[1850] | 1 | !> @file fft_xy_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy_mod.f90 3045 2018-05-28 07:55:41Z gronemeier $ |
---|
[3045] | 27 | ! Error messages revised |
---|
| 28 | ! |
---|
| 29 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 30 | ! Corrected "Former revisions" section |
---|
| 31 | ! |
---|
| 32 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 33 | ! Change in file header (GPL part) |
---|
| 34 | ! |
---|
| 35 | ! 2300 2017-06-29 13:31:14Z raasch |
---|
[2300] | 36 | ! NEC related code partly removed, host replaced by loop_optimization |
---|
| 37 | ! |
---|
| 38 | ! 2274 2017-06-09 13:27:48Z Giersch |
---|
[2274] | 39 | ! Changed error messages |
---|
| 40 | ! |
---|
| 41 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
[1321] | 42 | ! |
---|
[2119] | 43 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 44 | ! OpenACC directives and CUDA-fft related code removed |
---|
| 45 | ! |
---|
[2001] | 46 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 47 | ! Forced header and separation lines into 80 columns |
---|
| 48 | ! |
---|
[1851] | 49 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 50 | ! Module renamed |
---|
| 51 | ! |
---|
[1816] | 52 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 53 | ! cpp-directives for ibmy removed |
---|
| 54 | ! |
---|
[1750] | 55 | ! 1749 2016-02-09 12:19:56Z raasch |
---|
| 56 | ! small OpenACC bugfix |
---|
| 57 | ! |
---|
[1683] | 58 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 59 | ! Code annotations made doxygen readable |
---|
| 60 | ! |
---|
[1601] | 61 | ! 1600 2015-06-11 15:50:12Z raasch |
---|
| 62 | ! bugfix: openMP threadprivate statement moved after variable declaration |
---|
| 63 | ! |
---|
[1483] | 64 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
| 65 | ! cudafft workaround for data declaration of ar_tmp because of PGI 14.1 bug |
---|
| 66 | ! |
---|
[1403] | 67 | ! 1402 2014-05-09 14:25:13Z raasch |
---|
| 68 | ! fortran bugfix for r1392 |
---|
| 69 | ! |
---|
[1399] | 70 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 71 | ! bugfix: typo removed for KIND in CMPLX function |
---|
| 72 | ! |
---|
[1393] | 73 | ! 1392 2014-05-06 09:10:05Z raasch |
---|
| 74 | ! bugfix: KIND attribute added to CMPLX functions |
---|
| 75 | ! |
---|
[1375] | 76 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 77 | ! bugfixes: missing variables added to ONLY list, dpk renamed dp |
---|
| 78 | ! |
---|
[1373] | 79 | ! 1372 2014-04-24 06:29:32Z raasch |
---|
| 80 | ! openMP-bugfix for fftw: some arrays defined as threadprivate |
---|
| 81 | ! |
---|
[1354] | 82 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 83 | ! REAL constants provided with KIND-attribute |
---|
| 84 | ! |
---|
[1343] | 85 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 86 | ! REAL constants defined as wp-kind |
---|
| 87 | ! |
---|
[1323] | 88 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 89 | ! REAL functions provided with KIND-attribute |
---|
| 90 | ! |
---|
[1321] | 91 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 92 | ! ONLY-attribute added to USE-statements, |
---|
| 93 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 94 | ! kinds are defined in new module kinds, |
---|
| 95 | ! old module precision_kind is removed, |
---|
| 96 | ! revision history before 2012 removed, |
---|
| 97 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 98 | ! all variable declaration statements |
---|
[1] | 99 | ! |
---|
[1305] | 100 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
| 101 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
| 102 | ! |
---|
[1258] | 103 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 104 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 105 | ! the FORTRAN declaration statement |
---|
| 106 | ! |
---|
[1220] | 107 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
| 108 | ! bugfix: use own branch for fftw |
---|
| 109 | ! |
---|
[1217] | 110 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 111 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
| 112 | ! transpositions, |
---|
| 113 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
| 114 | ! |
---|
[1211] | 115 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 116 | ! fftw added |
---|
| 117 | ! |
---|
[1167] | 118 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 119 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 120 | ! |
---|
[1154] | 121 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 122 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 123 | ! |
---|
[1112] | 124 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 125 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 126 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 127 | ! used total domain) |
---|
| 128 | ! |
---|
[1107] | 129 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 130 | ! CUDA fft added |
---|
| 131 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 132 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 133 | ! |
---|
[1093] | 134 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 135 | ! variable sizw declared for NEC case only |
---|
| 136 | ! |
---|
[1037] | 137 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 138 | ! code put under GPL (PALM 3.9) |
---|
| 139 | ! |
---|
[1] | 140 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 141 | ! Initial revision |
---|
| 142 | ! |
---|
| 143 | ! |
---|
| 144 | ! Description: |
---|
| 145 | ! ------------ |
---|
[1682] | 146 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 147 | !> Original version: Klaus Ketelsen (May 2002) |
---|
[1] | 148 | !------------------------------------------------------------------------------! |
---|
[1682] | 149 | MODULE fft_xy |
---|
| 150 | |
---|
[1] | 151 | |
---|
[1320] | 152 | USE control_parameters, & |
---|
| 153 | ONLY: fft_method, message_string |
---|
| 154 | |
---|
| 155 | USE indices, & |
---|
| 156 | ONLY: nx, ny, nz |
---|
| 157 | |
---|
[2118] | 158 | #if defined( __fftw ) |
---|
[1210] | 159 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 160 | #endif |
---|
[1320] | 161 | |
---|
| 162 | USE kinds |
---|
| 163 | |
---|
| 164 | USE singleton, & |
---|
| 165 | ONLY: fftn |
---|
| 166 | |
---|
[1] | 167 | USE temperton_fft |
---|
[1320] | 168 | |
---|
| 169 | USE transpose_indices, & |
---|
[1374] | 170 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 171 | |
---|
| 172 | IMPLICIT NONE |
---|
| 173 | |
---|
| 174 | PRIVATE |
---|
[1106] | 175 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 176 | |
---|
[1682] | 177 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
| 178 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
[1] | 179 | |
---|
[1682] | 180 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
[1] | 181 | |
---|
[1682] | 182 | REAL(wp), SAVE :: dnx !< |
---|
| 183 | REAL(wp), SAVE :: dny !< |
---|
| 184 | REAL(wp), SAVE :: sqr_dnx !< |
---|
| 185 | REAL(wp), SAVE :: sqr_dny !< |
---|
[1320] | 186 | |
---|
[1682] | 187 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
| 188 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
[1] | 189 | |
---|
| 190 | #if defined( __ibm ) |
---|
[1682] | 191 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
| 192 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
[1] | 193 | ! |
---|
| 194 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 195 | !-- shared in OpenMP sense |
---|
[1682] | 196 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
| 197 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
| 198 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
| 199 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
[1320] | 200 | |
---|
[1] | 201 | #elif defined( __nec ) |
---|
[1682] | 202 | INTEGER(iwp), SAVE :: nz1 !< |
---|
[1320] | 203 | |
---|
[1682] | 204 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
| 205 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
| 206 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
| 207 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
