[1] | 1 | MODULE fft_xy |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1343] | 22 | ! |
---|
[1354] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy.f90 1354 2014-04-08 15:22:57Z raasch $ |
---|
| 27 | ! |
---|
[1354] | 28 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 29 | ! REAL constants provided with KIND-attribute |
---|
| 30 | ! |
---|
[1343] | 31 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 32 | ! REAL constants defined as wp-kind |
---|
| 33 | ! |
---|
[1323] | 34 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 35 | ! REAL functions provided with KIND-attribute |
---|
| 36 | ! |
---|
[1321] | 37 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 38 | ! ONLY-attribute added to USE-statements, |
---|
| 39 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 40 | ! kinds are defined in new module kinds, |
---|
| 41 | ! old module precision_kind is removed, |
---|
| 42 | ! revision history before 2012 removed, |
---|
| 43 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 44 | ! all variable declaration statements |
---|
[1] | 45 | ! |
---|
[1305] | 46 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
| 47 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
| 48 | ! |
---|
[1258] | 49 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 50 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 51 | ! the FORTRAN declaration statement |
---|
| 52 | ! |
---|
[1220] | 53 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
| 54 | ! bugfix: use own branch for fftw |
---|
| 55 | ! |
---|
[1217] | 56 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 57 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
| 58 | ! transpositions, |
---|
| 59 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
| 60 | ! |
---|
[1211] | 61 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 62 | ! fftw added |
---|
| 63 | ! |
---|
[1167] | 64 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 65 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 66 | ! |
---|
[1154] | 67 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 68 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 69 | ! |
---|
[1112] | 70 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 71 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 72 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 73 | ! used total domain) |
---|
| 74 | ! |
---|
[1107] | 75 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 76 | ! CUDA fft added |
---|
| 77 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 78 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 79 | ! |
---|
[1093] | 80 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 81 | ! variable sizw declared for NEC case only |
---|
| 82 | ! |
---|
[1037] | 83 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 84 | ! code put under GPL (PALM 3.9) |
---|
| 85 | ! |
---|
[1] | 86 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 87 | ! Initial revision |
---|
| 88 | ! |
---|
| 89 | ! |
---|
| 90 | ! Description: |
---|
| 91 | ! ------------ |
---|
| 92 | ! Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 93 | ! Original version: Klaus Ketelsen (May 2002) |
---|
| 94 | !------------------------------------------------------------------------------! |
---|
| 95 | |
---|
[1320] | 96 | USE control_parameters, & |
---|
| 97 | ONLY: fft_method, message_string |
---|
| 98 | |
---|
| 99 | USE indices, & |
---|
| 100 | ONLY: nx, ny, nz |
---|
| 101 | |
---|
[1153] | 102 | #if defined( __cuda_fft ) |
---|
| 103 | USE ISO_C_BINDING |
---|
[1210] | 104 | #elif defined( __fftw ) |
---|
| 105 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 106 | #endif |
---|
[1320] | 107 | |
---|
| 108 | USE kinds |
---|
| 109 | |
---|
| 110 | USE singleton, & |
---|
| 111 | ONLY: fftn |
---|
| 112 | |
---|
[1] | 113 | USE temperton_fft |
---|
[1320] | 114 | |
---|
| 115 | USE transpose_indices, & |
---|
| 116 | ONLY: nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 117 | |
---|
| 118 | IMPLICIT NONE |
---|
| 119 | |
---|
| 120 | PRIVATE |
---|
[1106] | 121 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 122 | |
---|
[1320] | 123 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !: |
---|
| 124 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !: |
---|
[1] | 125 | |
