[1682] | 1 | !> @file fft_xy.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1310] | 16 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1322] | 17 | !------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[254] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1683] | 21 | ! |
---|
[1750] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: fft_xy.f90 1750 2016-02-09 12:24:00Z gronemeier $ |
---|
| 26 | ! |
---|
[1750] | 27 | ! 1749 2016-02-09 12:19:56Z raasch |
---|
| 28 | ! small OpenACC bugfix |
---|
| 29 | ! |
---|
[1683] | 30 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 31 | ! Code annotations made doxygen readable |
---|
| 32 | ! |
---|
[1601] | 33 | ! 1600 2015-06-11 15:50:12Z raasch |
---|
| 34 | ! bugfix: openMP threadprivate statement moved after variable declaration |
---|
| 35 | ! |
---|
[1483] | 36 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
| 37 | ! cudafft workaround for data declaration of ar_tmp because of PGI 14.1 bug |
---|
| 38 | ! |
---|
[1403] | 39 | ! 1402 2014-05-09 14:25:13Z raasch |
---|
| 40 | ! fortran bugfix for r1392 |
---|
| 41 | ! |
---|
[1399] | 42 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 43 | ! bugfix: typo removed for KIND in CMPLX function |
---|
| 44 | ! |
---|
[1393] | 45 | ! 1392 2014-05-06 09:10:05Z raasch |
---|
| 46 | ! bugfix: KIND attribute added to CMPLX functions |
---|
| 47 | ! |
---|
[1375] | 48 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 49 | ! bugfixes: missing variables added to ONLY list, dpk renamed dp |
---|
| 50 | ! |
---|
[1373] | 51 | ! 1372 2014-04-24 06:29:32Z raasch |
---|
| 52 | ! openMP-bugfix for fftw: some arrays defined as threadprivate |
---|
| 53 | ! |
---|
[1354] | 54 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 55 | ! REAL constants provided with KIND-attribute |
---|
| 56 | ! |
---|
[1343] | 57 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 58 | ! REAL constants defined as wp-kind |
---|
| 59 | ! |
---|
[1323] | 60 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 61 | ! REAL functions provided with KIND-attribute |
---|
| 62 | ! |
---|
[1321] | 63 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 64 | ! ONLY-attribute added to USE-statements, |
---|
| 65 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 66 | ! kinds are defined in new module kinds, |
---|
| 67 | ! old module precision_kind is removed, |
---|
| 68 | ! revision history before 2012 removed, |
---|
| 69 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 70 | ! all variable declaration statements |
---|
[1] | 71 | ! |
---|
[1305] | 72 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
| 73 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
| 74 | ! |
---|
[1258] | 75 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 76 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 77 | ! the FORTRAN declaration statement |
---|
| 78 | ! |
---|
[1220] | 79 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
| 80 | ! bugfix: use own branch for fftw |
---|
| 81 | ! |
---|
[1217] | 82 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 83 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
| 84 | ! transpositions, |
---|
| 85 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
| 86 | ! |
---|
[1211] | 87 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 88 | ! fftw added |
---|
| 89 | ! |
---|
[1167] | 90 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 91 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 92 | ! |
---|
[1154] | 93 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 94 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 95 | ! |
---|
[1112] | 96 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 97 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 98 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 99 | ! used total domain) |
---|
| 100 | ! |
---|
[1107] | 101 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 102 | ! CUDA fft added |
---|
| 103 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 104 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 105 | ! |
---|
[1093] | 106 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 107 | ! variable sizw declared for NEC case only |
---|
| 108 | ! |
---|
[1037] | 109 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 110 | ! code put under GPL (PALM 3.9) |
---|
| 111 | ! |
---|
[1] | 112 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 113 | ! Initial revision |
---|
| 114 | ! |
---|
| 115 | ! |
---|
| 116 | ! Description: |
---|
| 117 | ! ------------ |
---|
[1682] | 118 | !> Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 119 | !> Original version: Klaus Ketelsen (May 2002) |
---|
[1] | 120 | !------------------------------------------------------------------------------! |
---|
[1682] | 121 | MODULE fft_xy |
---|
| 122 | |
---|
[1] | 123 | |
---|
[1320] | 124 | USE control_parameters, & |
---|
| 125 | ONLY: fft_method, message_string |
---|
| 126 | |
---|
| 127 | USE indices, & |
---|
| 128 | ONLY: nx, ny, nz |
---|
| 129 | |
---|
[1153] | 130 | #if defined( __cuda_fft ) |
---|
| 131 | USE ISO_C_BINDING |
---|
[1210] | 132 | #elif defined( __fftw ) |
---|
| 133 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 134 | #endif |
---|
[1320] | 135 | |
---|
| 136 | USE kinds |
---|
| 137 | |
---|
| 138 | USE singleton, & |
---|
| 139 | ONLY: fftn |
---|
| 140 | |
---|
[1] | 141 | USE temperton_fft |
---|
[1320] | 142 | |
---|
| 143 | USE transpose_indices, & |
---|
[1374] | 144 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 145 | |
---|
| 146 | IMPLICIT NONE |
---|
| 147 | |
---|
| 148 | PRIVATE |
---|
[1106] | 149 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 150 | |
---|
[1682] | 151 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !< |
---|
| 152 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !< |
---|
[1] | 153 | |
---|
[1682] | 154 | LOGICAL, SAVE :: init_fft = .FALSE. !< |
---|
[1] | 155 | |
---|
[1682] | 156 | REAL(wp), SAVE :: dnx !< |
---|
| 157 | REAL(wp), SAVE :: dny !< |
---|
| 158 | REAL(wp), SAVE :: sqr_dnx !< |
---|
| 159 | REAL(wp), SAVE :: sqr_dny !< |
---|
[1320] | 160 | |
---|
[1682] | 161 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !< |
---|
| 162 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !< |
---|
[1] | 163 | |
---|
| 164 | #if defined( __ibm ) |
---|
[1682] | 165 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !< |
---|
| 166 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !< |
---|
[1] | 167 | ! |
---|
| 168 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 169 | !-- shared in OpenMP sense |
---|
[1682] | 170 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !< |
---|
| 171 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !< |
---|
| 172 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !< |
---|
| 173 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !< |
---|
[1320] | 174 | |
---|
[1] | 175 | #elif defined( __nec ) |
---|
[1682] | 176 | INTEGER(iwp), SAVE :: nz1 !< |
---|
[1320] | 177 | |
---|
[1682] | 178 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !< |
---|
| 179 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !< |
---|
| 180 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !< |
---|
| 181 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !< |
---|
[1320] | 182 | |
---|
[1106] | 183 | #elif defined( __cuda_fft ) |
---|
[1682] | 184 | INTEGER(C_INT), SAVE :: plan_xf !< |
---|
| 185 | INTEGER(C_INT), SAVE :: plan_xi !< |
---|
| 186 | INTEGER(C_INT), SAVE :: plan_yf !< |
---|
| 187 | INTEGER(C_INT), SAVE :: plan_yi !< |
---|
[1320] | 188 | |
---|
[1682] | 189 | INTEGER(iwp), SAVE :: total_points_x_transpo !< |
---|
| 190 | INTEGER(iwp), SAVE :: total_points_y_transpo !< |
---|
[1219] | 191 | #endif |
---|
| 192 | |
---|
| 193 | #if defined( __fftw ) |
---|
[1210] | 194 | INCLUDE 'fftw3.f03' |
---|
[1682] | 195 | INTEGER(KIND=C_INT) :: nx_c !< |
---|
| 196 | INTEGER(KIND=C_INT) :: ny_c !< |
---|
[1320] | 197 | |
---|
[1682] | 198 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out !< |
---|
[1320] | 199 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 200 | y_out !< |
---|
[1320] | 201 | |
---|
| 202 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 203 | x_in !< |
---|
[1320] | 204 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
[1682] | 205 | y_in !< |
---|
[1600] | 206 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[1320] | 207 | |
---|
| 208 | |
---|
[1210] | 209 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 210 | #endif |
---|
| 211 | |
---|
| 212 | ! |
---|
| 213 | !-- Public interfaces |
---|
| 214 | INTERFACE fft_init |
---|
| 215 | MODULE PROCEDURE fft_init |
---|
| 216 | END INTERFACE fft_init |
---|
| 217 | |
---|
| 218 | INTERFACE fft_x |
---|
| 219 | MODULE PROCEDURE fft_x |
---|
| 220 | END INTERFACE fft_x |
---|
| 221 | |
---|
[1106] | 222 | INTERFACE fft_x_1d |
---|
| 223 | MODULE PROCEDURE fft_x_1d |
---|
| 224 | END INTERFACE fft_x_1d |
