | DO k = nzb_x, nzt_x |
---|
| 662 | DO j = nys_x, nyn_x |
---|
| 663 | |
---|
[1320] | 664 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 665 | nau1, aux2, nau2 ) |
---|
[1106] | 666 | |
---|
| 667 | DO i = 0, (nx+1)/2 |
---|
| 668 | ar(i,j,k) = work(2*i) |
---|
| 669 | ENDDO |
---|
| 670 | DO i = 1, (nx+1)/2 - 1 |
---|
| 671 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 672 | ENDDO |
---|
| 673 | |
---|
| 674 | ENDDO |
---|
| 675 | ENDDO |
---|
| 676 | !$OMP END PARALLEL |
---|
| 677 | |
---|
| 678 | ELSE |
---|
| 679 | |
---|
| 680 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 681 | !$OMP DO |
---|
| 682 | DO k = nzb_x, nzt_x |
---|
| 683 | DO j = nys_x, nyn_x |
---|
| 684 | |
---|
| 685 | DO i = 0, (nx+1)/2 |
---|
| 686 | work(2*i) = ar(i,j,k) |
---|
| 687 | ENDDO |
---|
| 688 | DO i = 1, (nx+1)/2 - 1 |
---|
| 689 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 690 | ENDDO |
---|
[1342] | 691 | work(1) = 0.0_wp |
---|
| 692 | work(nx+2) = 0.0_wp |
---|
[1106] | 693 | |
---|
[1320] | 694 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 695 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 696 | |
---|
| 697 | DO i = 0, nx |
---|
| 698 | ar(i,j,k) = work(i) |
---|
| 699 | ENDDO |
---|
| 700 | |
---|
| 701 | ENDDO |
---|
| 702 | ENDDO |
---|
| 703 | !$OMP END PARALLEL |
---|
| 704 | |
---|
| 705 | ENDIF |
---|
| 706 | |
---|
| 707 | #elif defined( __nec ) |
---|
| 708 | |
---|
| 709 | IF ( forward_fft ) THEN |
---|
| 710 | |
---|
| 711 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 712 | !$OMP DO |
---|
| 713 | DO k = nzb_x, nzt_x |
---|
| 714 | DO j = nys_x, nyn_x |
---|
| 715 | |
---|
| 716 | work(0:nx) = ar(0:nx,j,k) |
---|
| 717 | |
---|
| 718 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 719 | |
---|
| 720 | DO i = 0, (nx+1)/2 |
---|
| 721 | ar(i,j,k) = work(2*i) |
---|
| 722 | ENDDO |
---|
| 723 | DO i = 1, (nx+1)/2 - 1 |
---|
| 724 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 725 | ENDDO |
---|
| 726 | |
---|
| 727 | ENDDO |
---|
| 728 | ENDDO |
---|
| 729 | !$END OMP PARALLEL |
---|
| 730 | |
---|
| 731 | ELSE |
---|
| 732 | |
---|
| 733 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 734 | !$OMP DO |
---|
| 735 | DO k = nzb_x, nzt_x |
---|
| 736 | DO j = nys_x, nyn_x |
---|
| 737 | |
---|
| 738 | DO i = 0, (nx+1)/2 |
---|
| 739 | work(2*i) = ar(i,j,k) |
---|
| 740 | ENDDO |
---|
| 741 | DO i = 1, (nx+1)/2 - 1 |
---|
| 742 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 743 | ENDDO |
---|
[1342] | 744 | work(1) = 0.0_wp |
---|
| 745 | work(nx+2) = 0.0_wp |
---|
[1106] | 746 | |
---|
| 747 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 748 | |
---|
| 749 | ar(0:nx,j,k) = work(0:nx) |
---|
| 750 | |
---|
| 751 | ENDDO |
---|
| 752 | ENDDO |
---|
| 753 | !$OMP END PARALLEL |
---|
| 754 | |
---|
| 755 | ENDIF |
---|
| 756 | |
---|
[3634] | 757 | #elif defined( __cuda_fft ) |
---|
| 758 | |
---|
| 759 | IF ( forward_fft ) THEN |
---|
| 760 | |
---|
| 761 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 762 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
| 763 | !$ACC END HOST_DATA |
---|
| 764 | |
---|
| 765 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 766 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 767 | DO k = nzb_x, nzt_x |
---|
| 768 | DO j = nys_x, nyn_x |
---|
| 769 | |
---|
| 770 | DO i = 0, (nx+1)/2 |
---|
| 771 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
| 772 | ENDDO |
---|
| 773 | |
---|
| 774 | DO i = 1, (nx+1)/2 - 1 |
---|
| 775 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
| 776 | ENDDO |
---|
| 777 | |
---|
| 778 | ENDDO |
---|
| 779 | ENDDO |
---|
| 780 | |
---|
| 781 | ELSE |
---|
| 782 | |
---|
| 783 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 784 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 785 | DO k = nzb_x, nzt_x |
---|
| 786 | DO j = nys_x, nyn_x |
---|
| 787 | |
---|
| 788 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
| 789 | |
---|
| 790 | DO i = 1, (nx+1)/2 - 1 |
---|
| 791 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 792 | KIND=wp ) |
---|
| 793 | ENDDO |
---|
| 794 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 795 | KIND=wp ) |
---|
| 796 | |
---|
| 797 | ENDDO |
---|
| 798 | ENDDO |
---|
| 799 | |
---|
| 800 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 801 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 802 | !$ACC END HOST_DATA |
---|
| 803 | |
---|
| 804 | ENDIF |
---|
| 805 | |
---|
[1106] | 806 | #endif |
---|
| 807 | |
---|
| 808 | ENDIF |
---|
| 809 | |
---|
| 810 | END SUBROUTINE fft_x |
---|
| 811 | |
---|
[1682] | 812 | !------------------------------------------------------------------------------! |
---|
| 813 | ! Description: |
---|
| 814 | ! ------------ |
---|
| 815 | !> Fourier-transformation along x-direction. |
---|
| 816 | !> Version for 1D-decomposition. |
---|
| 817 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 818 | !> system-specific routines, if they are available |
---|
| 819 | !------------------------------------------------------------------------------! |
---|
| 820 | |
---|
[1106] | 821 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 822 | |
---|
| 823 | |
---|
| 824 | IMPLICIT NONE |
---|
| 825 | |
---|
[1682] | 826 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 827 | |
---|
[1682] | 828 | INTEGER(iwp) :: i !< |
---|
| 829 | INTEGER(iwp) :: ishape(1) !< |
---|
[1] | 830 | |
---|
[1682] | 831 | LOGICAL :: forward_fft !< |
---|
[1106] | 832 | |
---|
[1682] | 833 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
