[1] | 1 | MODULE fft_xy |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1375] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy.f90 1375 2014-04-25 13:07:08Z maronga $ |
---|
| 27 | ! |
---|
[1375] | 28 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 29 | ! bugfixes: missing variables added to ONLY list, dpk renamed dp |
---|
| 30 | ! |
---|
[1373] | 31 | ! 1372 2014-04-24 06:29:32Z raasch |
---|
| 32 | ! openMP-bugfix for fftw: some arrays defined as threadprivate |
---|
| 33 | ! |
---|
[1354] | 34 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 35 | ! REAL constants provided with KIND-attribute |
---|
| 36 | ! |
---|
[1343] | 37 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 38 | ! REAL constants defined as wp-kind |
---|
| 39 | ! |
---|
[1323] | 40 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 41 | ! REAL functions provided with KIND-attribute |
---|
| 42 | ! |
---|
[1321] | 43 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 44 | ! ONLY-attribute added to USE-statements, |
---|
| 45 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 46 | ! kinds are defined in new module kinds, |
---|
| 47 | ! old module precision_kind is removed, |
---|
| 48 | ! revision history before 2012 removed, |
---|
| 49 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 50 | ! all variable declaration statements |
---|
[1] | 51 | ! |
---|
[1305] | 52 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
| 53 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
| 54 | ! |
---|
[1258] | 55 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 56 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 57 | ! the FORTRAN declaration statement |
---|
| 58 | ! |
---|
[1220] | 59 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
| 60 | ! bugfix: use own branch for fftw |
---|
| 61 | ! |
---|
[1217] | 62 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 63 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
| 64 | ! transpositions, |
---|
| 65 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
| 66 | ! |
---|
[1211] | 67 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 68 | ! fftw added |
---|
| 69 | ! |
---|
[1167] | 70 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 71 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 72 | ! |
---|
[1154] | 73 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 74 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 75 | ! |
---|
[1112] | 76 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 77 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 78 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 79 | ! used total domain) |
---|
| 80 | ! |
---|
[1107] | 81 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 82 | ! CUDA fft added |
---|
| 83 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 84 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 85 | ! |
---|
[1093] | 86 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 87 | ! variable sizw declared for NEC case only |
---|
| 88 | ! |
---|
[1037] | 89 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 90 | ! code put under GPL (PALM 3.9) |
---|
| 91 | ! |
---|
[1] | 92 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 93 | ! Initial revision |
---|
| 94 | ! |
---|
| 95 | ! |
---|
| 96 | ! Description: |
---|
| 97 | ! ------------ |
---|
| 98 | ! Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 99 | ! Original version: Klaus Ketelsen (May 2002) |
---|
| 100 | !------------------------------------------------------------------------------! |
---|
| 101 | |
---|
[1320] | 102 | USE control_parameters, & |
---|
| 103 | ONLY: fft_method, message_string |
---|
| 104 | |
---|
| 105 | USE indices, & |
---|
| 106 | ONLY: nx, ny, nz |
---|
| 107 | |
---|
[1153] | 108 | #if defined( __cuda_fft ) |
---|
| 109 | USE ISO_C_BINDING |
---|
[1210] | 110 | #elif defined( __fftw ) |
---|
| 111 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 112 | #endif |
---|
[1320] | 113 | |
---|
| 114 | USE kinds |
---|
| 115 | |
---|
| 116 | USE singleton, & |
---|
| 117 | ONLY: fftn |
---|
| 118 | |
---|
[1] | 119 | USE temperton_fft |
---|
[1320] | 120 | |
---|
| 121 | USE transpose_indices, & |
---|
[1374] | 122 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 123 | |
---|
| 124 | IMPLICIT NONE |
---|
| 125 | |
---|
| 126 | PRIVATE |
---|
[1106] | 127 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 128 | |
---|
[1320] | 129 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !: |
---|
| 130 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !: |
---|
[1] | 131 | |
---|
[1320] | 132 | LOGICAL, SAVE :: init_fft = .FALSE. !: |
---|
[1] | 133 | |
---|
[1320] | 134 | REAL(wp), SAVE :: dnx !: |
---|
| 135 | REAL(wp), SAVE :: dny !: |
---|
| 136 | REAL(wp), SAVE :: sqr_dnx !: |
---|
| 137 | REAL(wp), SAVE :: sqr_dny !: |
---|
| 138 | |
---|
| 139 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !: |
---|
| 140 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !: |
---|
[1] | 141 | |
---|
| 142 | #if defined( __ibm ) |
---|
[1320] | 143 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !: |
---|
| 144 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !: |
---|
[1] | 145 | ! |
---|
| 146 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 147 | !-- shared in OpenMP sense |
---|
[1320] | 148 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !: |
---|
| 149 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !: |
---|
| 150 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !: |
---|
| 151 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !: |
---|
| 152 | |
---|
[1] | 153 | #elif defined( __nec ) |
---|
[1320] | 154 | INTEGER(iwp), SAVE :: nz1 !: |
---|
| 155 | |
---|
| 156 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !: |
---|
| 157 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !: |
---|
| 158 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !: |
---|
| 159 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !: |
---|
| 160 | |
---|
[1106] | 161 | #elif defined( __cuda_fft ) |
---|
[1320] | 162 | INTEGER(C_INT), SAVE :: plan_xf !: |
---|
| 163 | INTEGER(C_INT), SAVE :: plan_xi !: |
---|
| 164 | INTEGER(C_INT), SAVE :: plan_yf !: |
---|
| 165 | INTEGER(C_INT), SAVE :: plan_yi !: |
---|
| 166 | |
---|
| 167 | INTEGER(iwp), SAVE :: total_points_x_transpo !: |
---|
| 168 | INTEGER(iwp), SAVE :: total_points_y_transpo !: |
---|
[1219] | 169 | #endif |
---|
| 170 | |
---|
| 171 | #if defined( __fftw ) |
---|
[1210] | 172 | INCLUDE 'fftw3.f03' |
---|
[1320] | 173 | INTEGER(KIND=C_INT) :: nx_c !: |
---|
| 174 | INTEGER(KIND=C_INT) :: ny_c !: |
---|
| 175 | |
---|
[1372] | 176 | !$OMP THREADPRIVATE( x_out, y_out, x_in, y_in ) |
---|
[1320] | 177 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 178 | x_out !: |
---|
| 179 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 180 | y_out !: |
---|
| 181 | |
---|
| 182 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 183 | x_in !: |
---|
| 184 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 185 | y_in !: |
---|
| 186 | |
---|
| 187 | |
---|
[1210] | 188 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 189 | #endif |
---|
| 190 | |
---|
| 191 | ! |
---|
| 192 | !-- Public interfaces |
---|
| 193 | INTERFACE fft_init |
---|
| 194 | MODULE PROCEDURE fft_init |
---|
| 195 | END INTERFACE fft_init |
---|
| 196 | |
---|
| 197 | INTERFACE fft_x |
---|
| 198 | MODULE PROCEDURE fft_x |
---|
| 199 | END INTERFACE fft_x |
---|
| 200 | |
---|
[1106] | 201 | INTERFACE fft_x_1d |
---|
| 202 | MODULE PROCEDURE fft_x_1d |
---|
| 203 | END INTERFACE fft_x_1d |
---|
| 204 | |
---|
[1] | 205 | INTERFACE fft_y |
---|
| 206 | MODULE PROCEDURE fft_y |
---|
| 207 | END INTERFACE fft_y |
---|
| 208 | |
---|
[1106] | 209 | INTERFACE fft_y_1d |
---|
| 210 | MODULE PROCEDURE fft_y_1d |
---|
| 211 | END INTERFACE fft_y_1d |
---|
| 212 | |
---|
[1] | 213 | INTERFACE fft_x_m |
---|
| 214 | MODULE PROCEDURE fft_x_m |
---|
| 215 | END INTERFACE fft_x_m |
---|
| 216 | |
---|
| 217 | INTERFACE fft_y_m |
---|
| 218 | MODULE PROCEDURE fft_y_m |
---|
| 219 | END INTERFACE fft_y_m |
---|
| 220 | |
---|
| 221 | CONTAINS |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | SUBROUTINE fft_init |
---|
| 225 | |
---|
[1106] | 226 | USE cuda_fft_interfaces |
---|
| 227 | |
---|
[1] | 228 | IMPLICIT NONE |
---|
| 229 | |
---|
| 230 | ! |
---|
| 231 | !-- The following temporary working arrays have to be on stack or private |
---|
| 232 | !-- in OpenMP sense |
---|
| 233 | #if defined( __ibm ) |
---|
[1320] | 234 | REAL(wp), DIMENSION(0:nx+2) :: workx !: |