[1320] | 208 | |
---|
[1219] | 209 | #endif |
---|
| 210 | |
---|
| 211 | #if defined( __fftw ) |
---|
[1210] | 212 | INCLUDE 'fftw3.f03' |
---|
[1682] | 213 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
| 214 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
[1320] | 215 | |
---|
[1682] | 216 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
[1320] | 217 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 218 | y_out !< |
---|
[1320] | 219 | |
---|
| 220 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 221 | x_in !< |
---|
[1320] | 222 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 223 | y_in !< |
---|
[1600] | 224 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[1320] | 225 | |
---|
| 226 | |
---|
[1210] | 227 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 228 | #endif |
---|
| 229 | |
---|
| 230 | ! |
---|
| 231 | !-- Public interfaces |
---|
| 232 | INTERFACE fft_init |
---|
| 233 | MODULE PROCEDURE fft_init |
---|
| 234 | END INTERFACE fft_init |
---|
| 235 | |
---|
| 236 | INTERFACE fft_x |
---|
| 237 | MODULE PROCEDURE fft_x |
---|
| 238 | END INTERFACE fft_x |
---|
| 239 | |
---|
[1106] | 240 | INTERFACE fft_x_1d |
---|
| 241 | MODULE PROCEDURE fft_x_1d |
---|
| 242 | END INTERFACE fft_x_1d |
---|
| 243 | |
---|
[1] | 244 | INTERFACE fft_y |
---|
| 245 | MODULE PROCEDURE fft_y |
---|
| 246 | END INTERFACE fft_y |
---|
| 247 | |
---|
[1106] | 248 | INTERFACE fft_y_1d |
---|
| 249 | MODULE PROCEDURE fft_y_1d |
---|
| 250 | END INTERFACE fft_y_1d |
---|
| 251 | |
---|
[1] | 252 | INTERFACE fft_x_m |
---|
| 253 | MODULE PROCEDURE fft_x_m |
---|
| 254 | END INTERFACE fft_x_m |
---|
| 255 | |
---|
| 256 | INTERFACE fft_y_m |
---|
| 257 | MODULE PROCEDURE fft_y_m |
---|
| 258 | END INTERFACE fft_y_m |
---|
| 259 | |
---|
| 260 | CONTAINS |
---|
| 261 | |
---|
| 262 | |
---|
[1682] | 263 | !------------------------------------------------------------------------------! |
---|
| 264 | ! Description: |
---|
| 265 | ! ------------ |
---|
| 266 | !> @todo Missing subroutine description. |
---|
| 267 | !------------------------------------------------------------------------------! |
---|
[1] | 268 | SUBROUTINE fft_init |
---|
| 269 | |
---|
| 270 | IMPLICIT NONE |
---|
| 271 | |
---|
| 272 | ! |
---|
| 273 | !-- The following temporary working arrays have to be on stack or private |
---|
| 274 | !-- in OpenMP sense |
---|
| 275 | #if defined( __ibm ) |
---|
[1682] | 276 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
| 277 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
| 278 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 279 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 280 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
| 281 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 282 | #elif defined( __nec ) |
---|
[1682] | 283 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
| 284 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
| 285 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
| 286 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
[1] | 287 | #endif |
---|
| 288 | |
---|
| 289 | ! |
---|
| 290 | !-- Return, if already called |
---|
| 291 | IF ( init_fft ) THEN |
---|
| 292 | RETURN |
---|
| 293 | ELSE |
---|
| 294 | init_fft = .TRUE. |
---|
| 295 | ENDIF |
---|
| 296 | |
---|
| 297 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 298 | |
---|
[1342] | 299 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 300 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 301 | sqr_dnx = SQRT( dnx ) |
---|
| 302 | sqr_dny = SQRT( dny ) |
---|
[1815] | 303 | #if defined( __ibm ) |
---|
[1] | 304 | ! |
---|
| 305 | !-- Initialize tables for fft along x |
---|
[1106] | 306 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 307 | aux2, nau2 ) |
---|
[1106] | 308 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 309 | aux4, nau2 ) |
---|
| 310 | ! |
---|
| 311 | !-- Initialize tables for fft along y |
---|
[1106] | 312 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 313 | auy2, nau2 ) |
---|
[1106] | 314 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 315 | auy4, nau2 ) |
---|
| 316 | #elif defined( __nec ) |
---|
[254] | 317 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 318 | '" currently does not work on NEC' |
---|
| 319 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 320 | |
---|
[1320] | 321 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 322 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 323 | |
---|
[1342] | 324 | work_x = 0.0_wp |
---|
| 325 | work_y = 0.0_wp |
---|
[1] | 326 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 327 | ! when using the NEC ffts |
---|
| 328 | |
---|
| 329 | ! |
---|
| 330 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 331 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 332 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 333 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 334 | trig_xf, workx, 0 ) |
---|
[1320] | 335 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 336 | trig_xb, workx, 0 ) |
---|
| 337 | ! |
---|
| 338 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 339 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 340 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 341 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 342 | trig_yf, worky, 0 ) |
---|
[1320] | 343 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 344 | trig_yb, worky, 0 ) |
---|
| 345 | #else |
---|
[254] | 346 | message_string = 'no system-specific fft-call available' |
---|
| 347 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 348 | #endif |
---|
| 349 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 350 | ! |
---|
| 351 | !-- Temperton-algorithm |
---|
| 352 | !-- Initialize tables for fft along x and y |
---|
| 353 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 354 | |
---|
| 355 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 356 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 357 | |
---|
[1210] | 358 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 359 | ! |
---|
| 360 | !-- FFTW |
---|
| 361 | #if defined( __fftw ) |
---|
| 362 | nx_c = nx+1 |
---|
| 363 | ny_c = ny+1 |
---|
[1372] | 364 | !$OMP PARALLEL |
---|
[1320] | 365 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 366 | y_out(0:(ny+1)/2) ) |
---|
[1372] | 367 | !$OMP END PARALLEL |
---|
[1210] | 368 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 369 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 370 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 371 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 372 | #else |
---|
| 373 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 374 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 375 | #endif |
---|
| 376 | |
---|
[1] | 377 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 378 | |
---|
| 379 | CONTINUE |
---|
| 380 | |
---|
| 381 | ELSE |
---|
| 382 | |
---|
[254] | 383 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 384 | '" not available' |
---|
| 385 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 386 | ENDIF |
---|
| 387 | |
---|
| 388 | END SUBROUTINE fft_init |
---|
| 389 | |
---|
| 390 | |
---|
[1682] | 391 | !------------------------------------------------------------------------------! |
---|
| 392 | ! Description: |
---|
| 393 | ! ------------ |
---|
| 394 | !> Fourier-transformation along x-direction. |
---|
| 395 | !> Version for 2D-decomposition. |
---|
| 396 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 397 | !> system-specific routines, if they are available |
---|
| 398 | !------------------------------------------------------------------------------! |
---|
| 399 | |
---|
[1216] | 400 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 401 | |
---|
| 402 | |
---|
| 403 | IMPLICIT NONE |
---|
| 404 | |
---|
[1682] | 405 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 406 | |
---|
[1682] | 407 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1106] | 408 | |