---|
[1320] | 126 | LOGICAL, SAVE :: init_fft = .FALSE. !: |
---|
[1] | 127 | |
---|
[1320] | 128 | REAL(wp), SAVE :: dnx !: |
---|
| 129 | REAL(wp), SAVE :: dny !: |
---|
| 130 | REAL(wp), SAVE :: sqr_dnx !: |
---|
| 131 | REAL(wp), SAVE :: sqr_dny !: |
---|
| 132 | |
---|
| 133 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !: |
---|
| 134 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !: |
---|
[1] | 135 | |
---|
| 136 | #if defined( __ibm ) |
---|
[1320] | 137 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !: |
---|
| 138 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !: |
---|
[1] | 139 | ! |
---|
| 140 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 141 | !-- shared in OpenMP sense |
---|
[1320] | 142 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !: |
---|
| 143 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !: |
---|
| 144 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !: |
---|
| 145 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !: |
---|
| 146 | |
---|
[1] | 147 | #elif defined( __nec ) |
---|
[1320] | 148 | INTEGER(iwp), SAVE :: nz1 !: |
---|
| 149 | |
---|
| 150 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !: |
---|
| 151 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !: |
---|
| 152 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !: |
---|
| 153 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !: |
---|
| 154 | |
---|
[1106] | 155 | #elif defined( __cuda_fft ) |
---|
[1320] | 156 | INTEGER(C_INT), SAVE :: plan_xf !: |
---|
| 157 | INTEGER(C_INT), SAVE :: plan_xi !: |
---|
| 158 | INTEGER(C_INT), SAVE :: plan_yf !: |
---|
| 159 | INTEGER(C_INT), SAVE :: plan_yi !: |
---|
| 160 | |
---|
| 161 | INTEGER(iwp), SAVE :: total_points_x_transpo !: |
---|
| 162 | INTEGER(iwp), SAVE :: total_points_y_transpo !: |
---|
[1219] | 163 | #endif |
---|
| 164 | |
---|
| 165 | #if defined( __fftw ) |
---|
[1210] | 166 | INCLUDE 'fftw3.f03' |
---|
[1320] | 167 | INTEGER(KIND=C_INT) :: nx_c !: |
---|
| 168 | INTEGER(KIND=C_INT) :: ny_c !: |
---|
| 169 | |
---|
| 170 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 171 | x_out !: |
---|
| 172 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 173 | y_out !: |
---|
| 174 | |
---|
| 175 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 176 | x_in !: |
---|
| 177 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 178 | y_in !: |
---|
| 179 | |
---|
| 180 | |
---|
[1210] | 181 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 182 | #endif |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- Public interfaces |
---|
| 186 | INTERFACE fft_init |
---|
| 187 | MODULE PROCEDURE fft_init |
---|
| 188 | END INTERFACE fft_init |
---|
| 189 | |
---|
| 190 | INTERFACE fft_x |
---|
| 191 | MODULE PROCEDURE fft_x |
---|
| 192 | END INTERFACE fft_x |
---|
| 193 | |
---|
[1106] | 194 | INTERFACE fft_x_1d |
---|
| 195 | MODULE PROCEDURE fft_x_1d |
---|
| 196 | END INTERFACE fft_x_1d |
---|
| 197 | |
---|
[1] | 198 | INTERFACE fft_y |
---|
| 199 | MODULE PROCEDURE fft_y |
---|
| 200 | END INTERFACE fft_y |
---|
| 201 | |
---|
[1106] | 202 | INTERFACE fft_y_1d |
---|
| 203 | MODULE PROCEDURE fft_y_1d |
---|
| 204 | END INTERFACE fft_y_1d |
---|
| 205 | |
---|
[1] | 206 | INTERFACE fft_x_m |
---|
| 207 | MODULE PROCEDURE fft_x_m |
---|
| 208 | END INTERFACE fft_x_m |
---|
| 209 | |
---|
| 210 | INTERFACE fft_y_m |
---|
| 211 | MODULE PROCEDURE fft_y_m |
---|
| 212 | END INTERFACE fft_y_m |
---|
| 213 | |
---|
| 214 | CONTAINS |
---|
| 215 | |
---|
| 216 | |
---|
| 217 | SUBROUTINE fft_init |
---|
| 218 | |
---|
[1106] | 219 | USE cuda_fft_interfaces |
---|
| 220 | |
---|
[1] | 221 | IMPLICIT NONE |
---|
| 222 | |
---|
| 223 | ! |
---|
| 224 | !-- The following temporary working arrays have to be on stack or private |
---|
| 225 | !-- in OpenMP sense |
---|
| 226 | #if defined( __ibm ) |
---|
[1320] | 227 | REAL(wp), DIMENSION(0:nx+2) :: workx !: |
---|
| 228 | REAL(wp), DIMENSION(0:ny+2) :: worky !: |
---|
| 229 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 230 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 231 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
| 232 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1] | 233 | #elif defined( __nec ) |
---|