---|
| 235 | REAL(wp), DIMENSION(0:ny+2) :: worky !: |
---|
| 236 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 237 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 238 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
| 239 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1] | 240 | #elif defined( __nec ) |
---|
[1320] | 241 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !: |
---|
| 242 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !: |
---|
| 243 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !: |
---|
| 244 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !: |
---|
[1] | 245 | #endif |
---|
| 246 | |
---|
| 247 | ! |
---|
| 248 | !-- Return, if already called |
---|
| 249 | IF ( init_fft ) THEN |
---|
| 250 | RETURN |
---|
| 251 | ELSE |
---|
| 252 | init_fft = .TRUE. |
---|
| 253 | ENDIF |
---|
| 254 | |
---|
| 255 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 256 | |
---|
[1342] | 257 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 258 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 259 | sqr_dnx = SQRT( dnx ) |
---|
| 260 | sqr_dny = SQRT( dny ) |
---|
[1] | 261 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 262 | ! |
---|
| 263 | !-- Initialize tables for fft along x |
---|
[1106] | 264 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 265 | aux2, nau2 ) |
---|
[1106] | 266 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 267 | aux4, nau2 ) |
---|
| 268 | ! |
---|
| 269 | !-- Initialize tables for fft along y |
---|
[1106] | 270 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 271 | auy2, nau2 ) |
---|
[1106] | 272 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 273 | auy4, nau2 ) |
---|
| 274 | #elif defined( __nec ) |
---|
[254] | 275 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 276 | '" currently does not work on NEC' |
---|
| 277 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 278 | |
---|
[1320] | 279 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 280 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 281 | |
---|
[1342] | 282 | work_x = 0.0_wp |
---|
| 283 | work_y = 0.0_wp |
---|
[1] | 284 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 285 | ! when using the NEC ffts |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 289 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 290 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 291 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 292 | trig_xf, workx, 0 ) |
---|
[1320] | 293 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 294 | trig_xb, workx, 0 ) |
---|
| 295 | ! |
---|
| 296 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 297 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 298 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 299 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 300 | trig_yf, worky, 0 ) |
---|
[1320] | 301 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 302 | trig_yb, worky, 0 ) |
---|
[1106] | 303 | #elif defined( __cuda_fft ) |
---|
| 304 | total_points_x_transpo = (nx+1) * (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) |
---|
| 305 | total_points_y_transpo = (ny+1) * (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) |
---|
[1111] | 306 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 307 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 308 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 309 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 310 | #else |
---|
[254] | 311 | message_string = 'no system-specific fft-call available' |
---|
| 312 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 313 | #endif |
---|
| 314 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 315 | ! |
---|
| 316 | !-- Temperton-algorithm |
---|
| 317 | !-- Initialize tables for fft along x and y |
---|
| 318 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 319 | |
---|
| 320 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 321 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 322 | |
---|
[1210] | 323 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 324 | ! |
---|
| 325 | !-- FFTW |
---|
| 326 | #if defined( __fftw ) |
---|
| 327 | nx_c = nx+1 |
---|
| 328 | ny_c = ny+1 |
---|
[1372] | 329 | !$OMP PARALLEL |
---|
[1320] | 330 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 331 | y_out(0:(ny+1)/2) ) |
---|
[1372] | 332 | !$OMP END PARALLEL |
---|
[1210] | 333 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 334 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 335 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 336 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 337 | #else |
---|
| 338 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 339 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 340 | #endif |
---|
| 341 | |
---|
[1] | 342 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 343 | |
---|
| 344 | CONTINUE |
---|
| 345 | |
---|
| 346 | ELSE |
---|
| 347 | |
---|
[254] | 348 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 349 | '" not available' |
---|
| 350 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 351 | ENDIF |
---|
| 352 | |
---|
| 353 | END SUBROUTINE fft_init |
---|
| 354 | |
---|
| 355 | |
---|
[1216] | 356 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 357 | |
---|
| 358 | !----------------------------------------------------------------------! |
---|
| 359 | ! fft_x ! |
---|
| 360 | ! ! |
---|
| 361 | ! Fourier-transformation along x-direction ! |
---|
[1106] | 362 | ! Version for 2D-decomposition ! |
---|
[1] | 363 | ! ! |
---|
| 364 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 365 | ! system-specific routines, if they are available ! |
---|
| 366 | !----------------------------------------------------------------------! |
---|
| 367 | |
---|
[1106] | 368 | USE cuda_fft_interfaces |
---|
[1153] | 369 | #if defined( __cuda_fft ) |
---|
| 370 | USE ISO_C_BINDING |
---|
| 371 | #endif |
---|
[1106] | 372 | |
---|
[1] | 373 | IMPLICIT NONE |
---|
| 374 | |
---|
[1320] | 375 | CHARACTER (LEN=*) :: direction !: |
---|
| 376 | |
---|
| 377 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
[1106] | 378 | |
---|
[1320] | 379 | INTEGER(iwp) :: i !: |
---|
| 380 | INTEGER(iwp) :: ishape(1) !: |
---|
| 381 | INTEGER(iwp) :: j !: |
---|
| 382 | INTEGER(iwp) :: k !: |
---|
[1106] | 383 | |
---|
[1320] | 384 | LOGICAL :: forward_fft !: |
---|
| 385 | |
---|
| 386 | REAL(wp), DIMENSION(0:nx+2) :: work !: |
---|
| 387 | REAL(wp), DIMENSION(nx+2) :: work1 !: |
---|
| 388 | |
---|
[1106] | 389 | #if defined( __ibm ) |
---|
[1320] | 390 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 391 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
[1106] | 392 | #elif defined( __nec ) |
---|
[1320] | 393 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !: |
---|
[1106] | 394 | #elif defined( __cuda_fft ) |
---|
[1374] | 395 | COMPLEX(dp), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
[1320] | 396 | ar_tmp !: |
---|
[1111] | 397 | !$acc declare create( ar_tmp ) |
---|
[1106] | 398 | #endif |
---|
| 399 | |
---|
[1320] | 400 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
| 401 | ar_2d !: |
---|
| 402 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 403 | ar !: |
---|
| 404 | |
---|
[1106] | 405 | IF ( direction == 'forward' ) THEN |
---|
| 406 | forward_fft = .TRUE. |
---|
| 407 | ELSE |
---|
| 408 | forward_fft = .FALSE. |
---|
| 409 | ENDIF |
---|
| 410 | |
---|
| 411 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 412 | |
---|
| 413 | ! |
---|
| 414 | !-- Performing the fft with singleton's software works on every system, |
---|
| 415 | !-- since it is part of the model |
---|
| 416 | ALLOCATE( cwork(0:nx) ) |
---|
| 417 | |
---|
| 418 | IF ( forward_fft ) then |
---|
| 419 | |
---|
| 420 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 421 | !$OMP DO |
---|
| 422 | DO k = nzb_x, nzt_x |
---|
| 423 | DO j = nys_x, nyn_x |
---|
| 424 | |
---|
| 425 | DO i = 0, nx |
---|
| 426 | cwork(i) = CMPLX( ar(i,j,k) ) |
---|
| 427 | ENDDO |
---|
| 428 | |
---|
| 429 | ishape = SHAPE( cwork ) |
---|
| 430 | CALL FFTN( cwork, ishape ) |
---|
| 431 | |
---|
| 432 | DO i = 0, (nx+1)/2 |
---|
[1322] | 433 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 434 | ENDDO |
---|
| 435 | DO i = 1, (nx+1)/2 - 1 |
---|
| 436 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 437 | ENDDO |
---|
| 438 | |
---|
| 439 | ENDDO |
---|
| 440 | ENDDO |
---|
| 441 | !$OMP END PARALLEL |
---|
| 442 | |
---|
| 443 | ELSE |
---|
| 444 | |
---|
| 445 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 446 | !$OMP DO |