---|
[1682] | 409 | INTEGER(iwp) :: i !< |
---|
| 410 | INTEGER(iwp) :: ishape(1) !< |
---|
| 411 | INTEGER(iwp) :: j !< |
---|
| 412 | INTEGER(iwp) :: k !< |
---|
[1106] | 413 | |
---|
[1682] | 414 | LOGICAL :: forward_fft !< |
---|
[1320] | 415 | |
---|
[1682] | 416 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 417 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 418 | |
---|
[1106] | 419 | #if defined( __ibm ) |
---|
[1682] | 420 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 421 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1106] | 422 | #elif defined( __nec ) |
---|
[1682] | 423 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1106] | 424 | #endif |
---|
| 425 | |
---|
[1320] | 426 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
[1682] | 427 | ar_2d !< |
---|
[1320] | 428 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
[1682] | 429 | ar !< |
---|
[1320] | 430 | |
---|
[1106] | 431 | IF ( direction == 'forward' ) THEN |
---|
| 432 | forward_fft = .TRUE. |
---|
| 433 | ELSE |
---|
| 434 | forward_fft = .FALSE. |
---|
| 435 | ENDIF |
---|
| 436 | |
---|
| 437 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 438 | |
---|
| 439 | ! |
---|
| 440 | !-- Performing the fft with singleton's software works on every system, |
---|
| 441 | !-- since it is part of the model |
---|
| 442 | ALLOCATE( cwork(0:nx) ) |
---|
| 443 | |
---|
| 444 | IF ( forward_fft ) then |
---|
| 445 | |
---|
| 446 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 447 | !$OMP DO |
---|
| 448 | DO k = nzb_x, nzt_x |
---|
| 449 | DO j = nys_x, nyn_x |
---|
| 450 | |
---|
| 451 | DO i = 0, nx |
---|
[1392] | 452 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
[1106] | 453 | ENDDO |
---|
| 454 | |
---|
| 455 | ishape = SHAPE( cwork ) |
---|
| 456 | CALL FFTN( cwork, ishape ) |
---|
| 457 | |
---|
| 458 | DO i = 0, (nx+1)/2 |
---|
[1322] | 459 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 460 | ENDDO |
---|
| 461 | DO i = 1, (nx+1)/2 - 1 |
---|
| 462 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 463 | ENDDO |
---|
| 464 | |
---|
| 465 | ENDDO |
---|
| 466 | ENDDO |
---|
| 467 | !$OMP END PARALLEL |
---|
| 468 | |
---|
| 469 | ELSE |
---|
| 470 | |
---|
| 471 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 472 | !$OMP DO |
---|
| 473 | DO k = nzb_x, nzt_x |
---|
| 474 | DO j = nys_x, nyn_x |
---|
| 475 | |
---|
[1392] | 476 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 477 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 478 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
| 479 | KIND=wp ) |
---|
| 480 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 481 | KIND=wp ) |
---|
[1106] | 482 | ENDDO |
---|
[1392] | 483 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 484 | |
---|
| 485 | ishape = SHAPE( cwork ) |
---|
| 486 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 487 | |
---|
| 488 | DO i = 0, nx |
---|
[1322] | 489 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 490 | ENDDO |
---|
| 491 | |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | !$OMP END PARALLEL |
---|
| 495 | |
---|
| 496 | ENDIF |
---|
| 497 | |
---|
| 498 | DEALLOCATE( cwork ) |
---|
| 499 | |
---|
| 500 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 501 | |
---|
| 502 | ! |
---|
| 503 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 504 | !-- since it is part of the model |
---|
| 505 | IF ( forward_fft ) THEN |
---|
| 506 | |
---|
[1304] | 507 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 508 | !$OMP DO |
---|
| 509 | DO k = nzb_x, nzt_x |
---|
| 510 | DO j = nys_x, nyn_x |
---|
| 511 | |
---|
| 512 | work(0:nx) = ar(0:nx,j,k) |
---|
| 513 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 514 | |
---|
| 515 | DO i = 0, (nx+1)/2 |
---|
| 516 | ar(i,j,k) = work(2*i) |
---|
| 517 | ENDDO |
---|
| 518 | DO i = 1, (nx+1)/2 - 1 |
---|
| 519 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 520 | ENDDO |
---|
| 521 | |
---|
| 522 | ENDDO |
---|
| 523 | ENDDO |
---|
| 524 | !$OMP END PARALLEL |
---|
| 525 | |
---|
| 526 | ELSE |
---|
| 527 | |
---|
[1304] | 528 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 529 | !$OMP DO |
---|
| 530 | DO k = nzb_x, nzt_x |
---|
| 531 | DO j = nys_x, nyn_x |
---|
| 532 | |
---|
| 533 | DO i = 0, (nx+1)/2 |
---|
| 534 | work(2*i) = ar(i,j,k) |
---|
| 535 | ENDDO |
---|
| 536 | DO i = 1, (nx+1)/2 - 1 |
---|
| 537 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 538 | ENDDO |
---|
[1342] | 539 | work(1) = 0.0_wp |
---|
| 540 | work(nx+2) = 0.0_wp |
---|
[1106] | 541 | |
---|
| 542 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 543 | ar(0:nx,j,k) = work(0:nx) |
---|
| 544 | |
---|
| 545 | ENDDO |
---|
| 546 | ENDDO |
---|
| 547 | !$OMP END PARALLEL |
---|
| 548 | |
---|
| 549 | ENDIF |
---|
| 550 | |
---|
[1210] | 551 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 552 | |
---|
| 553 | #if defined( __fftw ) |
---|
| 554 | IF ( forward_fft ) THEN |
---|
| 555 | |
---|
| 556 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 557 | !$OMP DO |
---|
| 558 | DO k = nzb_x, nzt_x |
---|
| 559 | DO j = nys_x, nyn_x |
---|
| 560 | |
---|
| 561 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 562 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 563 | |
---|
[1216] | 564 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 565 | |
---|
[1216] | 566 | DO i = 0, (nx+1)/2 |
---|
[1322] | 567 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 568 | ENDDO |
---|
| 569 | DO i = 1, (nx+1)/2 - 1 |
---|
| 570 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 571 | ENDDO |
---|
| 572 | |
---|
| 573 | ELSE |
---|
| 574 | |
---|
| 575 | DO i = 0, (nx+1)/2 |
---|
[1322] | 576 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 577 | ENDDO |
---|
| 578 | DO i = 1, (nx+1)/2 - 1 |
---|
| 579 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 580 | ENDDO |
---|
| 581 | |
---|
| 582 | ENDIF |
---|
| 583 | |
---|
[1210] | 584 | ENDDO |
---|
| 585 | ENDDO |
---|
| 586 | !$OMP END PARALLEL |
---|
| 587 | |
---|
[1216] | 588 | ELSE |
---|
[1210] | 589 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 590 | !$OMP DO |
---|
| 591 | DO k = nzb_x, nzt_x |
---|
| 592 | DO j = nys_x, nyn_x |
---|
| 593 | |
---|
[1216] | 594 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 595 | |
---|
[1392] | 596 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 597 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 598 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
| 599 | KIND=wp ) |
---|
[1216] | 600 | ENDDO |
---|
[1392] | 601 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
| 602 | KIND=wp ) |
---|
[1216] | 603 | |
---|
| 604 | ELSE |
---|
| 605 | |
---|
[1392] | 606 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 607 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 608 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1216] | 609 | ENDDO |
---|
[1392] | 610 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 611 | KIND=wp ) |
---|
[1216] | 612 | |
---|
| 613 | ENDIF |
---|
| 614 | |
---|
[1210] | 615 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 616 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 617 | |
---|
| 618 | ENDDO |
---|
| 619 | ENDDO |
---|
| 620 | !$OMP END PARALLEL |
---|
| 621 | |
---|
[1216] | 622 | ENDIF |
---|
[1210] | 623 | #endif |
---|
| 624 | |
---|
[1106] | 625 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 626 | |
---|
[1815] | 627 | #if defined( __ibm ) |
---|
[1106] | 628 | IF ( forward_fft ) THEN |
---|
| 629 | |
---|
| 630 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 631 | !$OMP DO |
---|
| 632 | DO k = nzb_x, nzt_x |
---|
| 633 | DO j = nys_x, nyn_x |
---|
| 634 | |
---|
[1320] | 635 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 636 | nau1, aux2, nau2 ) |
---|
[1106] | 637 | |
---|
| 638 | DO i = 0, (nx+1)/2 |
---|
| 639 | ar(i,j,k) = work(2*i) |
---|
| 640 | ENDDO |
---|
| 641 | DO i = 1, (nx+1)/2 - 1 |
---|
| 642 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 643 | ENDDO |