---|
| 225 | |
---|
[1] | 226 | INTERFACE fft_y |
---|
| 227 | MODULE PROCEDURE fft_y |
---|
| 228 | END INTERFACE fft_y |
---|
| 229 | |
---|
[1106] | 230 | INTERFACE fft_y_1d |
---|
| 231 | MODULE PROCEDURE fft_y_1d |
---|
| 232 | END INTERFACE fft_y_1d |
---|
| 233 | |
---|
[1] | 234 | INTERFACE fft_x_m |
---|
| 235 | MODULE PROCEDURE fft_x_m |
---|
| 236 | END INTERFACE fft_x_m |
---|
| 237 | |
---|
| 238 | INTERFACE fft_y_m |
---|
| 239 | MODULE PROCEDURE fft_y_m |
---|
| 240 | END INTERFACE fft_y_m |
---|
| 241 | |
---|
| 242 | CONTAINS |
---|
| 243 | |
---|
| 244 | |
---|
[1682] | 245 | !------------------------------------------------------------------------------! |
---|
| 246 | ! Description: |
---|
| 247 | ! ------------ |
---|
| 248 | !> @todo Missing subroutine description. |
---|
| 249 | !------------------------------------------------------------------------------! |
---|
[1] | 250 | SUBROUTINE fft_init |
---|
| 251 | |
---|
[1106] | 252 | USE cuda_fft_interfaces |
---|
| 253 | |
---|
[1] | 254 | IMPLICIT NONE |
---|
| 255 | |
---|
| 256 | ! |
---|
| 257 | !-- The following temporary working arrays have to be on stack or private |
---|
| 258 | !-- in OpenMP sense |
---|
| 259 | #if defined( __ibm ) |
---|
[1682] | 260 | REAL(wp), DIMENSION(0:nx+2) :: workx !< |
---|
| 261 | REAL(wp), DIMENSION(0:ny+2) :: worky !< |
---|
| 262 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 263 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 264 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
| 265 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 266 | #elif defined( __nec ) |
---|
[1682] | 267 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !< |
---|
| 268 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !< |
---|
| 269 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !< |
---|
| 270 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !< |
---|
[1] | 271 | #endif |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- Return, if already called |
---|
| 275 | IF ( init_fft ) THEN |
---|
| 276 | RETURN |
---|
| 277 | ELSE |
---|
| 278 | init_fft = .TRUE. |
---|
| 279 | ENDIF |
---|
| 280 | |
---|
| 281 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 282 | |
---|
[1342] | 283 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 284 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 285 | sqr_dnx = SQRT( dnx ) |
---|
| 286 | sqr_dny = SQRT( dny ) |
---|
[1] | 287 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 288 | ! |
---|
| 289 | !-- Initialize tables for fft along x |
---|
[1106] | 290 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 291 | aux2, nau2 ) |
---|
[1106] | 292 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 293 | aux4, nau2 ) |
---|
| 294 | ! |
---|
| 295 | !-- Initialize tables for fft along y |
---|
[1106] | 296 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 297 | auy2, nau2 ) |
---|
[1106] | 298 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 299 | auy4, nau2 ) |
---|
| 300 | #elif defined( __nec ) |
---|
[254] | 301 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 302 | '" currently does not work on NEC' |
---|
| 303 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 304 | |
---|
[1320] | 305 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 306 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 307 | |
---|
[1342] | 308 | work_x = 0.0_wp |
---|
| 309 | work_y = 0.0_wp |
---|
[1] | 310 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 311 | ! when using the NEC ffts |
---|
| 312 | |
---|
| 313 | ! |
---|
| 314 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 315 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 316 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 317 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 318 | trig_xf, workx, 0 ) |
---|
[1320] | 319 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 320 | trig_xb, workx, 0 ) |
---|
| 321 | ! |
---|
| 322 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 323 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 324 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 325 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 326 | trig_yf, worky, 0 ) |
---|
[1320] | 327 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 328 | trig_yb, worky, 0 ) |
---|
[1106] | 329 | #elif defined( __cuda_fft ) |
---|
| 330 | total_points_x_transpo = (nx+1) * (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) |
---|
| 331 | total_points_y_transpo = (ny+1) * (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) |
---|
[1111] | 332 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 333 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 334 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 335 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 336 | #else |
---|
[254] | 337 | message_string = 'no system-specific fft-call available' |
---|
| 338 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 339 | #endif |
---|
| 340 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 341 | ! |
---|
| 342 | !-- Temperton-algorithm |
---|
| 343 | !-- Initialize tables for fft along x and y |
---|
| 344 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 345 | |
---|
| 346 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 347 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 348 | |
---|
[1210] | 349 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 350 | ! |
---|
| 351 | !-- FFTW |
---|
| 352 | #if defined( __fftw ) |
---|
| 353 | nx_c = nx+1 |
---|
| 354 | ny_c = ny+1 |
---|
[1372] | 355 | !$OMP PARALLEL |
---|
[1320] | 356 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 357 | y_out(0:(ny+1)/2) ) |
---|
[1372] | 358 | !$OMP END PARALLEL |
---|
[1210] | 359 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 360 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 361 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 362 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 363 | #else |
---|
| 364 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 365 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 366 | #endif |
---|
| 367 | |
---|
[1] | 368 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 369 | |
---|
| 370 | CONTINUE |
---|
| 371 | |
---|
| 372 | ELSE |
---|
| 373 | |
---|
[254] | 374 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 375 | '" not available' |
---|
| 376 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 377 | ENDIF |
---|
| 378 | |
---|
| 379 | END SUBROUTINE fft_init |
---|
| 380 | |
---|
| 381 | |
---|
[1682] | 382 | !------------------------------------------------------------------------------! |
---|
| 383 | ! Description: |
---|
| 384 | ! ------------ |
---|
| 385 | !> Fourier-transformation along x-direction. |
---|
| 386 | !> Version for 2D-decomposition. |
---|
| 387 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 388 | !> system-specific routines, if they are available |
---|
| 389 | !------------------------------------------------------------------------------! |
---|
| 390 | |
---|
[1216] | 391 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 392 | |
---|
| 393 | |
---|
[1106] | 394 | USE cuda_fft_interfaces |
---|
[1153] | 395 | #if defined( __cuda_fft ) |
---|
| 396 | USE ISO_C_BINDING |
---|
| 397 | #endif |
---|
[1106] | 398 | |
---|
[1] | 399 | IMPLICIT NONE |
---|
| 400 | |
---|
[1682] | 401 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 402 | |
---|
[1682] | 403 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1106] | 404 | |
---|
[1682] | 405 | INTEGER(iwp) :: i !< |
---|
| 406 | INTEGER(iwp) :: ishape(1) !< |
---|
| 407 | INTEGER(iwp) :: j !< |
---|
| 408 | INTEGER(iwp) :: k !< |
---|
[1106] | 409 | |
---|
[1682] | 410 | LOGICAL :: forward_fft !< |
---|
[1320] | 411 | |
---|
[1682] | 412 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 413 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 414 | |
---|
[1106] | 415 | #if defined( __ibm ) |
---|
[1682] | 416 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 417 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1106] | 418 | #elif defined( __nec ) |
---|
[1682] | 419 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1106] | 420 | #elif defined( __cuda_fft ) |
---|
[1374] | 421 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
[1682] | 422 | ar_tmp !< |
---|
[1482] | 423 | ! following does not work for PGI 14.1 -> to be removed later |
---|
| 424 | ! !$acc declare create( ar_tmp ) |
---|
[1106] | 425 | #endif |
---|
| 426 | |
---|
[1320] | 427 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
[1682] | 428 | ar_2d !< |
---|
[1320] | 429 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
[1682] | 430 | ar !< |
---|
[1320] | 431 | |
---|
[1106] | 432 | IF ( direction == 'forward' ) THEN |
---|
| 433 | forward_fft = .TRUE. |
---|
| 434 | ELSE |
---|
| 435 | forward_fft = .FALSE. |
---|
| 436 | ENDIF |
---|
| 437 | |
---|