[1320] | 234 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !: |
---|
| 235 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !: |
---|
| 236 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !: |
---|
| 237 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !: |
---|
[1] | 238 | #endif |
---|
| 239 | |
---|
| 240 | ! |
---|
| 241 | !-- Return, if already called |
---|
| 242 | IF ( init_fft ) THEN |
---|
| 243 | RETURN |
---|
| 244 | ELSE |
---|
| 245 | init_fft = .TRUE. |
---|
| 246 | ENDIF |
---|
| 247 | |
---|
| 248 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 249 | |
---|
[1342] | 250 | dnx = 1.0_wp / ( nx + 1.0_wp ) |
---|
| 251 | dny = 1.0_wp / ( ny + 1.0_wp ) |
---|
[1106] | 252 | sqr_dnx = SQRT( dnx ) |
---|
| 253 | sqr_dny = SQRT( dny ) |
---|
[1] | 254 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 255 | ! |
---|
| 256 | !-- Initialize tables for fft along x |
---|
[1106] | 257 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 258 | aux2, nau2 ) |
---|
[1106] | 259 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 260 | aux4, nau2 ) |
---|
| 261 | ! |
---|
| 262 | !-- Initialize tables for fft along y |
---|
[1106] | 263 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 264 | auy2, nau2 ) |
---|
[1106] | 265 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 266 | auy4, nau2 ) |
---|
| 267 | #elif defined( __nec ) |
---|
[254] | 268 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 269 | '" currently does not work on NEC' |
---|
| 270 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 271 | |
---|
[1320] | 272 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 273 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 274 | |
---|
[1342] | 275 | work_x = 0.0_wp |
---|
| 276 | work_y = 0.0_wp |
---|
[1] | 277 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 278 | ! when using the NEC ffts |
---|
| 279 | |
---|
| 280 | ! |
---|
| 281 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 282 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 283 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 284 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 285 | trig_xf, workx, 0 ) |
---|
[1320] | 286 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 287 | trig_xb, workx, 0 ) |
---|
| 288 | ! |
---|
| 289 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 290 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 291 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 292 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 293 | trig_yf, worky, 0 ) |
---|
[1320] | 294 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 295 | trig_yb, worky, 0 ) |
---|
[1106] | 296 | #elif defined( __cuda_fft ) |
---|
| 297 | total_points_x_transpo = (nx+1) * (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) |
---|
| 298 | total_points_y_transpo = (ny+1) * (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) |
---|
[1111] | 299 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 300 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 301 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 302 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 303 | #else |
---|
[254] | 304 | message_string = 'no system-specific fft-call available' |
---|
| 305 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 306 | #endif |
---|
| 307 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 308 | ! |
---|
| 309 | !-- Temperton-algorithm |
---|
| 310 | !-- Initialize tables for fft along x and y |
---|
| 311 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 312 | |
---|
| 313 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 314 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 315 | |
---|
[1210] | 316 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 317 | ! |
---|
| 318 | !-- FFTW |
---|
| 319 | #if defined( __fftw ) |
---|
| 320 | nx_c = nx+1 |
---|
| 321 | ny_c = ny+1 |
---|
[1320] | 322 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 323 | y_out(0:(ny+1)/2) ) |
---|
| 324 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 325 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 326 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 327 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 328 | #else |
---|
