1 | MODULE fft_xy |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: fft_xy.f90 1258 2013-11-08 16:09:09Z heinze $ |
---|
27 | ! |
---|
28 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
29 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
30 | ! the FORTRAN declaration statement |
---|
31 | ! |
---|
32 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
33 | ! bugfix: use own branch for fftw |
---|
34 | ! |
---|
35 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
36 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
37 | ! transpositions, |
---|
38 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
39 | ! |
---|
40 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
41 | ! fftw added |
---|
42 | ! |
---|
43 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
44 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
45 | ! |
---|
46 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
47 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
48 | ! |
---|
49 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
50 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
51 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
52 | ! used total domain) |
---|
53 | ! |
---|
54 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
55 | ! CUDA fft added |
---|
56 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
57 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
58 | ! |
---|
59 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
60 | ! variable sizw declared for NEC case only |
---|
61 | ! |
---|
62 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
63 | ! code put under GPL (PALM 3.9) |
---|
64 | ! |
---|
65 | ! 274 2009-03-26 15:11:21Z heinze |
---|
66 | ! Output of messages replaced by message handling routine. |
---|
67 | ! |
---|
68 | ! Feb. 2007 |
---|
69 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
70 | ! |
---|
71 | ! Revision 1.4 2006/03/28 12:27:09 raasch |
---|
72 | ! Stop when system-specific fft is selected on NEC. For unknown reasons this |
---|
73 | ! causes a program abort during first allocation in init_grid. |
---|
74 | ! |
---|
75 | ! Revision 1.2 2004/04/30 11:44:27 raasch |
---|
76 | ! Module renamed from fft_for_1d_decomp to fft_xy, 1d-routines renamed to |
---|
77 | ! fft_x and fft_y, |
---|
78 | ! function FFT replaced by subroutine FFTN due to problems with 64-bit |
---|
79 | ! mode on ibm, |
---|
80 | ! shape of array cwork is explicitly stored in ishape/jshape and handled |
---|
81 | ! to routine FFTN instead of shape-function (due to compiler error on |
---|
82 | ! decalpha), |
---|
83 | ! non vectorized FFT for nec included |
---|
84 | ! |
---|
85 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
86 | ! Initial revision |
---|
87 | ! |
---|
88 | ! |
---|
89 | ! Description: |
---|
90 | ! ------------ |
---|
91 | ! Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
92 | ! Original version: Klaus Ketelsen (May 2002) |
---|
93 | !------------------------------------------------------------------------------! |
---|
94 | |
---|
95 | USE control_parameters |
---|
96 | USE indices |
---|
97 | #if defined( __cuda_fft ) |
---|
98 | USE ISO_C_BINDING |
---|
99 | #elif defined( __fftw ) |
---|
100 | USE, INTRINSIC :: ISO_C_BINDING |
---|
101 | #endif |
---|
102 | USE precision_kind |
---|
103 | USE singleton |
---|
104 | USE temperton_fft |
---|
105 | USE transpose_indices |
---|
106 | |
---|
107 | IMPLICIT NONE |
---|
108 | |
---|
109 | PRIVATE |
---|
110 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
111 | |
---|
112 | INTEGER, DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x, ifax_y |
---|
113 | |
---|
114 | LOGICAL, SAVE :: init_fft = .FALSE. |
---|
115 | |
---|
116 | REAL, SAVE :: dnx, dny, sqr_dnx, sqr_dny |
---|
117 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x, trigs_y |
---|
118 | |
---|
119 | #if defined( __ibm ) |
---|
120 | INTEGER, PARAMETER :: nau1 = 20000, nau2 = 22000 |
---|
121 | ! |
---|
122 | !-- The following working arrays contain tables and have to be "save" and |
---|
123 | !-- shared in OpenMP sense |
---|
124 | REAL, DIMENSION(nau1), SAVE :: aux1, auy1, aux3, auy3 |
---|
125 | #elif defined( __nec ) |
---|
126 | INTEGER, SAVE :: nz1 |
---|
127 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb, trig_xf, trig_yb, & |
---|
128 | trig_yf |
---|
129 | #elif defined( __cuda_fft ) |
---|
130 | INTEGER(C_INT), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
131 | INTEGER, SAVE :: total_points_x_transpo, total_points_y_transpo |
---|
132 | #endif |
---|
133 | |
---|
134 | #if defined( __fftw ) |
---|
135 | INCLUDE 'fftw3.f03' |
---|
136 | INTEGER(KIND=C_INT) :: nx_c, ny_c |
---|
137 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out, y_out |
---|
138 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: x_in, y_in |
---|
139 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
140 | #endif |
---|
141 | |
---|
142 | ! |
---|
143 | !-- Public interfaces |
---|
144 | INTERFACE fft_init |
---|
145 | MODULE PROCEDURE fft_init |
---|
146 | END INTERFACE fft_init |
---|
147 | |
---|
148 | INTERFACE fft_x |
---|
149 | MODULE PROCEDURE fft_x |
---|
150 | END INTERFACE fft_x |
---|
151 | |
---|
152 | INTERFACE fft_x_1d |
---|
153 | MODULE PROCEDURE fft_x_1d |
---|
154 | END INTERFACE fft_x_1d |
---|
155 | |
---|
156 | INTERFACE fft_y |
---|
157 | MODULE PROCEDURE fft_y |
---|
158 | END INTERFACE fft_y |
---|
159 | |
---|
160 | INTERFACE fft_y_1d |
---|
161 | MODULE PROCEDURE fft_y_1d |
---|
162 | END INTERFACE fft_y_1d |
---|
163 | |
---|
164 | INTERFACE fft_x_m |
---|
165 | MODULE PROCEDURE fft_x_m |
---|
166 | END INTERFACE fft_x_m |
---|
167 | |
---|
168 | INTERFACE fft_y_m |
---|
169 | MODULE PROCEDURE fft_y_m |
---|
170 | END INTERFACE fft_y_m |
---|
171 | |
---|
172 | CONTAINS |
---|
173 | |
---|
174 | |
---|
175 | SUBROUTINE fft_init |
---|
176 | |
---|
177 | USE cuda_fft_interfaces |
---|
178 | |
---|
179 | IMPLICIT NONE |
---|
180 | |
---|
181 | ! |
---|
182 | !-- The following temporary working arrays have to be on stack or private |
---|
183 | !-- in OpenMP sense |
---|
184 | #if defined( __ibm ) |
---|
185 | REAL, DIMENSION(0:nx+2) :: workx |
---|
186 | REAL, DIMENSION(0:ny+2) :: worky |
---|
187 | REAL, DIMENSION(nau2) :: aux2, auy2, aux4, auy4 |
---|
188 | #elif defined( __nec ) |
---|
189 | REAL, DIMENSION(0:nx+3,nz+1) :: work_x |
---|
190 | REAL, DIMENSION(0:ny+3,nz+1) :: work_y |
---|
191 | REAL, DIMENSION(6*(nx+3),nz+1) :: workx |
---|
192 | REAL, DIMENSION(6*(ny+3),nz+1) :: worky |
---|
193 | #endif |
---|
194 | |
---|
195 | ! |
---|
196 | !-- Return, if already called |
---|
197 | IF ( init_fft ) THEN |
---|
198 | RETURN |
---|
199 | ELSE |
---|
200 | init_fft = .TRUE. |
---|
201 | ENDIF |
---|
202 | |
---|
203 | IF ( fft_method == 'system-specific' ) THEN |
---|
204 | |
---|
205 | dnx = 1.0 / ( nx + 1.0 ) |
---|
206 | dny = 1.0 / ( ny + 1.0 ) |
---|
207 | sqr_dnx = SQRT( dnx ) |
---|
208 | sqr_dny = SQRT( dny ) |
---|
209 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
210 | ! |
---|
211 | !-- Initialize tables for fft along x |
---|
212 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
213 | aux2, nau2 ) |
---|
214 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
215 | aux4, nau2 ) |