| 438 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 439 | |
---|
| 440 | ! |
---|
| 441 | !-- Performing the fft with singleton's software works on every system, |
---|
| 442 | !-- since it is part of the model |
---|
| 443 | ALLOCATE( cwork(0:nx) ) |
---|
| 444 | |
---|
| 445 | IF ( forward_fft ) then |
---|
| 446 | |
---|
| 447 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 448 | !$OMP DO |
---|
| 449 | DO k = nzb_x, nzt_x |
---|
| 450 | DO j = nys_x, nyn_x |
---|
| 451 | |
---|
| 452 | DO i = 0, nx |
---|
[1392] | 453 | cwork(i) = CMPLX( ar(i,j,k), KIND=wp ) |
---|
[1106] | 454 | ENDDO |
---|
| 455 | |
---|
| 456 | ishape = SHAPE( cwork ) |
---|
| 457 | CALL FFTN( cwork, ishape ) |
---|
| 458 | |
---|
| 459 | DO i = 0, (nx+1)/2 |
---|
[1322] | 460 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 461 | ENDDO |
---|
| 462 | DO i = 1, (nx+1)/2 - 1 |
---|
| 463 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 464 | ENDDO |
---|
| 465 | |
---|
| 466 | ENDDO |
---|
| 467 | ENDDO |
---|
| 468 | !$OMP END PARALLEL |
---|
| 469 | |
---|
| 470 | ELSE |
---|
| 471 | |
---|
| 472 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 473 | !$OMP DO |
---|
| 474 | DO k = nzb_x, nzt_x |
---|
| 475 | DO j = nys_x, nyn_x |
---|
| 476 | |
---|
[1392] | 477 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 478 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 479 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k), & |
---|
| 480 | KIND=wp ) |
---|
| 481 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 482 | KIND=wp ) |
---|
[1106] | 483 | ENDDO |
---|
[1392] | 484 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 485 | |
---|
| 486 | ishape = SHAPE( cwork ) |
---|
| 487 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 488 | |
---|
| 489 | DO i = 0, nx |
---|
[1322] | 490 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 491 | ENDDO |
---|
| 492 | |
---|
| 493 | ENDDO |
---|
| 494 | ENDDO |
---|
| 495 | !$OMP END PARALLEL |
---|
| 496 | |
---|
| 497 | ENDIF |
---|
| 498 | |
---|
| 499 | DEALLOCATE( cwork ) |
---|
| 500 | |
---|
| 501 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 502 | |
---|
| 503 | ! |
---|
| 504 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 505 | !-- since it is part of the model |
---|
| 506 | IF ( forward_fft ) THEN |
---|
| 507 | |
---|
[1304] | 508 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 509 | !$OMP DO |
---|
| 510 | DO k = nzb_x, nzt_x |
---|
| 511 | DO j = nys_x, nyn_x |
---|
| 512 | |
---|
| 513 | work(0:nx) = ar(0:nx,j,k) |
---|
| 514 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 515 | |
---|
| 516 | DO i = 0, (nx+1)/2 |
---|
| 517 | ar(i,j,k) = work(2*i) |
---|
| 518 | ENDDO |
---|
| 519 | DO i = 1, (nx+1)/2 - 1 |
---|
| 520 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 521 | ENDDO |
---|
| 522 | |
---|
| 523 | ENDDO |
---|
| 524 | ENDDO |
---|
| 525 | !$OMP END PARALLEL |
---|
| 526 | |
---|
| 527 | ELSE |
---|
| 528 | |
---|
[1304] | 529 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 530 | !$OMP DO |
---|
| 531 | DO k = nzb_x, nzt_x |
---|
| 532 | DO j = nys_x, nyn_x |
---|
| 533 | |
---|
| 534 | DO i = 0, (nx+1)/2 |
---|
| 535 | work(2*i) = ar(i,j,k) |
---|
| 536 | ENDDO |
---|
| 537 | DO i = 1, (nx+1)/2 - 1 |
---|
| 538 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 539 | ENDDO |
---|
[1342] | 540 | work(1) = 0.0_wp |
---|
| 541 | work(nx+2) = 0.0_wp |
---|
[1106] | 542 | |
---|
| 543 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 544 | ar(0:nx,j,k) = work(0:nx) |
---|
| 545 | |
---|
| 546 | ENDDO |
---|
| 547 | ENDDO |
---|
| 548 | !$OMP END PARALLEL |
---|
| 549 | |
---|
| 550 | ENDIF |
---|
| 551 | |
---|
[1210] | 552 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 553 | |
---|
| 554 | #if defined( __fftw ) |
---|
| 555 | IF ( forward_fft ) THEN |
---|
| 556 | |
---|
| 557 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 558 | !$OMP DO |
---|
| 559 | DO k = nzb_x, nzt_x |
---|
| 560 | DO j = nys_x, nyn_x |
---|
| 561 | |
---|
| 562 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 563 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 564 | |
---|
[1216] | 565 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 566 | |
---|
[1216] | 567 | DO i = 0, (nx+1)/2 |
---|
[1322] | 568 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 569 | ENDDO |
---|
| 570 | DO i = 1, (nx+1)/2 - 1 |
---|
| 571 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 572 | ENDDO |
---|
| 573 | |
---|
| 574 | ELSE |
---|
| 575 | |
---|
| 576 | DO i = 0, (nx+1)/2 |
---|
[1322] | 577 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 578 | ENDDO |
---|
| 579 | DO i = 1, (nx+1)/2 - 1 |
---|
| 580 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 581 | ENDDO |
---|
| 582 | |
---|
| 583 | ENDIF |
---|
| 584 | |
---|
[1210] | 585 | ENDDO |
---|
| 586 | ENDDO |
---|
| 587 | !$OMP END PARALLEL |
---|
| 588 | |
---|
[1216] | 589 | ELSE |
---|
[1210] | 590 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 591 | !$OMP DO |
---|
| 592 | DO k = nzb_x, nzt_x |
---|
| 593 | DO j = nys_x, nyn_x |
---|
| 594 | |
---|
[1216] | 595 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 596 | |
---|
[1392] | 597 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp, KIND=wp ) |
---|
[1216] | 598 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 599 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j), & |
---|
| 600 | KIND=wp ) |
---|
[1216] | 601 | ENDDO |
---|
[1392] | 602 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp, & |
---|
| 603 | KIND=wp ) |
---|
[1216] | 604 | |
---|
| 605 | ELSE |
---|
| 606 | |
---|
[1392] | 607 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1216] | 608 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 609 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), KIND=wp ) |
---|
[1216] | 610 | ENDDO |
---|
[1392] | 611 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 612 | KIND=wp ) |
---|
[1216] | 613 | |
---|
| 614 | ENDIF |
---|
| 615 | |
---|
[1210] | 616 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 617 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 618 | |
---|
| 619 | ENDDO |
---|
| 620 | ENDDO |
---|
| 621 | !$OMP END PARALLEL |
---|
| 622 | |
---|
[1216] | 623 | ENDIF |
---|
[1210] | 624 | #endif |
---|
| 625 | |
---|
[1106] | 626 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 627 | |
---|
| 628 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 629 | IF ( forward_fft ) THEN |
---|
| 630 | |
---|
| 631 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 632 | !$OMP DO |
---|
| 633 | DO k = nzb_x, nzt_x |
---|
| 634 | DO j = nys_x, nyn_x |
---|
| 635 | |
---|
[1320] | 636 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 637 | nau1, aux2, nau2 ) |
---|
[1106] | 638 | |
---|
| 639 | DO i = 0, (nx+1)/2 |
---|
| 640 | ar(i,j,k) = work(2*i) |
---|
| 641 | ENDDO |
---|
| 642 | DO i = 1, (nx+1)/2 - 1 |
---|
| 643 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 644 | ENDDO |
---|
| 645 | |
---|
| 646 | ENDDO |
---|
| 647 | ENDDO |
---|
| 648 | !$OMP END PARALLEL |
---|
| 649 | |
---|
| 650 | ELSE |
---|
| 651 | |
---|
| 652 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 653 | !$OMP DO |
---|
| 654 | DO k = nzb_x, nzt_x |
---|
| 655 | DO j = nys_x, nyn_x |
---|
| 656 | |
---|
| 657 | DO i = 0, (nx+1)/2 |
---|
| 658 | work(2*i) = ar(i,j,k) |
---|
| 659 | ENDDO |
---|
| 660 | DO i = 1, (nx+1)/2 - 1 |
---|
| 661 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 662 | ENDDO |
---|
[1342] | 663 | work(1) = 0.0_wp |
---|
| 664 | work(nx+2) = 0.0_wp |
---|
[1106] | 665 | |
---|
[1320] | 666 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 667 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 668 | |
---|
| 669 | DO i = 0, nx |
---|
| 670 | ar(i,j,k) = work(i) |
---|
| 671 | ENDDO |
---|
| 672 | |
---|
| 673 | ENDDO |
---|
| 674 | ENDDO |
---|
| 675 | !$OMP END PARALLEL |
---|
| 676 | |
---|
| 677 | ENDIF |
---|
| 678 | |
---|
| 679 | #elif defined( __nec ) |
---|
| 680 | |
---|
| 681 | IF ( forward_fft ) THEN |
---|
| 682 | |
---|
| 683 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 684 | !$OMP DO |
---|
| 685 | DO k = nzb_x, nzt_x |
---|
| 686 | DO j = nys_x, nyn_x |
---|
| 687 | |
---|
| 688 | work(0:nx) = ar(0:nx,j,k) |
---|
| 689 | |
---|
| 690 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 691 | |
---|
| 692 | DO i = 0, (nx+1)/2 |
---|
| 693 | ar(i,j,k) = work(2*i) |
---|
| 694 | ENDDO |
---|
| 695 | DO i = 1, (nx+1)/2 - 1 |
---|
| 696 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 697 | ENDDO |
---|
| 698 | |
---|
| 699 | ENDDO |
---|
| 700 | ENDDO |
---|
| 701 | !$END OMP PARALLEL |
---|
| 702 | |
---|
| 703 | ELSE |
---|
| 704 | |
---|
| 705 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 706 | !$OMP DO |
---|
| 707 | DO k = nzb_x, nzt_x |
---|
| 708 | DO j = nys_x, nyn_x |
---|
| 709 | |
---|
| 710 | DO i = 0, (nx+1)/2 |
---|
| 711 | work(2*i) = ar(i,j,k) |
---|
| 712 | ENDDO |
---|