---|
| 644 | |
---|
| 645 | ENDDO |
---|
| 646 | ENDDO |
---|
| 647 | !$OMP END PARALLEL |
---|
| 648 | |
---|
| 649 | ELSE |
---|
| 650 | |
---|
| 651 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 652 | !$OMP DO |
---|
| 653 | DO k = nzb_x, nzt_x |
---|
| 654 | DO j = nys_x, nyn_x |
---|
| 655 | |
---|
| 656 | DO i = 0, (nx+1)/2 |
---|
| 657 | work(2*i) = ar(i,j,k) |
---|
| 658 | ENDDO |
---|
| 659 | DO i = 1, (nx+1)/2 - 1 |
---|
| 660 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 661 | ENDDO |
---|
[1342] | 662 | work(1) = 0.0_wp |
---|
| 663 | work(nx+2) = 0.0_wp |
---|
[1106] | 664 | |
---|
[1320] | 665 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 666 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 667 | |
---|
| 668 | DO i = 0, nx |
---|
| 669 | ar(i,j,k) = work(i) |
---|
| 670 | ENDDO |
---|
| 671 | |
---|
| 672 | ENDDO |
---|
| 673 | ENDDO |
---|
| 674 | !$OMP END PARALLEL |
---|
| 675 | |
---|
| 676 | ENDIF |
---|
| 677 | |
---|
| 678 | #elif defined( __nec ) |
---|
| 679 | |
---|
| 680 | IF ( forward_fft ) THEN |
---|
| 681 | |
---|
| 682 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 683 | !$OMP DO |
---|
| 684 | DO k = nzb_x, nzt_x |
---|
| 685 | DO j = nys_x, nyn_x |
---|
| 686 | |
---|
| 687 | work(0:nx) = ar(0:nx,j,k) |
---|
| 688 | |
---|
| 689 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 690 | |
---|
| 691 | DO i = 0, (nx+1)/2 |
---|
| 692 | ar(i,j,k) = work(2*i) |
---|
| 693 | ENDDO |
---|
| 694 | DO i = 1, (nx+1)/2 - 1 |
---|
| 695 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 696 | ENDDO |
---|
| 697 | |
---|
| 698 | ENDDO |
---|
| 699 | ENDDO |
---|
| 700 | !$END OMP PARALLEL |
---|
| 701 | |
---|
| 702 | ELSE |
---|
| 703 | |
---|
| 704 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 705 | !$OMP DO |
---|
| 706 | DO k = nzb_x, nzt_x |
---|
| 707 | DO j = nys_x, nyn_x |
---|
| 708 | |
---|
| 709 | DO i = 0, (nx+1)/2 |
---|
| 710 | work(2*i) = ar(i,j,k) |
---|
| 711 | ENDDO |
---|
| 712 | DO i = 1, (nx+1)/2 - 1 |
---|
| 713 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 714 | ENDDO |
---|
[1342] | 715 | work(1) = 0.0_wp |
---|
| 716 | work(nx+2) = 0.0_wp |
---|
[1106] | 717 | |
---|
| 718 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 719 | |
---|
| 720 | ar(0:nx,j,k) = work(0:nx) |
---|
| 721 | |
---|
| 722 | ENDDO |
---|
| 723 | ENDDO |
---|
| 724 | !$OMP END PARALLEL |
---|
| 725 | |
---|
| 726 | ENDIF |
---|
| 727 | |
---|
| 728 | #endif |
---|
| 729 | |
---|
| 730 | ENDIF |
---|
| 731 | |
---|
| 732 | END SUBROUTINE fft_x |
---|
| 733 | |
---|
[1682] | 734 | !------------------------------------------------------------------------------! |
---|
| 735 | ! Description: |
---|
| 736 | ! ------------ |
---|
| 737 | !> Fourier-transformation along x-direction. |
---|
| 738 | !> Version for 1D-decomposition. |
---|
| 739 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 740 | !> system-specific routines, if they are available |
---|
| 741 | !------------------------------------------------------------------------------! |
---|
| 742 | |
---|
[1106] | 743 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 744 | |
---|
| 745 | |
---|
| 746 | IMPLICIT NONE |
---|
| 747 | |
---|
[1682] | 748 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 749 | |
---|
[1682] | 750 | INTEGER(iwp) :: i !< |
---|
| 751 | INTEGER(iwp) :: ishape(1) !< |
---|
[1] | 752 | |
---|
[1682] | 753 | LOGICAL :: forward_fft !< |
---|
[1106] | 754 | |
---|
[1682] | 755 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
| 756 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 757 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 758 | |
---|
[1682] | 759 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 760 | |
---|
[1] | 761 | #if defined( __ibm ) |
---|
[1682] | 762 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 763 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1] | 764 | #elif defined( __nec ) |
---|
[1682] | 765 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1] | 766 | #endif |
---|
| 767 | |
---|
[1106] | 768 | IF ( direction == 'forward' ) THEN |
---|
| 769 | forward_fft = .TRUE. |
---|
| 770 | ELSE |
---|
| 771 | forward_fft = .FALSE. |
---|
| 772 | ENDIF |
---|
| 773 | |
---|
[1] | 774 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 775 | |
---|
| 776 | ! |
---|
| 777 | !-- Performing the fft with singleton's software works on every system, |
---|
| 778 | !-- since it is part of the model |
---|
| 779 | ALLOCATE( cwork(0:nx) ) |
---|
| 780 | |
---|
[1106] | 781 | IF ( forward_fft ) then |
---|
[1] | 782 | |
---|
| 783 | DO i = 0, nx |
---|
[1392] | 784 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
[1] | 785 | ENDDO |
---|
| 786 | ishape = SHAPE( cwork ) |
---|
| 787 | CALL FFTN( cwork, ishape ) |
---|
| 788 | DO i = 0, (nx+1)/2 |
---|
[1322] | 789 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 790 | ENDDO |
---|
| 791 | DO i = 1, (nx+1)/2 - 1 |
---|
| 792 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 793 | ENDDO |
---|
| 794 | |
---|
| 795 | ELSE |
---|
| 796 | |
---|
[1392] | 797 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 798 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 799 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
| 800 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1] | 801 | ENDDO |
---|
[1392] | 802 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 803 | |
---|
| 804 | ishape = SHAPE( cwork ) |
---|
| 805 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 806 | |
---|
| 807 | DO i = 0, nx |
---|
[1322] | 808 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 809 | ENDDO |
---|
| 810 | |
---|
| 811 | ENDIF |
---|
| 812 | |
---|
| 813 | DEALLOCATE( cwork ) |
---|
| 814 | |
---|
| 815 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 816 | |
---|
| 817 | ! |
---|
| 818 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 819 | !-- since it is part of the model |
---|
[1106] | 820 | IF ( forward_fft ) THEN |
---|
[1] | 821 | |
---|
| 822 | work(0:nx) = ar |
---|
| 823 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 824 | |
---|
| 825 | DO i = 0, (nx+1)/2 |
---|
| 826 | ar(i) = work(2*i) |
---|
| 827 | ENDDO |
---|
| 828 | DO i = 1, (nx+1)/2 - 1 |
---|
| 829 | ar(nx+1-i) = work(2*i+1) |
---|
| 830 | ENDDO |
---|
| 831 | |
---|
| 832 | ELSE |
---|
| 833 | |
---|
| 834 | DO i = 0, (nx+1)/2 |
---|
| 835 | work(2*i) = ar(i) |
---|
| 836 | ENDDO |
---|
| 837 | DO i = 1, (nx+1)/2 - 1 |
---|
| 838 | work(2*i+1) = ar(nx+1-i) |
---|
| 839 | ENDDO |
---|
[1342] | 840 | work(1) = 0.0_wp |
---|
| 841 | work(nx+2) = 0.0_wp |
---|
[1] | 842 | |
---|
| 843 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 844 | ar = work(0:nx) |
---|
| 845 | |
---|
| 846 | ENDIF |
---|
| 847 | |
---|
[1216] | 848 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 849 | |
---|
| 850 | #if defined( __fftw ) |
---|
| 851 | IF ( forward_fft ) THEN |
---|
| 852 | |
---|
| 853 | x_in(0:nx) = ar(0:nx) |
---|
| 854 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 855 | |
---|
| 856 | DO i = 0, (nx+1)/2 |
---|
[1322] | 857 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 858 | ENDDO |
---|
| 859 | DO i = 1, (nx+1)/2 - 1 |
---|
| 860 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 861 | ENDDO |
---|
| 862 | |
---|
| 863 | ELSE |
---|
| 864 | |
---|
[1392] | 865 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 866 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 867 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1216] | 868 | ENDDO |
---|
[1392] | 869 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 870 | |
---|
| 871 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 872 | ar(0:nx) = x_in(0:nx) |
---|
| 873 | |
---|
| 874 | ENDIF |
---|
| 875 | #endif |
---|
| 876 | |
---|
[1] | 877 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 878 | |
---|
[1815] | 879 | #if defined( __ibm ) |
---|
[1106] | 880 | IF ( forward_fft ) THEN |
---|
[1] | 881 | |
---|
[1320] | 882 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 883 | aux2, nau2 ) |