---|
216 | ! |
---|
217 | !-- Initialize tables for fft along y |
---|
218 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
219 | auy2, nau2 ) |
---|
220 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
221 | auy4, nau2 ) |
---|
222 | #elif defined( __nec ) |
---|
223 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
224 | '" currently does not work on NEC' |
---|
225 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
226 | |
---|
227 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
228 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
229 | |
---|
230 | work_x = 0.0 |
---|
231 | work_y = 0.0 |
---|
232 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
233 | ! when using the NEC ffts |
---|
234 | |
---|
235 | ! |
---|
236 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
237 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
238 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
239 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
240 | trig_xf, workx, 0 ) |
---|
241 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
242 | trig_xb, workx, 0 ) |
---|
243 | ! |
---|
244 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
245 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
246 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
247 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
248 | trig_yf, worky, 0 ) |
---|
249 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
250 | trig_yb, worky, 0 ) |
---|
251 | #elif defined( __cuda_fft ) |
---|
252 | total_points_x_transpo = (nx+1) * (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) |
---|
253 | total_points_y_transpo = (ny+1) * (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) |
---|
254 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
255 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
256 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
257 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
258 | #else |
---|
259 | message_string = 'no system-specific fft-call available' |
---|
260 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
261 | #endif |
---|
262 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
263 | ! |
---|
264 | !-- Temperton-algorithm |
---|
265 | !-- Initialize tables for fft along x and y |
---|
266 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
267 | |
---|
268 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
269 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
270 | |
---|
271 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
272 | ! |
---|
273 | !-- FFTW |
---|
274 | #if defined( __fftw ) |
---|
275 | nx_c = nx+1 |
---|
276 | ny_c = ny+1 |
---|
277 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
278 | y_out(0:(ny+1)/2) ) |
---|
279 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
280 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
281 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
282 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
283 | #else |
---|
284 | message_string = 'preprocessor switch for fftw is missing' |
---|
285 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
286 | #endif |
---|
287 | |
---|
288 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
289 | |
---|
290 | CONTINUE |
---|
291 | |
---|
292 | ELSE |
---|
293 | |
---|
294 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
295 | '" not available' |
---|
296 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
297 | ENDIF |
---|
298 | |
---|
299 | END SUBROUTINE fft_init |
---|
300 | |
---|
301 | |
---|
302 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
303 | |
---|
304 | !----------------------------------------------------------------------! |
---|
305 | ! fft_x ! |
---|
306 | ! ! |
---|
307 | ! Fourier-transformation along x-direction ! |
---|
308 | ! Version for 2D-decomposition ! |
---|
309 | ! ! |
---|
310 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
311 | ! system-specific routines, if they are available ! |
---|
312 | !----------------------------------------------------------------------! |
---|
313 | |
---|
314 | USE cuda_fft_interfaces |
---|
315 | #if defined( __cuda_fft ) |
---|
316 | USE ISO_C_BINDING |
---|
317 | #endif |
---|
318 | |
---|
319 | IMPLICIT NONE |
---|
320 | |
---|
321 | CHARACTER (LEN=*) :: direction |
---|
322 | INTEGER :: i, ishape(1), j, k |
---|
323 | |
---|
324 | LOGICAL :: forward_fft |
---|
325 | |
---|
326 | REAL, DIMENSION(0:nx+2) :: work |
---|
327 | REAL, DIMENSION(nx+2) :: work1 |
---|
328 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
329 | #if defined( __ibm ) |
---|
330 | REAL, DIMENSION(nau2) :: aux2, aux4 |
---|
331 | #elif defined( __nec ) |
---|
332 | REAL, DIMENSION(6*(nx+1)) :: work2 |
---|
333 | #elif defined( __cuda_fft ) |
---|
334 | COMPLEX(dpk), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: ar_tmp |
---|
335 | !$acc declare create( ar_tmp ) |
---|
336 | #endif |
---|
337 | REAL, DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: ar_2d |
---|
338 | REAL, DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: ar |
---|
339 | |
---|
340 | IF ( direction == 'forward' ) THEN |
---|
341 | forward_fft = .TRUE. |
---|
342 | ELSE |
---|
343 | forward_fft = .FALSE. |
---|
344 | ENDIF |
---|
345 | |
---|
346 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
347 | |
---|
348 | ! |
---|
349 | !-- Performing the fft with singleton's software works on every system, |
---|
350 | !-- since it is part of the model |
---|
351 | ALLOCATE( cwork(0:nx) ) |
---|
352 | |
---|
353 | IF ( forward_fft ) then |
---|
354 | |
---|
355 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
356 | !$OMP DO |
---|
357 | DO k = nzb_x, nzt_x |
---|
358 | DO j = nys_x, nyn_x |
---|
359 | |
---|
360 | DO i = 0, nx |
---|
361 | cwork(i) = CMPLX( ar(i,j,k) ) |
---|
362 | ENDDO |
---|
363 | |
---|
364 | ishape = SHAPE( cwork ) |
---|
365 | CALL FFTN( cwork, ishape ) |
---|
366 | |
---|
367 | DO i = 0, (nx+1)/2 |
---|
368 | ar(i,j,k) = REAL( cwork(i) ) |
---|
369 | ENDDO |
---|
370 | DO i = 1, (nx+1)/2 - 1 |
---|
371 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
372 | ENDDO |
---|
373 | |
---|
374 | ENDDO |
---|
375 | ENDDO |
---|
376 | !$OMP END PARALLEL |
---|
377 | |
---|
378 | ELSE |
---|
379 | |
---|
380 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
381 | !$OMP DO |
---|
382 | DO k = nzb_x, nzt_x |
---|
383 | DO j = nys_x, nyn_x |
---|
384 | |
---|
385 | cwork(0) = CMPLX( ar(0,j,k), 0.0 ) |
---|
386 | DO i = 1, (nx+1)/2 - 1 |
---|
387 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k) ) |
---|
388 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
389 | ENDDO |
---|
390 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
391 | |
---|
392 | ishape = SHAPE( cwork ) |
---|
393 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
394 | |
---|
395 | DO i = 0, nx |
---|
396 | ar(i,j,k) = REAL( cwork(i) ) |
---|
397 | ENDDO |
---|
398 | |
---|
399 | ENDDO |
---|
400 | ENDDO |
---|
401 | !$OMP END PARALLEL |
---|
402 | |
---|
403 | ENDIF |
---|
404 | |
---|
405 | DEALLOCATE( cwork ) |
---|
406 | |
---|
407 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
408 | |
---|
409 | ! |
---|
410 | !-- Performing the fft with Temperton's software works on every system, |