| 713 | DO i = 1, (nx+1)/2 - 1 |
---|
| 714 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 715 | ENDDO |
---|
[1342] | 716 | work(1) = 0.0_wp |
---|
| 717 | work(nx+2) = 0.0_wp |
---|
[1106] | 718 | |
---|
| 719 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 720 | |
---|
| 721 | ar(0:nx,j,k) = work(0:nx) |
---|
| 722 | |
---|
| 723 | ENDDO |
---|
| 724 | ENDDO |
---|
| 725 | !$OMP END PARALLEL |
---|
| 726 | |
---|
| 727 | ENDIF |
---|
| 728 | |
---|
| 729 | #elif defined( __cuda_fft ) |
---|
| 730 | |
---|
[1482] | 731 | !$acc data create( ar_tmp ) |
---|
[1106] | 732 | IF ( forward_fft ) THEN |
---|
| 733 | |
---|
[1111] | 734 | !$acc data present( ar ) |
---|
| 735 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
[1106] | 736 | |
---|
[1111] | 737 | !$acc kernels |
---|
[1106] | 738 | DO k = nzb_x, nzt_x |
---|
| 739 | DO j = nys_x, nyn_x |
---|
| 740 | |
---|
| 741 | DO i = 0, (nx+1)/2 |
---|
[1322] | 742 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
[1106] | 743 | ENDDO |
---|
| 744 | |
---|
| 745 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 746 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 747 | ENDDO |
---|
| 748 | |
---|
| 749 | ENDDO |
---|
| 750 | ENDDO |
---|
[1111] | 751 | !$acc end kernels |
---|
| 752 | !$acc end data |
---|
[1106] | 753 | |
---|
| 754 | ELSE |
---|
| 755 | |
---|
[1111] | 756 | !$acc data present( ar ) |
---|
| 757 | !$acc kernels |
---|
[1106] | 758 | DO k = nzb_x, nzt_x |
---|
| 759 | DO j = nys_x, nyn_x |
---|
| 760 | |
---|
[1392] | 761 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 762 | |
---|
| 763 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 764 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k), & |
---|
| 765 | KIND=wp ) |
---|
[1106] | 766 | ENDDO |
---|
[1392] | 767 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp, & |
---|
| 768 | KIND=wp ) |
---|
[1106] | 769 | |
---|
| 770 | ENDDO |
---|
| 771 | ENDDO |
---|
[1111] | 772 | !$acc end kernels |
---|
[1106] | 773 | |
---|
[1111] | 774 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 775 | !$acc end data |
---|
[1106] | 776 | |
---|
| 777 | ENDIF |
---|
[1482] | 778 | !$acc end data |
---|
[1106] | 779 | |
---|
| 780 | #else |
---|
| 781 | message_string = 'no system-specific fft-call available' |
---|
| 782 | CALL message( 'fft_x', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 783 | #endif |
---|
| 784 | |
---|
| 785 | ELSE |
---|
| 786 | |
---|
| 787 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 788 | '" not available' |
---|
| 789 | CALL message( 'fft_x', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 790 | |
---|
| 791 | ENDIF |
---|
| 792 | |
---|
| 793 | END SUBROUTINE fft_x |
---|
| 794 | |
---|
[1682] | 795 | !------------------------------------------------------------------------------! |
---|
| 796 | ! Description: |
---|
| 797 | ! ------------ |
---|
| 798 | !> Fourier-transformation along x-direction. |
---|
| 799 | !> Version for 1D-decomposition. |
---|
| 800 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 801 | !> system-specific routines, if they are available |
---|
| 802 | !------------------------------------------------------------------------------! |
---|
| 803 | |
---|
[1106] | 804 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 805 | |
---|
| 806 | |
---|
| 807 | IMPLICIT NONE |
---|
| 808 | |
---|
[1682] | 809 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 810 | |
---|
[1682] | 811 | INTEGER(iwp) :: i !< |
---|
| 812 | INTEGER(iwp) :: ishape(1) !< |
---|
[1] | 813 | |
---|
[1682] | 814 | LOGICAL :: forward_fft !< |
---|
[1106] | 815 | |
---|
[1682] | 816 | REAL(wp), DIMENSION(0:nx) :: ar !< |
---|
| 817 | REAL(wp), DIMENSION(0:nx+2) :: work !< |
---|
| 818 | REAL(wp), DIMENSION(nx+2) :: work1 !< |
---|
[1320] | 819 | |
---|
[1682] | 820 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 821 | |
---|
[1] | 822 | #if defined( __ibm ) |
---|
[1682] | 823 | REAL(wp), DIMENSION(nau2) :: aux2 !< |
---|
| 824 | REAL(wp), DIMENSION(nau2) :: aux4 !< |
---|
[1] | 825 | #elif defined( __nec ) |
---|
[1682] | 826 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !< |
---|
[1] | 827 | #endif |
---|
| 828 | |
---|
[1106] | 829 | IF ( direction == 'forward' ) THEN |
---|
| 830 | forward_fft = .TRUE. |
---|
| 831 | ELSE |
---|
| 832 | forward_fft = .FALSE. |
---|
| 833 | ENDIF |
---|
| 834 | |
---|
[1] | 835 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 836 | |
---|
| 837 | ! |
---|
| 838 | !-- Performing the fft with singleton's software works on every system, |
---|
| 839 | !-- since it is part of the model |
---|
| 840 | ALLOCATE( cwork(0:nx) ) |
---|
| 841 | |
---|
[1106] | 842 | IF ( forward_fft ) then |
---|
[1] | 843 | |
---|
| 844 | DO i = 0, nx |
---|
[1392] | 845 | cwork(i) = CMPLX( ar(i), KIND=wp ) |
---|
[1] | 846 | ENDDO |
---|
| 847 | ishape = SHAPE( cwork ) |
---|
| 848 | CALL FFTN( cwork, ishape ) |
---|
| 849 | DO i = 0, (nx+1)/2 |
---|
[1322] | 850 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 851 | ENDDO |
---|
| 852 | DO i = 1, (nx+1)/2 - 1 |
---|
| 853 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 854 | ENDDO |
---|
| 855 | |
---|
| 856 | ELSE |
---|
| 857 | |
---|
[1392] | 858 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 859 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 860 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i), KIND=wp ) |
---|
| 861 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1] | 862 | ENDDO |
---|
[1392] | 863 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 864 | |
---|
| 865 | ishape = SHAPE( cwork ) |
---|
| 866 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 867 | |
---|
| 868 | DO i = 0, nx |
---|
[1322] | 869 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 870 | ENDDO |
---|
| 871 | |
---|
| 872 | ENDIF |
---|
| 873 | |
---|
| 874 | DEALLOCATE( cwork ) |
---|
| 875 | |
---|
| 876 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 877 | |
---|
| 878 | ! |
---|
| 879 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 880 | !-- since it is part of the model |
---|
[1106] | 881 | IF ( forward_fft ) THEN |
---|
[1] | 882 | |
---|
| 883 | work(0:nx) = ar |
---|
| 884 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 885 | |
---|
| 886 | DO i = 0, (nx+1)/2 |
---|
| 887 | ar(i) = work(2*i) |
---|
| 888 | ENDDO |
---|
| 889 | DO i = 1, (nx+1)/2 - 1 |
---|
| 890 | ar(nx+1-i) = work(2*i+1) |
---|
| 891 | ENDDO |
---|
| 892 | |
---|
| 893 | ELSE |
---|
| 894 | |
---|
| 895 | DO i = 0, (nx+1)/2 |
---|
| 896 | work(2*i) = ar(i) |
---|
| 897 | ENDDO |
---|
| 898 | DO i = 1, (nx+1)/2 - 1 |
---|
| 899 | work(2*i+1) = ar(nx+1-i) |
---|
| 900 | ENDDO |
---|
[1342] | 901 | work(1) = 0.0_wp |
---|
| 902 | work(nx+2) = 0.0_wp |
---|
[1] | 903 | |
---|
| 904 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 905 | ar = work(0:nx) |
---|
| 906 | |
---|
| 907 | ENDIF |
---|
| 908 | |
---|
[1216] | 909 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 910 | |
---|
| 911 | #if defined( __fftw ) |
---|
| 912 | IF ( forward_fft ) THEN |
---|
| 913 | |
---|
| 914 | x_in(0:nx) = ar(0:nx) |
---|
| 915 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 916 | |
---|
| 917 | DO i = 0, (nx+1)/2 |
---|
[1322] | 918 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 919 | ENDDO |
---|
| 920 | DO i = 1, (nx+1)/2 - 1 |
---|
| 921 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 922 | ENDDO |
---|
| 923 | |
---|
| 924 | ELSE |
---|
| 925 | |
---|
[1392] | 926 | x_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 927 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 928 | x_out(i) = CMPLX( ar(i), ar(nx+1-i), KIND=wp ) |
---|
[1216] | 929 | ENDDO |
---|
[1392] | 930 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 931 | |
---|
| 932 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 933 | ar(0:nx) = x_in(0:nx) |
---|
| 934 | |
---|
| 935 | ENDIF |
---|
| 936 | #endif |
---|
| 937 | |
---|
[1] | 938 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 939 | |
---|
| 940 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 941 | IF ( forward_fft ) THEN |
---|
[1] | 942 | |
---|
[1320] | 943 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 944 | aux2, nau2 ) |
---|
| 945 | |
---|
| 946 | DO i = 0, (nx+1)/2 |
---|
| 947 | ar(i) = work(2*i) |
---|
| 948 | ENDDO |
---|
| 949 | DO i = 1, (nx+1)/2 - 1 |
---|
| 950 | ar(nx+1-i) = work(2*i+1) |
---|
| 951 | ENDDO |
---|
| 952 | |
---|
| 953 | ELSE |
---|
| 954 | |
---|
| 955 | DO i = 0, (nx+1)/2 |
---|
| 956 | work(2*i) = ar(i) |
---|
| 957 | ENDDO |
---|
| 958 | DO i = 1, (nx+1)/2 - 1 |
---|
| 959 | work(2*i+1) = ar(nx+1-i) |
---|
| 960 | ENDDO |
---|
[1342] | 961 | work(1) = 0.0_wp |
---|
| 962 | work(nx+2) = 0.0_wp |
---|
[1] | 963 | |
---|
[1106] | 964 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 965 | aux4, nau2 ) |
---|
| 966 | |
---|
| 967 | DO i = 0, nx |
---|
| 968 | ar(i) = work(i) |
---|
| 969 | ENDDO |
---|
| 970 | |
---|