| 329 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 330 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 331 | #endif |
---|
| 332 | |
---|
[1] | 333 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 334 | |
---|
| 335 | CONTINUE |
---|
| 336 | |
---|
| 337 | ELSE |
---|
| 338 | |
---|
[254] | 339 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 340 | '" not available' |
---|
| 341 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 342 | ENDIF |
---|
| 343 | |
---|
| 344 | END SUBROUTINE fft_init |
---|
| 345 | |
---|
| 346 | |
---|
[1216] | 347 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 348 | |
---|
| 349 | !----------------------------------------------------------------------! |
---|
| 350 | ! fft_x ! |
---|
| 351 | ! ! |
---|
| 352 | ! Fourier-transformation along x-direction ! |
---|
[1106] | 353 | ! Version for 2D-decomposition ! |
---|
[1] | 354 | ! ! |
---|
| 355 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 356 | ! system-specific routines, if they are available ! |
---|
| 357 | !----------------------------------------------------------------------! |
---|
| 358 | |
---|
[1106] | 359 | USE cuda_fft_interfaces |
---|
[1153] | 360 | #if defined( __cuda_fft ) |
---|
| 361 | USE ISO_C_BINDING |
---|
| 362 | #endif |
---|
[1106] | 363 | |
---|
[1] | 364 | IMPLICIT NONE |
---|
| 365 | |
---|
[1320] | 366 | CHARACTER (LEN=*) :: direction !: |
---|
| 367 | |
---|
| 368 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
[1106] | 369 | |
---|
[1320] | 370 | INTEGER(iwp) :: i !: |
---|
| 371 | INTEGER(iwp) :: ishape(1) !: |
---|
| 372 | INTEGER(iwp) :: j !: |
---|
| 373 | INTEGER(iwp) :: k !: |
---|
[1106] | 374 | |
---|
[1320] | 375 | LOGICAL :: forward_fft !: |
---|
| 376 | |
---|
| 377 | REAL(wp), DIMENSION(0:nx+2) :: work !: |
---|
| 378 | REAL(wp), DIMENSION(nx+2) :: work1 !: |
---|
| 379 | |
---|
[1106] | 380 | #if defined( __ibm ) |
---|
[1320] | 381 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 382 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
[1106] | 383 | #elif defined( __nec ) |
---|
[1320] | 384 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !: |
---|
[1106] | 385 | #elif defined( __cuda_fft ) |
---|
[1320] | 386 | COMPLEX(dpk), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 387 | ar_tmp !: |
---|
[1111] | 388 | !$acc declare create( ar_tmp ) |
---|
[1106] | 389 | #endif |
---|
| 390 | |
---|
[1320] | 391 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
| 392 | ar_2d !: |
---|
| 393 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 394 | ar !: |
---|
| 395 | |
---|
[1106] | 396 | IF ( direction == 'forward' ) THEN |
---|
| 397 | forward_fft = .TRUE. |
---|
| 398 | ELSE |
---|
| 399 | forward_fft = .FALSE. |
---|
| 400 | ENDIF |
---|
| 401 | |
---|
| 402 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 403 | |
---|
| 404 | ! |
---|
| 405 | !-- Performing the fft with singleton's software works on every system, |
---|
| 406 | !-- since it is part of the model |
---|
| 407 | ALLOCATE( cwork(0:nx) ) |
---|
| 408 | |
---|
| 409 | IF ( forward_fft ) then |
---|
| 410 | |
---|
| 411 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 412 | !$OMP DO |
---|
| 413 | DO k = nzb_x, nzt_x |
---|
| 414 | DO j = nys_x, nyn_x |
---|
| 415 | |
---|
| 416 | DO i = 0, nx |
---|
| 417 | cwork(i) = CMPLX( ar(i,j,k) ) |
---|
| 418 | ENDDO |
---|
| 419 | |
---|
| 420 | ishape = SHAPE( cwork ) |
---|
| 421 | CALL FFTN( cwork, ishape ) |
---|
| 422 | |
---|
| 423 | DO i = 0, (nx+1)/2 |
---|
[1322] | 424 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 425 | ENDDO |
---|
| 426 | DO i = 1, (nx+1)/2 - 1 |
---|
| 427 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 428 | ENDDO |
---|
| 429 | |
---|
| 430 | ENDDO |
---|
| 431 | ENDDO |
---|
| 432 | !$OMP END PARALLEL |
---|
| 433 | |
---|
| 434 | ELSE |
---|
| 435 | |
---|
| 436 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 437 | !$OMP DO |
---|
| 438 | DO k = nzb_x, nzt_x |
---|
| 439 | DO j = nys_x, nyn_x |
---|
| 440 | |
---|
[1342] | 441 | cwork(0) = CMPLX( ar(0,j,k), 0.0_wp ) |
---|
[1106] | 442 | DO i = 1, (nx+1)/2 - 1 |
---|
| 443 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k) ) |
---|
| 444 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 445 | ENDDO |
---|
[1342] | 446 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp ) |