---|
411 | !-- since it is part of the model |
---|
412 | IF ( forward_fft ) THEN |
---|
413 | |
---|
414 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
415 | !$OMP DO |
---|
416 | DO k = nzb_x, nzt_x |
---|
417 | DO j = nys_x, nyn_x |
---|
418 | |
---|
419 | work(0:nx) = ar(0:nx,j,k) |
---|
420 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
421 | |
---|
422 | DO i = 0, (nx+1)/2 |
---|
423 | ar(i,j,k) = work(2*i) |
---|
424 | ENDDO |
---|
425 | DO i = 1, (nx+1)/2 - 1 |
---|
426 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
427 | ENDDO |
---|
428 | |
---|
429 | ENDDO |
---|
430 | ENDDO |
---|
431 | !$OMP END PARALLEL |
---|
432 | |
---|
433 | ELSE |
---|
434 | |
---|
435 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
436 | !$OMP DO |
---|
437 | DO k = nzb_x, nzt_x |
---|
438 | DO j = nys_x, nyn_x |
---|
439 | |
---|
440 | DO i = 0, (nx+1)/2 |
---|
441 | work(2*i) = ar(i,j,k) |
---|
442 | ENDDO |
---|
443 | DO i = 1, (nx+1)/2 - 1 |
---|
444 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
445 | ENDDO |
---|
446 | work(1) = 0.0 |
---|
447 | work(nx+2) = 0.0 |
---|
448 | |
---|
449 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
450 | ar(0:nx,j,k) = work(0:nx) |
---|
451 | |
---|
452 | ENDDO |
---|
453 | ENDDO |
---|
454 | !$OMP END PARALLEL |
---|
455 | |
---|
456 | ENDIF |
---|
457 | |
---|
458 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
459 | |
---|
460 | #if defined( __fftw ) |
---|
461 | IF ( forward_fft ) THEN |
---|
462 | |
---|
463 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
464 | !$OMP DO |
---|
465 | DO k = nzb_x, nzt_x |
---|
466 | DO j = nys_x, nyn_x |
---|
467 | |
---|
468 | x_in(0:nx) = ar(0:nx,j,k) |
---|
469 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
470 | |
---|
471 | IF ( PRESENT( ar_2d ) ) THEN |
---|
472 | |
---|
473 | DO i = 0, (nx+1)/2 |
---|
474 | ar_2d(i,j) = REAL( x_out(i) ) / ( nx+1 ) |
---|
475 | ENDDO |
---|
476 | DO i = 1, (nx+1)/2 - 1 |
---|
477 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
478 | ENDDO |
---|
479 | |
---|
480 | ELSE |
---|
481 | |
---|
482 | DO i = 0, (nx+1)/2 |
---|
483 | ar(i,j,k) = REAL( x_out(i) ) / ( nx+1 ) |
---|
484 | ENDDO |
---|
485 | DO i = 1, (nx+1)/2 - 1 |
---|
486 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
487 | ENDDO |
---|
488 | |
---|
489 | ENDIF |
---|
490 | |
---|
491 | ENDDO |
---|
492 | ENDDO |
---|
493 | !$OMP END PARALLEL |
---|
494 | |
---|
495 | ELSE |
---|
496 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
497 | !$OMP DO |
---|
498 | DO k = nzb_x, nzt_x |
---|
499 | DO j = nys_x, nyn_x |
---|
500 | |
---|
501 | IF ( PRESENT( ar_2d ) ) THEN |
---|
502 | |
---|
503 | x_out(0) = CMPLX( ar_2d(0,j), 0.0 ) |
---|
504 | DO i = 1, (nx+1)/2 - 1 |
---|
505 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j) ) |
---|
506 | ENDDO |
---|
507 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0 ) |
---|
508 | |
---|
509 | ELSE |
---|
510 | |
---|
511 | x_out(0) = CMPLX( ar(0,j,k), 0.0 ) |
---|
512 | DO i = 1, (nx+1)/2 - 1 |
---|
513 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
514 | ENDDO |
---|
515 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
516 | |
---|
517 | ENDIF |
---|
518 | |
---|
519 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
520 | ar(0:nx,j,k) = x_in(0:nx) |
---|
521 | |
---|
522 | ENDDO |
---|
523 | ENDDO |
---|
524 | !$OMP END PARALLEL |
---|
525 | |
---|
526 | ENDIF |
---|
527 | #endif |
---|
528 | |
---|
529 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
530 | |
---|
531 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
532 | IF ( forward_fft ) THEN |
---|
533 | |
---|
534 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
535 | !$OMP DO |
---|
536 | DO k = nzb_x, nzt_x |
---|
537 | DO j = nys_x, nyn_x |
---|
538 | |
---|
539 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
540 | aux2, nau2 ) |
---|
541 | |
---|
542 | DO i = 0, (nx+1)/2 |
---|
543 | ar(i,j,k) = work(2*i) |
---|
544 | ENDDO |
---|
545 | DO i = 1, (nx+1)/2 - 1 |
---|
546 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
547 | ENDDO |
---|
548 | |
---|
549 | ENDDO |
---|
550 | ENDDO |
---|
551 | !$OMP END PARALLEL |
---|
552 | |
---|
553 | ELSE |
---|
554 | |
---|
555 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
556 | !$OMP DO |
---|
557 | DO k = nzb_x, nzt_x |
---|
558 | DO j = nys_x, nyn_x |
---|
559 | |
---|
560 | DO i = 0, (nx+1)/2 |
---|
561 | work(2*i) = ar(i,j,k) |
---|
562 | ENDDO |
---|
563 | DO i = 1, (nx+1)/2 - 1 |
---|
564 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
565 | ENDDO |
---|
566 | work(1) = 0.0 |
---|
567 | work(nx+2) = 0.0 |
---|
568 | |
---|
569 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
570 | aux4, nau2 ) |
---|
571 | |
---|
572 | DO i = 0, nx |
---|
573 | ar(i,j,k) = work(i) |
---|
574 | ENDDO |
---|
575 | |
---|
576 | ENDDO |
---|
577 | ENDDO |
---|
578 | !$OMP END PARALLEL |
---|
579 | |
---|
580 | ENDIF |
---|
581 | |
---|
582 | #elif defined( __nec ) |
---|
583 | |
---|
584 | IF ( forward_fft ) THEN |
---|
585 | |
---|
586 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
587 | !$OMP DO |
---|
588 | DO k = nzb_x, nzt_x |
---|
589 | DO j = nys_x, nyn_x |
---|
590 | |
---|
591 | work(0:nx) = ar(0:nx,j,k) |
---|
592 | |
---|
593 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
594 | |
---|
595 | DO i = 0, (nx+1)/2 |
---|
596 | ar(i,j,k) = work(2*i) |
---|
597 | ENDDO |
---|
598 | DO i = 1, (nx+1)/2 - 1 |
---|
599 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
600 | ENDDO |
---|
601 | |
---|
602 | ENDDO |
---|
603 | ENDDO |
---|
604 | !$END OMP PARALLEL |
---|
605 | |
---|
606 | ELSE |
---|
607 | |
---|
608 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
609 | !$OMP DO |
---|
610 | DO k = nzb_x, nzt_x |
---|
611 | DO j = nys_x, nyn_x |
---|
612 | |
---|
613 | DO i = 0, (nx+1)/2 |
---|
614 | work(2*i) = ar(i,j,k) |
---|
615 | ENDDO |
---|
616 | DO i = 1, (nx+1)/2 - 1 |
---|
617 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
618 | ENDDO |
---|
619 | work(1) = 0.0 |
---|
620 | work(nx+2) = 0.0 |
---|
621 | |
---|
622 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
623 | |
---|
624 | ar(0:nx,j,k) = work(0:nx) |
---|
625 | |
---|
626 | ENDDO |
---|
627 | ENDDO |
---|
628 | !$OMP END PARALLEL |
---|
629 | |
---|
630 | ENDIF |
---|
631 | |
---|
632 | #elif defined( __cuda_fft ) |
---|
633 | |
---|
634 | IF ( forward_fft ) THEN |
---|
635 | |
---|
636 | !$acc data present( ar ) |
---|
637 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
638 | |
---|
639 | !$acc kernels |
---|
640 | DO k = nzb_x, nzt_x |
---|
641 | DO j = nys_x, nyn_x |
---|
642 | |
---|
643 | DO i = 0, (nx+1)/2 |
---|
644 | ar(i,j,k) = REAL( ar_tmp(i,j,k) ) * dnx |
---|
645 | ENDDO |
---|
646 | |
---|
647 | DO i = 1, (nx+1)/2 - 1 |
---|
648 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
649 | ENDDO |
---|
650 | |
---|
651 | ENDDO |
---|
652 | ENDDO |
---|
653 | !$acc end kernels |
---|
654 | !$acc end data |
---|
655 | |
---|
656 | ELSE |
---|
657 | |
---|
658 | !$acc data present( ar ) |
---|
659 | !$acc kernels |
---|
660 | DO k = nzb_x, nzt_x |
---|
661 | DO j = nys_x, nyn_x |
---|
662 | |
---|
663 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0 ) |
---|
664 | |
---|