| 971 | ENDIF |
---|
| 972 | #elif defined( __nec ) |
---|
[1106] | 973 | IF ( forward_fft ) THEN |
---|
[1] | 974 | |
---|
| 975 | work(0:nx) = ar(0:nx) |
---|
| 976 | |
---|
[1106] | 977 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 978 | |
---|
[1] | 979 | DO i = 0, (nx+1)/2 |
---|
| 980 | ar(i) = work(2*i) |
---|
| 981 | ENDDO |
---|
| 982 | DO i = 1, (nx+1)/2 - 1 |
---|
| 983 | ar(nx+1-i) = work(2*i+1) |
---|
| 984 | ENDDO |
---|
| 985 | |
---|
| 986 | ELSE |
---|
| 987 | |
---|
| 988 | DO i = 0, (nx+1)/2 |
---|
| 989 | work(2*i) = ar(i) |
---|
| 990 | ENDDO |
---|
| 991 | DO i = 1, (nx+1)/2 - 1 |
---|
| 992 | work(2*i+1) = ar(nx+1-i) |
---|
| 993 | ENDDO |
---|
[1342] | 994 | work(1) = 0.0_wp |
---|
| 995 | work(nx+2) = 0.0_wp |
---|
[1] | 996 | |
---|
[1106] | 997 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 998 | |
---|
| 999 | ar(0:nx) = work(0:nx) |
---|
| 1000 | |
---|
| 1001 | ENDIF |
---|
| 1002 | #else |
---|
[254] | 1003 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 1004 | CALL message( 'fft_x_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1005 | #endif |
---|
| 1006 | ELSE |
---|
[274] | 1007 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1008 | '" not available' |
---|
[1106] | 1009 | CALL message( 'fft_x_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1010 | |
---|
| 1011 | ENDIF |
---|
| 1012 | |
---|
[1106] | 1013 | END SUBROUTINE fft_x_1d |
---|
[1] | 1014 | |
---|
[1682] | 1015 | !------------------------------------------------------------------------------! |
---|
| 1016 | ! Description: |
---|
| 1017 | ! ------------ |
---|
| 1018 | !> Fourier-transformation along y-direction. |
---|
| 1019 | !> Version for 2D-decomposition. |
---|
| 1020 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1021 | !> system-specific routines, if they are available. |
---|
| 1022 | !> |
---|
| 1023 | !> direction: 'forward' or 'backward' |
---|
| 1024 | !> ar, ar_tr: 3D data arrays |
---|
| 1025 | !> forward: ar: before ar_tr: after transformation |
---|
| 1026 | !> backward: ar_tr: before ar: after transfosition |
---|
| 1027 | !> |
---|
| 1028 | !> In case of non-overlapping transposition/transformation: |
---|
| 1029 | !> nxl_y_bound = nxl_y_l = nxl_y |
---|
| 1030 | !> nxr_y_bound = nxr_y_l = nxr_y |
---|
| 1031 | !> |
---|
| 1032 | !> In case of overlapping transposition/transformation |
---|
| 1033 | !> - nxl_y_bound and nxr_y_bound have the original values of |
---|
| 1034 | !> nxl_y, nxr_y. ar_tr is dimensioned using these values. |
---|
| 1035 | !> - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that |
---|
| 1036 | !> transformation is carried out for a 2D-plane only. |
---|
| 1037 | !------------------------------------------------------------------------------! |
---|
| 1038 | |
---|
[1216] | 1039 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 1040 | nxr_y_l ) |
---|
[1] | 1041 | |
---|
| 1042 | |
---|
[1106] | 1043 | USE cuda_fft_interfaces |
---|
[1153] | 1044 | #if defined( __cuda_fft ) |
---|
| 1045 | USE ISO_C_BINDING |
---|
| 1046 | #endif |
---|
[1106] | 1047 | |
---|
[1] | 1048 | IMPLICIT NONE |
---|
| 1049 | |
---|
[1682] | 1050 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1051 | |
---|
[1682] | 1052 | INTEGER(iwp) :: i !< |
---|
| 1053 | INTEGER(iwp) :: j !< |
---|
| 1054 | INTEGER(iwp) :: jshape(1) !< |
---|
| 1055 | INTEGER(iwp) :: k !< |
---|
| 1056 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 1057 | INTEGER(iwp) :: nxl_y_l !< |
---|
| 1058 | INTEGER(iwp) :: nxr_y_bound !< |
---|
| 1059 | INTEGER(iwp) :: nxr_y_l !< |
---|
[1106] | 1060 | |
---|
[1682] | 1061 | LOGICAL :: forward_fft !< |
---|
[1106] | 1062 | |
---|
[1682] | 1063 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1064 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1065 | |
---|
[1682] | 1066 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1067 | |
---|
[1106] | 1068 | #if defined( __ibm ) |
---|
[1682] | 1069 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1070 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1106] | 1071 | #elif defined( __nec ) |
---|
[1682] | 1072 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1106] | 1073 | #elif defined( __cuda_fft ) |
---|
[1374] | 1074 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
[1682] | 1075 | ar_tmp !< |
---|
[1482] | 1076 | ! following does not work for PGI 14.1 -> to be removed later |
---|
[1749] | 1077 | ! !$acc declare create( ar_tmp ) |
---|
[1106] | 1078 | #endif |
---|
| 1079 | |
---|
[1320] | 1080 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
[1682] | 1081 | ar !< |
---|
[1320] | 1082 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
[1682] | 1083 | ar_tr !< |
---|
[1320] | 1084 | |
---|
[1106] | 1085 | IF ( direction == 'forward' ) THEN |
---|
| 1086 | forward_fft = .TRUE. |
---|
| 1087 | ELSE |
---|
| 1088 | forward_fft = .FALSE. |
---|
| 1089 | ENDIF |
---|
| 1090 | |
---|
| 1091 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1092 | |
---|
| 1093 | ! |
---|
| 1094 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1095 | !-- since it is part of the model |
---|
| 1096 | ALLOCATE( cwork(0:ny) ) |
---|
| 1097 | |
---|
| 1098 | IF ( forward_fft ) then |
---|
| 1099 | |
---|
| 1100 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1101 | !$OMP DO |
---|
| 1102 | DO k = nzb_y, nzt_y |
---|
[1216] | 1103 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1104 | |
---|
| 1105 | DO j = 0, ny |
---|
[1392] | 1106 | cwork(j) = CMPLX( ar(j,i,k), KIND=wp ) |
---|
[1106] | 1107 | ENDDO |
---|
| 1108 | |
---|
| 1109 | jshape = SHAPE( cwork ) |
---|
| 1110 | CALL FFTN( cwork, jshape ) |
---|
| 1111 | |
---|
| 1112 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1113 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1114 | ENDDO |
---|
| 1115 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1116 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1117 | ENDDO |
---|
| 1118 | |
---|
| 1119 | ENDDO |
---|
| 1120 | ENDDO |
---|
| 1121 | !$OMP END PARALLEL |
---|
| 1122 | |
---|
| 1123 | ELSE |
---|
| 1124 | |
---|
| 1125 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1126 | !$OMP DO |
---|
| 1127 | DO k = nzb_y, nzt_y |
---|
[1216] | 1128 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1129 | |
---|
[1392] | 1130 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1131 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1132 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k), & |
---|
| 1133 | KIND=wp ) |
---|
| 1134 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1135 | KIND=wp ) |
---|
[1106] | 1136 | ENDDO |
---|
[1392] | 1137 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1138 | KIND=wp ) |
---|
[1106] | 1139 | |
---|
| 1140 | jshape = SHAPE( cwork ) |
---|
| 1141 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1142 | |
---|
| 1143 | DO j = 0, ny |
---|
[1322] | 1144 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1145 | ENDDO |
---|
| 1146 | |
---|
| 1147 | ENDDO |
---|
| 1148 | ENDDO |
---|
| 1149 | !$OMP END PARALLEL |
---|
| 1150 | |
---|
| 1151 | ENDIF |
---|
| 1152 | |
---|
| 1153 | DEALLOCATE( cwork ) |
---|
| 1154 | |
---|
| 1155 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1156 | |
---|
| 1157 | ! |
---|
| 1158 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1159 | !-- since it is part of the model |
---|
| 1160 | IF ( forward_fft ) THEN |
---|
| 1161 | |
---|
[1304] | 1162 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1163 | !$OMP DO |
---|
| 1164 | DO k = nzb_y, nzt_y |
---|
[1216] | 1165 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1166 | |
---|
| 1167 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1168 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1169 | |
---|
| 1170 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1171 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1172 | ENDDO |
---|
| 1173 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1174 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1175 | ENDDO |
---|
| 1176 | |
---|
| 1177 | ENDDO |
---|
| 1178 | ENDDO |
---|
| 1179 | !$OMP END PARALLEL |
---|
| 1180 | |
---|
| 1181 | ELSE |
---|
| 1182 | |
---|
[1304] | 1183 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1184 | !$OMP DO |
---|
| 1185 | DO k = nzb_y, nzt_y |
---|
[1216] | 1186 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1187 | |
---|
| 1188 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1189 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1190 | ENDDO |
---|
| 1191 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1192 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1193 | ENDDO |
---|
[1342] | 1194 | work(1) = 0.0_wp |
---|
| 1195 | work(ny+2) = 0.0_wp |
---|
[1106] | 1196 | |
---|
| 1197 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1198 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1199 | |
---|
| 1200 | ENDDO |
---|
| 1201 | ENDDO |
---|
| 1202 | !$OMP END PARALLEL |
---|