---|
[1106] | 447 | |
---|
| 448 | ishape = SHAPE( cwork ) |
---|
| 449 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 450 | |
---|
| 451 | DO i = 0, nx |
---|
[1322] | 452 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 453 | ENDDO |
---|
| 454 | |
---|
| 455 | ENDDO |
---|
| 456 | ENDDO |
---|
| 457 | !$OMP END PARALLEL |
---|
| 458 | |
---|
| 459 | ENDIF |
---|
| 460 | |
---|
| 461 | DEALLOCATE( cwork ) |
---|
| 462 | |
---|
| 463 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 464 | |
---|
| 465 | ! |
---|
| 466 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 467 | !-- since it is part of the model |
---|
| 468 | IF ( forward_fft ) THEN |
---|
| 469 | |
---|
[1304] | 470 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 471 | !$OMP DO |
---|
| 472 | DO k = nzb_x, nzt_x |
---|
| 473 | DO j = nys_x, nyn_x |
---|
| 474 | |
---|
| 475 | work(0:nx) = ar(0:nx,j,k) |
---|
| 476 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 477 | |
---|
| 478 | DO i = 0, (nx+1)/2 |
---|
| 479 | ar(i,j,k) = work(2*i) |
---|
| 480 | ENDDO |
---|
| 481 | DO i = 1, (nx+1)/2 - 1 |
---|
| 482 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 483 | ENDDO |
---|
| 484 | |
---|
| 485 | ENDDO |
---|
| 486 | ENDDO |
---|
| 487 | !$OMP END PARALLEL |
---|
| 488 | |
---|
| 489 | ELSE |
---|
| 490 | |
---|
[1304] | 491 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 492 | !$OMP DO |
---|
| 493 | DO k = nzb_x, nzt_x |
---|
| 494 | DO j = nys_x, nyn_x |
---|
| 495 | |
---|
| 496 | DO i = 0, (nx+1)/2 |
---|
| 497 | work(2*i) = ar(i,j,k) |
---|
| 498 | ENDDO |
---|
| 499 | DO i = 1, (nx+1)/2 - 1 |
---|
| 500 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 501 | ENDDO |
---|
[1342] | 502 | work(1) = 0.0_wp |
---|
| 503 | work(nx+2) = 0.0_wp |
---|
[1106] | 504 | |
---|
| 505 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 506 | ar(0:nx,j,k) = work(0:nx) |
---|
| 507 | |
---|
| 508 | ENDDO |
---|
| 509 | ENDDO |
---|
| 510 | !$OMP END PARALLEL |
---|
| 511 | |
---|
| 512 | ENDIF |
---|
| 513 | |
---|
[1210] | 514 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 515 | |
---|
| 516 | #if defined( __fftw ) |
---|
| 517 | IF ( forward_fft ) THEN |
---|
| 518 | |
---|
| 519 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 520 | !$OMP DO |
---|
| 521 | DO k = nzb_x, nzt_x |
---|
| 522 | DO j = nys_x, nyn_x |
---|
| 523 | |
---|
| 524 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 525 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 526 | |
---|
[1216] | 527 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 528 | |
---|
[1216] | 529 | DO i = 0, (nx+1)/2 |
---|
[1322] | 530 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 531 | ENDDO |
---|
| 532 | DO i = 1, (nx+1)/2 - 1 |
---|
| 533 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 534 | ENDDO |
---|
| 535 | |
---|
| 536 | ELSE |
---|
| 537 | |
---|
| 538 | DO i = 0, (nx+1)/2 |
---|
[1322] | 539 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 540 | ENDDO |
---|
| 541 | DO i = 1, (nx+1)/2 - 1 |
---|
| 542 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 543 | ENDDO |
---|
| 544 | |
---|
| 545 | ENDIF |
---|
| 546 | |
---|
[1210] | 547 | ENDDO |
---|
| 548 | ENDDO |
---|
| 549 | !$OMP END PARALLEL |
---|
| 550 | |
---|
[1216] | 551 | ELSE |
---|
[1210] | 552 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 553 | !$OMP DO |
---|
| 554 | DO k = nzb_x, nzt_x |
---|
| 555 | DO j = nys_x, nyn_x |
---|
| 556 | |
---|
[1216] | 557 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 558 | |
---|
[1342] | 559 | x_out(0) = CMPLX( ar_2d(0,j), 0.0_wp ) |
---|
[1216] | 560 | DO i = 1, (nx+1)/2 - 1 |
---|
| 561 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j) ) |
---|
| 562 | ENDDO |
---|
[1342] | 563 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0_wp ) |
---|
[1216] | 564 | |
---|
| 565 | ELSE |
---|
| 566 | |
---|
[1342] | 567 | x_out(0) = CMPLX( ar(0,j,k), 0.0_wp ) |
---|
[1216] | 568 | DO i = 1, (nx+1)/2 - 1 |
---|
| 569 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 570 | ENDDO |
---|
[1342] | 571 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp ) |
---|
[1216] | 572 | |
---|
| 573 | ENDIF |
---|
| 574 | |
---|
[1210] | 575 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 576 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 577 | |