665 | DO i = 1, (nx+1)/2 - 1 |
---|
666 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
667 | ENDDO |
---|
668 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
669 | |
---|
670 | ENDDO |
---|
671 | ENDDO |
---|
672 | !$acc end kernels |
---|
673 | |
---|
674 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
675 | !$acc end data |
---|
676 | |
---|
677 | ENDIF |
---|
678 | |
---|
679 | #else |
---|
680 | message_string = 'no system-specific fft-call available' |
---|
681 | CALL message( 'fft_x', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
682 | #endif |
---|
683 | |
---|
684 | ELSE |
---|
685 | |
---|
686 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
687 | '" not available' |
---|
688 | CALL message( 'fft_x', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
689 | |
---|
690 | ENDIF |
---|
691 | |
---|
692 | END SUBROUTINE fft_x |
---|
693 | |
---|
694 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
695 | |
---|
696 | !----------------------------------------------------------------------! |
---|
697 | ! fft_x_1d ! |
---|
698 | ! ! |
---|
699 | ! Fourier-transformation along x-direction ! |
---|
700 | ! Version for 1D-decomposition ! |
---|
701 | ! ! |
---|
702 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
703 | ! system-specific routines, if they are available ! |
---|
704 | !----------------------------------------------------------------------! |
---|
705 | |
---|
706 | IMPLICIT NONE |
---|
707 | |
---|
708 | CHARACTER (LEN=*) :: direction |
---|
709 | INTEGER :: i, ishape(1) |
---|
710 | |
---|
711 | LOGICAL :: forward_fft |
---|
712 | |
---|
713 | REAL, DIMENSION(0:nx) :: ar |
---|
714 | REAL, DIMENSION(0:nx+2) :: work |
---|
715 | REAL, DIMENSION(nx+2) :: work1 |
---|
716 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
717 | #if defined( __ibm ) |
---|
718 | REAL, DIMENSION(nau2) :: aux2, aux4 |
---|
719 | #elif defined( __nec ) |
---|
720 | REAL, DIMENSION(6*(nx+1)) :: work2 |
---|
721 | #endif |
---|
722 | |
---|
723 | IF ( direction == 'forward' ) THEN |
---|
724 | forward_fft = .TRUE. |
---|
725 | ELSE |
---|
726 | forward_fft = .FALSE. |
---|
727 | ENDIF |
---|
728 | |
---|
729 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
730 | |
---|
731 | ! |
---|
732 | !-- Performing the fft with singleton's software works on every system, |
---|
733 | !-- since it is part of the model |
---|
734 | ALLOCATE( cwork(0:nx) ) |
---|
735 | |
---|
736 | IF ( forward_fft ) then |
---|
737 | |
---|
738 | DO i = 0, nx |
---|
739 | cwork(i) = CMPLX( ar(i) ) |
---|
740 | ENDDO |
---|
741 | ishape = SHAPE( cwork ) |
---|
742 | CALL FFTN( cwork, ishape ) |
---|
743 | DO i = 0, (nx+1)/2 |
---|
744 | ar(i) = REAL( cwork(i) ) |
---|
745 | ENDDO |
---|
746 | DO i = 1, (nx+1)/2 - 1 |
---|
747 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
748 | ENDDO |
---|
749 | |
---|
750 | ELSE |
---|
751 | |
---|
752 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
753 | DO i = 1, (nx+1)/2 - 1 |
---|
754 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i) ) |
---|
755 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
756 | ENDDO |
---|
757 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0 ) |
---|
758 | |
---|
759 | ishape = SHAPE( cwork ) |
---|
760 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
761 | |
---|
762 | DO i = 0, nx |
---|
763 | ar(i) = REAL( cwork(i) ) |
---|
764 | ENDDO |
---|
765 | |
---|
766 | ENDIF |
---|
767 | |
---|
768 | DEALLOCATE( cwork ) |
---|
769 | |
---|
770 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
771 | |
---|
772 | ! |
---|
773 | !-- Performing the fft with Temperton's software works on every system, |
---|
774 | !-- since it is part of the model |
---|
775 | IF ( forward_fft ) THEN |
---|
776 | |
---|
777 | work(0:nx) = ar |
---|
778 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
779 | |
---|
780 | DO i = 0, (nx+1)/2 |
---|
781 | ar(i) = work(2*i) |
---|
782 | ENDDO |
---|
783 | DO i = 1, (nx+1)/2 - 1 |
---|
784 | ar(nx+1-i) = work(2*i+1) |
---|
785 | ENDDO |
---|
786 | |
---|
787 | ELSE |
---|
788 | |
---|
789 | DO i = 0, (nx+1)/2 |
---|
790 | work(2*i) = ar(i) |
---|
791 | ENDDO |
---|
792 | DO i = 1, (nx+1)/2 - 1 |
---|
793 | work(2*i+1) = ar(nx+1-i) |
---|
794 | ENDDO |
---|
795 | work(1) = 0.0 |
---|
796 | work(nx+2) = 0.0 |
---|
797 | |
---|
798 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
799 | ar = work(0:nx) |
---|
800 | |
---|
801 | ENDIF |
---|
802 | |
---|
803 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
804 | |
---|
805 | #if defined( __fftw ) |
---|
806 | IF ( forward_fft ) THEN |
---|
807 | |
---|
808 | x_in(0:nx) = ar(0:nx) |
---|
809 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
810 | |
---|
811 | DO i = 0, (nx+1)/2 |
---|
812 | ar(i) = REAL( x_out(i) ) / ( nx+1 ) |
---|
813 | ENDDO |
---|
814 | DO i = 1, (nx+1)/2 - 1 |
---|
815 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
816 | ENDDO |
---|
817 | |
---|
818 | ELSE |
---|
819 | |
---|
820 | x_out(0) = CMPLX( ar(0), 0.0 ) |
---|
821 | DO i = 1, (nx+1)/2 - 1 |
---|
822 | x_out(i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
823 | ENDDO |
---|
824 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0 ) |
---|
825 | |
---|
826 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
827 | ar(0:nx) = x_in(0:nx) |
---|
828 | |
---|
829 | ENDIF |
---|
830 | #endif |
---|
831 | |
---|
832 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
833 | |
---|
834 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
835 | IF ( forward_fft ) THEN |
---|
836 | |
---|
837 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
838 | aux2, nau2 ) |
---|
839 | |
---|
840 | DO i = 0, (nx+1)/2 |
---|
841 | ar(i) = work(2*i) |
---|
842 | ENDDO |
---|
843 | DO i = 1, (nx+1)/2 - 1 |
---|
844 | ar(nx+1-i) = work(2*i+1) |
---|
845 | ENDDO |
---|
846 | |
---|
847 | ELSE |
---|
848 | |
---|
849 | DO i = 0, (nx+1)/2 |
---|
850 | work(2*i) = ar(i) |
---|
851 | ENDDO |
---|
852 | DO i = 1, (nx+1)/2 - 1 |
---|
853 | work(2*i+1) = ar(nx+1-i) |
---|
854 | ENDDO |
---|
855 | work(1) = 0.0 |
---|
856 | work(nx+2) = 0.0 |
---|
857 | |
---|
858 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
859 | aux4, nau2 ) |
---|
860 | |
---|
861 | DO i = 0, nx |
---|
862 | ar(i) = work(i) |
---|
863 | ENDDO |
---|
864 | |
---|
865 | ENDIF |
---|
866 | #elif defined( __nec ) |
---|
867 | IF ( forward_fft ) THEN |
---|
868 | |
---|
869 | work(0:nx) = ar(0:nx) |
---|
870 | |
---|
871 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
872 | |
---|
873 | DO i = 0, (nx+1)/2 |
---|
874 | ar(i) = work(2*i) |
---|
875 | ENDDO |
---|
876 | DO i = 1, (nx+1)/2 - 1 |
---|
877 | ar(nx+1-i) = work(2*i+1) |
---|
878 | ENDDO |
---|
879 | |
---|
880 | ELSE |
---|
881 | |
---|
882 | DO i = 0, (nx+1)/2 |
---|
883 | work(2*i) = ar(i) |
---|
884 | ENDDO |
---|
885 | DO i = 1, (nx+1)/2 - 1 |
---|
886 | work(2*i+1) = ar(nx+1-i) |
---|
887 | ENDDO |
---|
888 | work(1) = 0.0 |
---|
889 | work(nx+2) = 0.0 |
---|
890 | |
---|
891 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
892 | |
---|
893 | ar(0:nx) = work(0:nx) |
---|
894 | |
---|
895 | ENDIF |
---|
896 | #else |
---|
897 | message_string = 'no system-specific fft-call available' |
---|
898 | CALL message( 'fft_x_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