---|
| 447 | DO k = nzb_x, nzt_x |
---|
| 448 | DO j = nys_x, nyn_x |
---|
| 449 | |
---|
[1342] | 450 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp ) |
---|
[1106] | 451 | DO i = 1, (nx+1)/2 - 1 |
---|
| 452 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k) ) |
---|
| 453 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 454 | ENDDO |
---|
[1342] | 455 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp ) |
---|
[1106] | 456 | |
---|
| 457 | ishape = SHAPE( cwork ) |
---|
| 458 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 459 | |
---|
| 460 | DO i = 0, nx |
---|
[1322] | 461 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 462 | ENDDO |
---|
| 463 | |
---|
| 464 | ENDDO |
---|
| 465 | ENDDO |
---|
| 466 | !$OMP END PARALLEL |
---|
| 467 | |
---|
| 468 | ENDIF |
---|
| 469 | |
---|
| 470 | DEALLOCATE( cwork ) |
---|
| 471 | |
---|
| 472 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 473 | |
---|
| 474 | ! |
---|
| 475 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 476 | !-- since it is part of the model |
---|
| 477 | IF ( forward_fft ) THEN |
---|
| 478 | |
---|
[1304] | 479 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 480 | !$OMP DO |
---|
| 481 | DO k = nzb_x, nzt_x |
---|
| 482 | DO j = nys_x, nyn_x |
---|
| 483 | |
---|
| 484 | work(0:nx) = ar(0:nx,j,k) |
---|
| 485 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 486 | |
---|
| 487 | DO i = 0, (nx+1)/2 |
---|
| 488 | ar(i,j,k) = work(2*i) |
---|
| 489 | ENDDO |
---|
| 490 | DO i = 1, (nx+1)/2 - 1 |
---|
| 491 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 492 | ENDDO |
---|
| 493 | |
---|
| 494 | ENDDO |
---|
| 495 | ENDDO |
---|
| 496 | !$OMP END PARALLEL |
---|
| 497 | |
---|
| 498 | ELSE |
---|
| 499 | |
---|
[1304] | 500 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 501 | !$OMP DO |
---|
| 502 | DO k = nzb_x, nzt_x |
---|
| 503 | DO j = nys_x, nyn_x |
---|
| 504 | |
---|
| 505 | DO i = 0, (nx+1)/2 |
---|
| 506 | work(2*i) = ar(i,j,k) |
---|
| 507 | ENDDO |
---|
| 508 | DO i = 1, (nx+1)/2 - 1 |
---|
| 509 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 510 | ENDDO |
---|
[1342] | 511 | work(1) = 0.0_wp |
---|
| 512 | work(nx+2) = 0.0_wp |
---|
[1106] | 513 | |
---|
| 514 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 515 | ar(0:nx,j,k) = work(0:nx) |
---|
| 516 | |
---|
| 517 | ENDDO |
---|
| 518 | ENDDO |
---|
| 519 | !$OMP END PARALLEL |
---|
| 520 | |
---|
| 521 | ENDIF |
---|
| 522 | |
---|
[1210] | 523 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 524 | |
---|
| 525 | #if defined( __fftw ) |
---|
| 526 | IF ( forward_fft ) THEN |
---|
| 527 | |
---|
| 528 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 529 | !$OMP DO |
---|
| 530 | DO k = nzb_x, nzt_x |
---|
| 531 | DO j = nys_x, nyn_x |
---|
| 532 | |
---|
| 533 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 534 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 535 | |
---|
[1216] | 536 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 537 | |
---|
[1216] | 538 | DO i = 0, (nx+1)/2 |
---|
[1322] | 539 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 540 | ENDDO |
---|
| 541 | DO i = 1, (nx+1)/2 - 1 |
---|
| 542 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 543 | ENDDO |
---|
| 544 | |
---|
| 545 | ELSE |
---|
| 546 | |
---|
| 547 | DO i = 0, (nx+1)/2 |
---|
[1322] | 548 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 549 | ENDDO |
---|
| 550 | DO i = 1, (nx+1)/2 - 1 |
---|
| 551 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 552 | ENDDO |
---|
| 553 | |
---|
| 554 | ENDIF |
---|
| 555 | |
---|
[1210] | 556 | ENDDO |
---|
| 557 | ENDDO |
---|
| 558 | !$OMP END PARALLEL |
---|
| 559 | |
---|
[1216] | 560 | ELSE |
---|
[1210] | 561 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 562 | !$OMP DO |
---|
| 563 | DO k = nzb_x, nzt_x |
---|
| 564 | DO j = nys_x, nyn_x |
---|
| 565 | |
---|
[1216] | 566 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 567 | |
---|
[1342] | 568 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp ) |
---|
[1216] | 569 | DO i = 1, (nx+1)/2 - 1 |
---|
| 570 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j) ) |
---|
| 571 | ENDDO |
---|
[1342] | 572 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp ) |
---|
[1216] | 573 | |
---|
| 574 | ELSE |
---|
| 575 | |
---|
[1342] | 576 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp ) |
---|
[1216] | 577 | DO i = 1, (nx+1)/2 - 1 |
---|
| 578 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 579 | ENDDO |
---|
[1342] | 580 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp ) |
---|
[1216] | 581 | |
---|
| 582 | ENDIF |
---|
| 583 | |
---|
[1210] | 584 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 585 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 586 | |
---|
| 587 | ENDDO |
---|
| 588 | ENDDO |
---|
| 589 | !$OMP END PARALLEL |
---|
| 590 | |
---|
[1216] | 591 | ENDIF |
---|
[1210] | 592 | #endif |
---|
| 593 | |
---|
[1106] | 594 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 595 | |
---|
| 596 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 597 | IF ( forward_fft ) THEN |
---|
| 598 | |
---|
| 599 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 600 | !$OMP DO |
---|
| 601 | DO k = nzb_x, nzt_x |
---|
| 602 | DO j = nys_x, nyn_x |
---|
| 603 | |
---|
[1320] | 604 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 605 | nau1, aux2, nau2 ) |
---|
[1106] | 606 | |
---|
| 607 | DO i = 0, (nx+1)/2 |
---|
| 608 | ar(i,j,k) = work(2*i) |
---|
| 609 | ENDDO |
---|
| 610 | DO i = 1, (nx+1)/2 - 1 |
---|
| 611 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 612 | ENDDO |
---|
| 613 | |
---|
| 614 | ENDDO |
---|
| 615 | ENDDO |
---|
| 616 | !$OMP END PARALLEL |
---|
| 617 | |
---|
| 618 | ELSE |
---|
| 619 | |
---|
| 620 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 621 | !$OMP DO |
---|
| 622 | DO k = nzb_x, nzt_x |
---|
| 623 | DO j = nys_x, nyn_x |
---|
| 624 | |
---|
| 625 | DO i = 0, (nx+1)/2 |
---|
| 626 | work(2*i) = ar(i,j,k) |
---|
| 627 | ENDDO |
---|
| 628 | DO i = 1, (nx+1)/2 - 1 |
---|
| 629 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 630 | ENDDO |
---|
[1342] | 631 | work(1) = 0.0_wp |
---|
| 632 | work(nx+2) = 0.0_wp |
---|
[1106] | 633 | |
---|
[1320] | 634 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 635 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 636 | |
---|
| 637 | DO i = 0, nx |
---|
| 638 | ar(i,j,k) = work(i) |
---|
| 639 | ENDDO |
---|
| 640 | |
---|
| 641 | ENDDO |
---|
| 642 | ENDDO |
---|
| 643 | !$OMP END PARALLEL |
---|
| 644 | |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | #elif defined( __nec ) |
---|
| 648 | |
---|
| 649 | IF ( forward_fft ) THEN |
---|
| 650 | |
---|
| 651 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 652 | !$OMP DO |
---|
| 653 | DO k = nzb_x, nzt_x |
---|
| 654 | DO j = nys_x, nyn_x |
---|
| 655 | |
---|
| 656 | work(0:nx) = ar(0:nx,j,k) |
---|
| 657 | |
---|
| 658 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 659 | |
---|
| 660 | DO i = 0, (nx+1)/2 |
---|
| 661 | ar(i,j,k) = work(2*i) |
---|
| 662 | ENDDO |
---|
| 663 | DO i = 1, (nx+1)/2 - 1 |
---|
| 664 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 665 | ENDDO |
---|
| 666 | |
---|
| 667 | ENDDO |
---|
| 668 | ENDDO |
---|
| 669 | !$END OMP PARALLEL |
---|
| 670 | |
---|
| 671 | ELSE |
---|
| 672 | |
---|
| 673 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 674 | !$OMP DO |
---|
| 675 | DO k = nzb_x, nzt_x |
---|
| 676 | DO j = nys_x, nyn_x |
---|
| 677 | |
---|
| 678 | DO i = 0, (nx+1)/2 |
---|
| 679 | work(2*i) = ar(i,j,k) |
---|
| 680 | ENDDO |
---|
| 681 | DO i = 1, (nx+1)/2 - 1 |
---|
| 682 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 683 | ENDDO |
---|
[1342] | 684 | work(1) = 0.0_wp |
---|
| 685 | work(nx+2) = 0.0_wp |
---|
[1106] | 686 | |
---|
| 687 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 688 | |
---|
| 689 | ar(0:nx,j,k) = work(0:nx) |
---|
| 690 | |
---|
| 691 | ENDDO |
---|
| 692 | ENDDO |
---|
| 693 | !$OMP END PARALLEL |
---|
| 694 | |
---|
| 695 | ENDIF |
---|
| 696 | |
---|
| 697 | #elif defined( __cuda_fft ) |
---|
| 698 | |
---|
| 699 | IF ( forward_fft ) THEN |
---|
| 700 | |
---|
[1111] | 701 | !$acc data present( ar ) |
---|
| 702 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
[1106] | 703 | |
---|
[1111] | 704 | !$acc kernels |
---|
[1106] | 705 | DO k = nzb_x, nzt_x |
---|
| 706 | DO j = nys_x, nyn_x |
---|
| 707 | |
---|
| 708 | DO i = 0, (nx+1)/2 |
---|
[1322] | 709 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