---|
| 578 | ENDDO |
---|
| 579 | ENDDO |
---|
| 580 | !$OMP END PARALLEL |
---|
| 581 | |
---|
[1216] | 582 | ENDIF |
---|
[1210] | 583 | #endif |
---|
| 584 | |
---|
[1106] | 585 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 586 | |
---|
| 587 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 588 | IF ( forward_fft ) THEN |
---|
| 589 | |
---|
| 590 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 591 | !$OMP DO |
---|
| 592 | DO k = nzb_x, nzt_x |
---|
| 593 | DO j = nys_x, nyn_x |
---|
| 594 | |
---|
[1320] | 595 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 596 | nau1, aux2, nau2 ) |
---|
[1106] | 597 | |
---|
| 598 | DO i = 0, (nx+1)/2 |
---|
| 599 | ar(i,j,k) = work(2*i) |
---|
| 600 | ENDDO |
---|
| 601 | DO i = 1, (nx+1)/2 - 1 |
---|
| 602 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 603 | ENDDO |
---|
| 604 | |
---|
| 605 | ENDDO |
---|
| 606 | ENDDO |
---|
| 607 | !$OMP END PARALLEL |
---|
| 608 | |
---|
| 609 | ELSE |
---|
| 610 | |
---|
| 611 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 612 | !$OMP DO |
---|
| 613 | DO k = nzb_x, nzt_x |
---|
| 614 | DO j = nys_x, nyn_x |
---|
| 615 | |
---|
| 616 | DO i = 0, (nx+1)/2 |
---|
| 617 | work(2*i) = ar(i,j,k) |
---|
| 618 | ENDDO |
---|
| 619 | DO i = 1, (nx+1)/2 - 1 |
---|
| 620 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 621 | ENDDO |
---|
[1342] | 622 | work(1) = 0.0_wp |
---|
| 623 | work(nx+2) = 0.0_wp |
---|
[1106] | 624 | |
---|
[1320] | 625 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 626 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 627 | |
---|
| 628 | DO i = 0, nx |
---|
| 629 | ar(i,j,k) = work(i) |
---|
| 630 | ENDDO |
---|
| 631 | |
---|
| 632 | ENDDO |
---|
| 633 | ENDDO |
---|
| 634 | !$OMP END PARALLEL |
---|
| 635 | |
---|
| 636 | ENDIF |
---|
| 637 | |
---|
| 638 | #elif defined( __nec ) |
---|
| 639 | |
---|
| 640 | IF ( forward_fft ) THEN |
---|
| 641 | |
---|
| 642 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 643 | !$OMP DO |
---|
| 644 | DO k = nzb_x, nzt_x |
---|
| 645 | DO j = nys_x, nyn_x |
---|
| 646 | |
---|
| 647 | work(0:nx) = ar(0:nx,j,k) |
---|
| 648 | |
---|
| 649 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 650 | |
---|
| 651 | DO i = 0, (nx+1)/2 |
---|
| 652 | ar(i,j,k) = work(2*i) |
---|
| 653 | ENDDO |
---|
| 654 | DO i = 1, (nx+1)/2 - 1 |
---|
| 655 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 656 | ENDDO |
---|
| 657 | |
---|
| 658 | ENDDO |
---|
| 659 | ENDDO |
---|
| 660 | !$END OMP PARALLEL |
---|
| 661 | |
---|
| 662 | ELSE |
---|
| 663 | |
---|
| 664 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 665 | !$OMP DO |
---|
| 666 | DO k = nzb_x, nzt_x |
---|
| 667 | DO j = nys_x, nyn_x |
---|
| 668 | |
---|
| 669 | DO i = 0, (nx+1)/2 |
---|
| 670 | work(2*i) = ar(i,j,k) |
---|
| 671 | ENDDO |
---|
| 672 | DO i = 1, (nx+1)/2 - 1 |
---|
| 673 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 674 | ENDDO |
---|
[1342] | 675 | work(1) = 0.0_wp |
---|
| 676 | work(nx+2) = 0.0_wp |
---|
[1106] | 677 | |
---|
| 678 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 679 | |
---|
| 680 | ar(0:nx,j,k) = work(0:nx) |
---|
| 681 | |
---|
| 682 | ENDDO |
---|
| 683 | ENDDO |
---|
| 684 | !$OMP END PARALLEL |
---|
| 685 | |
---|
| 686 | ENDIF |
---|
| 687 | |
---|
| 688 | #elif defined( __cuda_fft ) |
---|
| 689 | |
---|
| 690 | IF ( forward_fft ) THEN |
---|
| 691 | |
---|
[1111] | 692 | !$acc data present( ar ) |
---|
| 693 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
[1106] | 694 | |
---|
[1111] | 695 | !$acc kernels |
---|
[1106] | 696 | DO k = nzb_x, nzt_x |
---|
| 697 | DO j = nys_x, nyn_x |
---|
| 698 | |
---|
| 699 | DO i = 0, (nx+1)/2 |
---|
[1322] | 700 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
[1106] | 701 | ENDDO |
---|
| 702 | |
---|
| 703 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 704 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 705 | ENDDO |
---|
| 706 | |
---|
| 707 | ENDDO |
---|
| 708 | ENDDO |
---|
[1111] | 709 | !$acc end kernels |
---|
| 710 | !$acc end data |
---|
[1106] | 711 | |
---|
| 712 | ELSE |
---|
| 713 | |
---|
[1111] | 714 | !$acc data present( ar ) |
---|
| 715 | !$acc kernels |
---|
[1106] | 716 | DO k = nzb_x, nzt_x |
---|