899 | #endif |
---|
900 | ELSE |
---|
901 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
902 | '" not available' |
---|
903 | CALL message( 'fft_x_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
904 | |
---|
905 | ENDIF |
---|
906 | |
---|
907 | END SUBROUTINE fft_x_1d |
---|
908 | |
---|
909 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
910 | nxr_y_l ) |
---|
911 | |
---|
912 | !----------------------------------------------------------------------! |
---|
913 | ! fft_y ! |
---|
914 | ! ! |
---|
915 | ! Fourier-transformation along y-direction ! |
---|
916 | ! Version for 2D-decomposition ! |
---|
917 | ! ! |
---|
918 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
919 | ! system-specific routines, if they are available ! |
---|
920 | ! ! |
---|
921 | ! direction: 'forward' or 'backward' ! |
---|
922 | ! ar, ar_tr: 3D data arrays ! |
---|
923 | ! forward: ar: before ar_tr: after transformation ! |
---|
924 | ! backward: ar_tr: before ar: after transfosition ! |
---|
925 | ! ! |
---|
926 | ! In case of non-overlapping transposition/transformation: ! |
---|
927 | ! nxl_y_bound = nxl_y_l = nxl_y ! |
---|
928 | ! nxr_y_bound = nxr_y_l = nxr_y ! |
---|
929 | ! ! |
---|
930 | ! In case of overlapping transposition/transformation ! |
---|
931 | ! - nxl_y_bound and nxr_y_bound have the original values of ! |
---|
932 | ! nxl_y, nxr_y. ar_tr is dimensioned using these values. ! |
---|
933 | ! - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that ! |
---|
934 | ! transformation is carried out for a 2D-plane only. ! |
---|
935 | !----------------------------------------------------------------------! |
---|
936 | |
---|
937 | USE cuda_fft_interfaces |
---|
938 | #if defined( __cuda_fft ) |
---|
939 | USE ISO_C_BINDING |
---|
940 | #endif |
---|
941 | |
---|
942 | IMPLICIT NONE |
---|
943 | |
---|
944 | CHARACTER (LEN=*) :: direction |
---|
945 | INTEGER :: i, j, jshape(1), k |
---|
946 | INTEGER :: nxl_y_bound, nxl_y_l, nxr_y_bound, nxr_y_l |
---|
947 | |
---|
948 | LOGICAL :: forward_fft |
---|
949 | |
---|
950 | REAL, DIMENSION(0:ny+2) :: work |
---|
951 | REAL, DIMENSION(ny+2) :: work1 |
---|
952 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
953 | #if defined( __ibm ) |
---|
954 | REAL, DIMENSION(nau2) :: auy2, auy4 |
---|
955 | #elif defined( __nec ) |
---|
956 | REAL, DIMENSION(6*(ny+1)) :: work2 |
---|
957 | #elif defined( __cuda_fft ) |
---|
958 | COMPLEX(dpk), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: ar_tmp |
---|
959 | !$acc declare create( ar_tmp ) |
---|
960 | #endif |
---|
961 | REAL, DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: ar |
---|
962 | REAL, DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: ar_tr |
---|
963 | |
---|
964 | IF ( direction == 'forward' ) THEN |
---|
965 | forward_fft = .TRUE. |
---|
966 | ELSE |
---|
967 | forward_fft = .FALSE. |
---|
968 | ENDIF |
---|
969 | |
---|
970 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
971 | |
---|
972 | ! |
---|
973 | !-- Performing the fft with singleton's software works on every system, |
---|
974 | !-- since it is part of the model |
---|
975 | ALLOCATE( cwork(0:ny) ) |
---|
976 | |
---|
977 | IF ( forward_fft ) then |
---|
978 | |
---|
979 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
980 | !$OMP DO |
---|
981 | DO k = nzb_y, nzt_y |
---|
982 | DO i = nxl_y_l, nxr_y_l |
---|
983 | |
---|
984 | DO j = 0, ny |
---|
985 | cwork(j) = CMPLX( ar(j,i,k) ) |
---|
986 | ENDDO |
---|
987 | |
---|
988 | jshape = SHAPE( cwork ) |
---|
989 | CALL FFTN( cwork, jshape ) |
---|
990 | |
---|
991 | DO j = 0, (ny+1)/2 |
---|
992 | ar_tr(j,i,k) = REAL( cwork(j) ) |
---|
993 | ENDDO |
---|
994 | DO j = 1, (ny+1)/2 - 1 |
---|
995 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
996 | ENDDO |
---|
997 | |
---|
998 | ENDDO |
---|
999 | ENDDO |
---|
1000 | !$OMP END PARALLEL |
---|
1001 | |
---|
1002 | ELSE |
---|
1003 | |
---|
1004 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
1005 | !$OMP DO |
---|
1006 | DO k = nzb_y, nzt_y |
---|
1007 | DO i = nxl_y_l, nxr_y_l |
---|
1008 | |
---|
1009 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0 ) |
---|
1010 | DO j = 1, (ny+1)/2 - 1 |
---|
1011 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k) ) |
---|
1012 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
1013 | ENDDO |
---|
1014 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0 ) |
---|
1015 | |
---|
1016 | jshape = SHAPE( cwork ) |
---|
1017 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1018 | |
---|
1019 | DO j = 0, ny |
---|
1020 | ar(j,i,k) = REAL( cwork(j) ) |
---|
1021 | ENDDO |
---|
1022 | |
---|
1023 | ENDDO |
---|
1024 | ENDDO |
---|
1025 | !$OMP END PARALLEL |
---|
1026 | |
---|
1027 | ENDIF |
---|
1028 | |
---|
1029 | DEALLOCATE( cwork ) |
---|
1030 | |
---|
1031 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1032 | |
---|
1033 | ! |
---|
1034 | !-- Performing the fft with Temperton's software works on every system, |
---|
1035 | !-- since it is part of the model |
---|
1036 | IF ( forward_fft ) THEN |
---|
1037 | |
---|
1038 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1039 | !$OMP DO |
---|
1040 | DO k = nzb_y, nzt_y |
---|
1041 | DO i = nxl_y_l, nxr_y_l |
---|
1042 | |
---|
1043 | work(0:ny) = ar(0:ny,i,k) |
---|
1044 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1045 | |
---|
1046 | DO j = 0, (ny+1)/2 |
---|
1047 | ar_tr(j,i,k) = work(2*j) |
---|
1048 | ENDDO |
---|
1049 | DO j = 1, (ny+1)/2 - 1 |
---|
1050 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1051 | ENDDO |
---|
1052 | |
---|
1053 | ENDDO |
---|
1054 | ENDDO |
---|
1055 | !$OMP END PARALLEL |
---|
1056 | |
---|
1057 | ELSE |
---|
1058 | |
---|
1059 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1060 | !$OMP DO |
---|
1061 | DO k = nzb_y, nzt_y |
---|
1062 | DO i = nxl_y_l, nxr_y_l |
---|
1063 | |
---|
1064 | DO j = 0, (ny+1)/2 |
---|
1065 | work(2*j) = ar_tr(j,i,k) |
---|
1066 | ENDDO |
---|
1067 | DO j = 1, (ny+1)/2 - 1 |
---|
1068 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1069 | ENDDO |
---|
1070 | work(1) = 0.0 |
---|
1071 | work(ny+2) = 0.0 |
---|
1072 | |
---|
1073 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1074 | ar(0:ny,i,k) = work(0:ny) |
---|
1075 | |
---|
1076 | ENDDO |
---|
1077 | ENDDO |
---|
1078 | !$OMP END PARALLEL |
---|
1079 | |
---|
1080 | ENDIF |
---|
1081 | |
---|
1082 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1083 | |
---|
1084 | #if defined( __fftw ) |
---|
1085 | IF ( forward_fft ) THEN |
---|
1086 | |
---|
1087 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1088 | !$OMP DO |
---|
1089 | DO k = nzb_y, nzt_y |
---|
1090 | DO i = nxl_y_l, nxr_y_l |
---|
1091 | |
---|
1092 | y_in(0:ny) = ar(0:ny,i,k) |
---|
1093 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1094 | |
---|
1095 | DO j = 0, (ny+1)/2 |
---|
1096 | ar_tr(j,i,k) = REAL( y_out(j) ) / (ny+1) |
---|
1097 | ENDDO |
---|
1098 | DO j = 1, (ny+1)/2 - 1 |
---|
1099 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
1100 | ENDDO |
---|
1101 | |
---|
1102 | ENDDO |
---|
1103 | ENDDO |
---|
1104 | !$OMP END PARALLEL |
---|
1105 | |
---|
1106 | ELSE |
---|
1107 | |
---|
1108 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1109 | !$OMP DO |