| 834 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 835 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 836 | |
---|
[1682] | 837 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 838 | |
---|
[1] | 839 | #if defined( __ibm ) |
---|
[1682] | 840 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 841 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1] | 842 | #elif defined( __nec ) |
---|
[1682] | 843 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1] | 844 | #endif |
---|
| 845 | |
---|
[1106] | 846 | IF ( direction == 'forward' ) THEN |
---|
| 847 | forward_fft = .TRUE. |
---|
| 848 | ELSE |
---|
| 849 | forward_fft = .FALSE. |
---|
| 850 | ENDIF |
---|
| 851 | |
---|
[1] | 852 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 853 | |
---|
| 854 | ! |
---|
| 855 | !-- Performing the fft with singleton's software works on every system, |
---|
| 856 | !-- since it is part of the model |
---|
| 857 | ALLOCATE( cwork(0:nx) ) |
---|
| 858 | |
---|
[1106] | 859 | IF ( forward_fft ) then |
---|
[1] | 860 | |
---|
| 861 | DO i = 0, nx |
---|
[1392] | 862 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
[1] | 863 | ENDDO |
---|
| 864 | ishape = SHAPE( cwork ) |
---|
| 865 | CALL FFTN( cwork, ishape ) |
---|
| 866 | DO i = 0, (nx+1)/2 |
---|
[1322] | 867 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 868 | ENDDO |
---|
| 869 | DO i = 1, (nx+1)/2 - 1 |
---|
| 870 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 871 | ENDDO |
---|
| 872 | |
---|
| 873 | ELSE |
---|
| 874 | |
---|
[1392] | 875 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 876 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 877 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
| 878 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1] | 879 | ENDDO |
---|
[1392] | 880 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 881 | |
---|
| 882 | ishape = SHAPE( cwork ) |
---|
| 883 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 884 | |
---|
| 885 | DO i = 0, nx |
---|
[1322] | 886 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 887 | ENDDO |
---|
| 888 | |
---|
| 889 | ENDIF |
---|
| 890 | |
---|
| 891 | DEALLOCATE( cwork ) |
---|
| 892 | |
---|
| 893 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 894 | |
---|
| 895 | ! |
---|
| 896 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 897 | !-- since it is part of the model |
---|
[1106] | 898 | IF ( forward_fft ) THEN |
---|
[1] | 899 | |
---|
| 900 | work(0:nx) = ar |
---|
| 901 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 902 | |
---|
| 903 | DO i = 0, (nx+1)/2 |
---|
| 904 | ar(i) = work(2*i) |
---|
| 905 | ENDDO |
---|
| 906 | DO i = 1, (nx+1)/2 - 1 |
---|
| 907 | ar(nx+1-i) = work(2*i+1) |
---|
| 908 | ENDDO |
---|
| 909 | |
---|
| 910 | ELSE |
---|
| 911 | |
---|
| 912 | DO i = 0, (nx+1)/2 |
---|
| 913 | work(2*i) = ar(i) |
---|
| 914 | ENDDO |
---|
| 915 | DO i = 1, (nx+1)/2 - 1 |
---|
| 916 | work(2*i+1) = ar(nx+1-i) |
---|
| 917 | ENDDO |
---|
[1342] | 918 | work(1) = 0.0_wp |
---|
| 919 | work(nx+2) = 0.0_wp |
---|
[1] | 920 | |
---|
| 921 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 922 | ar = work(0:nx) |
---|
| 923 | |
---|
| 924 | ENDIF |
---|
| 925 | |
---|
[1216] | 926 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 927 | |
---|
| 928 | #if defined( __fftw ) |
---|
| 929 | IF ( forward_fft ) THEN |
---|
| 930 | |
---|
| 931 | x_in(0:nx) = ar(0:nx) |
---|
| 932 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 933 | |
---|
| 934 | DO i = 0, (nx+1)/2 |
---|
[1322] | 935 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 936 | ENDDO |
---|
| 937 | DO i = 1, (nx+1)/2 - 1 |
---|
| 938 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 939 | ENDDO |
---|
| 940 | |
---|
| 941 | ELSE |
---|
| 942 | |
---|
[1392] | 943 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 944 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 945 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1216] | 946 | ENDDO |
---|
[1392] | 947 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 948 | |
---|
| 949 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 950 | ar(0:nx) = x_in(0:nx) |
---|
| 951 | |
---|
| 952 | ENDIF |
---|
| 953 | #endif |
---|
| 954 | |
---|
[1] | 955 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 956 | |
---|
[1815] | 957 | #if defined( __ibm ) |
---|
[1106] | 958 | IF ( forward_fft ) THEN |
---|
[1] | 959 | |
---|
[1320] | 960 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 961 | aux2, nau2 ) |
---|
| 962 | |
---|
| 963 | DO i = 0, (nx+1)/2 |
---|
| 964 | ar(i) = work(2*i) |
---|
| 965 | ENDDO |
---|
| 966 | DO i = 1, (nx+1)/2 - 1 |
---|
| 967 | ar(nx+1-i) = work(2*i+1) |
---|
| 968 | ENDDO |
---|
| 969 | |
---|
| 970 | ELSE |
---|
| 971 | |
---|
| 972 | DO i = 0, (nx+1)/2 |
---|
| 973 | work(2*i) = ar(i) |
---|
| 974 | ENDDO |
---|
| 975 | DO i = 1, (nx+1)/2 - 1 |
---|
| 976 | work(2*i+1) = ar(nx+1-i) |
---|
| 977 | ENDDO |
---|
[1342] | 978 | work(1) = 0.0_wp |
---|
| 979 | work(nx+2) = 0.0_wp |
---|
[1] | 980 | |
---|
[1106] | 981 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 982 | aux4, nau2 ) |
---|
| 983 | |
---|
| 984 | DO i = 0, nx |
---|
| 985 | ar(i) = work(i) |
---|
| 986 | ENDDO |
---|
| 987 | |
---|
| 988 | ENDIF |
---|
| 989 | #elif defined( __nec ) |
---|
[1106] | 990 | IF ( forward_fft ) THEN |
---|
[1] | 991 | |
---|
| 992 | work(0:nx) = ar(0:nx) |
---|
| 993 | |
---|
[1106] | 994 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 995 | |
---|