| 1203 | |
---|
| 1204 | ENDIF |
---|
| 1205 | |
---|
[1210] | 1206 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1207 | |
---|
| 1208 | #if defined( __fftw ) |
---|
| 1209 | IF ( forward_fft ) THEN |
---|
| 1210 | |
---|
| 1211 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1212 | !$OMP DO |
---|
| 1213 | DO k = nzb_y, nzt_y |
---|
[1216] | 1214 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1215 | |
---|
| 1216 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1217 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1218 | |
---|
| 1219 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1220 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1221 | ENDDO |
---|
| 1222 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1223 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1224 | ENDDO |
---|
| 1225 | |
---|
| 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | !$OMP END PARALLEL |
---|
| 1229 | |
---|
| 1230 | ELSE |
---|
| 1231 | |
---|
| 1232 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1233 | !$OMP DO |
---|
| 1234 | DO k = nzb_y, nzt_y |
---|
[1216] | 1235 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1236 | |
---|
[1392] | 1237 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1210] | 1238 | DO j = 1, (ny+1)/2 - 1 |
---|
[1398] | 1239 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k), & |
---|
| 1240 | KIND=wp ) |
---|
[1210] | 1241 | ENDDO |
---|
[1392] | 1242 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1243 | KIND=wp ) |
---|
[1210] | 1244 | |
---|
| 1245 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1246 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1247 | |
---|
| 1248 | ENDDO |
---|
| 1249 | ENDDO |
---|
| 1250 | !$OMP END PARALLEL |
---|
| 1251 | |
---|
| 1252 | ENDIF |
---|
| 1253 | #endif |
---|
| 1254 | |
---|
[1106] | 1255 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1256 | |
---|
| 1257 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 1258 | IF ( forward_fft) THEN |
---|
| 1259 | |
---|
| 1260 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1261 | !$OMP DO |
---|
| 1262 | DO k = nzb_y, nzt_y |
---|
[1216] | 1263 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1264 | |
---|
[1320] | 1265 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1266 | nau1, auy2, nau2 ) |
---|
[1106] | 1267 | |
---|
| 1268 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1269 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1270 | ENDDO |
---|
| 1271 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1272 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1273 | ENDDO |
---|
| 1274 | |
---|
| 1275 | ENDDO |
---|
| 1276 | ENDDO |
---|
| 1277 | !$OMP END PARALLEL |
---|
| 1278 | |
---|
| 1279 | ELSE |
---|
| 1280 | |
---|
| 1281 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1282 | !$OMP DO |
---|
| 1283 | DO k = nzb_y, nzt_y |
---|
[1216] | 1284 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1285 | |
---|
| 1286 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1287 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1288 | ENDDO |
---|
| 1289 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1290 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1291 | ENDDO |
---|
[1342] | 1292 | work(1) = 0.0_wp |
---|
| 1293 | work(ny+2) = 0.0_wp |
---|
[1106] | 1294 | |
---|
[1320] | 1295 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1296 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1297 | |
---|
| 1298 | DO j = 0, ny |
---|
| 1299 | ar(j,i,k) = work(j) |
---|
| 1300 | ENDDO |
---|
| 1301 | |
---|
| 1302 | ENDDO |
---|
| 1303 | ENDDO |
---|
| 1304 | !$OMP END PARALLEL |
---|
| 1305 | |
---|
| 1306 | ENDIF |
---|
| 1307 | #elif defined( __nec ) |
---|
| 1308 | IF ( forward_fft ) THEN |
---|
| 1309 | |
---|
| 1310 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1311 | !$OMP DO |
---|
| 1312 | DO k = nzb_y, nzt_y |
---|
[1216] | 1313 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1314 | |
---|
| 1315 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1316 | |
---|
| 1317 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1318 | |
---|
| 1319 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1320 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1321 | ENDDO |
---|
| 1322 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1323 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1324 | ENDDO |
---|
| 1325 | |
---|
| 1326 | ENDDO |
---|
| 1327 | ENDDO |
---|
| 1328 | !$END OMP PARALLEL |
---|
| 1329 | |
---|
| 1330 | ELSE |
---|
| 1331 | |
---|
| 1332 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1333 | !$OMP DO |
---|
| 1334 | DO k = nzb_y, nzt_y |
---|
[1216] | 1335 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1336 | |
---|
| 1337 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1338 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1339 | ENDDO |
---|
| 1340 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1341 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1342 | ENDDO |
---|
[1342] | 1343 | work(1) = 0.0_wp |
---|
| 1344 | work(ny+2) = 0.0_wp |
---|
[1106] | 1345 | |
---|
| 1346 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1347 | |
---|
| 1348 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1349 | |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | !$OMP END PARALLEL |
---|
| 1353 | |
---|
| 1354 | ENDIF |
---|
| 1355 | #elif defined( __cuda_fft ) |
---|
| 1356 | |
---|
[1482] | 1357 | !$acc data create( ar_tmp ) |
---|
[1106] | 1358 | IF ( forward_fft ) THEN |
---|
| 1359 | |
---|
[1111] | 1360 | !$acc data present( ar ) |
---|
| 1361 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
[1106] | 1362 | |
---|
[1111] | 1363 | !$acc kernels |
---|
[1106] | 1364 | DO k = nzb_y, nzt_y |
---|
| 1365 | DO i = nxl_y, nxr_y |
---|
| 1366 | |
---|
| 1367 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1368 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
[1106] | 1369 | ENDDO |
---|
| 1370 | |
---|
| 1371 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1372 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1373 | ENDDO |
---|
| 1374 | |
---|
| 1375 | ENDDO |
---|
| 1376 | ENDDO |
---|
[1111] | 1377 | !$acc end kernels |
---|
| 1378 | !$acc end data |
---|
[1106] | 1379 | |
---|
| 1380 | ELSE |
---|
| 1381 | |
---|
[1111] | 1382 | !$acc data present( ar ) |
---|
| 1383 | !$acc kernels |
---|
[1106] | 1384 | DO k = nzb_y, nzt_y |
---|
| 1385 | DO i = nxl_y, nxr_y |
---|
| 1386 | |
---|
[1392] | 1387 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp, KIND=wp ) |
---|
[1106] | 1388 | |
---|
| 1389 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1390 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k), & |
---|
| 1391 | KIND=wp ) |
---|
[1106] | 1392 | ENDDO |
---|
[1392] | 1393 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp, & |
---|
| 1394 | KIND=wp ) |
---|
[1106] | 1395 | |
---|
| 1396 | ENDDO |
---|
| 1397 | ENDDO |
---|
[1111] | 1398 | !$acc end kernels |
---|
[1106] | 1399 | |
---|
[1111] | 1400 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1401 | !$acc end data |
---|
[1106] | 1402 | |
---|
| 1403 | ENDIF |
---|
[1482] | 1404 | !$acc end data |
---|
[1106] | 1405 | |
---|
| 1406 | #else |
---|
| 1407 | message_string = 'no system-specific fft-call available' |
---|
| 1408 | CALL message( 'fft_y', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 1409 | #endif |
---|
| 1410 | |
---|
| 1411 | ELSE |
---|
| 1412 | |
---|
| 1413 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1414 | '" not available' |
---|
| 1415 | CALL message( 'fft_y', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 1416 | |
---|
| 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | END SUBROUTINE fft_y |
---|
| 1420 | |
---|
[1682] | 1421 | !------------------------------------------------------------------------------! |
---|
| 1422 | ! Description: |
---|
| 1423 | ! ------------ |
---|
| 1424 | !> Fourier-transformation along y-direction. |
---|
| 1425 | !> Version for 1D-decomposition. |
---|
| 1426 | !> It uses internal algorithms (Singleton or Temperton) or |
---|
| 1427 | !> system-specific routines, if they are available. |
---|
| 1428 | !------------------------------------------------------------------------------! |
---|
| 1429 | |
---|
[1106] | 1430 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1431 | |
---|
| 1432 | |
---|
| 1433 | IMPLICIT NONE |
---|
| 1434 | |
---|
| 1435 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1436 | |
---|
[1682] | 1437 | INTEGER(iwp) :: j !< |
---|
| 1438 | INTEGER(iwp) :: jshape(1) !< |
---|
[1] | 1439 | |
---|
[1682] | 1440 | LOGICAL :: forward_fft !< |
---|
[1106] | 1441 | |
---|
[1682] | 1442 | REAL(wp), DIMENSION(0:ny) :: ar !< |
---|
| 1443 | REAL(wp), DIMENSION(0:ny+2) :: work !< |
---|
| 1444 | REAL(wp), DIMENSION(ny+2) :: work1 !< |
---|
[1320] | 1445 | |
---|
[1682] | 1446 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !< |
---|