---|
1110 | DO k = nzb_y, nzt_y |
---|
1111 | DO i = nxl_y_l, nxr_y_l |
---|
1112 | |
---|
1113 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0 ) |
---|
1114 | DO j = 1, (ny+1)/2 - 1 |
---|
1115 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
1116 | ENDDO |
---|
1117 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0 ) |
---|
1118 | |
---|
1119 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1120 | ar(0:ny,i,k) = y_in(0:ny) |
---|
1121 | |
---|
1122 | ENDDO |
---|
1123 | ENDDO |
---|
1124 | !$OMP END PARALLEL |
---|
1125 | |
---|
1126 | ENDIF |
---|
1127 | #endif |
---|
1128 | |
---|
1129 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1130 | |
---|
1131 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
1132 | IF ( forward_fft) THEN |
---|
1133 | |
---|
1134 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1135 | !$OMP DO |
---|
1136 | DO k = nzb_y, nzt_y |
---|
1137 | DO i = nxl_y_l, nxr_y_l |
---|
1138 | |
---|
1139 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
1140 | auy2, nau2 ) |
---|
1141 | |
---|
1142 | DO j = 0, (ny+1)/2 |
---|
1143 | ar_tr(j,i,k) = work(2*j) |
---|
1144 | ENDDO |
---|
1145 | DO j = 1, (ny+1)/2 - 1 |
---|
1146 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1147 | ENDDO |
---|
1148 | |
---|
1149 | ENDDO |
---|
1150 | ENDDO |
---|
1151 | !$OMP END PARALLEL |
---|
1152 | |
---|
1153 | ELSE |
---|
1154 | |
---|
1155 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1156 | !$OMP DO |
---|
1157 | DO k = nzb_y, nzt_y |
---|
1158 | DO i = nxl_y_l, nxr_y_l |
---|
1159 | |
---|
1160 | DO j = 0, (ny+1)/2 |
---|
1161 | work(2*j) = ar_tr(j,i,k) |
---|
1162 | ENDDO |
---|
1163 | DO j = 1, (ny+1)/2 - 1 |
---|
1164 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1165 | ENDDO |
---|
1166 | work(1) = 0.0 |
---|
1167 | work(ny+2) = 0.0 |
---|
1168 | |
---|
1169 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
1170 | auy4, nau2 ) |
---|
1171 | |
---|
1172 | DO j = 0, ny |
---|
1173 | ar(j,i,k) = work(j) |
---|
1174 | ENDDO |
---|
1175 | |
---|
1176 | ENDDO |
---|
1177 | ENDDO |
---|
1178 | !$OMP END PARALLEL |
---|
1179 | |
---|
1180 | ENDIF |
---|
1181 | #elif defined( __nec ) |
---|
1182 | IF ( forward_fft ) THEN |
---|
1183 | |
---|
1184 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1185 | !$OMP DO |
---|
1186 | DO k = nzb_y, nzt_y |
---|
1187 | DO i = nxl_y_l, nxr_y_l |
---|
1188 | |
---|
1189 | work(0:ny) = ar(0:ny,i,k) |
---|
1190 | |
---|
1191 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1192 | |
---|
1193 | DO j = 0, (ny+1)/2 |
---|
1194 | ar_tr(j,i,k) = work(2*j) |
---|
1195 | ENDDO |
---|
1196 | DO j = 1, (ny+1)/2 - 1 |
---|
1197 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
1198 | ENDDO |
---|
1199 | |
---|
1200 | ENDDO |
---|
1201 | ENDDO |
---|
1202 | !$END OMP PARALLEL |
---|
1203 | |
---|
1204 | ELSE |
---|
1205 | |
---|
1206 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
1207 | !$OMP DO |
---|
1208 | DO k = nzb_y, nzt_y |
---|
1209 | DO i = nxl_y_l, nxr_y_l |
---|
1210 | |
---|
1211 | DO j = 0, (ny+1)/2 |
---|
1212 | work(2*j) = ar_tr(j,i,k) |
---|
1213 | ENDDO |
---|
1214 | DO j = 1, (ny+1)/2 - 1 |
---|
1215 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
1216 | ENDDO |
---|
1217 | work(1) = 0.0 |
---|
1218 | work(ny+2) = 0.0 |
---|
1219 | |
---|
1220 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1221 | |
---|
1222 | ar(0:ny,i,k) = work(0:ny) |
---|
1223 | |
---|
1224 | ENDDO |
---|
1225 | ENDDO |
---|
1226 | !$OMP END PARALLEL |
---|
1227 | |
---|
1228 | ENDIF |
---|
1229 | #elif defined( __cuda_fft ) |
---|
1230 | |
---|
1231 | IF ( forward_fft ) THEN |
---|
1232 | |
---|
1233 | !$acc data present( ar ) |
---|
1234 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
1235 | |
---|
1236 | !$acc kernels |
---|
1237 | DO k = nzb_y, nzt_y |
---|
1238 | DO i = nxl_y, nxr_y |
---|
1239 | |
---|
1240 | DO j = 0, (ny+1)/2 |
---|
1241 | ar(j,i,k) = REAL( ar_tmp(j,i,k) ) * dny |
---|
1242 | ENDDO |
---|
1243 | |
---|
1244 | DO j = 1, (ny+1)/2 - 1 |
---|
1245 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
1246 | ENDDO |
---|
1247 | |
---|
1248 | ENDDO |
---|
1249 | ENDDO |
---|
1250 | !$acc end kernels |
---|
1251 | !$acc end data |
---|
1252 | |
---|
1253 | ELSE |
---|
1254 | |
---|
1255 | !$acc data present( ar ) |
---|
1256 | !$acc kernels |
---|
1257 | DO k = nzb_y, nzt_y |
---|
1258 | DO i = nxl_y, nxr_y |
---|
1259 | |
---|
1260 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0 ) |
---|
1261 | |
---|
1262 | DO j = 1, (ny+1)/2 - 1 |
---|
1263 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
1264 | ENDDO |
---|
1265 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0 ) |
---|
1266 | |
---|
1267 | ENDDO |
---|
1268 | ENDDO |
---|
1269 | !$acc end kernels |
---|
1270 | |
---|
1271 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
1272 | !$acc end data |
---|
1273 | |
---|
1274 | ENDIF |
---|
1275 | |
---|
1276 | #else |
---|
1277 | message_string = 'no system-specific fft-call available' |
---|
1278 | CALL message( 'fft_y', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
1279 | #endif |
---|
1280 | |
---|
1281 | ELSE |
---|
1282 | |
---|
1283 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
1284 | '" not available' |
---|
1285 | CALL message( 'fft_y', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
1286 | |
---|
1287 | ENDIF |
---|
1288 | |
---|
1289 | END SUBROUTINE fft_y |
---|
1290 | |
---|
1291 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
1292 | |
---|
1293 | !----------------------------------------------------------------------! |
---|
1294 | ! fft_y_1d ! |
---|
1295 | ! ! |
---|
1296 | ! Fourier-transformation along y-direction ! |
---|
1297 | ! Version for 1D-decomposition ! |
---|
1298 | ! ! |
---|
1299 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
1300 | ! system-specific routines, if they are available ! |
---|
1301 | !----------------------------------------------------------------------! |
---|
1302 | |
---|
1303 | IMPLICIT NONE |
---|
1304 | |
---|
1305 | CHARACTER (LEN=*) :: direction |
---|
1306 | INTEGER :: j, jshape(1) |
---|
1307 | |
---|
1308 | LOGICAL :: forward_fft |
---|
1309 | |
---|
1310 | REAL, DIMENSION(0:ny) :: ar |
---|
1311 | REAL, DIMENSION(0:ny+2) :: work |
---|
1312 | REAL, DIMENSION(ny+2) :: work1 |
---|
1313 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
1314 | #if defined( __ibm ) |
---|
1315 | REAL, DIMENSION(nau2) :: auy2, auy4 |
---|
1316 | #elif defined( __nec ) |
---|
1317 | REAL, DIMENSION(6*(ny+1)) :: work2 |
---|
1318 | #endif |
---|
1319 | |
---|
1320 | IF ( direction == 'forward' ) THEN |
---|
1321 | forward_fft = .TRUE. |
---|
1322 | ELSE |
---|
1323 | forward_fft = .FALSE. |
---|
1324 | ENDIF |
---|
1325 | |
---|
1326 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
1327 | |
---|
1328 | ! |
---|
1329 | !-- Performing the fft with singleton's software works on every system, |
---|
1330 | !-- since it is part of the model |
---|
1331 | ALLOCATE( cwork(0:ny) ) |
---|
1332 | |
---|
1333 | IF ( forward_fft ) THEN |
---|
1334 | |
---|
1335 | DO j = 0, ny |
---|
1336 | cwork(j) = CMPLX( ar(j) ) |
---|
1337 | ENDDO |
---|
1338 | |
---|
1339 | jshape = SHAPE( cwork ) |
---|
1340 | CALL FFTN( cwork, jshape ) |