[1] | 996 | DO i = 0, (nx+1)/2 |
---|
| 997 | ar(i) = work(2*i) |
---|
| 998 | ENDDO |
---|
| 999 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1000 | ar(nx+1-i) = work(2*i+1) |
---|
| 1001 | ENDDO |
---|
| 1002 | |
---|
| 1003 | ELSE |
---|
| 1004 | |
---|
| 1005 | DO i = 0, (nx+1)/2 |
---|
| 1006 | work(2*i) = ar(i) |
---|
| 1007 | ENDDO |
---|
| 1008 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1009 | work(2*i+1) = ar(nx+1-i) |
---|
| 1010 | ENDDO |
---|
[1342] | 1011 | work(1) = 0.0_wp |
---|
| 1012 | work(nx+2) = 0.0_wp |
---|
[1] | 1013 | |
---|
[1106] | 1014 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 1015 | |
---|
| 1016 | ar(0:nx) = work(0:nx) |
---|
| 1017 | |
---|
| 1018 | ENDIF |
---|
| 1019 | #endif |
---|
| 1020 | |
---|
| 1021 | ENDIF |
---|
| 1022 | |
---|
[1106] | 1023 | END SUBROUTINE fft_x_1d |
---|
[1] | 1024 | |
---|
[1682] | 1025 | !------------------------------------------------------------------------------! |
---|
| 1026 | ! Description: |
---|
| 1027 | ! ------------ |
---|
| 1028 | !> Fourier-transformation along y-direction. |
---|
| 1029 | !> Version for 2D-decomposition. |
---|
| 1030 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1031 | !> system-specific routines, if they are available. |
---|
| 1032 | !> |
---|
| 1033 | !> direction: 'forward' or 'backward' |
---|
| 1034 | !> ar, ar_tr: 3D data arrays |
---|
| 1035 | !> forward: ar: before ar_tr: after transformation |
---|
| 1036 | !> backward: ar_tr: before ar: after transfosition |
---|
| 1037 | !> |
---|
| 1038 | !> In case of non-overlapping transposition/transformation: |
---|
| 1039 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
| 1040 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
| 1041 | !> |
---|
| 1042 | !> In case of overlapping transposition/transformation |
---|
| 1043 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
| 1044 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
| 1045 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
| 1046 | !> transformation is carried out for a 2D-plane only. |
---|
| 1047 | !------------------------------------------------------------------------------! |
---|
| 1048 | |
---|
[1216] | 1049 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 1050 | nxr_y_l ) |
---|
[1] | 1051 | |
---|
| 1052 | |
---|
| 1053 | IMPLICIT NONE |
---|
| 1054 | |
---|
[1682] | 1055 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1056 | |
---|
[1682] | 1057 | INTEGER(iwp) :: i !< |
---|
| 1058 | INTEGER(iwp) :: j !< |
---|
| 1059 | INTEGER(iwp) :: jshape(1) !< |
---|
| 1060 | INTEGER(iwp) :: k !< |
---|
| 1061 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 1062 | INTEGER(iwp) :: nxl_y_l !< |
---|
| 1063 | INTEGER(iwp) :: nxr_y_bound !< |
---|
| 1064 | INTEGER(iwp) :: nxr_y_l !< |
---|
[1106] | 1065 | |
---|
[1682] | 1066 | LOGICAL :: forward_fft !< |
---|
[1106] | 1067 | |
---|
[1682] | 1068 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1069 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1070 | |
---|
[1682] | 1071 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1072 | |
---|
[1106] | 1073 | #if defined( __ibm ) |
---|
[1682] | 1074 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1075 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1106] | 1076 | #elif defined( __nec ) |
---|
[1682] | 1077 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[3634] | 1078 | #elif defined( __cuda_fft ) |
---|
| 1079 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
| 1080 | ar_tmp !< |
---|
| 1081 | !$ACC DECLARE CREATE(ar_tmp) |
---|
[1106] | 1082 | #endif |
---|
| 1083 | |
---|
[1320] | 1084 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
[1682] | 1085 | ar !< |
---|
[1320] | 1086 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
[1682] | 1087 | ar_tr !< |
---|
[1320] | 1088 | |
---|
[1106] | 1089 | IF ( direction == 'forward' ) THEN |
---|
| 1090 | forward_fft = .TRUE. |
---|
| 1091 | ELSE |
---|
| 1092 | forward_fft = .FALSE. |
---|
| 1093 | ENDIF |
---|
| 1094 | |
---|
| 1095 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1096 | |
---|
| 1097 | ! |
---|
| 1098 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1099 | !-- since it is part of the model |
---|
| 1100 | ALLOCATE( cwork(0:ny) ) |
---|
| 1101 | |
---|
| 1102 | IF ( forward_fft ) then |
---|
| 1103 | |
---|
| 1104 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1105 | !$OMP DO |
---|
| 1106 | DO k = nzb_y, nzt_y |
---|
[1216] | 1107 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1108 | |
---|
| 1109 | DO j = 0, ny |
---|
[1392] | 1110 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
[1106] | 1111 | ENDDO |
---|
| 1112 | |
---|
| 1113 | jshape = SHAPE( cwork ) |
---|
| 1114 | CALL FFTN( cwork, jshape ) |
---|
| 1115 | |
---|
| 1116 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1117 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1118 | ENDDO |
---|
| 1119 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1120 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1121 | ENDDO |
---|
| 1122 | |
---|
| 1123 | ENDDO |
---|
| 1124 | ENDDO |
---|
| 1125 | !$OMP END PARALLEL |
---|
| 1126 | |
---|
| 1127 | ELSE |
---|
| 1128 | |
---|
| 1129 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1130 | !$OMP DO |
---|
| 1131 | DO k = nzb_y, nzt_y |
---|
[1216] | 1132 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1133 | |
---|
[1392] | 1134 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1135 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1136 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