[1106] | 710 | ENDDO |
---|
| 711 | |
---|
| 712 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 713 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 714 | ENDDO |
---|
| 715 | |
---|
| 716 | ENDDO |
---|
| 717 | ENDDO |
---|
[1111] | 718 | !$acc end kernels |
---|
| 719 | !$acc end data |
---|
[1106] | 720 | |
---|
| 721 | ELSE |
---|
| 722 | |
---|
[1111] | 723 | !$acc data present( ar ) |
---|
| 724 | !$acc kernels |
---|
[1106] | 725 | DO k = nzb_x, nzt_x |
---|
| 726 | DO j = nys_x, nyn_x |
---|
| 727 | |
---|
[1342] | 728 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp ) |
---|
[1106] | 729 | |
---|
| 730 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 731 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
[1106] | 732 | ENDDO |
---|
[1342] | 733 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp ) |
---|
[1106] | 734 | |
---|
| 735 | ENDDO |
---|
| 736 | ENDDO |
---|
[1111] | 737 | !$acc end kernels |
---|
[1106] | 738 | |
---|
[1111] | 739 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 740 | !$acc end data |
---|
[1106] | 741 | |
---|
| 742 | ENDIF |
---|
| 743 | |
---|
| 744 | #else |
---|
| 745 | message_string = 'no system-specific fft-call available' |
---|
| 746 | CALL message( 'fft_x', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 747 | #endif |
---|
| 748 | |
---|
| 749 | ELSE |
---|
| 750 | |
---|
| 751 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 752 | '" not available' |
---|
| 753 | CALL message( 'fft_x', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 754 | |
---|
| 755 | ENDIF |
---|
| 756 | |
---|
| 757 | END SUBROUTINE fft_x |
---|
| 758 | |
---|
| 759 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 760 | |
---|
| 761 | !----------------------------------------------------------------------! |
---|
| 762 | ! fft_x_1d ! |
---|
| 763 | ! ! |
---|
| 764 | ! Fourier-transformation along x-direction ! |
---|
| 765 | ! Version for 1D-decomposition ! |
---|
| 766 | ! ! |
---|
| 767 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 768 | ! system-specific routines, if they are available ! |
---|
| 769 | !----------------------------------------------------------------------! |
---|
| 770 | |
---|
| 771 | IMPLICIT NONE |
---|
| 772 | |
---|
[1320] | 773 | CHARACTER (LEN=*) :: direction !: |
---|
| 774 | |
---|
| 775 | INTEGER(iwp) :: i !: |
---|
| 776 | INTEGER(iwp) :: ishape(1) !: |
---|
[1] | 777 | |
---|
[1320] | 778 | LOGICAL :: forward_fft !: |
---|
[1106] | 779 | |
---|
[1320] | 780 | REAL(wp), DIMENSION(0:nx) :: ar !: |
---|
| 781 | REAL(wp), DIMENSION(0:nx+2) :: work !: |
---|
| 782 | REAL(wp), DIMENSION(nx+2) :: work1 !: |
---|
| 783 | |
---|
| 784 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 785 | |
---|
[1] | 786 | #if defined( __ibm ) |
---|
[1320] | 787 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 788 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
[1] | 789 | #elif defined( __nec ) |
---|
[1320] | 790 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !: |
---|
[1] | 791 | #endif |
---|
| 792 | |
---|
[1106] | 793 | IF ( direction == 'forward' ) THEN |
---|
| 794 | forward_fft = .TRUE. |
---|
| 795 | ELSE |
---|
| 796 | forward_fft = .FALSE. |
---|
| 797 | ENDIF |
---|
| 798 | |
---|
[1] | 799 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 800 | |
---|
| 801 | ! |
---|
| 802 | !-- Performing the fft with singleton's software works on every system, |
---|
| 803 | !-- since it is part of the model |
---|
| 804 | ALLOCATE( cwork(0:nx) ) |
---|
| 805 | |
---|
[1106] | 806 | IF ( forward_fft ) then |
---|
[1] | 807 | |
---|
| 808 | DO i = 0, nx |
---|
| 809 | cwork(i) = CMPLX( ar(i) ) |
---|
| 810 | ENDDO |
---|
| 811 | ishape = SHAPE( cwork ) |
---|
| 812 | CALL FFTN( cwork, ishape ) |
---|
| 813 | DO i = 0, (nx+1)/2 |
---|
[1322] | 814 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 815 | ENDDO |
---|
| 816 | DO i = 1, (nx+1)/2 - 1 |
---|
| 817 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 818 | ENDDO |
---|
| 819 | |
---|
| 820 | ELSE |
---|
| 821 | |
---|
[1342] | 822 | cwork(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1] | 823 | DO i = 1, (nx+1)/2 - 1 |
---|
| 824 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i) ) |
---|
| 825 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 826 | ENDDO |
---|
[1342] | 827 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp ) |
---|
[1] | 828 | |
---|
| 829 | ishape = SHAPE( cwork ) |
---|
| 830 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 831 | |
---|
| 832 | DO i = 0, nx |
---|
[1322] | 833 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 834 | ENDDO |
---|
| 835 | |
---|
| 836 | ENDIF |
---|
| 837 | |
---|
| 838 | DEALLOCATE( cwork ) |
---|
| 839 | |
---|
| 840 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 841 | |
---|
| 842 | ! |
---|
| 843 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 844 | !-- since it is part of the model |
---|
[1106] | 845 | IF ( forward_fft ) THEN |
---|
[1] | 846 | |
---|
| 847 | work(0:nx) = ar |
---|
| 848 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 849 | |
---|
| 850 | DO i = 0, (nx+1)/2 |
---|
| 851 | ar(i) = work(2*i) |
---|
| 852 | ENDDO |
---|
| 853 | DO i = 1, (nx+1)/2 - 1 |
---|
| 854 | ar(nx+1-i) = work(2*i+1) |
---|
| 855 | ENDDO |
---|
| 856 | |
---|
| 857 | ELSE |
---|
| 858 | |
---|
| 859 | DO i = 0, (nx+1)/2 |
---|
| 860 | work(2*i) = ar(i) |
---|
| 861 | ENDDO |
---|
| 862 | DO i = 1, (nx+1)/2 - 1 |
---|
| 863 | work(2*i+1) = ar(nx+1-i) |
---|
| 864 | ENDDO |
---|
[1342] | 865 | work(1) = 0.0_wp |
---|
| 866 | work(nx+2) = 0.0_wp |
---|
[1] | 867 | |
---|
| 868 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 869 | ar = work(0:nx) |
---|
| 870 | |
---|
| 871 | ENDIF |
---|
| 872 | |
---|
[1216] | 873 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 874 | |
---|
| 875 | #if defined( __fftw ) |
---|
| 876 | IF ( forward_fft ) THEN |
---|
| 877 | |
---|
| 878 | x_in(0:nx) = ar(0:nx) |
---|
| 879 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 880 | |
---|
| 881 | DO i = 0, (nx+1)/2 |
---|
[1322] | 882 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 883 | ENDDO |
---|
| 884 | DO i = 1, (nx+1)/2 - 1 |
---|
| 885 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 886 | ENDDO |
---|
| 887 | |
---|
| 888 | ELSE |
---|
| 889 | |
---|
[1342] | 890 | x_out(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1216] | 891 | DO i = 1, (nx+1)/2 - 1 |
---|
| 892 | x_out(i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 893 | ENDDO |
---|
[1342] | 894 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp ) |
---|
[1216] | 895 | |
---|
| 896 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 897 | ar(0:nx) = x_in(0:nx) |
---|
| 898 | |
---|
| 899 | ENDIF |
---|
| 900 | #endif |
---|
| 901 | |
---|
[1] | 902 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 903 | |
---|
| 904 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 905 | IF ( forward_fft ) THEN |
---|
[1] | 906 | |
---|
[1320] | 907 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 908 | aux2, nau2 ) |
---|
| 909 | |
---|
| 910 | DO i = 0, (nx+1)/2 |
---|
| 911 | ar(i) = work(2*i) |
---|
| 912 | ENDDO |
---|
| 913 | DO i = 1, (nx+1)/2 - 1 |
---|
| 914 | ar(nx+1-i) = work(2*i+1) |
---|
| 915 | ENDDO |
---|
| 916 | |
---|
| 917 | ELSE |
---|
| 918 | |
---|
| 919 | DO i = 0, (nx+1)/2 |
---|
| 920 | work(2*i) = ar(i) |
---|
| 921 | ENDDO |
---|
| 922 | DO i = 1, (nx+1)/2 - 1 |
---|
| 923 | work(2*i+1) = ar(nx+1-i) |
---|
| 924 | ENDDO |
---|
[1342] | 925 | work(1) = 0.0_wp |
---|
| 926 | work(nx+2) = 0.0_wp |
---|
[1] | 927 | |
---|
[1106] | 928 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 929 | aux4, nau2 ) |
---|
| 930 | |
---|
| 931 | DO i = 0, nx |
---|
| 932 | ar(i) = work(i) |
---|
| 933 | ENDDO |
---|
| 934 | |
---|
| 935 | ENDIF |
---|
| 936 | #elif defined( __nec ) |
---|
[1106] | 937 | IF ( forward_fft ) THEN |
---|
[1] | 938 | |
---|
| 939 | work(0:nx) = ar(0:nx) |
---|
| 940 | |
---|
[1106] | 941 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 942 | |
---|
[1] | 943 | DO i = 0, (nx+1)/2 |
---|
| 944 | ar(i) = work(2*i) |
---|
| 945 | ENDDO |
---|
| 946 | DO i = 1, (nx+1)/2 - 1 |
---|
| 947 | ar(nx+1-i) = work(2*i+1) |
---|
| 948 | ENDDO |
---|
| 949 | |
---|
| 950 | ELSE |
---|
| 951 | |
---|
| 952 | DO i = 0, (nx+1)/2 |
---|
| 953 | work(2*i) = ar(i) |
---|
| 954 | ENDDO |
---|
| 955 | DO i = 1, (nx+1)/2 - 1 |
---|
| 956 | work(2*i+1) = ar(nx+1-i) |
---|
| 957 | ENDDO |
---|
[1342] | 958 | work(1) = 0.0_wp |
---|
| 959 | work(nx+2) = 0.0_wp |
---|