---|
| 884 | |
---|
| 885 | DO i = 0, (nx+1)/2 |
---|
| 886 | ar(i) = work(2*i) |
---|
| 887 | ENDDO |
---|
| 888 | DO i = 1, (nx+1)/2 - 1 |
---|
| 889 | ar(nx+1-i) = work(2*i+1) |
---|
| 890 | ENDDO |
---|
| 891 | |
---|
| 892 | ELSE |
---|
| 893 | |
---|
| 894 | DO i = 0, (nx+1)/2 |
---|
| 895 | work(2*i) = ar(i) |
---|
| 896 | ENDDO |
---|
| 897 | DO i = 1, (nx+1)/2 - 1 |
---|
| 898 | work(2*i+1) = ar(nx+1-i) |
---|
| 899 | ENDDO |
---|
[1342] | 900 | work(1) = 0.0_wp |
---|
| 901 | work(nx+2) = 0.0_wp |
---|
[1] | 902 | |
---|
[1106] | 903 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 904 | aux4, nau2 ) |
---|
| 905 | |
---|
| 906 | DO i = 0, nx |
---|
| 907 | ar(i) = work(i) |
---|
| 908 | ENDDO |
---|
| 909 | |
---|
| 910 | ENDIF |
---|
| 911 | #elif defined( __nec ) |
---|
[1106] | 912 | IF ( forward_fft ) THEN |
---|
[1] | 913 | |
---|
| 914 | work(0:nx) = ar(0:nx) |
---|
| 915 | |
---|
[1106] | 916 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 917 | |
---|
[1] | 918 | DO i = 0, (nx+1)/2 |
---|
| 919 | ar(i) = work(2*i) |
---|
| 920 | ENDDO |
---|
| 921 | DO i = 1, (nx+1)/2 - 1 |
---|
| 922 | ar(nx+1-i) = work(2*i+1) |
---|
| 923 | ENDDO |
---|
| 924 | |
---|
| 925 | ELSE |
---|
| 926 | |
---|
| 927 | DO i = 0, (nx+1)/2 |
---|
| 928 | work(2*i) = ar(i) |
---|
| 929 | ENDDO |
---|
| 930 | DO i = 1, (nx+1)/2 - 1 |
---|
| 931 | work(2*i+1) = ar(nx+1-i) |
---|
| 932 | ENDDO |
---|
[1342] | 933 | work(1) = 0.0_wp |
---|
| 934 | work(nx+2) = 0.0_wp |
---|
[1] | 935 | |
---|
[1106] | 936 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 937 | |
---|
| 938 | ar(0:nx) = work(0:nx) |
---|
| 939 | |
---|
| 940 | ENDIF |
---|
| 941 | #endif |
---|
| 942 | |
---|
| 943 | ENDIF |
---|
| 944 | |
---|
[1106] | 945 | END SUBROUTINE fft_x_1d |
---|
[1] | 946 | |
---|
[1682] | 947 | !------------------------------------------------------------------------------! |
---|
| 948 | ! Description: |
---|
| 949 | ! ------------ |
---|
| 950 | !> Fourier-transformation along y-direction. |
---|
| 951 | !> Version for 2D-decomposition. |
---|
| 952 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 953 | !> system-specific routines, if they are available. |
---|
| 954 | !> |
---|
| 955 | !> direction: 'forward' or 'backward' |
---|
| 956 | !> ar, ar_tr: 3D data arrays |
---|
| 957 | !> forward: ar: before ar_tr: after transformation |
---|
| 958 | !> backward: ar_tr: before ar: after transfosition |
---|
| 959 | !> |
---|
| 960 | !> In case of non-overlapping transposition/transformation: |
---|
| 961 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
| 962 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
| 963 | !> |
---|
| 964 | !> In case of overlapping transposition/transformation |
---|
| 965 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
| 966 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
| 967 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
| 968 | !> transformation is carried out for a 2D-plane only. |
---|
| 969 | !------------------------------------------------------------------------------! |
---|
| 970 | |
---|
[1216] | 971 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 972 | nxr_y_l ) |
---|
[1] | 973 | |
---|
| 974 | |
---|
| 975 | IMPLICIT NONE |
---|
| 976 | |
---|
[1682] | 977 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 978 | |
---|
[1682] | 979 | INTEGER(iwp) :: i !< |
---|
| 980 | INTEGER(iwp) :: j !< |
---|
| 981 | INTEGER(iwp) :: jshape(1) !< |
---|
| 982 | INTEGER(iwp) :: k !< |
---|
| 983 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 984 | INTEGER(iwp) :: nxl_y_l !< |
---|
| 985 | INTEGER(iwp) :: nxr_y_bound !< |
---|
| 986 | INTEGER(iwp) :: nxr_y_l !< |
---|
[1106] | 987 | |
---|
[1682] | 988 | LOGICAL :: forward_fft !< |
---|
[1106] | 989 | |
---|
[1682] | 990 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 991 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 992 | |
---|
[1682] | 993 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 994 | |
---|
[1106] | 995 | #if defined( __ibm ) |
---|
[1682] | 996 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 997 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1106] | 998 | #elif defined( __nec ) |
---|
[1682] | 999 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1106] | 1000 | #endif |
---|
| 1001 | |
---|
[1320] | 1002 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
[1682] | 1003 | ar !< |
---|
[1320] | 1004 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
[1682] | 1005 | ar_tr !< |
---|
[1320] | 1006 | |
---|
[1106] | 1007 | IF ( direction == 'forward' ) THEN |
---|
| 1008 | forward_fft = .TRUE. |
---|
| 1009 | ELSE |
---|
| 1010 | forward_fft = .FALSE. |
---|
| 1011 | ENDIF |
---|
| 1012 | |
---|
| 1013 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1014 | |
---|
| 1015 | ! |
---|
| 1016 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1017 | !-- since it is part of the model |
---|
| 1018 | ALLOCATE( cwork(0:ny) ) |
---|
| 1019 | |
---|
| 1020 | IF ( forward_fft ) then |
---|
| 1021 | |
---|
| 1022 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1023 | !$OMP DO |
---|
| 1024 | DO k = nzb_y, nzt_y |
---|
[1216] | 1025 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1026 | |
---|
| 1027 | DO j = 0, ny |
---|
[1392] | 1028 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
[1106] | 1029 | ENDDO |
---|
| 1030 | |
---|
| 1031 | jshape = SHAPE( cwork ) |
---|
| 1032 | CALL FFTN( cwork, jshape ) |
---|
| 1033 | |
---|
| 1034 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1035 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1036 | ENDDO |
---|
| 1037 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1038 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1039 | ENDDO |
---|
| 1040 | |
---|
| 1041 | ENDDO |
---|
| 1042 | ENDDO |
---|
| 1043 | !$OMP END PARALLEL |
---|
| 1044 | |
---|
| 1045 | ELSE |
---|
| 1046 | |
---|
| 1047 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1048 | !$OMP DO |
---|
| 1049 | DO k = nzb_y, nzt_y |
---|
[1216] | 1050 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1051 | |
---|
[1392] | 1052 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1053 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1054 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
| 1055 | KIND=wp ) |
---|
| 1056 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1057 | KIND=wp ) |
---|
[1106] | 1058 | ENDDO |
---|
[1392] | 1059 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1060 | KIND=wp ) |
---|
[1106] | 1061 | |
---|
| 1062 | jshape = SHAPE( cwork ) |
---|
| 1063 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1064 | |
---|
| 1065 | DO j = 0, ny |
---|
[1322] | 1066 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1067 | ENDDO |
---|
| 1068 | |
---|
| 1069 | ENDDO |
---|
| 1070 | ENDDO |
---|
| 1071 | !$OMP END PARALLEL |
---|
| 1072 | |
---|
| 1073 | ENDIF |
---|
| 1074 | |
---|
| 1075 | DEALLOCATE( cwork ) |
---|
| 1076 | |
---|
| 1077 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1078 | |
---|
| 1079 | ! |
---|
| 1080 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1081 | !-- since it is part of the model |
---|
| 1082 | IF ( forward_fft ) THEN |
---|
| 1083 | |
---|
[1304] | 1084 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1085 | !$OMP DO |
---|
| 1086 | DO k = nzb_y, nzt_y |
---|
[1216] | 1087 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1088 | |
---|
| 1089 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1090 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1091 | |
---|
| 1092 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1093 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1094 | ENDDO |
---|
| 1095 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1096 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1097 | ENDDO |
---|
| 1098 | |
---|
| 1099 | ENDDO |
---|
| 1100 | ENDDO |
---|
| 1101 | !$OMP END PARALLEL |
---|
| 1102 | |
---|
| 1103 | ELSE |
---|
| 1104 | |
---|