| 1137 | KIND=wp ) |
---|
| 1138 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1139 | KIND=wp ) |
---|
[1106] | 1140 | ENDDO |
---|
[1392] | 1141 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1142 | KIND=wp ) |
---|
[1106] | 1143 | |
---|
| 1144 | jshape = SHAPE( cwork ) |
---|
| 1145 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1146 | |
---|
| 1147 | DO j = 0, ny |
---|
[1322] | 1148 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1149 | ENDDO |
---|
| 1150 | |
---|
| 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
| 1153 | !$OMP END PARALLEL |
---|
| 1154 | |
---|
| 1155 | ENDIF |
---|
| 1156 | |
---|
| 1157 | DEALLOCATE( cwork ) |
---|
| 1158 | |
---|
| 1159 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1160 | |
---|
| 1161 | ! |
---|
| 1162 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1163 | !-- since it is part of the model |
---|
| 1164 | IF ( forward_fft ) THEN |
---|
| 1165 | |
---|
[1304] | 1166 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1167 | !$OMP DO |
---|
| 1168 | DO k = nzb_y, nzt_y |
---|
[1216] | 1169 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1170 | |
---|
| 1171 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1172 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1173 | |
---|
| 1174 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1175 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1176 | ENDDO |
---|
| 1177 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1178 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1179 | ENDDO |
---|
| 1180 | |
---|
| 1181 | ENDDO |
---|
| 1182 | ENDDO |
---|
| 1183 | !$OMP END PARALLEL |
---|
| 1184 | |
---|
| 1185 | ELSE |
---|
| 1186 | |
---|
[1304] | 1187 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1188 | !$OMP DO |
---|
| 1189 | DO k = nzb_y, nzt_y |
---|
[1216] | 1190 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1191 | |
---|
| 1192 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1193 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1194 | ENDDO |
---|
| 1195 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1196 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1197 | ENDDO |
---|
[1342] | 1198 | work(1) = 0.0_wp |
---|
| 1199 | work(ny+2) = 0.0_wp |
---|
[1106] | 1200 | |
---|
| 1201 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1202 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1203 | |
---|
| 1204 | ENDDO |
---|
| 1205 | ENDDO |
---|
| 1206 | !$OMP END PARALLEL |
---|
| 1207 | |
---|
| 1208 | ENDIF |
---|
| 1209 | |
---|
[1210] | 1210 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1211 | |
---|
| 1212 | #if defined( __fftw ) |
---|
| 1213 | IF ( forward_fft ) THEN |
---|
| 1214 | |
---|
| 1215 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1216 | !$OMP DO |
---|
| 1217 | DO k = nzb_y, nzt_y |
---|
[1216] | 1218 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1219 | |
---|
| 1220 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1221 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1222 | |
---|
| 1223 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1224 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1225 | ENDDO |
---|
| 1226 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1227 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1228 | ENDDO |
---|
| 1229 | |
---|
| 1230 | ENDDO |
---|
| 1231 | ENDDO |
---|
| 1232 | !$OMP END PARALLEL |
---|
| 1233 | |
---|
| 1234 | ELSE |
---|
| 1235 | |
---|
| 1236 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1237 | !$OMP DO |
---|
| 1238 | DO k = nzb_y, nzt_y |
---|
[1216] | 1239 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1240 | |
---|
[1392] | 1241 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1242 | DO j = 1, (ny+1)/2 - 1 |
---|
[1398] | 1243 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1244 | KIND=wp ) |
---|
[1210] | 1245 | ENDDO |
---|
[1392] | 1246 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1247 | KIND=wp ) |
---|
[1210] | 1248 | |
---|
| 1249 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1250 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1251 | |
---|
| 1252 | ENDDO |
---|
| 1253 | ENDDO |
---|
| 1254 | !$OMP END PARALLEL |
---|
| 1255 | |
---|
| 1256 | ENDIF |
---|
| 1257 | #endif |
---|
| 1258 | |
---|
[1106] | 1259 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1260 | |
---|
[1815] | 1261 | #if defined( __ibm ) |
---|
[1106] | 1262 | IF ( forward_fft) THEN |
---|
| 1263 | |
---|
| 1264 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1265 | !$OMP DO |
---|
| 1266 | DO k = nzb_y, nzt_y |
---|
[1216] | 1267 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1268 | |
---|
[1320] | 1269 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1270 | nau1, auy2, nau2 ) |
---|
[1106] | 1271 | |
---|
| 1272 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1273 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1274 | ENDDO |
---|
| 1275 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1276 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1277 | ENDDO |
---|
| 1278 | |
---|
| 1279 | ENDDO |
---|
| 1280 | ENDDO |
---|
| 1281 | !$OMP END PARALLEL |
---|
| 1282 | |
---|
| 1283 | ELSE |
---|
| 1284 | |
---|
| 1285 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1286 | !$OMP DO |
---|
| 1287 | DO k = nzb_y, nzt_y |
---|
[1216] | 1288 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1289 | |
---|