[1] | 960 | |
---|
[1106] | 961 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 962 | |
---|
| 963 | ar(0:nx) = work(0:nx) |
---|
| 964 | |
---|
| 965 | ENDIF |
---|
| 966 | #else |
---|
[254] | 967 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 968 | CALL message( 'fft_x_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 969 | #endif |
---|
| 970 | ELSE |
---|
[274] | 971 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 972 | '" not available' |
---|
[1106] | 973 | CALL message( 'fft_x_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 974 | |
---|
| 975 | ENDIF |
---|
| 976 | |
---|
[1106] | 977 | END SUBROUTINE fft_x_1d |
---|
[1] | 978 | |
---|
[1216] | 979 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 980 | nxr_y_l ) |
---|
[1] | 981 | |
---|
| 982 | !----------------------------------------------------------------------! |
---|
| 983 | ! fft_y ! |
---|
| 984 | ! ! |
---|
| 985 | ! Fourier-transformation along y-direction ! |
---|
[1106] | 986 | ! Version for 2D-decomposition ! |
---|
[1] | 987 | ! ! |
---|
| 988 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 989 | ! system-specific routines, if they are available ! |
---|
[1216] | 990 | ! ! |
---|
| 991 | ! direction: 'forward' or 'backward' ! |
---|
| 992 | ! ar, ar_tr: 3D data arrays ! |
---|
| 993 | ! forward: ar: before ar_tr: after transformation ! |
---|
| 994 | ! backward: ar_tr: before ar: after transfosition ! |
---|
| 995 | ! ! |
---|
| 996 | ! In case of non-overlapping transposition/transformation: ! |
---|
| 997 | ! nxl_y_bound = nxl_y_l = nxl_y ! |
---|
| 998 | ! nxr_y_bound = nxr_y_l = nxr_y ! |
---|
| 999 | ! ! |
---|
| 1000 | ! In case of overlapping transposition/transformation ! |
---|
| 1001 | ! - nxl_y_bound and nxr_y_bound have the original values of ! |
---|
| 1002 | ! nxl_y, nxr_y. ar_tr is dimensioned using these values. ! |
---|
| 1003 | ! - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that ! |
---|
| 1004 | ! transformation is carried out for a 2D-plane only. ! |
---|
[1] | 1005 | !----------------------------------------------------------------------! |
---|
| 1006 | |
---|
[1106] | 1007 | USE cuda_fft_interfaces |
---|
[1153] | 1008 | #if defined( __cuda_fft ) |
---|
| 1009 | USE ISO_C_BINDING |
---|
| 1010 | #endif |
---|
[1106] | 1011 | |
---|
[1] | 1012 | IMPLICIT NONE |
---|
| 1013 | |
---|
[1320] | 1014 | CHARACTER (LEN=*) :: direction !: |
---|
| 1015 | |
---|
| 1016 | INTEGER(iwp) :: i !: |
---|
| 1017 | INTEGER(iwp) :: j !: |
---|
| 1018 | INTEGER(iwp) :: jshape(1) !: |
---|
| 1019 | INTEGER(iwp) :: k !: |
---|
| 1020 | INTEGER(iwp) :: nxl_y_bound !: |
---|
| 1021 | INTEGER(iwp) :: nxl_y_l !: |
---|
| 1022 | INTEGER(iwp) :: nxr_y_bound !: |
---|
| 1023 | INTEGER(iwp) :: nxr_y_l !: |
---|
[1106] | 1024 | |
---|
[1320] | 1025 | LOGICAL :: forward_fft !: |
---|
[1106] | 1026 | |
---|
[1320] | 1027 | REAL(wp), DIMENSION(0:ny+2) :: work !: |
---|
| 1028 | REAL(wp), DIMENSION(ny+2) :: work1 !: |
---|
| 1029 | |
---|
| 1030 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 1031 | |
---|
[1106] | 1032 | #if defined( __ibm ) |
---|
[1320] | 1033 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 1034 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1106] | 1035 | #elif defined( __nec ) |
---|
[1320] | 1036 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !: |
---|
[1106] | 1037 | #elif defined( __cuda_fft ) |
---|
[1374] | 1038 | COMPLEX(dp), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
[1320] | 1039 | ar_tmp !: |
---|
[1111] | 1040 | !$acc declare create( ar_tmp ) |
---|
[1106] | 1041 | #endif |
---|
| 1042 | |
---|
[1320] | 1043 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
| 1044 | ar !: |
---|
| 1045 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
| 1046 | ar_tr !: |
---|
| 1047 | |
---|
[1106] | 1048 | IF ( direction == 'forward' ) THEN |
---|
| 1049 | forward_fft = .TRUE. |
---|
| 1050 | ELSE |
---|
| 1051 | forward_fft = .FALSE. |
---|
| 1052 | ENDIF |
---|
| 1053 | |
---|
| 1054 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1058 | !-- since it is part of the model |
---|
| 1059 | ALLOCATE( cwork(0:ny) ) |
---|
| 1060 | |
---|
| 1061 | IF ( forward_fft ) then |
---|
| 1062 | |
---|
| 1063 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1064 | !$OMP DO |
---|
| 1065 | DO k = nzb_y, nzt_y |
---|
[1216] | 1066 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1067 | |
---|
| 1068 | DO j = 0, ny |
---|
| 1069 | cwork(j) = CMPLX( ar(j,i,k) ) |
---|
| 1070 | ENDDO |
---|
| 1071 | |
---|
| 1072 | jshape = SHAPE( cwork ) |
---|
| 1073 | CALL FFTN( cwork, jshape ) |
---|
| 1074 | |
---|
| 1075 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1076 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1077 | ENDDO |
---|
| 1078 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1079 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1080 | ENDDO |
---|
| 1081 | |
---|
| 1082 | ENDDO |
---|
| 1083 | ENDDO |
---|
| 1084 | !$OMP END PARALLEL |
---|
| 1085 | |
---|
| 1086 | ELSE |
---|
| 1087 | |
---|
| 1088 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1089 | !$OMP DO |
---|
| 1090 | DO k = nzb_y, nzt_y |
---|
[1216] | 1091 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1092 | |
---|
[1342] | 1093 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp ) |
---|
[1106] | 1094 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1095 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k) ) |
---|
| 1096 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
[1106] | 1097 | ENDDO |
---|
[1342] | 1098 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp ) |
---|
[1106] | 1099 | |
---|
| 1100 | jshape = SHAPE( cwork ) |
---|
| 1101 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1102 | |
---|
| 1103 | DO j = 0, ny |
---|
[1322] | 1104 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1105 | ENDDO |
---|
| 1106 | |
---|
| 1107 | ENDDO |
---|
| 1108 | ENDDO |
---|
| 1109 | !$OMP END PARALLEL |
---|
| 1110 | |
---|
| 1111 | ENDIF |
---|
| 1112 | |
---|
| 1113 | DEALLOCATE( cwork ) |
---|
| 1114 | |
---|
| 1115 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1116 | |
---|
| 1117 | ! |
---|
| 1118 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1119 | !-- since it is part of the model |
---|
| 1120 | IF ( forward_fft ) THEN |
---|
| 1121 | |
---|
[1304] | 1122 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1123 | !$OMP DO |
---|
| 1124 | DO k = nzb_y, nzt_y |
---|
[1216] | 1125 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1126 | |
---|
| 1127 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1128 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1129 | |
---|
| 1130 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1131 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1132 | ENDDO |
---|
| 1133 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1134 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1135 | ENDDO |
---|
| 1136 | |
---|
| 1137 | ENDDO |
---|
| 1138 | ENDDO |
---|
| 1139 | !$OMP END PARALLEL |
---|
| 1140 | |
---|
| 1141 | ELSE |
---|
| 1142 | |
---|
[1304] | 1143 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1144 | !$OMP DO |
---|
| 1145 | DO k = nzb_y, nzt_y |
---|
[1216] | 1146 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1147 | |
---|
| 1148 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1149 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1150 | ENDDO |
---|
| 1151 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1152 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1153 | ENDDO |
---|
[1342] | 1154 | work(1) = 0.0_wp |
---|
| 1155 | work(ny+2) = 0.0_wp |
---|
[1106] | 1156 | |
---|
| 1157 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1158 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1159 | |
---|
| 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
| 1162 | !$OMP END PARALLEL |
---|
| 1163 | |
---|
| 1164 | ENDIF |
---|
| 1165 | |
---|
[1210] | 1166 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1167 | |
---|
| 1168 | #if defined( __fftw ) |
---|
| 1169 | IF ( forward_fft ) THEN |
---|
| 1170 | |
---|
| 1171 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1172 | !$OMP DO |
---|
| 1173 | DO k = nzb_y, nzt_y |
---|
[1216] | 1174 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1175 | |
---|
| 1176 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1177 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1178 | |
---|
| 1179 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1180 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1181 | ENDDO |