| 717 | DO j = nys_x, nyn_x |
---|
| 718 | |
---|
[1342] | 719 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0_wp ) |
---|
[1106] | 720 | |
---|
| 721 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 722 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
[1106] | 723 | ENDDO |
---|
[1342] | 724 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0_wp ) |
---|
[1106] | 725 | |
---|
| 726 | ENDDO |
---|
| 727 | ENDDO |
---|
[1111] | 728 | !$acc end kernels |
---|
[1106] | 729 | |
---|
[1111] | 730 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 731 | !$acc end data |
---|
[1106] | 732 | |
---|
| 733 | ENDIF |
---|
| 734 | |
---|
| 735 | #else |
---|
| 736 | message_string = 'no system-specific fft-call available' |
---|
| 737 | CALL message( 'fft_x', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 738 | #endif |
---|
| 739 | |
---|
| 740 | ELSE |
---|
| 741 | |
---|
| 742 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 743 | '" not available' |
---|
| 744 | CALL message( 'fft_x', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 745 | |
---|
| 746 | ENDIF |
---|
| 747 | |
---|
| 748 | END SUBROUTINE fft_x |
---|
| 749 | |
---|
| 750 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 751 | |
---|
| 752 | !----------------------------------------------------------------------! |
---|
| 753 | ! fft_x_1d ! |
---|
| 754 | ! ! |
---|
| 755 | ! Fourier-transformation along x-direction ! |
---|
| 756 | ! Version for 1D-decomposition ! |
---|
| 757 | ! ! |
---|
| 758 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 759 | ! system-specific routines, if they are available ! |
---|
| 760 | !----------------------------------------------------------------------! |
---|
| 761 | |
---|
| 762 | IMPLICIT NONE |
---|
| 763 | |
---|
[1320] | 764 | CHARACTER (LEN=*) :: direction !: |
---|
| 765 | |
---|
| 766 | INTEGER(iwp) :: i !: |
---|
| 767 | INTEGER(iwp) :: ishape(1) !: |
---|
[1] | 768 | |
---|
[1320] | 769 | LOGICAL :: forward_fft !: |
---|
[1106] | 770 | |
---|
[1320] | 771 | REAL(wp), DIMENSION(0:nx) :: ar !: |
---|
| 772 | REAL(wp), DIMENSION(0:nx+2) :: work !: |
---|
| 773 | REAL(wp), DIMENSION(nx+2) :: work1 !: |
---|
| 774 | |
---|
| 775 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 776 | |
---|
[1] | 777 | #if defined( __ibm ) |
---|
[1320] | 778 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 779 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
[1] | 780 | #elif defined( __nec ) |
---|
[1320] | 781 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !: |
---|
[1] | 782 | #endif |
---|
| 783 | |
---|
[1106] | 784 | IF ( direction == 'forward' ) THEN |
---|
| 785 | forward_fft = .TRUE. |
---|
| 786 | ELSE |
---|
| 787 | forward_fft = .FALSE. |
---|
| 788 | ENDIF |
---|
| 789 | |
---|
[1] | 790 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 791 | |
---|
| 792 | ! |
---|
| 793 | !-- Performing the fft with singleton's software works on every system, |
---|
| 794 | !-- since it is part of the model |
---|
| 795 | ALLOCATE( cwork(0:nx) ) |
---|
| 796 | |
---|
[1106] | 797 | IF ( forward_fft ) then |
---|
[1] | 798 | |
---|
| 799 | DO i = 0, nx |
---|
| 800 | cwork(i) = CMPLX( ar(i) ) |
---|
| 801 | ENDDO |
---|
| 802 | ishape = SHAPE( cwork ) |
---|
| 803 | CALL FFTN( cwork, ishape ) |
---|
| 804 | DO i = 0, (nx+1)/2 |
---|
[1322] | 805 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 806 | ENDDO |
---|
| 807 | DO i = 1, (nx+1)/2 - 1 |
---|
| 808 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 809 | ENDDO |
---|
| 810 | |
---|
| 811 | ELSE |
---|
| 812 | |
---|
[1342] | 813 | cwork(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1] | 814 | DO i = 1, (nx+1)/2 - 1 |
---|
| 815 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i) ) |
---|
| 816 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 817 | ENDDO |
---|
[1342] | 818 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp ) |
---|
[1] | 819 | |
---|
| 820 | ishape = SHAPE( cwork ) |
---|
| 821 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 822 | |
---|
| 823 | DO i = 0, nx |
---|
[1322] | 824 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 825 | ENDDO |
---|
| 826 | |
---|
| 827 | ENDIF |
---|
| 828 | |
---|
| 829 | DEALLOCATE( cwork ) |
---|
| 830 | |
---|