[1320] | 1447 | |
---|
[1] | 1448 | #if defined( __ibm ) |
---|
[1682] | 1449 | REAL(wp), DIMENSION(nau2) :: auy2 !< |
---|
| 1450 | REAL(wp), DIMENSION(nau2) :: auy4 !< |
---|
[1] | 1451 | #elif defined( __nec ) |
---|
[1682] | 1452 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !< |
---|
[1] | 1453 | #endif |
---|
| 1454 | |
---|
[1106] | 1455 | IF ( direction == 'forward' ) THEN |
---|
| 1456 | forward_fft = .TRUE. |
---|
| 1457 | ELSE |
---|
| 1458 | forward_fft = .FALSE. |
---|
| 1459 | ENDIF |
---|
| 1460 | |
---|
[1] | 1461 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1462 | |
---|
| 1463 | ! |
---|
| 1464 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1465 | !-- since it is part of the model |
---|
| 1466 | ALLOCATE( cwork(0:ny) ) |
---|
| 1467 | |
---|
[1106] | 1468 | IF ( forward_fft ) THEN |
---|
[1] | 1469 | |
---|
| 1470 | DO j = 0, ny |
---|
[1392] | 1471 | cwork(j) = CMPLX( ar(j), KIND=wp ) |
---|
[1] | 1472 | ENDDO |
---|
| 1473 | |
---|
| 1474 | jshape = SHAPE( cwork ) |
---|
| 1475 | CALL FFTN( cwork, jshape ) |
---|
| 1476 | |
---|
| 1477 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1478 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1479 | ENDDO |
---|
| 1480 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1481 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1482 | ENDDO |
---|
| 1483 | |
---|
| 1484 | ELSE |
---|
| 1485 | |
---|
[1392] | 1486 | cwork(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1] | 1487 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1488 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j), KIND=wp ) |
---|
| 1489 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1] | 1490 | ENDDO |
---|
[1392] | 1491 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1] | 1492 | |
---|
| 1493 | jshape = SHAPE( cwork ) |
---|
| 1494 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1495 | |
---|
| 1496 | DO j = 0, ny |
---|
[1322] | 1497 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1498 | ENDDO |
---|
| 1499 | |
---|
| 1500 | ENDIF |
---|
| 1501 | |
---|
| 1502 | DEALLOCATE( cwork ) |
---|
| 1503 | |
---|
| 1504 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1505 | |
---|
| 1506 | ! |
---|
| 1507 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1508 | !-- since it is part of the model |
---|
[1106] | 1509 | IF ( forward_fft ) THEN |
---|
[1] | 1510 | |
---|
| 1511 | work(0:ny) = ar |
---|
| 1512 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1513 | |
---|
| 1514 | DO j = 0, (ny+1)/2 |
---|
| 1515 | ar(j) = work(2*j) |
---|
| 1516 | ENDDO |
---|
| 1517 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1518 | ar(ny+1-j) = work(2*j+1) |
---|
| 1519 | ENDDO |
---|
| 1520 | |
---|
| 1521 | ELSE |
---|
| 1522 | |
---|
| 1523 | DO j = 0, (ny+1)/2 |
---|
| 1524 | work(2*j) = ar(j) |
---|
| 1525 | ENDDO |
---|
| 1526 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1527 | work(2*j+1) = ar(ny+1-j) |
---|
| 1528 | ENDDO |
---|
[1342] | 1529 | work(1) = 0.0_wp |
---|
| 1530 | work(ny+2) = 0.0_wp |
---|
[1] | 1531 | |
---|
| 1532 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1533 | ar = work(0:ny) |
---|
| 1534 | |
---|
| 1535 | ENDIF |
---|
| 1536 | |
---|
[1216] | 1537 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1538 | |
---|
| 1539 | #if defined( __fftw ) |
---|
| 1540 | IF ( forward_fft ) THEN |
---|
| 1541 | |
---|
| 1542 | y_in(0:ny) = ar(0:ny) |
---|
| 1543 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1544 | |
---|
| 1545 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1546 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1547 | ENDDO |
---|
| 1548 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1549 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1550 | ENDDO |
---|
| 1551 | |
---|
| 1552 | ELSE |
---|
| 1553 | |
---|
[1392] | 1554 | y_out(0) = CMPLX( ar(0), 0.0_wp, KIND=wp ) |
---|
[1216] | 1555 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1556 | y_out(j) = CMPLX( ar(j), ar(ny+1-j), KIND=wp ) |
---|
[1216] | 1557 | ENDDO |
---|
[1392] | 1558 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp, KIND=wp ) |
---|
[1216] | 1559 | |
---|
| 1560 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1561 | ar(0:ny) = y_in(0:ny) |
---|
| 1562 | |
---|
| 1563 | ENDIF |
---|
| 1564 | #endif |
---|
| 1565 | |
---|
[1] | 1566 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1567 | |
---|
| 1568 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 1569 | IF ( forward_fft ) THEN |
---|
[1] | 1570 | |
---|
[1320] | 1571 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1572 | auy2, nau2 ) |
---|
| 1573 | |
---|
| 1574 | DO j = 0, (ny+1)/2 |
---|
| 1575 | ar(j) = work(2*j) |
---|
| 1576 | ENDDO |
---|
| 1577 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1578 | ar(ny+1-j) = work(2*j+1) |
---|
| 1579 | ENDDO |
---|
| 1580 | |
---|
| 1581 | ELSE |
---|
| 1582 | |
---|
| 1583 | DO j = 0, (ny+1)/2 |
---|
| 1584 | work(2*j) = ar(j) |
---|
| 1585 | ENDDO |
---|
| 1586 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1587 | work(2*j+1) = ar(ny+1-j) |
---|
| 1588 | ENDDO |
---|
[1342] | 1589 | work(1) = 0.0_wp |
---|
| 1590 | work(ny+2) = 0.0_wp |
---|
[1] | 1591 | |
---|
[1320] | 1592 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1593 | nau1, auy4, nau2 ) |
---|
[1] | 1594 | |
---|
| 1595 | DO j = 0, ny |
---|
| 1596 | ar(j) = work(j) |
---|
| 1597 | ENDDO |
---|
| 1598 | |
---|
| 1599 | ENDIF |
---|
| 1600 | #elif defined( __nec ) |
---|
[1106] | 1601 | IF ( forward_fft ) THEN |
---|
[1] | 1602 | |
---|
| 1603 | work(0:ny) = ar(0:ny) |
---|
| 1604 | |
---|
[1106] | 1605 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1606 | |
---|
| 1607 | DO j = 0, (ny+1)/2 |
---|
| 1608 | ar(j) = work(2*j) |
---|
| 1609 | ENDDO |
---|
| 1610 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1611 | ar(ny+1-j) = work(2*j+1) |
---|
| 1612 | ENDDO |
---|
| 1613 | |
---|
| 1614 | ELSE |
---|
| 1615 | |
---|
| 1616 | DO j = 0, (ny+1)/2 |
---|
| 1617 | work(2*j) = ar(j) |
---|
| 1618 | ENDDO |
---|
| 1619 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1620 | work(2*j+1) = ar(ny+1-j) |
---|
| 1621 | ENDDO |
---|
[1342] | 1622 | work(1) = 0.0_wp |
---|
| 1623 | work(ny+2) = 0.0_wp |
---|
[1] | 1624 | |
---|
[1106] | 1625 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1626 | |
---|
| 1627 | ar(0:ny) = work(0:ny) |
---|
| 1628 | |
---|
| 1629 | ENDIF |
---|
| 1630 | #else |
---|
[254] | 1631 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 1632 | CALL message( 'fft_y_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[254] | 1633 | |
---|
[1] | 1634 | #endif |
---|
| 1635 | |
---|
| 1636 | ELSE |
---|
| 1637 | |
---|
[274] | 1638 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1639 | '" not available' |
---|
[1106] | 1640 | CALL message( 'fft_y_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1641 | |
---|
| 1642 | ENDIF |
---|
| 1643 | |
---|
[1106] | 1644 | END SUBROUTINE fft_y_1d |
---|
[1] | 1645 | |
---|
[1682] | 1646 | !------------------------------------------------------------------------------! |
---|
| 1647 | ! Description: |
---|
| 1648 | ! ------------ |
---|
| 1649 | !> Fourier-transformation along x-direction. |
---|
| 1650 | !> Version for 1d domain decomposition |
---|
| 1651 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1652 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1653 | !------------------------------------------------------------------------------! |
---|
| 1654 | |
---|
[1] | 1655 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1656 | |
---|
| 1657 | |
---|
| 1658 | IMPLICIT NONE |
---|
| 1659 | |
---|
[1682] | 1660 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1661 | |
---|
[1682] | 1662 | INTEGER(iwp) :: i !< |
---|
| 1663 | INTEGER(iwp) :: k !< |
---|
| 1664 | INTEGER(iwp) :: siza !< |
---|
[1] | 1665 | |
---|
[1682] | 1666 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 1667 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !< |
---|
| 1668 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !< |
---|
[1320] | 1669 | |
---|
[1] | 1670 | #if defined( __nec ) |
---|
[1682] | 1671 | INTEGER(iwp) :: sizw !< |
---|
[1320] | 1672 | |
---|
[1682] | 1673 | COMPLEX(wp), DIMENSION((nx+4)/2+1,nz+1) :: work !< |
---|
[1] | 1674 | #endif |
---|
| 1675 | |
---|
| 1676 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1677 | |
---|
| 1678 | siza = SIZE( ai, 1 ) |
---|
| 1679 | |
---|
| 1680 | IF ( direction == 'forward') THEN |
---|
| 1681 | |
---|
| 1682 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1683 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1684 | |
---|
| 1685 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1686 | |
---|
| 1687 | DO k = 1, nz |
---|
| 1688 | DO i = 0, (nx+1)/2 |
---|
| 1689 | ar(i,k) = ai(2*i,k) |
---|
| 1690 | ENDDO |
---|
| 1691 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1692 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1693 | ENDDO |