---|
| 1182 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1183 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1184 | ENDDO |
---|
| 1185 | |
---|
| 1186 | ENDDO |
---|
| 1187 | ENDDO |
---|
| 1188 | !$OMP END PARALLEL |
---|
| 1189 | |
---|
| 1190 | ELSE |
---|
| 1191 | |
---|
| 1192 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1193 | !$OMP DO |
---|
| 1194 | DO k = nzb_y, nzt_y |
---|
[1216] | 1195 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1196 | |
---|
[1342] | 1197 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp ) |
---|
[1210] | 1198 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1199 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
[1210] | 1200 | ENDDO |
---|
[1342] | 1201 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp ) |
---|
[1210] | 1202 | |
---|
| 1203 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1204 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1205 | |
---|
| 1206 | ENDDO |
---|
| 1207 | ENDDO |
---|
| 1208 | !$OMP END PARALLEL |
---|
| 1209 | |
---|
| 1210 | ENDIF |
---|
| 1211 | #endif |
---|
| 1212 | |
---|
[1106] | 1213 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1214 | |
---|
| 1215 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 1216 | IF ( forward_fft) THEN |
---|
| 1217 | |
---|
| 1218 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1219 | !$OMP DO |
---|
| 1220 | DO k = nzb_y, nzt_y |
---|
[1216] | 1221 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1222 | |
---|
[1320] | 1223 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1224 | nau1, auy2, nau2 ) |
---|
[1106] | 1225 | |
---|
| 1226 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1227 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1228 | ENDDO |
---|
| 1229 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1230 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1231 | ENDDO |
---|
| 1232 | |
---|
| 1233 | ENDDO |
---|
| 1234 | ENDDO |
---|
| 1235 | !$OMP END PARALLEL |
---|
| 1236 | |
---|
| 1237 | ELSE |
---|
| 1238 | |
---|
| 1239 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1240 | !$OMP DO |
---|
| 1241 | DO k = nzb_y, nzt_y |
---|
[1216] | 1242 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1243 | |
---|
| 1244 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1245 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1246 | ENDDO |
---|
| 1247 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1248 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1249 | ENDDO |
---|
[1342] | 1250 | work(1) = 0.0_wp |
---|
| 1251 | work(ny+2) = 0.0_wp |
---|
[1106] | 1252 | |
---|
[1320] | 1253 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1254 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1255 | |
---|
| 1256 | DO j = 0, ny |
---|
| 1257 | ar(j,i,k) = work(j) |
---|
| 1258 | ENDDO |
---|
| 1259 | |
---|
| 1260 | ENDDO |
---|
| 1261 | ENDDO |
---|
| 1262 | !$OMP END PARALLEL |
---|
| 1263 | |
---|
| 1264 | ENDIF |
---|
| 1265 | #elif defined( __nec ) |
---|
| 1266 | IF ( forward_fft ) THEN |
---|
| 1267 | |
---|
| 1268 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1269 | !$OMP DO |
---|
| 1270 | DO k = nzb_y, nzt_y |
---|
[1216] | 1271 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1272 | |
---|
| 1273 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1274 | |
---|
| 1275 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1276 | |
---|
| 1277 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1278 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1279 | ENDDO |
---|
| 1280 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1281 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1282 | ENDDO |
---|
| 1283 | |
---|
| 1284 | ENDDO |
---|
| 1285 | ENDDO |
---|
| 1286 | !$END OMP PARALLEL |
---|
| 1287 | |
---|
| 1288 | ELSE |
---|
| 1289 | |
---|
| 1290 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1291 | !$OMP DO |
---|
| 1292 | DO k = nzb_y, nzt_y |
---|
[1216] | 1293 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1294 | |
---|
| 1295 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1296 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1297 | ENDDO |
---|
| 1298 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1299 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1300 | ENDDO |
---|
[1342] | 1301 | work(1) = 0.0_wp |
---|
| 1302 | work(ny+2) = 0.0_wp |
---|
[1106] | 1303 | |
---|
| 1304 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1305 | |
---|
| 1306 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1307 | |
---|
| 1308 | ENDDO |
---|
| 1309 | ENDDO |
---|
| 1310 | !$OMP END PARALLEL |
---|
| 1311 | |
---|
| 1312 | ENDIF |
---|
| 1313 | #elif defined( __cuda_fft ) |
---|
| 1314 | |
---|
| 1315 | IF ( forward_fft ) THEN |
---|
| 1316 | |
---|
[1111] | 1317 | !$acc data present( ar ) |
---|
| 1318 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
[1106] | 1319 | |
---|
[1111] | 1320 | !$acc kernels |
---|
[1106] | 1321 | DO k = nzb_y, nzt_y |
---|
| 1322 | DO i = nxl_y, nxr_y |
---|
| 1323 | |
---|
| 1324 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1325 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
[1106] | 1326 | ENDDO |
---|
| 1327 | |
---|
| 1328 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1329 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1330 | ENDDO |
---|
| 1331 | |
---|
| 1332 | ENDDO |
---|
| 1333 | ENDDO |
---|
[1111] | 1334 | !$acc end kernels |
---|
| 1335 | !$acc end data |
---|
[1106] | 1336 | |
---|
| 1337 | ELSE |
---|
| 1338 | |
---|
[1111] | 1339 | !$acc data present( ar ) |
---|
| 1340 | !$acc kernels |
---|
[1106] | 1341 | DO k = nzb_y, nzt_y |
---|
| 1342 | DO i = nxl_y, nxr_y |
---|
| 1343 | |
---|
[1342] | 1344 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp ) |
---|
[1106] | 1345 | |
---|
| 1346 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1347 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
[1106] | 1348 | ENDDO |
---|
[1342] | 1349 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp ) |
---|
[1106] | 1350 | |
---|
| 1351 | ENDDO |
---|
| 1352 | ENDDO |
---|
[1111] | 1353 | !$acc end kernels |
---|
[1106] | 1354 | |
---|
[1111] | 1355 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1356 | !$acc end data |
---|
[1106] | 1357 | |
---|
| 1358 | ENDIF |
---|
| 1359 | |
---|
| 1360 | #else |
---|
| 1361 | message_string = 'no system-specific fft-call available' |
---|
| 1362 | CALL message( 'fft_y', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 1363 | #endif |
---|
| 1364 | |
---|
| 1365 | ELSE |
---|
| 1366 | |
---|
| 1367 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1368 | '" not available' |
---|
| 1369 | CALL message( 'fft_y', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 1370 | |
---|
| 1371 | ENDIF |
---|
| 1372 | |
---|
| 1373 | END SUBROUTINE fft_y |
---|
| 1374 | |
---|
| 1375 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1376 | |
---|
| 1377 | !----------------------------------------------------------------------! |
---|
| 1378 | ! fft_y_1d ! |
---|
| 1379 | ! ! |
---|
| 1380 | ! Fourier-transformation along y-direction ! |
---|
| 1381 | ! Version for 1D-decomposition ! |
---|
| 1382 | ! ! |
---|
| 1383 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 1384 | ! system-specific routines, if they are available ! |
---|
| 1385 | !----------------------------------------------------------------------! |
---|
| 1386 | |
---|
| 1387 | IMPLICIT NONE |
---|
| 1388 | |
---|
| 1389 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1390 | |
---|
| 1391 | INTEGER(iwp) :: j !: |
---|
| 1392 | INTEGER(iwp) :: jshape(1) !: |
---|
[1] | 1393 | |
---|
[1320] | 1394 | LOGICAL :: forward_fft !: |
---|
[1106] | 1395 | |
---|
[1320] | 1396 | REAL(wp), DIMENSION(0:ny) :: ar !: |
---|
| 1397 | REAL(wp), DIMENSION(0:ny+2) :: work !: |
---|
| 1398 | REAL(wp), DIMENSION(ny+2) :: work1 !: |
---|
| 1399 | |
---|
| 1400 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 1401 | |
---|
[1] | 1402 | #if defined( __ibm ) |
---|
[1320] | 1403 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 1404 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1] | 1405 | #elif defined( __nec ) |
---|
[1320] | 1406 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !: |
---|
[1] | 1407 | #endif |
---|
| 1408 | |
---|
[1106] | 1409 | IF ( direction == 'forward' ) THEN |
---|
| 1410 | forward_fft = .TRUE. |
---|
| 1411 | ELSE |
---|
| 1412 | forward_fft = .FALSE. |
---|
| 1413 | ENDIF |
---|
| 1414 | |
---|
[1] | 1415 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1416 | |