| 1290 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1291 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1292 | ENDDO |
---|
| 1293 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1294 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1295 | ENDDO |
---|
[1342] | 1296 | work(1) = 0.0_wp |
---|
| 1297 | work(ny+2) = 0.0_wp |
---|
[1106] | 1298 | |
---|
[1320] | 1299 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1300 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1301 | |
---|
| 1302 | DO j = 0, ny |
---|
| 1303 | ar(j,i,k) = work(j) |
---|
| 1304 | ENDDO |
---|
| 1305 | |
---|
| 1306 | ENDDO |
---|
| 1307 | ENDDO |
---|
| 1308 | !$OMP END PARALLEL |
---|
| 1309 | |
---|
| 1310 | ENDIF |
---|
| 1311 | #elif defined( __nec ) |
---|
| 1312 | IF ( forward_fft ) THEN |
---|
| 1313 | |
---|
| 1314 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1315 | !$OMP DO |
---|
| 1316 | DO k = nzb_y, nzt_y |
---|
[1216] | 1317 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1318 | |
---|
| 1319 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1320 | |
---|
| 1321 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1322 | |
---|
| 1323 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1324 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1325 | ENDDO |
---|
| 1326 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1327 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1328 | ENDDO |
---|
| 1329 | |
---|
| 1330 | ENDDO |
---|
| 1331 | ENDDO |
---|
| 1332 | !$END OMP PARALLEL |
---|
| 1333 | |
---|
| 1334 | ELSE |
---|
| 1335 | |
---|
| 1336 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1337 | !$OMP DO |
---|
| 1338 | DO k = nzb_y, nzt_y |
---|
[1216] | 1339 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1340 | |
---|
| 1341 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1342 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1343 | ENDDO |
---|
| 1344 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1345 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1346 | ENDDO |
---|
[1342] | 1347 | work(1) = 0.0_wp |
---|
| 1348 | work(ny+2) = 0.0_wp |
---|
[1106] | 1349 | |
---|
| 1350 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1351 | |
---|
| 1352 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1353 | |
---|
| 1354 | ENDDO |
---|
| 1355 | ENDDO |
---|
| 1356 | !$OMP END PARALLEL |
---|
| 1357 | |
---|
| 1358 | ENDIF |
---|
[3634] | 1359 | #elif defined( __cuda_fft ) |
---|
| 1360 | |
---|
| 1361 | IF ( forward_fft ) THEN |
---|
| 1362 | |
---|
| 1363 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1364 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
| 1365 | !$ACC END HOST_DATA |
---|
| 1366 | |
---|
| 1367 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1368 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1369 | DO k = nzb_y, nzt_y |
---|
| 1370 | DO i = nxl_y, nxr_y |
---|
| 1371 | |
---|
| 1372 | DO j = 0, (ny+1)/2 |
---|
| 1373 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
| 1374 | ENDDO |
---|
| 1375 | |
---|
| 1376 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1377 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
| 1378 | ENDDO |
---|
| 1379 | |
---|
| 1380 | ENDDO |
---|
| 1381 | ENDDO |
---|
| 1382 | |
---|
| 1383 | ELSE |
---|
| 1384 | |
---|
| 1385 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i,j,k) & |
---|
| 1386 | !$ACC PRESENT(ar, ar_tmp) |
---|
| 1387 | DO k = nzb_y, nzt_y |
---|
| 1388 | DO i = nxl_y, nxr_y |
---|
| 1389 | |
---|
| 1390 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
| 1391 | |
---|
| 1392 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1393 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), & |
---|
| 1394 | KIND=wp ) |
---|
| 1395 | ENDDO |
---|
| 1396 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1397 | KIND=wp ) |
---|
| 1398 | |
---|
| 1399 | ENDDO |
---|
| 1400 | ENDDO |
---|
| 1401 | |
---|
| 1402 | !$ACC HOST_DATA USE_DEVICE(ar, ar_tmp) |
---|
| 1403 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1404 | !$ACC END HOST_DATA |
---|
| 1405 | |
---|
| 1406 | ENDIF |
---|
| 1407 | |
---|
[1106] | 1408 | #endif |
---|
| 1409 | |
---|
| 1410 | ENDIF |
---|
| 1411 | |
---|
| 1412 | END SUBROUTINE fft_y |
---|
| 1413 | |
---|
[1682] | 1414 | !------------------------------------------------------------------------------! |
---|
| 1415 | ! Description: |
---|
| 1416 | ! ------------ |
---|
| 1417 | !> Fourier-transformation along y-direction. |
---|
| 1418 | !> Version for 1D-decomposition. |
---|
| 1419 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1420 | !> system-specific routines, if they are available. |
---|
| 1421 | !------------------------------------------------------------------------------! |
---|
| 1422 | |
---|
[1106] | 1423 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1424 | |
---|
| 1425 | |
---|
| 1426 | IMPLICIT NONE |
---|
| 1427 | |
---|
| 1428 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1429 | |
---|
[1682] | 1430 | INTEGER(iwp) :: j !< |
---|
| 1431 | INTEGER(iwp) :: jshape(1) !< |
---|
[1] | 1432 | |
---|
[1682] | 1433 | LOGICAL :: forward_fft !< |
---|
[1106] | 1434 | |
---|
[1682] | 1435 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
| 1436 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1437 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1438 | |
---|
[1682] | 1439 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1440 | |
---|
[1] | 1441 | #if defined( __ibm ) |
---|
[1682] | 1442 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1443 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 1444 | #elif defined( __nec ) |