---|
| 1694 | ENDDO |
---|
| 1695 | |
---|
| 1696 | ELSE |
---|
| 1697 | |
---|
| 1698 | DO k = 1, nz |
---|
| 1699 | DO i = 0, (nx+1)/2 |
---|
| 1700 | ai(2*i,k) = ar(i,k) |
---|
| 1701 | ENDDO |
---|
| 1702 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1703 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1704 | ENDDO |
---|
[1342] | 1705 | ai(1,k) = 0.0_wp |
---|
| 1706 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1707 | ENDDO |
---|
| 1708 | |
---|
| 1709 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1710 | |
---|
| 1711 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1712 | |
---|
| 1713 | ENDIF |
---|
| 1714 | |
---|
| 1715 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1716 | |
---|
| 1717 | #if defined( __nec ) |
---|
| 1718 | siza = SIZE( ai, 1 ) |
---|
| 1719 | sizw = SIZE( work, 1 ) |
---|
| 1720 | |
---|
| 1721 | IF ( direction == 'forward') THEN |
---|
| 1722 | |
---|
| 1723 | ! |
---|
| 1724 | !-- Tables are initialized once more. This call should not be |
---|
| 1725 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1726 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1727 | trig_xf, work1, 0 ) |
---|
| 1728 | |
---|
| 1729 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1730 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1731 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1732 | ENDIF |
---|
| 1733 | |
---|
[1320] | 1734 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1735 | trig_xf, work1, 0 ) |
---|
| 1736 | |
---|
| 1737 | DO k = 1, nz |
---|
| 1738 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1739 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1740 | ENDDO |
---|
| 1741 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1742 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1743 | ENDDO |
---|
| 1744 | ENDDO |
---|
| 1745 | |
---|
| 1746 | ELSE |
---|
| 1747 | |
---|
| 1748 | ! |
---|
| 1749 | !-- Tables are initialized once more. This call should not be |
---|
| 1750 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1751 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1752 | trig_xb, work1, 0 ) |
---|
| 1753 | |
---|
| 1754 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1755 | work(:,nz1) = 0.0_wp |
---|
[1] | 1756 | ENDIF |
---|
| 1757 | DO k = 1, nz |
---|
[1392] | 1758 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1759 | DO i = 1, (nx+1)/2 - 1 |
---|
[1392] | 1760 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k), KIND=wp ) |
---|
[1] | 1761 | ENDDO |
---|
[1392] | 1762 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1763 | ENDDO |
---|
| 1764 | |
---|
[1106] | 1765 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1766 | trig_xb, work1, 0 ) |
---|
| 1767 | |
---|
| 1768 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1769 | |
---|
| 1770 | ENDIF |
---|
| 1771 | |
---|
| 1772 | #else |
---|
[254] | 1773 | message_string = 'no system-specific fft-call available' |
---|
| 1774 | CALL message( 'fft_x_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1775 | #endif |
---|
| 1776 | |
---|
| 1777 | ELSE |
---|
| 1778 | |
---|
[274] | 1779 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1780 | '" not available' |
---|
[254] | 1781 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1782 | |
---|
| 1783 | ENDIF |
---|
| 1784 | |
---|
| 1785 | END SUBROUTINE fft_x_m |
---|
| 1786 | |
---|
[1682] | 1787 | !------------------------------------------------------------------------------! |
---|
| 1788 | ! Description: |
---|
| 1789 | ! ------------ |
---|
| 1790 | !> Fourier-transformation along y-direction. |
---|
| 1791 | !> Version for 1d domain decomposition |
---|
| 1792 | !> using multiple 1D FFT from Math Keisan on NEC or Temperton-algorithm |
---|
| 1793 | !> (no singleton-algorithm on NEC because it does not vectorize) |
---|
| 1794 | !------------------------------------------------------------------------------! |
---|
| 1795 | |
---|
[1] | 1796 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1797 | |
---|
| 1798 | |
---|
| 1799 | IMPLICIT NONE |
---|
| 1800 | |
---|
[1682] | 1801 | CHARACTER (LEN=*) :: direction !< |
---|
[1320] | 1802 | |
---|
[1682] | 1803 | INTEGER(iwp) :: j !< |
---|
| 1804 | INTEGER(iwp) :: k !< |
---|
| 1805 | INTEGER(iwp) :: ny1 !< |
---|
| 1806 | INTEGER(iwp) :: siza !< |
---|
[1] | 1807 | |
---|
[1682] | 1808 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !< |
---|
| 1809 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !< |
---|
| 1810 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !< |
---|
[1320] | 1811 | |
---|
[1] | 1812 | #if defined( __nec ) |
---|
[1682] | 1813 | INTEGER(iwp) :: sizw !< |
---|
[1320] | 1814 | |
---|
[1682] | 1815 | COMPLEX(wp), DIMENSION((ny+4)/2+1,nz+1) :: work !< |
---|
[1] | 1816 | #endif |
---|
| 1817 | |
---|
| 1818 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1819 | |
---|
| 1820 | siza = SIZE( ai, 1 ) |
---|
| 1821 | |
---|
| 1822 | IF ( direction == 'forward') THEN |
---|
| 1823 | |
---|
| 1824 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1825 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1826 | |
---|
| 1827 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1828 | |
---|
| 1829 | DO k = 1, nz |
---|
| 1830 | DO j = 0, (ny+1)/2 |
---|
| 1831 | ar(j,k) = ai(2*j,k) |
---|
| 1832 | ENDDO |
---|
| 1833 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1834 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1835 | ENDDO |
---|
| 1836 | ENDDO |
---|
| 1837 | |
---|
| 1838 | ELSE |
---|
| 1839 | |
---|
| 1840 | DO k = 1, nz |
---|
| 1841 | DO j = 0, (ny+1)/2 |
---|
| 1842 | ai(2*j,k) = ar(j,k) |
---|
| 1843 | ENDDO |
---|
| 1844 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1845 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1846 | ENDDO |
---|
[1342] | 1847 | ai(1,k) = 0.0_wp |
---|
| 1848 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1849 | ENDDO |
---|
| 1850 | |
---|
| 1851 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1852 | |
---|
| 1853 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1854 | |
---|
| 1855 | ENDIF |
---|
| 1856 | |
---|
| 1857 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1858 | |
---|
| 1859 | #if defined( __nec ) |
---|
| 1860 | siza = SIZE( ai, 1 ) |
---|
| 1861 | sizw = SIZE( work, 1 ) |
---|
| 1862 | |
---|
| 1863 | IF ( direction == 'forward') THEN |
---|
| 1864 | |
---|
| 1865 | ! |
---|
| 1866 | !-- Tables are initialized once more. This call should not be |
---|
| 1867 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1868 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1869 | trig_yf, work1, 0 ) |
---|
| 1870 | |
---|
| 1871 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1872 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1873 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1874 | ENDIF |
---|
| 1875 | |
---|
[1106] | 1876 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1877 | trig_yf, work1, 0 ) |
---|
| 1878 | |
---|
| 1879 | DO k = 1, nz |
---|
| 1880 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1881 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1882 | ENDDO |
---|
| 1883 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1884 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1885 | ENDDO |
---|
| 1886 | ENDDO |
---|
| 1887 | |
---|
| 1888 | ELSE |
---|
| 1889 | |
---|
| 1890 | ! |
---|
| 1891 | !-- Tables are initialized once more. This call should not be |
---|
| 1892 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1893 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1894 | trig_yb, work1, 0 ) |
---|
| 1895 | |
---|
| 1896 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1897 | work(:,nz1) = 0.0_wp |
---|
[1] | 1898 | ENDIF |
---|
| 1899 | DO k = 1, nz |
---|
[1392] | 1900 | work(1,k) = CMPLX( ar(0,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1901 | DO j = 1, (ny+1)/2 - 1 |
---|
[1392] | 1902 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k), KIND=wp ) |
---|
[1] | 1903 | ENDDO |
---|
[1392] | 1904 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp, KIND=wp ) |
---|
[1] | 1905 | ENDDO |
---|
| 1906 | |
---|
[1106] | 1907 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1908 | trig_yb, work1, 0 ) |
---|
| 1909 | |
---|
| 1910 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1911 | |
---|
| 1912 | ENDIF |
---|
| 1913 | |
---|
| 1914 | #else |
---|
[254] | 1915 | message_string = 'no system-specific fft-call available' |
---|
| 1916 | CALL message( 'fft_y_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1917 | #endif |
---|
| 1918 | |
---|
| 1919 | ELSE |
---|
[254] | 1920 | |
---|
[274] | 1921 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1922 | '" not available' |
---|
[254] | 1923 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1924 | |
---|
| 1925 | ENDIF |
---|
| 1926 | |
---|
| 1927 | END SUBROUTINE fft_y_m |
---|
| 1928 | |
---|
[1106] | 1929 | |
---|
[1] | 1930 | END MODULE fft_xy |
---|