---|
| 1417 | ! |
---|
| 1418 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1419 | !-- since it is part of the model |
---|
| 1420 | ALLOCATE( cwork(0:ny) ) |
---|
| 1421 | |
---|
[1106] | 1422 | IF ( forward_fft ) THEN |
---|
[1] | 1423 | |
---|
| 1424 | DO j = 0, ny |
---|
| 1425 | cwork(j) = CMPLX( ar(j) ) |
---|
| 1426 | ENDDO |
---|
| 1427 | |
---|
| 1428 | jshape = SHAPE( cwork ) |
---|
| 1429 | CALL FFTN( cwork, jshape ) |
---|
| 1430 | |
---|
| 1431 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1432 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1433 | ENDDO |
---|
| 1434 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1435 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1436 | ENDDO |
---|
| 1437 | |
---|
| 1438 | ELSE |
---|
| 1439 | |
---|
[1342] | 1440 | cwork(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1] | 1441 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1442 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j) ) |
---|
| 1443 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1444 | ENDDO |
---|
[1342] | 1445 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp ) |
---|
[1] | 1446 | |
---|
| 1447 | jshape = SHAPE( cwork ) |
---|
| 1448 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1449 | |
---|
| 1450 | DO j = 0, ny |
---|
[1322] | 1451 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1452 | ENDDO |
---|
| 1453 | |
---|
| 1454 | ENDIF |
---|
| 1455 | |
---|
| 1456 | DEALLOCATE( cwork ) |
---|
| 1457 | |
---|
| 1458 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1459 | |
---|
| 1460 | ! |
---|
| 1461 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1462 | !-- since it is part of the model |
---|
[1106] | 1463 | IF ( forward_fft ) THEN |
---|
[1] | 1464 | |
---|
| 1465 | work(0:ny) = ar |
---|
| 1466 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1467 | |
---|
| 1468 | DO j = 0, (ny+1)/2 |
---|
| 1469 | ar(j) = work(2*j) |
---|
| 1470 | ENDDO |
---|
| 1471 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1472 | ar(ny+1-j) = work(2*j+1) |
---|
| 1473 | ENDDO |
---|
| 1474 | |
---|
| 1475 | ELSE |
---|
| 1476 | |
---|
| 1477 | DO j = 0, (ny+1)/2 |
---|
| 1478 | work(2*j) = ar(j) |
---|
| 1479 | ENDDO |
---|
| 1480 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1481 | work(2*j+1) = ar(ny+1-j) |
---|
| 1482 | ENDDO |
---|
[1342] | 1483 | work(1) = 0.0_wp |
---|
| 1484 | work(ny+2) = 0.0_wp |
---|
[1] | 1485 | |
---|
| 1486 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1487 | ar = work(0:ny) |
---|
| 1488 | |
---|
| 1489 | ENDIF |
---|
| 1490 | |
---|
[1216] | 1491 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1492 | |
---|
| 1493 | #if defined( __fftw ) |
---|
| 1494 | IF ( forward_fft ) THEN |
---|
| 1495 | |
---|
| 1496 | y_in(0:ny) = ar(0:ny) |
---|
| 1497 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1498 | |
---|
| 1499 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1500 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1501 | ENDDO |
---|
| 1502 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1503 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1504 | ENDDO |
---|
| 1505 | |
---|
| 1506 | ELSE |
---|
| 1507 | |
---|
[1342] | 1508 | y_out(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1216] | 1509 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1510 | y_out(j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1511 | ENDDO |
---|
[1342] | 1512 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp ) |
---|
[1216] | 1513 | |
---|
| 1514 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1515 | ar(0:ny) = y_in(0:ny) |
---|
| 1516 | |
---|
| 1517 | ENDIF |
---|
| 1518 | #endif |
---|
| 1519 | |
---|
[1] | 1520 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1521 | |
---|
| 1522 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 1523 | IF ( forward_fft ) THEN |
---|
[1] | 1524 | |
---|
[1320] | 1525 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1526 | auy2, nau2 ) |
---|
| 1527 | |
---|
| 1528 | DO j = 0, (ny+1)/2 |
---|
| 1529 | ar(j) = work(2*j) |
---|
| 1530 | ENDDO |
---|
| 1531 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1532 | ar(ny+1-j) = work(2*j+1) |
---|
| 1533 | ENDDO |
---|
| 1534 | |
---|
| 1535 | ELSE |
---|
| 1536 | |
---|
| 1537 | DO j = 0, (ny+1)/2 |
---|
| 1538 | work(2*j) = ar(j) |
---|
| 1539 | ENDDO |
---|
| 1540 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1541 | work(2*j+1) = ar(ny+1-j) |
---|
| 1542 | ENDDO |
---|
[1342] | 1543 | work(1) = 0.0_wp |
---|
| 1544 | work(ny+2) = 0.0_wp |
---|
[1] | 1545 | |
---|
[1320] | 1546 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1547 | nau1, auy4, nau2 ) |
---|
[1] | 1548 | |
---|
| 1549 | DO j = 0, ny |
---|
| 1550 | ar(j) = work(j) |
---|
| 1551 | ENDDO |
---|
| 1552 | |
---|
| 1553 | ENDIF |
---|
| 1554 | #elif defined( __nec ) |
---|
[1106] | 1555 | IF ( forward_fft ) THEN |
---|
[1] | 1556 | |
---|
| 1557 | work(0:ny) = ar(0:ny) |
---|
| 1558 | |
---|
[1106] | 1559 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1560 | |
---|
| 1561 | DO j = 0, (ny+1)/2 |
---|
| 1562 | ar(j) = work(2*j) |
---|
| 1563 | ENDDO |
---|
| 1564 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1565 | ar(ny+1-j) = work(2*j+1) |
---|
| 1566 | ENDDO |
---|
| 1567 | |
---|
| 1568 | ELSE |
---|
| 1569 | |
---|
| 1570 | DO j = 0, (ny+1)/2 |
---|
| 1571 | work(2*j) = ar(j) |
---|
| 1572 | ENDDO |
---|
| 1573 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1574 | work(2*j+1) = ar(ny+1-j) |
---|
| 1575 | ENDDO |
---|
[1342] | 1576 | work(1) = 0.0_wp |
---|
| 1577 | work(ny+2) = 0.0_wp |
---|
[1] | 1578 | |
---|
[1106] | 1579 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1580 | |
---|
| 1581 | ar(0:ny) = work(0:ny) |
---|
| 1582 | |
---|
| 1583 | ENDIF |
---|
| 1584 | #else |
---|
[254] | 1585 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 1586 | CALL message( 'fft_y_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[254] | 1587 | |
---|
[1] | 1588 | #endif |
---|
| 1589 | |
---|
| 1590 | ELSE |
---|
| 1591 | |
---|
[274] | 1592 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1593 | '" not available' |
---|
[1106] | 1594 | CALL message( 'fft_y_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1595 | |
---|
| 1596 | ENDIF |
---|
| 1597 | |
---|
[1106] | 1598 | END SUBROUTINE fft_y_1d |
---|
[1] | 1599 | |
---|
| 1600 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1601 | |
---|
| 1602 | !----------------------------------------------------------------------! |
---|
| 1603 | ! fft_x_m ! |
---|
| 1604 | ! ! |
---|
| 1605 | ! Fourier-transformation along x-direction ! |
---|
| 1606 | ! Version for 1d domain decomposition ! |
---|
| 1607 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1608 | ! or Temperton-algorithm ! |
---|
| 1609 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1610 | ! ! |
---|
| 1611 | !----------------------------------------------------------------------! |
---|
| 1612 | |
---|
| 1613 | IMPLICIT NONE |
---|
| 1614 | |
---|
[1320] | 1615 | CHARACTER (LEN=*) :: direction !: |
---|
| 1616 | |
---|
| 1617 | INTEGER(iwp) :: i !: |
---|
| 1618 | INTEGER(iwp) :: k !: |
---|
| 1619 | INTEGER(iwp) :: siza !: |
---|
[1] | 1620 | |
---|
[1320] | 1621 | REAL(wp), DIMENSION(0:nx,nz) :: ar !: |
---|
| 1622 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !: |
---|
| 1623 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !: |
---|
| 1624 | |
---|
[1] | 1625 | #if defined( __nec ) |
---|
[1320] | 1626 | INTEGER(iwp) :: sizw !: |
---|
| 1627 | |
---|
| 1628 | COMPLEX(wp), DIMENSION((nx+4)/2+1,nz+1) :: work !: |
---|
[1] | 1629 | #endif |
---|
| 1630 | |
---|
| 1631 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1632 | |
---|
| 1633 | siza = SIZE( ai, 1 ) |
---|
| 1634 | |
---|
| 1635 | IF ( direction == 'forward') THEN |
---|
| 1636 | |
---|
| 1637 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1638 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1639 | |
---|
| 1640 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1641 | |
---|
| 1642 | DO k = 1, nz |
---|
| 1643 | DO i = 0, (nx+1)/2 |
---|
| 1644 | ar(i,k) = ai(2*i,k) |
---|
| 1645 | ENDDO |
---|
| 1646 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1647 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1648 | ENDDO |
---|
| 1649 | ENDDO |
---|
| 1650 | |
---|
| 1651 | ELSE |
---|
| 1652 | |
---|
| 1653 | DO k = 1, nz |
---|
| 1654 | DO i = 0, (nx+1)/2 |
---|
| 1655 | ai(2*i,k) = ar(i,k) |
---|
| 1656 | ENDDO |
---|
| 1657 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1658 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1659 | ENDDO |