---|
[1682] | 1445 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1] | 1446 | #endif |
---|
| 1447 | |
---|
[1106] | 1448 | IF ( direction == 'forward' ) THEN |
---|
| 1449 | forward_fft = .TRUE. |
---|
| 1450 | ELSE |
---|
| 1451 | forward_fft = .FALSE. |
---|
| 1452 | ENDIF |
---|
| 1453 | |
---|
[1] | 1454 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1455 | |
---|
| 1456 | ! |
---|
| 1457 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1458 | !-- since it is part of the model |
---|
| 1459 | ALLOCATE( cwork(0:ny) ) |
---|
| 1460 | |
---|
[1106] | 1461 | IF ( forward_fft ) THEN |
---|
[1] | 1462 | |
---|
| 1463 | DO j = 0, ny |
---|
[1392] | 1464 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
[1] | 1465 | ENDDO |
---|
| 1466 | |
---|
| 1467 | jshape = SHAPE( cwork ) |
---|
| 1468 | CALL FFTN( cwork, jshape ) |
---|
| 1469 | |
---|
| 1470 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1471 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1472 | ENDDO |
---|
| 1473 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1474 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1475 | ENDDO |
---|
| 1476 | |
---|
| 1477 | ELSE |
---|
| 1478 | |
---|
[1392] | 1479 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 1480 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1481 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
| 1482 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1] | 1483 | ENDDO |
---|
[1392] | 1484 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 1485 | |
---|
| 1486 | jshape = SHAPE( cwork ) |
---|
| 1487 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1488 | |
---|
| 1489 | DO j = 0, ny |
---|
[1322] | 1490 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1491 | ENDDO |
---|
| 1492 | |
---|
| 1493 | ENDIF |
---|
| 1494 | |
---|
| 1495 | DEALLOCATE( cwork ) |
---|
| 1496 | |
---|
| 1497 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1498 | |
---|
| 1499 | ! |
---|
| 1500 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1501 | !-- since it is part of the model |
---|
[1106] | 1502 | IF ( forward_fft ) THEN |
---|
[1] | 1503 | |
---|
| 1504 | work(0:ny) = ar |
---|
| 1505 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1506 | |
---|
| 1507 | DO j = 0, (ny+1)/2 |
---|
| 1508 | ar(j) = work(2*j) |
---|
| 1509 | ENDDO |
---|
| 1510 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1511 | ar(ny+1-j) = work(2*j+1) |
---|
| 1512 | ENDDO |
---|
| 1513 | |
---|
| 1514 | ELSE |
---|
| 1515 | |
---|
| 1516 | DO j = 0, (ny+1)/2 |
---|
| 1517 | work(2*j) = ar(j) |
---|
| 1518 | ENDDO |
---|
| 1519 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1520 | work(2*j+1) = ar(ny+1-j) |
---|
| 1521 | ENDDO |
---|
[1342] | 1522 | work(1) = 0.0_wp |
---|
| 1523 | work(ny+2) = 0.0_wp |
---|
[1] | 1524 | |
---|
| 1525 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1526 | ar = work(0:ny) |
---|
| 1527 | |
---|
| 1528 | ENDIF |
---|
| 1529 | |
---|
[1216] | 1530 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1531 | |
---|
| 1532 | #if defined( __fftw ) |
---|
| 1533 | IF ( forward_fft ) THEN |
---|
| 1534 | |
---|
| 1535 | y_in(0:ny) = ar(0:ny) |
---|
| 1536 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1537 | |
---|
| 1538 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1539 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1540 | ENDDO |
---|
| 1541 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1542 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1543 | ENDDO |
---|
| 1544 | |
---|
| 1545 | ELSE |
---|
| 1546 | |
---|
[1392] | 1547 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 1548 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1549 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1216] | 1550 | ENDDO |
---|
[1392] | 1551 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 1552 | |
---|
| 1553 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1554 | ar(0:ny) = y_in(0:ny) |
---|
| 1555 | |
---|
| 1556 | ENDIF |
---|
| 1557 | #endif |
---|
| 1558 | |
---|
[1] | 1559 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1560 | |
---|
[1815] | 1561 | #if defined( __ibm ) |
---|
[1106] | 1562 | IF ( forward_fft ) THEN |
---|
[1] | 1563 | |
---|
[1320] | 1564 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1565 | auy2, nau2 ) |
---|
| 1566 | |
---|
| 1567 | DO j = 0, (ny+1)/2 |
---|
| 1568 | ar(j) = work(2*j) |
---|
| 1569 | ENDDO |
---|
| 1570 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1571 | ar(ny+1-j) = work(2*j+1) |
---|
| 1572 | ENDDO |
---|
| 1573 | |
---|
| 1574 | ELSE |
---|
| 1575 | |
---|
| 1576 | DO j = 0, (ny+1)/2 |
---|
| 1577 | work(2*j) = ar(j) |
---|
| 1578 | ENDDO |
---|
| 1579 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1580 | work(2*j+1) = ar(ny+1-j) |
---|
| 1581 | ENDDO |
---|
[1342] | 1582 | work(1) = 0.0_wp |
---|
| 1583 | work(ny+2) = 0.0_wp |
---|
[1] | 1584 | |
---|
[1320] | 1585 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1586 | nau1, auy4, nau2 ) |
---|
[1] | 1587 | |
---|
| 1588 | DO j = 0, ny |
---|
| 1589 | ar(j) = work(j) |
---|
| 1590 | ENDDO |
---|
| 1591 | |
---|
| 1592 | ENDIF |
---|
| 1593 | #elif defined( __nec ) |
---|
[1106] | 1594 | IF ( forward_fft ) THEN |
---|
[1] | 1595 | |
---|
| 1596 | work(0:ny) = ar(0:ny) |
---|
| 1597 | |
---|
[1106] | 1598 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1599 | |
---|
| 1600 | DO j = 0, (ny+1)/2 |
---|
| 1601 | ar(j) = work(2*j) |
---|
| 1602 | ENDDO |