---|
1341 | |
---|
1342 | DO j = 0, (ny+1)/2 |
---|
1343 | ar(j) = REAL( cwork(j) ) |
---|
1344 | ENDDO |
---|
1345 | DO j = 1, (ny+1)/2 - 1 |
---|
1346 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
1347 | ENDDO |
---|
1348 | |
---|
1349 | ELSE |
---|
1350 | |
---|
1351 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
1352 | DO j = 1, (ny+1)/2 - 1 |
---|
1353 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j) ) |
---|
1354 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
1355 | ENDDO |
---|
1356 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0 ) |
---|
1357 | |
---|
1358 | jshape = SHAPE( cwork ) |
---|
1359 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
1360 | |
---|
1361 | DO j = 0, ny |
---|
1362 | ar(j) = REAL( cwork(j) ) |
---|
1363 | ENDDO |
---|
1364 | |
---|
1365 | ENDIF |
---|
1366 | |
---|
1367 | DEALLOCATE( cwork ) |
---|
1368 | |
---|
1369 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1370 | |
---|
1371 | ! |
---|
1372 | !-- Performing the fft with Temperton's software works on every system, |
---|
1373 | !-- since it is part of the model |
---|
1374 | IF ( forward_fft ) THEN |
---|
1375 | |
---|
1376 | work(0:ny) = ar |
---|
1377 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
1378 | |
---|
1379 | DO j = 0, (ny+1)/2 |
---|
1380 | ar(j) = work(2*j) |
---|
1381 | ENDDO |
---|
1382 | DO j = 1, (ny+1)/2 - 1 |
---|
1383 | ar(ny+1-j) = work(2*j+1) |
---|
1384 | ENDDO |
---|
1385 | |
---|
1386 | ELSE |
---|
1387 | |
---|
1388 | DO j = 0, (ny+1)/2 |
---|
1389 | work(2*j) = ar(j) |
---|
1390 | ENDDO |
---|
1391 | DO j = 1, (ny+1)/2 - 1 |
---|
1392 | work(2*j+1) = ar(ny+1-j) |
---|
1393 | ENDDO |
---|
1394 | work(1) = 0.0 |
---|
1395 | work(ny+2) = 0.0 |
---|
1396 | |
---|
1397 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
1398 | ar = work(0:ny) |
---|
1399 | |
---|
1400 | ENDIF |
---|
1401 | |
---|
1402 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
1403 | |
---|
1404 | #if defined( __fftw ) |
---|
1405 | IF ( forward_fft ) THEN |
---|
1406 | |
---|
1407 | y_in(0:ny) = ar(0:ny) |
---|
1408 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
1409 | |
---|
1410 | DO j = 0, (ny+1)/2 |
---|
1411 | ar(j) = REAL( y_out(j) ) / (ny+1) |
---|
1412 | ENDDO |
---|
1413 | DO j = 1, (ny+1)/2 - 1 |
---|
1414 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
1415 | ENDDO |
---|
1416 | |
---|
1417 | ELSE |
---|
1418 | |
---|
1419 | y_out(0) = CMPLX( ar(0), 0.0 ) |
---|
1420 | DO j = 1, (ny+1)/2 - 1 |
---|
1421 | y_out(j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
1422 | ENDDO |
---|
1423 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0 ) |
---|
1424 | |
---|
1425 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
1426 | ar(0:ny) = y_in(0:ny) |
---|
1427 | |
---|
1428 | ENDIF |
---|
1429 | #endif |
---|
1430 | |
---|
1431 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1432 | |
---|
1433 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
1434 | IF ( forward_fft ) THEN |
---|
1435 | |
---|
1436 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
1437 | auy2, nau2 ) |
---|
1438 | |
---|
1439 | DO j = 0, (ny+1)/2 |
---|
1440 | ar(j) = work(2*j) |
---|
1441 | ENDDO |
---|
1442 | DO j = 1, (ny+1)/2 - 1 |
---|
1443 | ar(ny+1-j) = work(2*j+1) |
---|
1444 | ENDDO |
---|
1445 | |
---|
1446 | ELSE |
---|
1447 | |
---|
1448 | DO j = 0, (ny+1)/2 |
---|
1449 | work(2*j) = ar(j) |
---|
1450 | ENDDO |
---|
1451 | DO j = 1, (ny+1)/2 - 1 |
---|
1452 | work(2*j+1) = ar(ny+1-j) |
---|
1453 | ENDDO |
---|
1454 | work(1) = 0.0 |
---|
1455 | work(ny+2) = 0.0 |
---|
1456 | |
---|
1457 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
1458 | auy4, nau2 ) |
---|
1459 | |
---|
1460 | DO j = 0, ny |
---|
1461 | ar(j) = work(j) |
---|
1462 | ENDDO |
---|
1463 | |
---|
1464 | ENDIF |
---|
1465 | #elif defined( __nec ) |
---|
1466 | IF ( forward_fft ) THEN |
---|
1467 | |
---|
1468 | work(0:ny) = ar(0:ny) |
---|
1469 | |
---|
1470 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
1471 | |
---|
1472 | DO j = 0, (ny+1)/2 |
---|
1473 | ar(j) = work(2*j) |
---|
1474 | ENDDO |
---|
1475 | DO j = 1, (ny+1)/2 - 1 |
---|
1476 | ar(ny+1-j) = work(2*j+1) |
---|
1477 | ENDDO |
---|
1478 | |
---|
1479 | ELSE |
---|
1480 | |
---|
1481 | DO j = 0, (ny+1)/2 |
---|
1482 | work(2*j) = ar(j) |
---|
1483 | ENDDO |
---|
1484 | DO j = 1, (ny+1)/2 - 1 |
---|
1485 | work(2*j+1) = ar(ny+1-j) |
---|
1486 | ENDDO |
---|
1487 | work(1) = 0.0 |
---|
1488 | work(ny+2) = 0.0 |
---|
1489 | |
---|
1490 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
1491 | |
---|
1492 | ar(0:ny) = work(0:ny) |
---|
1493 | |
---|
1494 | ENDIF |
---|
1495 | #else |
---|
1496 | message_string = 'no system-specific fft-call available' |
---|
1497 | CALL message( 'fft_y_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
1498 | |
---|
1499 | #endif |
---|
1500 | |
---|
1501 | ELSE |
---|
1502 | |
---|
1503 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
1504 | '" not available' |
---|
1505 | CALL message( 'fft_y_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
1506 | |
---|
1507 | ENDIF |
---|
1508 | |
---|
1509 | END SUBROUTINE fft_y_1d |
---|
1510 | |
---|
1511 | SUBROUTINE fft_x_m( ar, direction ) |
---|
1512 | |
---|
1513 | !----------------------------------------------------------------------! |
---|
1514 | ! fft_x_m ! |
---|
1515 | ! ! |
---|
1516 | ! Fourier-transformation along x-direction ! |
---|
1517 | ! Version for 1d domain decomposition ! |
---|
1518 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
1519 | ! or Temperton-algorithm ! |
---|
1520 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
1521 | ! ! |
---|
1522 | !----------------------------------------------------------------------! |
---|
1523 | |
---|
1524 | IMPLICIT NONE |
---|
1525 | |
---|
1526 | CHARACTER (LEN=*) :: direction |
---|
1527 | INTEGER :: i, k, siza |
---|
1528 | |
---|
1529 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
1530 | REAL, DIMENSION(0:nx+3,nz+1) :: ai |
---|
1531 | REAL, DIMENSION(6*(nx+4),nz+1) :: work1 |
---|
1532 | #if defined( __nec ) |
---|
1533 | INTEGER :: sizw |
---|
1534 | COMPLEX, DIMENSION((nx+4)/2+1,nz+1) :: work |
---|
1535 | #endif |
---|
1536 | |
---|
1537 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1538 | |
---|
1539 | siza = SIZE( ai, 1 ) |
---|
1540 | |
---|
1541 | IF ( direction == 'forward') THEN |
---|
1542 | |
---|
1543 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1544 | ai(nx+1:,:) = 0.0 |
---|
1545 | |
---|
1546 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
1547 | |
---|
1548 | DO k = 1, nz |
---|
1549 | DO i = 0, (nx+1)/2 |
---|
1550 | ar(i,k) = ai(2*i,k) |
---|
1551 | ENDDO |
---|
1552 | DO i = 1, (nx+1)/2 - 1 |
---|
1553 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
1554 | ENDDO |
---|
1555 | ENDDO |
---|
1556 | |
---|
1557 | ELSE |
---|
1558 | |
---|
1559 | DO k = 1, nz |
---|
1560 | DO i = 0, (nx+1)/2 |
---|
1561 | ai(2*i,k) = ar(i,k) |
---|
1562 | ENDDO |
---|
1563 | DO i = 1, (nx+1)/2 - 1 |
---|
1564 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
1565 | ENDDO |
---|
1566 | ai(1,k) = 0.0 |
---|
1567 | ai(nx+2,k) = 0.0 |
---|
1568 | ENDDO |
---|
1569 | |
---|
1570 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