---|
[1342] | 1660 | ai(1,k) = 0.0_wp |
---|
| 1661 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1662 | ENDDO |
---|
| 1663 | |
---|
| 1664 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1665 | |
---|
| 1666 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1667 | |
---|
| 1668 | ENDIF |
---|
| 1669 | |
---|
| 1670 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1671 | |
---|
| 1672 | #if defined( __nec ) |
---|
| 1673 | siza = SIZE( ai, 1 ) |
---|
| 1674 | sizw = SIZE( work, 1 ) |
---|
| 1675 | |
---|
| 1676 | IF ( direction == 'forward') THEN |
---|
| 1677 | |
---|
| 1678 | ! |
---|
| 1679 | !-- Tables are initialized once more. This call should not be |
---|
| 1680 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1681 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1682 | trig_xf, work1, 0 ) |
---|
| 1683 | |
---|
| 1684 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1685 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1686 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1687 | ENDIF |
---|
| 1688 | |
---|
[1320] | 1689 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1690 | trig_xf, work1, 0 ) |
---|
| 1691 | |
---|
| 1692 | DO k = 1, nz |
---|
| 1693 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1694 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1695 | ENDDO |
---|
| 1696 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1697 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1698 | ENDDO |
---|
| 1699 | ENDDO |
---|
| 1700 | |
---|
| 1701 | ELSE |
---|
| 1702 | |
---|
| 1703 | ! |
---|
| 1704 | !-- Tables are initialized once more. This call should not be |
---|
| 1705 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1706 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1707 | trig_xb, work1, 0 ) |
---|
| 1708 | |
---|
| 1709 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1710 | work(:,nz1) = 0.0_wp |
---|
[1] | 1711 | ENDIF |
---|
| 1712 | DO k = 1, nz |
---|
[1342] | 1713 | work(1,k) = CMPLX( ar(0,k), 0.0_wp ) |
---|
[1] | 1714 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1715 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k) ) |
---|
| 1716 | ENDDO |
---|
[1342] | 1717 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp ) |
---|
[1] | 1718 | ENDDO |
---|
| 1719 | |
---|
[1106] | 1720 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1721 | trig_xb, work1, 0 ) |
---|
| 1722 | |
---|
| 1723 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1724 | |
---|
| 1725 | ENDIF |
---|
| 1726 | |
---|
| 1727 | #else |
---|
[254] | 1728 | message_string = 'no system-specific fft-call available' |
---|
| 1729 | CALL message( 'fft_x_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1730 | #endif |
---|
| 1731 | |
---|
| 1732 | ELSE |
---|
| 1733 | |
---|
[274] | 1734 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1735 | '" not available' |
---|
[254] | 1736 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1737 | |
---|
| 1738 | ENDIF |
---|
| 1739 | |
---|
| 1740 | END SUBROUTINE fft_x_m |
---|
| 1741 | |
---|
| 1742 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1743 | |
---|
| 1744 | !----------------------------------------------------------------------! |
---|
| 1745 | ! fft_y_m ! |
---|
| 1746 | ! ! |
---|
| 1747 | ! Fourier-transformation along y-direction ! |
---|
| 1748 | ! Version for 1d domain decomposition ! |
---|
| 1749 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1750 | ! or Temperton-algorithm ! |
---|
| 1751 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1752 | ! ! |
---|
| 1753 | !----------------------------------------------------------------------! |
---|
| 1754 | |
---|
| 1755 | IMPLICIT NONE |
---|
| 1756 | |
---|
[1320] | 1757 | CHARACTER (LEN=*) :: direction !: |
---|
| 1758 | |
---|
| 1759 | INTEGER(iwp) :: j !: |
---|
| 1760 | INTEGER(iwp) :: k !: |
---|
| 1761 | INTEGER(iwp) :: ny1 !: |
---|
| 1762 | INTEGER(iwp) :: siza !: |
---|
[1] | 1763 | |
---|
[1320] | 1764 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !: |
---|
| 1765 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !: |
---|
| 1766 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !: |
---|
| 1767 | |
---|
[1] | 1768 | #if defined( __nec ) |
---|
[1320] | 1769 | INTEGER(iwp) :: sizw !: |
---|
| 1770 | |
---|
| 1771 | COMPLEX(wp), DIMENSION((ny+4)/2+1,nz+1) :: work !: |
---|
[1] | 1772 | #endif |
---|
| 1773 | |
---|
| 1774 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1775 | |
---|
| 1776 | siza = SIZE( ai, 1 ) |
---|
| 1777 | |
---|
| 1778 | IF ( direction == 'forward') THEN |
---|
| 1779 | |
---|
| 1780 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1781 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1782 | |
---|
| 1783 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1784 | |
---|
| 1785 | DO k = 1, nz |
---|
| 1786 | DO j = 0, (ny+1)/2 |
---|
| 1787 | ar(j,k) = ai(2*j,k) |
---|
| 1788 | ENDDO |
---|
| 1789 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1790 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1791 | ENDDO |
---|
| 1792 | ENDDO |
---|
| 1793 | |
---|
| 1794 | ELSE |
---|
| 1795 | |
---|
| 1796 | DO k = 1, nz |
---|
| 1797 | DO j = 0, (ny+1)/2 |
---|
| 1798 | ai(2*j,k) = ar(j,k) |
---|
| 1799 | ENDDO |
---|
| 1800 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1801 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1802 | ENDDO |
---|
[1342] | 1803 | ai(1,k) = 0.0_wp |
---|
| 1804 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1805 | ENDDO |
---|
| 1806 | |
---|
| 1807 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1808 | |
---|
| 1809 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1810 | |
---|
| 1811 | ENDIF |
---|
| 1812 | |
---|
| 1813 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1814 | |
---|
| 1815 | #if defined( __nec ) |
---|
| 1816 | siza = SIZE( ai, 1 ) |
---|
| 1817 | sizw = SIZE( work, 1 ) |
---|
| 1818 | |
---|
| 1819 | IF ( direction == 'forward') THEN |
---|
| 1820 | |
---|
| 1821 | ! |
---|
| 1822 | !-- Tables are initialized once more. This call should not be |
---|
| 1823 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1824 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1825 | trig_yf, work1, 0 ) |
---|
| 1826 | |
---|
| 1827 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1828 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1829 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1830 | ENDIF |
---|
| 1831 | |
---|
[1106] | 1832 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1833 | trig_yf, work1, 0 ) |
---|
| 1834 | |
---|
| 1835 | DO k = 1, nz |
---|
| 1836 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1837 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1838 | ENDDO |
---|
| 1839 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1840 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1841 | ENDDO |
---|
| 1842 | ENDDO |
---|
| 1843 | |
---|
| 1844 | ELSE |
---|
| 1845 | |
---|
| 1846 | ! |
---|
| 1847 | !-- Tables are initialized once more. This call should not be |
---|
| 1848 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1849 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1850 | trig_yb, work1, 0 ) |
---|
| 1851 | |
---|
| 1852 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1853 | work(:,nz1) = 0.0_wp |
---|
[1] | 1854 | ENDIF |
---|
| 1855 | DO k = 1, nz |
---|
[1342] | 1856 | work(1,k) = CMPLX( ar(0,k), 0.0_wp ) |
---|
[1] | 1857 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1858 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k) ) |
---|
| 1859 | ENDDO |
---|
[1342] | 1860 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp ) |
---|
[1] | 1861 | ENDDO |
---|
| 1862 | |
---|
[1106] | 1863 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1864 | trig_yb, work1, 0 ) |
---|
| 1865 | |
---|
| 1866 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1867 | |
---|
| 1868 | ENDIF |
---|
| 1869 | |
---|
| 1870 | #else |
---|
[254] | 1871 | message_string = 'no system-specific fft-call available' |
---|
| 1872 | CALL message( 'fft_y_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1873 | #endif |
---|
| 1874 | |
---|
| 1875 | ELSE |
---|
[254] | 1876 | |
---|
[274] | 1877 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1878 | '" not available' |
---|
[254] | 1879 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1880 | |
---|
| 1881 | ENDIF |
---|
| 1882 | |
---|
| 1883 | END SUBROUTINE fft_y_m |
---|
| 1884 | |
---|
[1106] | 1885 | |
---|
[1] | 1886 | END MODULE fft_xy |
---|