[1304] | 1105 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1106 | !$OMP DO |
---|
| 1107 | DO k = nzb_y, nzt_y |
---|
[1216] | 1108 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1109 | |
---|
| 1110 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1111 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1112 | ENDDO |
---|
| 1113 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1114 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1115 | ENDDO |
---|
[1342] | 1116 | work(1) = 0.0_wp |
---|
| 1117 | work(ny+2) = 0.0_wp |
---|
[1106] | 1118 | |
---|
| 1119 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1120 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1121 | |
---|
| 1122 | ENDDO |
---|
| 1123 | ENDDO |
---|
| 1124 | !$OMP END PARALLEL |
---|
| 1125 | |
---|
| 1126 | ENDIF |
---|
| 1127 | |
---|
[1210] | 1128 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1129 | |
---|
| 1130 | #if defined( __fftw ) |
---|
| 1131 | IF ( forward_fft ) THEN |
---|
| 1132 | |
---|
| 1133 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1134 | !$OMP DO |
---|
| 1135 | DO k = nzb_y, nzt_y |
---|
[1216] | 1136 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1137 | |
---|
| 1138 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1139 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1140 | |
---|
| 1141 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1142 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1143 | ENDDO |
---|
| 1144 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1145 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1146 | ENDDO |
---|
| 1147 | |
---|
| 1148 | ENDDO |
---|
| 1149 | ENDDO |
---|
| 1150 | !$OMP END PARALLEL |
---|
| 1151 | |
---|
| 1152 | ELSE |
---|
| 1153 | |
---|
| 1154 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1155 | !$OMP DO |
---|
| 1156 | DO k = nzb_y, nzt_y |
---|
[1216] | 1157 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1158 | |
---|
[1392] | 1159 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1160 | DO j = 1, (ny+1)/2 - 1 |
---|
[1398] | 1161 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1162 | KIND=wp ) |
---|
[1210] | 1163 | ENDDO |
---|
[1392] | 1164 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1165 | KIND=wp ) |
---|
[1210] | 1166 | |
---|
| 1167 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1168 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1169 | |
---|
| 1170 | ENDDO |
---|
| 1171 | ENDDO |
---|
| 1172 | !$OMP END PARALLEL |
---|
| 1173 | |
---|
| 1174 | ENDIF |
---|
| 1175 | #endif |
---|
| 1176 | |
---|
[1106] | 1177 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1178 | |
---|
[1815] | 1179 | #if defined( __ibm ) |
---|
[1106] | 1180 | IF ( forward_fft) THEN |
---|
| 1181 | |
---|
| 1182 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1183 | !$OMP DO |
---|
| 1184 | DO k = nzb_y, nzt_y |
---|
[1216] | 1185 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1186 | |
---|
[1320] | 1187 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1188 | nau1, auy2, nau2 ) |
---|
[1106] | 1189 | |
---|
| 1190 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1191 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1192 | ENDDO |
---|
| 1193 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1194 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1195 | ENDDO |
---|
| 1196 | |
---|
| 1197 | ENDDO |
---|
| 1198 | ENDDO |
---|
| 1199 | !$OMP END PARALLEL |
---|
| 1200 | |
---|
| 1201 | ELSE |
---|
| 1202 | |
---|
| 1203 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1204 | !$OMP DO |
---|
| 1205 | DO k = nzb_y, nzt_y |
---|
[1216] | 1206 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1207 | |
---|
| 1208 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1209 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1210 | ENDDO |
---|
| 1211 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1212 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1213 | ENDDO |
---|
[1342] | 1214 | work(1) = 0.0_wp |
---|
| 1215 | work(ny+2) = 0.0_wp |
---|
[1106] | 1216 | |
---|
[1320] | 1217 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1218 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1219 | |
---|
| 1220 | DO j = 0, ny |
---|
| 1221 | ar(j,i,k) = work(j) |
---|
| 1222 | ENDDO |
---|
| 1223 | |
---|
| 1224 | ENDDO |
---|
| 1225 | ENDDO |
---|
| 1226 | !$OMP END PARALLEL |
---|
| 1227 | |
---|
| 1228 | ENDIF |
---|
| 1229 | #elif defined( __nec ) |
---|
| 1230 | IF ( forward_fft ) THEN |
---|
| 1231 | |
---|
| 1232 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1233 | !$OMP DO |
---|
| 1234 | DO k = nzb_y, nzt_y |
---|
[1216] | 1235 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1236 | |
---|
| 1237 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1238 | |
---|
| 1239 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1240 | |
---|
| 1241 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1242 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1243 | ENDDO |
---|
| 1244 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1245 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1246 | ENDDO |
---|
| 1247 | |
---|
| 1248 | ENDDO |
---|
| 1249 | ENDDO |
---|
| 1250 | !$END OMP PARALLEL |
---|
| 1251 | |
---|
| 1252 | ELSE |
---|
| 1253 | |
---|
| 1254 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1255 | !$OMP DO |
---|
| 1256 | DO k = nzb_y, nzt_y |
---|
[1216] | 1257 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1258 | |
---|
| 1259 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1260 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1261 | ENDDO |
---|
| 1262 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1263 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1264 | ENDDO |
---|
[1342] | 1265 | work(1) = 0.0_wp |
---|
| 1266 | work(ny+2) = 0.0_wp |
---|
[1106] | 1267 | |
---|
| 1268 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1269 | |
---|
| 1270 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1271 | |
---|
| 1272 | ENDDO |
---|
| 1273 | ENDDO |
---|
| 1274 | !$OMP END PARALLEL |
---|
| 1275 | |
---|
| 1276 | ENDIF |
---|
| 1277 | #endif |
---|
| 1278 | |
---|
| 1279 | ENDIF |
---|
| 1280 | |
---|
| 1281 | END SUBROUTINE fft_y |
---|
| 1282 | |
---|
[1682] | 1283 | !------------------------------------------------------------------------------! |
---|
| 1284 | ! Description: |
---|
| 1285 | ! ------------ |
---|
| 1286 | !> Fourier-transformation along y-direction. |
---|
| 1287 | !> Version for 1D-decomposition. |
---|
| 1288 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1289 | !> system-specific routines, if they are available. |
---|
| 1290 | !------------------------------------------------------------------------------! |
---|
| 1291 | |
---|
[1106] | 1292 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1293 | |
---|
| 1294 | |
---|
| 1295 | IMPLICIT NONE |
---|
| 1296 | |
---|
| 1297 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1298 | |
---|
[1682] | 1299 | INTEGER(iwp) :: j !< |
---|
| 1300 | INTEGER(iwp) :: jshape(1) !< |
---|
[1] | 1301 | |
---|
[1682] | 1302 | LOGICAL :: forward_fft !< |
---|
[1106] | 1303 | |
---|
[1682] | 1304 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
| 1305 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1306 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1307 | |
---|
[1682] | 1308 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1309 | |
---|
[1] | 1310 | #if defined( __ibm ) |
---|
[1682] | 1311 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1312 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 1313 | #elif defined( __nec ) |
---|
[1682] | 1314 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1] | 1315 | #endif |
---|
| 1316 | |
---|
[1106] | 1317 | IF ( direction == 'forward' ) THEN |
---|
| 1318 | forward_fft = .TRUE. |
---|
| 1319 | ELSE |
---|
| 1320 | forward_fft = .FALSE. |
---|
| 1321 | ENDIF |
---|
| 1322 | |
---|
[1] | 1323 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1324 | |