1571 | |
---|
1572 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1573 | |
---|
1574 | ENDIF |
---|
1575 | |
---|
1576 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1577 | |
---|
1578 | #if defined( __nec ) |
---|
1579 | siza = SIZE( ai, 1 ) |
---|
1580 | sizw = SIZE( work, 1 ) |
---|
1581 | |
---|
1582 | IF ( direction == 'forward') THEN |
---|
1583 | |
---|
1584 | ! |
---|
1585 | !-- Tables are initialized once more. This call should not be |
---|
1586 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1587 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
1588 | trig_xf, work1, 0 ) |
---|
1589 | |
---|
1590 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
1591 | IF ( nz1 > nz ) THEN |
---|
1592 | ai(:,nz1) = 0.0 |
---|
1593 | ENDIF |
---|
1594 | |
---|
1595 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
1596 | trig_xf, work1, 0 ) |
---|
1597 | |
---|
1598 | DO k = 1, nz |
---|
1599 | DO i = 0, (nx+1)/2 |
---|
1600 | ar(i,k) = REAL( work(i+1,k) ) |
---|
1601 | ENDDO |
---|
1602 | DO i = 1, (nx+1)/2 - 1 |
---|
1603 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
1604 | ENDDO |
---|
1605 | ENDDO |
---|
1606 | |
---|
1607 | ELSE |
---|
1608 | |
---|
1609 | ! |
---|
1610 | !-- Tables are initialized once more. This call should not be |
---|
1611 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1612 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
1613 | trig_xb, work1, 0 ) |
---|
1614 | |
---|
1615 | IF ( nz1 > nz ) THEN |
---|
1616 | work(:,nz1) = 0.0 |
---|
1617 | ENDIF |
---|
1618 | DO k = 1, nz |
---|
1619 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
1620 | DO i = 1, (nx+1)/2 - 1 |
---|
1621 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k) ) |
---|
1622 | ENDDO |
---|
1623 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0 ) |
---|
1624 | ENDDO |
---|
1625 | |
---|
1626 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
1627 | trig_xb, work1, 0 ) |
---|
1628 | |
---|
1629 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
1630 | |
---|
1631 | ENDIF |
---|
1632 | |
---|
1633 | #else |
---|
1634 | message_string = 'no system-specific fft-call available' |
---|
1635 | CALL message( 'fft_x_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
1636 | #endif |
---|
1637 | |
---|
1638 | ELSE |
---|
1639 | |
---|
1640 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
1641 | '" not available' |
---|
1642 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
1643 | |
---|
1644 | ENDIF |
---|
1645 | |
---|
1646 | END SUBROUTINE fft_x_m |
---|
1647 | |
---|
1648 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
1649 | |
---|
1650 | !----------------------------------------------------------------------! |
---|
1651 | ! fft_y_m ! |
---|
1652 | ! ! |
---|
1653 | ! Fourier-transformation along y-direction ! |
---|
1654 | ! Version for 1d domain decomposition ! |
---|
1655 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
1656 | ! or Temperton-algorithm ! |
---|
1657 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
1658 | ! ! |
---|
1659 | !----------------------------------------------------------------------! |
---|
1660 | |
---|
1661 | IMPLICIT NONE |
---|
1662 | |
---|
1663 | CHARACTER (LEN=*) :: direction |
---|
1664 | INTEGER :: j, k, ny1, siza |
---|
1665 | |
---|
1666 | REAL, DIMENSION(0:ny1,nz) :: ar |
---|
1667 | REAL, DIMENSION(0:ny+3,nz+1) :: ai |
---|
1668 | REAL, DIMENSION(6*(ny+4),nz+1) :: work1 |
---|
1669 | #if defined( __nec ) |
---|
1670 | INTEGER :: sizw |
---|
1671 | COMPLEX, DIMENSION((ny+4)/2+1,nz+1) :: work |
---|
1672 | #endif |
---|
1673 | |
---|
1674 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
1675 | |
---|
1676 | siza = SIZE( ai, 1 ) |
---|
1677 | |
---|
1678 | IF ( direction == 'forward') THEN |
---|
1679 | |
---|
1680 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1681 | ai(ny+1:,:) = 0.0 |
---|
1682 | |
---|
1683 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
1684 | |
---|
1685 | DO k = 1, nz |
---|
1686 | DO j = 0, (ny+1)/2 |
---|
1687 | ar(j,k) = ai(2*j,k) |
---|
1688 | ENDDO |
---|
1689 | DO j = 1, (ny+1)/2 - 1 |
---|
1690 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
1691 | ENDDO |
---|
1692 | ENDDO |
---|
1693 | |
---|
1694 | ELSE |
---|
1695 | |
---|
1696 | DO k = 1, nz |
---|
1697 | DO j = 0, (ny+1)/2 |
---|
1698 | ai(2*j,k) = ar(j,k) |
---|
1699 | ENDDO |
---|
1700 | DO j = 1, (ny+1)/2 - 1 |
---|
1701 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
1702 | ENDDO |
---|
1703 | ai(1,k) = 0.0 |
---|
1704 | ai(ny+2,k) = 0.0 |
---|
1705 | ENDDO |
---|
1706 | |
---|
1707 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
1708 | |
---|
1709 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
1710 | |
---|
1711 | ENDIF |
---|
1712 | |
---|
1713 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
1714 | |
---|
1715 | #if defined( __nec ) |
---|
1716 | siza = SIZE( ai, 1 ) |
---|
1717 | sizw = SIZE( work, 1 ) |
---|
1718 | |
---|
1719 | IF ( direction == 'forward') THEN |
---|
1720 | |
---|
1721 | ! |
---|
1722 | !-- Tables are initialized once more. This call should not be |
---|
1723 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1724 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
1725 | trig_yf, work1, 0 ) |
---|
1726 | |
---|
1727 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
1728 | IF ( nz1 > nz ) THEN |
---|
1729 | ai(:,nz1) = 0.0 |
---|
1730 | ENDIF |
---|
1731 | |
---|
1732 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
1733 | trig_yf, work1, 0 ) |
---|
1734 | |
---|
1735 | DO k = 1, nz |
---|
1736 | DO j = 0, (ny+1)/2 |
---|
1737 | ar(j,k) = REAL( work(j+1,k) ) |
---|
1738 | ENDDO |
---|
1739 | DO j = 1, (ny+1)/2 - 1 |
---|
1740 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
1741 | ENDDO |
---|
1742 | ENDDO |
---|
1743 | |
---|
1744 | ELSE |
---|
1745 | |
---|
1746 | ! |
---|
1747 | !-- Tables are initialized once more. This call should not be |
---|
1748 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
1749 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
1750 | trig_yb, work1, 0 ) |
---|
1751 | |
---|
1752 | IF ( nz1 > nz ) THEN |
---|
1753 | work(:,nz1) = 0.0 |
---|
1754 | ENDIF |
---|
1755 | DO k = 1, nz |
---|
1756 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
1757 | DO j = 1, (ny+1)/2 - 1 |
---|
1758 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k) ) |
---|
1759 | ENDDO |
---|
1760 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0 ) |
---|
1761 | ENDDO |
---|
1762 | |
---|
1763 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
1764 | trig_yb, work1, 0 ) |
---|
1765 | |
---|
1766 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
1767 | |
---|
1768 | ENDIF |
---|
1769 | |
---|
1770 | #else |
---|
1771 | message_string = 'no system-specific fft-call available' |
---|
1772 | CALL message( 'fft_y_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
1773 | #endif |
---|
1774 | |
---|
1775 | ELSE |
---|
1776 | |
---|
1777 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
1778 | '" not available' |
---|
1779 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
1780 | |
---|
1781 | ENDIF |
---|
1782 | |
---|
1783 | END SUBROUTINE fft_y_m |
---|
1784 | |
---|
1785 | |
---|
1786 | END MODULE fft_xy |
---|