---|
| 1603 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1604 | ar(ny+1-j) = work(2*j+1) |
---|
| 1605 | ENDDO |
---|
| 1606 | |
---|
| 1607 | ELSE |
---|
| 1608 | |
---|
| 1609 | DO j = 0, (ny+1)/2 |
---|
| 1610 | work(2*j) = ar(j) |
---|
| 1611 | ENDDO |
---|
| 1612 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1613 | work(2*j+1) = ar(ny+1-j) |
---|
| 1614 | ENDDO |
---|
[1342] | 1615 | work(1) = 0.0_wp |
---|
| 1616 | work(ny+2) = 0.0_wp |
---|
[1] | 1617 | |
---|
[1106] | 1618 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1619 | |
---|
| 1620 | ar(0:ny) = work(0:ny) |
---|
| 1621 | |
---|
| 1622 | ENDIF |
---|
| 1623 | #endif |
---|
| 1624 | |
---|
| 1625 | ENDIF |
---|
| 1626 | |
---|
[1106] | 1627 | END SUBROUTINE fft_y_1d |
---|
[1] | 1628 | |
---|
[1682] | 1629 | !------------------------------------------------------------------------------! |
---|
| 1630 | ! Description: |
---|
| 1631 | ! ------------ |
---|
| 1632 | !> Fourier-transformation along x-direction. |
---|
| 1633 | !> Version for 1d domain decomposition |
---|
| 1634 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1635 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1636 | !------------------------------------------------------------------------------! |
---|
| 1637 | |
---|
[1] | 1638 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1639 | |
---|
| 1640 | |
---|
| 1641 | IMPLICIT NONE |
---|
| 1642 | |
---|
[1682] | 1643 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1644 | |
---|
[1682] | 1645 | INTEGER(iwp) :: i !< |
---|
| 1646 | INTEGER(iwp) :: k !< |
---|
| 1647 | INTEGER(iwp) :: siza !< |
---|
[3241] | 1648 | #if defined( __nec ) |
---|
| 1649 | INTEGER(iwp) :: sizw |
---|
| 1650 | #endif |
---|
[1] | 1651 | |
---|
[1682] | 1652 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 1653 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
| 1654 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
[1320] | 1655 | |
---|
[3241] | 1656 | #if defined( __nec ) |
---|
| 1657 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1658 | #endif |
---|
[1] | 1659 | |
---|
| 1660 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1661 | |
---|
| 1662 | siza = SIZE( ai, 1 ) |
---|
| 1663 | |
---|
| 1664 | IF ( direction == 'forward') THEN |
---|
| 1665 | |
---|
| 1666 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1667 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1668 | |
---|
| 1669 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1670 | |
---|
| 1671 | DO k = 1, nz |
---|
| 1672 | DO i = 0, (nx+1)/2 |
---|
| 1673 | ar(i,k) = ai(2*i,k) |
---|
| 1674 | ENDDO |
---|
| 1675 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1676 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1677 | ENDDO |
---|
| 1678 | ENDDO |
---|
| 1679 | |
---|
| 1680 | ELSE |
---|
| 1681 | |
---|
| 1682 | DO k = 1, nz |
---|
| 1683 | DO i = 0, (nx+1)/2 |
---|
| 1684 | ai(2*i,k) = ar(i,k) |
---|
| 1685 | ENDDO |
---|
| 1686 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1687 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1688 | ENDDO |
---|
[1342] | 1689 | ai(1,k) = 0.0_wp |
---|
| 1690 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1691 | ENDDO |
---|
| 1692 | |
---|
| 1693 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1694 | |
---|
| 1695 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1696 | |
---|
| 1697 | ENDIF |
---|
| 1698 | |
---|
| 1699 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1700 | |
---|
| 1701 | #if defined( __nec ) |
---|
[2300] | 1702 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
[1] | 1703 | siza = SIZE( ai, 1 ) |
---|
| 1704 | sizw = SIZE( work, 1 ) |
---|
| 1705 | |
---|
| 1706 | IF ( direction == 'forward') THEN |
---|
| 1707 | |
---|
| 1708 | ! |
---|
| 1709 | !-- Tables are initialized once more. This call should not be |
---|
| 1710 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1711 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1712 | trig_xf, work1, 0 ) |
---|
| 1713 | |
---|
| 1714 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1715 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1716 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1717 | ENDIF |
---|
| 1718 | |
---|
[1320] | 1719 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1720 | trig_xf, work1, 0 ) |
---|
| 1721 | |
---|
| 1722 | DO k = 1, nz |
---|
| 1723 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1724 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1725 | ENDDO |
---|
| 1726 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1727 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1728 | ENDDO |
---|
| 1729 | ENDDO |
---|
| 1730 | |
---|
| 1731 | ELSE |
---|
| 1732 | |
---|
| 1733 | ! |
---|
| 1734 | !-- Tables are initialized once more. This call should not be |
---|
| 1735 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1736 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1737 | trig_xb, work1, 0 ) |
---|
| 1738 | |
---|
| 1739 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1740 | work(:,nz1) = 0.0_wp |
---|
[1] | 1741 | ENDIF |
---|
| 1742 | DO k = 1, nz |
---|
[1392] | 1743 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1744 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 1745 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
[1] | 1746 | ENDDO |
---|
[1392] | 1747 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1748 | ENDDO |
---|
| 1749 | |
---|
[1106] | 1750 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1751 | trig_xb, work1, 0 ) |