---|
| 1325 | ! |
---|
| 1326 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1327 | !-- since it is part of the model |
---|
| 1328 | ALLOCATE( cwork(0:ny) ) |
---|
| 1329 | |
---|
[1106] | 1330 | IF ( forward_fft ) THEN |
---|
[1] | 1331 | |
---|
| 1332 | DO j = 0, ny |
---|
[1392] | 1333 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
[1] | 1334 | ENDDO |
---|
| 1335 | |
---|
| 1336 | jshape = SHAPE( cwork ) |
---|
| 1337 | CALL FFTN( cwork, jshape ) |
---|
| 1338 | |
---|
| 1339 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1340 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1341 | ENDDO |
---|
| 1342 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1343 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1344 | ENDDO |
---|
| 1345 | |
---|
| 1346 | ELSE |
---|
| 1347 | |
---|
[1392] | 1348 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 1349 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1350 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
| 1351 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1] | 1352 | ENDDO |
---|
[1392] | 1353 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 1354 | |
---|
| 1355 | jshape = SHAPE( cwork ) |
---|
| 1356 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1357 | |
---|
| 1358 | DO j = 0, ny |
---|
[1322] | 1359 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1360 | ENDDO |
---|
| 1361 | |
---|
| 1362 | ENDIF |
---|
| 1363 | |
---|
| 1364 | DEALLOCATE( cwork ) |
---|
| 1365 | |
---|
| 1366 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1367 | |
---|
| 1368 | ! |
---|
| 1369 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1370 | !-- since it is part of the model |
---|
[1106] | 1371 | IF ( forward_fft ) THEN |
---|
[1] | 1372 | |
---|
| 1373 | work(0:ny) = ar |
---|
| 1374 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1375 | |
---|
| 1376 | DO j = 0, (ny+1)/2 |
---|
| 1377 | ar(j) = work(2*j) |
---|
| 1378 | ENDDO |
---|
| 1379 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1380 | ar(ny+1-j) = work(2*j+1) |
---|
| 1381 | ENDDO |
---|
| 1382 | |
---|
| 1383 | ELSE |
---|
| 1384 | |
---|
| 1385 | DO j = 0, (ny+1)/2 |
---|
| 1386 | work(2*j) = ar(j) |
---|
| 1387 | ENDDO |
---|
| 1388 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1389 | work(2*j+1) = ar(ny+1-j) |
---|
| 1390 | ENDDO |
---|
[1342] | 1391 | work(1) = 0.0_wp |
---|
| 1392 | work(ny+2) = 0.0_wp |
---|
[1] | 1393 | |
---|
| 1394 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1395 | ar = work(0:ny) |
---|
| 1396 | |
---|
| 1397 | ENDIF |
---|
| 1398 | |
---|
[1216] | 1399 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1400 | |
---|
| 1401 | #if defined( __fftw ) |
---|
| 1402 | IF ( forward_fft ) THEN |
---|
| 1403 | |
---|
| 1404 | y_in(0:ny) = ar(0:ny) |
---|
| 1405 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1406 | |
---|
| 1407 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1408 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1409 | ENDDO |
---|
| 1410 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1411 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1412 | ENDDO |
---|
| 1413 | |
---|
| 1414 | ELSE |
---|
| 1415 | |
---|
[1392] | 1416 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 1417 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1418 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1216] | 1419 | ENDDO |
---|
[1392] | 1420 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 1421 | |
---|
| 1422 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1423 | ar(0:ny) = y_in(0:ny) |
---|
| 1424 | |
---|
| 1425 | ENDIF |
---|
| 1426 | #endif |
---|
| 1427 | |
---|
[1] | 1428 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1429 | |
---|
[1815] | 1430 | #if defined( __ibm ) |
---|
[1106] | 1431 | IF ( forward_fft ) THEN |
---|
[1] | 1432 | |
---|
[1320] | 1433 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1434 | auy2, nau2 ) |
---|
| 1435 | |
---|
| 1436 | DO j = 0, (ny+1)/2 |
---|
| 1437 | ar(j) = work(2*j) |
---|
| 1438 | ENDDO |
---|
| 1439 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1440 | ar(ny+1-j) = work(2*j+1) |
---|
| 1441 | ENDDO |
---|
| 1442 | |
---|
| 1443 | ELSE |
---|
| 1444 | |
---|
| 1445 | DO j = 0, (ny+1)/2 |
---|
| 1446 | work(2*j) = ar(j) |
---|
| 1447 | ENDDO |
---|
| 1448 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1449 | work(2*j+1) = ar(ny+1-j) |
---|
| 1450 | ENDDO |
---|
[1342] | 1451 | work(1) = 0.0_wp |
---|
| 1452 | work(ny+2) = 0.0_wp |
---|
[1] | 1453 | |
---|
[1320] | 1454 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1455 | nau1, auy4, nau2 ) |
---|
[1] | 1456 | |
---|
| 1457 | DO j = 0, ny |
---|
| 1458 | ar(j) = work(j) |
---|
| 1459 | ENDDO |
---|
| 1460 | |
---|
| 1461 | ENDIF |
---|
| 1462 | #elif defined( __nec ) |
---|
[1106] | 1463 | IF ( forward_fft ) THEN |
---|
[1] | 1464 | |
---|
| 1465 | work(0:ny) = ar(0:ny) |
---|
| 1466 | |
---|
[1106] | 1467 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1468 | |
---|
| 1469 | DO j = 0, (ny+1)/2 |
---|
| 1470 | ar(j) = work(2*j) |
---|
| 1471 | ENDDO |
---|
| 1472 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1473 | ar(ny+1-j) = work(2*j+1) |
---|
| 1474 | ENDDO |
---|
| 1475 | |
---|
| 1476 | ELSE |
---|
| 1477 | |
---|
| 1478 | DO j = 0, (ny+1)/2 |
---|
| 1479 | work(2*j) = ar(j) |
---|
| 1480 | ENDDO |
---|
| 1481 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1482 | work(2*j+1) = ar(ny+1-j) |
---|
| 1483 | ENDDO |
---|
[1342] | 1484 | work(1) = 0.0_wp |
---|
| 1485 | work(ny+2) = 0.0_wp |
---|
[1] | 1486 | |
---|
[1106] | 1487 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1488 | |
---|
| 1489 | ar(0:ny) = work(0:ny) |
---|
| 1490 | |
---|
| 1491 | ENDIF |
---|
| 1492 | #endif |
---|
| 1493 | |
---|
| 1494 | ENDIF |
---|
| 1495 | |
---|
[1106] | 1496 | END SUBROUTINE fft_y_1d |
---|
[1] | 1497 | |
---|
[1682] | 1498 | !------------------------------------------------------------------------------! |
---|
| 1499 | ! Description: |
---|
| 1500 | ! ------------ |
---|
| 1501 | !> Fourier-transformation along x-direction. |
---|
| 1502 | !> Version for 1d domain decomposition |
---|
| 1503 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1504 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1505 | !------------------------------------------------------------------------------! |
---|
| 1506 | |
---|
[1] | 1507 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1508 | |
---|
| 1509 | |
---|
| 1510 | IMPLICIT NONE |
---|
| 1511 | |
---|
[1682] | 1512 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1513 | |
---|
[1682] | 1514 | INTEGER(iwp) :: i !< |
---|
| 1515 | INTEGER(iwp) :: k !< |
---|
| 1516 | INTEGER(iwp) :: siza !< |
---|
[2300] | 1517 | INTEGER(iwp) :: sizw !< required on NEC only |
---|
[1] | 1518 | |
---|
[1682] | 1519 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 1520 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
| 1521 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
[1320] | 1522 | |
---|
[2300] | 1523 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work !< required on NEC only |
---|
[1] | 1524 | |
---|
| 1525 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1526 | |
---|
| 1527 | siza = SIZE( ai, 1 ) |
---|
| 1528 | |
---|
| 1529 | IF ( direction == 'forward') THEN |
---|
| 1530 | |
---|
| 1531 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1532 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1533 | |
---|
| 1534 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1535 | |
---|
| 1536 | DO k = 1, nz |
---|
| 1537 | DO i = 0, (nx+1)/2 |
---|
| 1538 | ar(i,k) = ai(2*i,k) |
---|
| 1539 | ENDDO |
---|
| 1540 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1541 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1542 | ENDDO |
---|
| 1543 | ENDDO |
---|
| 1544 | |
---|
| 1545 | ELSE |
---|
| 1546 | |
---|
| 1547 | DO k = 1, nz |
---|
| 1548 | DO i = 0, (nx+1)/2 |
---|
| 1549 | ai(2*i,k) = ar(i,k) |
---|
| 1550 | ENDDO |