---|
| 1752 | |
---|
| 1753 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1754 | |
---|
| 1755 | ENDIF |
---|
| 1756 | |
---|
[2300] | 1757 | DEALLOCATE( work ) |
---|
[1] | 1758 | #endif |
---|
| 1759 | |
---|
| 1760 | ENDIF |
---|
| 1761 | |
---|
| 1762 | END SUBROUTINE fft_x_m |
---|
| 1763 | |
---|
[1682] | 1764 | !------------------------------------------------------------------------------! |
---|
| 1765 | ! Description: |
---|
| 1766 | ! ------------ |
---|
| 1767 | !> Fourier-transformation along y-direction. |
---|
| 1768 | !> Version for 1d domain decomposition |
---|
| 1769 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1770 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1771 | !------------------------------------------------------------------------------! |
---|
| 1772 | |
---|
[1] | 1773 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1774 | |
---|
| 1775 | |
---|
| 1776 | IMPLICIT NONE |
---|
| 1777 | |
---|
[1682] | 1778 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1779 | |
---|
[1682] | 1780 | INTEGER(iwp) :: j !< |
---|
| 1781 | INTEGER(iwp) :: k !< |
---|
| 1782 | INTEGER(iwp) :: ny1 !< |
---|
| 1783 | INTEGER(iwp) :: siza !< |
---|
[3241] | 1784 | #if defined( __nec ) |
---|
| 1785 | INTEGER(iwp) :: sizw |
---|
| 1786 | #endif |
---|
[1] | 1787 | |
---|
[1682] | 1788 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
| 1789 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
| 1790 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
[1] | 1791 | |
---|
[3241] | 1792 | #if defined( __nec ) |
---|
| 1793 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work |
---|
| 1794 | #endif |
---|
[2300] | 1795 | |
---|
[3241] | 1796 | |
---|
[1] | 1797 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1798 | |
---|
| 1799 | siza = SIZE( ai, 1 ) |
---|
| 1800 | |
---|
| 1801 | IF ( direction == 'forward') THEN |
---|
| 1802 | |
---|
| 1803 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1804 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1805 | |
---|
| 1806 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1807 | |
---|
| 1808 | DO k = 1, nz |
---|
| 1809 | DO j = 0, (ny+1)/2 |
---|
| 1810 | ar(j,k) = ai(2*j,k) |
---|
| 1811 | ENDDO |
---|
| 1812 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1813 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1814 | ENDDO |
---|
| 1815 | ENDDO |
---|
| 1816 | |
---|
| 1817 | ELSE |
---|
| 1818 | |
---|
| 1819 | DO k = 1, nz |
---|
| 1820 | DO j = 0, (ny+1)/2 |
---|
| 1821 | ai(2*j,k) = ar(j,k) |
---|
| 1822 | ENDDO |
---|
| 1823 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1824 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1825 | ENDDO |
---|
[1342] | 1826 | ai(1,k) = 0.0_wp |
---|
| 1827 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1828 | ENDDO |
---|
| 1829 | |
---|
| 1830 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1831 | |
---|
| 1832 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1833 | |
---|
| 1834 | ENDIF |
---|
| 1835 | |
---|
| 1836 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1837 | |
---|
| 1838 | #if defined( __nec ) |
---|
[2300] | 1839 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
[1] | 1840 | siza = SIZE( ai, 1 ) |
---|
| 1841 | sizw = SIZE( work, 1 ) |
---|
| 1842 | |
---|
| 1843 | IF ( direction == 'forward') THEN |
---|
| 1844 | |
---|
| 1845 | ! |
---|
| 1846 | !-- Tables are initialized once more. This call should not be |
---|
| 1847 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1848 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1849 | trig_yf, work1, 0 ) |
---|
| 1850 | |
---|
| 1851 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1852 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1853 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1854 | ENDIF |
---|
| 1855 | |
---|
[1106] | 1856 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1857 | trig_yf, work1, 0 ) |
---|
| 1858 | |
---|
| 1859 | DO k = 1, nz |
---|
| 1860 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1861 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1862 | ENDDO |
---|
| 1863 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1864 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1865 | ENDDO |
---|
| 1866 | ENDDO |
---|
| 1867 | |
---|
| 1868 | ELSE |
---|
| 1869 | |
---|
| 1870 | ! |
---|
| 1871 | !-- Tables are initialized once more. This call should not be |
---|
| 1872 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1873 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1874 | trig_yb, work1, 0 ) |
---|
| 1875 | |
---|
| 1876 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1877 | work(:,nz1) = 0.0_wp |
---|
[1] | 1878 | ENDIF |
---|
| 1879 | DO k = 1, nz |
---|
[1392] | 1880 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1881 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1882 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
[1] | 1883 | ENDDO |
---|
[1392] | 1884 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1885 | ENDDO |
---|
| 1886 | |
---|
[1106] | 1887 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1888 | trig_yb, work1, 0 ) |
---|
| 1889 | |
---|
| 1890 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1891 | |
---|
| 1892 | ENDIF |
---|
| 1893 | |
---|
[2300] | 1894 | DEALLOCATE( work ) |
---|
[1] | 1895 | #endif |
---|
| 1896 | |
---|
| 1897 | ENDIF |
---|
| 1898 | |
---|
| 1899 | END SUBROUTINE fft_y_m |
---|
| 1900 | |
---|
[1106] | 1901 | |
---|
[1] | 1902 | END MODULE fft_xy |
---|