---|
| 1551 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1552 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1553 | ENDDO |
---|
[1342] | 1554 | ai(1,k) = 0.0_wp |
---|
| 1555 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1556 | ENDDO |
---|
| 1557 | |
---|
| 1558 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1559 | |
---|
| 1560 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1561 | |
---|
| 1562 | ENDIF |
---|
| 1563 | |
---|
| 1564 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1565 | |
---|
| 1566 | #if defined( __nec ) |
---|
[2300] | 1567 | ALLOCATE( work((nx+4)/2+1,nz+1) ) |
---|
[1] | 1568 | siza = SIZE( ai, 1 ) |
---|
| 1569 | sizw = SIZE( work, 1 ) |
---|
| 1570 | |
---|
| 1571 | IF ( direction == 'forward') THEN |
---|
| 1572 | |
---|
| 1573 | ! |
---|
| 1574 | !-- Tables are initialized once more. This call should not be |
---|
| 1575 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1576 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1577 | trig_xf, work1, 0 ) |
---|
| 1578 | |
---|
| 1579 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1580 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1581 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1582 | ENDIF |
---|
| 1583 | |
---|
[1320] | 1584 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1585 | trig_xf, work1, 0 ) |
---|
| 1586 | |
---|
| 1587 | DO k = 1, nz |
---|
| 1588 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1589 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1590 | ENDDO |
---|
| 1591 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1592 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1593 | ENDDO |
---|
| 1594 | ENDDO |
---|
| 1595 | |
---|
| 1596 | ELSE |
---|
| 1597 | |
---|
| 1598 | ! |
---|
| 1599 | !-- Tables are initialized once more. This call should not be |
---|
| 1600 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1601 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1602 | trig_xb, work1, 0 ) |
---|
| 1603 | |
---|
| 1604 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1605 | work(:,nz1) = 0.0_wp |
---|
[1] | 1606 | ENDIF |
---|
| 1607 | DO k = 1, nz |
---|
[1392] | 1608 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1609 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 1610 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
[1] | 1611 | ENDDO |
---|
[1392] | 1612 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1613 | ENDDO |
---|
| 1614 | |
---|
[1106] | 1615 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1616 | trig_xb, work1, 0 ) |
---|
| 1617 | |
---|
| 1618 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1619 | |
---|
| 1620 | ENDIF |
---|
| 1621 | |
---|
[2300] | 1622 | DEALLOCATE( work ) |
---|
[1] | 1623 | #endif |
---|
| 1624 | |
---|
| 1625 | ENDIF |
---|
| 1626 | |
---|
| 1627 | END SUBROUTINE fft_x_m |
---|
| 1628 | |
---|
[1682] | 1629 | !------------------------------------------------------------------------------! |
---|
| 1630 | ! Description: |
---|
| 1631 | ! ------------ |
---|
| 1632 | !> Fourier-transformation along y-direction. |
---|
| 1633 | !> Version for 1d domain decomposition |
---|
| 1634 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1635 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1636 | !------------------------------------------------------------------------------! |
---|
| 1637 | |
---|
[1] | 1638 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1639 | |
---|
| 1640 | |
---|
| 1641 | IMPLICIT NONE |
---|
| 1642 | |
---|
[1682] | 1643 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1644 | |
---|
[1682] | 1645 | INTEGER(iwp) :: j !< |
---|
| 1646 | INTEGER(iwp) :: k !< |
---|
| 1647 | INTEGER(iwp) :: ny1 !< |
---|
| 1648 | INTEGER(iwp) :: siza !< |
---|
[2300] | 1649 | INTEGER(iwp) :: sizw !< required on NEC only |
---|
[1] | 1650 | |
---|
[1682] | 1651 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
| 1652 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
| 1653 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
[1320] | 1654 | |
---|
[2300] | 1655 | COMPLEX(wp), DIMENSION(:,:), ALLOCATABLE :: work !< required on NEC only |
---|
[1] | 1656 | |
---|
[2300] | 1657 | |
---|
[1] | 1658 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1659 | |
---|
| 1660 | siza = SIZE( ai, 1 ) |
---|
| 1661 | |
---|
| 1662 | IF ( direction == 'forward') THEN |
---|
| 1663 | |
---|
| 1664 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1665 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1666 | |
---|
| 1667 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1668 | |
---|
| 1669 | DO k = 1, nz |
---|
| 1670 | DO j = 0, (ny+1)/2 |
---|
| 1671 | ar(j,k) = ai(2*j,k) |
---|
| 1672 | ENDDO |
---|
| 1673 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1674 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1675 | ENDDO |
---|
| 1676 | ENDDO |
---|
| 1677 | |
---|
| 1678 | ELSE |
---|
| 1679 | |
---|
| 1680 | DO k = 1, nz |
---|
| 1681 | DO j = 0, (ny+1)/2 |
---|
| 1682 | ai(2*j,k) = ar(j,k) |
---|
| 1683 | ENDDO |
---|
| 1684 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1685 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1686 | ENDDO |
---|
[1342] | 1687 | ai(1,k) = 0.0_wp |
---|
| 1688 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1689 | ENDDO |
---|
| 1690 | |
---|
| 1691 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1692 | |
---|
| 1693 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1694 | |
---|
| 1695 | ENDIF |
---|
| 1696 | |
---|
| 1697 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1698 | |
---|
| 1699 | #if defined( __nec ) |
---|
[2300] | 1700 | ALLOCATE( work((ny+4)/2+1,nz+1) ) |
---|
[1] | 1701 | siza = SIZE( ai, 1 ) |
---|
| 1702 | sizw = SIZE( work, 1 ) |
---|
| 1703 | |
---|
| 1704 | IF ( direction == 'forward') THEN |
---|
| 1705 | |
---|
| 1706 | ! |
---|
| 1707 | !-- Tables are initialized once more. This call should not be |
---|
| 1708 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1709 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1710 | trig_yf, work1, 0 ) |
---|
| 1711 | |
---|
| 1712 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1713 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1714 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1715 | ENDIF |
---|
| 1716 | |
---|
[1106] | 1717 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1718 | trig_yf, work1, 0 ) |
---|
| 1719 | |
---|
| 1720 | DO k = 1, nz |
---|
| 1721 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1722 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1723 | ENDDO |
---|
| 1724 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1725 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1726 | ENDDO |
---|
| 1727 | ENDDO |
---|
| 1728 | |
---|
| 1729 | ELSE |
---|
| 1730 | |
---|
| 1731 | ! |
---|
| 1732 | !-- Tables are initialized once more. This call should not be |
---|
| 1733 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1734 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1735 | trig_yb, work1, 0 ) |
---|
| 1736 | |
---|
| 1737 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1738 | work(:,nz1) = 0.0_wp |
---|
[1] | 1739 | ENDIF |
---|
| 1740 | DO k = 1, nz |
---|
[1392] | 1741 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1742 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1743 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
[1] | 1744 | ENDDO |
---|
[1392] | 1745 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1746 | ENDDO |
---|
| 1747 | |
---|
[1106] | 1748 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1749 | trig_yb, work1, 0 ) |
---|
| 1750 | |
---|
| 1751 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1752 | |
---|
| 1753 | ENDIF |
---|
| 1754 | |
---|
[2300] | 1755 | DEALLOCATE( work ) |
---|
[1] | 1756 | #endif |
---|
| 1757 | |
---|
| 1758 | ENDIF |
---|
| 1759 | |
---|
| 1760 | END SUBROUTINE fft_y_m |
---|
| 1761 | |
---|
[1106] | 1762 | |
---|
[1] | 1763 | END MODULE fft_xy |
---|