| 831 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 832 | |
---|
| 833 | ! |
---|
| 834 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 835 | !-- since it is part of the model |
---|
[1106] | 836 | IF ( forward_fft ) THEN |
---|
[1] | 837 | |
---|
| 838 | work(0:nx) = ar |
---|
| 839 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 840 | |
---|
| 841 | DO i = 0, (nx+1)/2 |
---|
| 842 | ar(i) = work(2*i) |
---|
| 843 | ENDDO |
---|
| 844 | DO i = 1, (nx+1)/2 - 1 |
---|
| 845 | ar(nx+1-i) = work(2*i+1) |
---|
| 846 | ENDDO |
---|
| 847 | |
---|
| 848 | ELSE |
---|
| 849 | |
---|
| 850 | DO i = 0, (nx+1)/2 |
---|
| 851 | work(2*i) = ar(i) |
---|
| 852 | ENDDO |
---|
| 853 | DO i = 1, (nx+1)/2 - 1 |
---|
| 854 | work(2*i+1) = ar(nx+1-i) |
---|
| 855 | ENDDO |
---|
[1342] | 856 | work(1) = 0.0_wp |
---|
| 857 | work(nx+2) = 0.0_wp |
---|
[1] | 858 | |
---|
| 859 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 860 | ar = work(0:nx) |
---|
| 861 | |
---|
| 862 | ENDIF |
---|
| 863 | |
---|
[1216] | 864 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 865 | |
---|
| 866 | #if defined( __fftw ) |
---|
| 867 | IF ( forward_fft ) THEN |
---|
| 868 | |
---|
| 869 | x_in(0:nx) = ar(0:nx) |
---|
| 870 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 871 | |
---|
| 872 | DO i = 0, (nx+1)/2 |
---|
[1322] | 873 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 874 | ENDDO |
---|
| 875 | DO i = 1, (nx+1)/2 - 1 |
---|
| 876 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 877 | ENDDO |
---|
| 878 | |
---|
| 879 | ELSE |
---|
| 880 | |
---|
[1342] | 881 | x_out(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1216] | 882 | DO i = 1, (nx+1)/2 - 1 |
---|
| 883 | x_out(i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 884 | ENDDO |
---|
[1342] | 885 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0_wp ) |
---|
[1216] | 886 | |
---|
| 887 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 888 | ar(0:nx) = x_in(0:nx) |
---|
| 889 | |
---|
| 890 | ENDIF |
---|
| 891 | #endif |
---|
| 892 | |
---|
[1] | 893 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 894 | |
---|
| 895 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 896 | IF ( forward_fft ) THEN |
---|
[1] | 897 | |
---|
[1320] | 898 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 899 | aux2, nau2 ) |
---|
| 900 | |
---|
| 901 | DO i = 0, (nx+1)/2 |
---|
| 902 | ar(i) = work(2*i) |
---|
| 903 | ENDDO |
---|
| 904 | DO i = 1, (nx+1)/2 - 1 |
---|
| 905 | ar(nx+1-i) = work(2*i+1) |
---|
| 906 | ENDDO |
---|
| 907 | |
---|
| 908 | ELSE |
---|
| 909 | |
---|
| 910 | DO i = 0, (nx+1)/2 |
---|
| 911 | work(2*i) = ar(i) |
---|
| 912 | ENDDO |
---|
| 913 | DO i = 1, (nx+1)/2 - 1 |
---|
| 914 | work(2*i+1) = ar(nx+1-i) |
---|
| 915 | ENDDO |
---|
[1342] | 916 | work(1) = 0.0_wp |
---|
| 917 | work(nx+2) = 0.0_wp |
---|
[1] | 918 | |
---|
[1106] | 919 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 920 | aux4, nau2 ) |
---|
| 921 | |
---|
| 922 | DO i = 0, nx |
---|
| 923 | ar(i) = work(i) |
---|
| 924 | ENDDO |
---|
| 925 | |
---|
| 926 | ENDIF |
---|
| 927 | #elif defined( __nec ) |
---|
[1106] | 928 | IF ( forward_fft ) THEN |
---|
[1] | 929 | |
---|
| 930 | work(0:nx) = ar(0:nx) |
---|
| 931 | |
---|
[1106] | 932 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 933 | |
---|
[1] | 934 | DO i = 0, (nx+1)/2 |
---|
| 935 | ar(i) = work(2*i) |
---|
| 936 | ENDDO |
---|
| 937 | DO i = 1, (nx+1)/2 - 1 |
---|
| 938 | ar(nx+1-i) = work(2*i+1) |
---|
| 939 | ENDDO |
---|
| 940 | |
---|
| 941 | ELSE |
---|
| 942 | |
---|
| 943 | DO i = 0, (nx+1)/2 |
---|
| 944 | work(2*i) = ar(i) |
---|
| 945 | ENDDO |
---|
| 946 | DO i = 1, (nx+1)/2 - 1 |
---|
| 947 | work(2*i+1) = ar(nx+1-i) |
---|
| 948 | ENDDO |
---|
[1342] | 949 | work(1) = 0.0_wp |
---|
| 950 | work(nx+2) = 0.0_wp |
---|
[1] | 951 | |
---|
[1106] | 952 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 953 | |
---|
| 954 | ar(0:nx) = work(0:nx) |
---|
| 955 | |
---|
| 956 | ENDIF |
---|
| 957 | #else |
---|
[254] | 958 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 959 | CALL message( 'fft_x_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 960 | #endif |
---|
| 961 | ELSE |
---|
[274] | 962 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 963 | '" not available' |
---|
[1106] | 964 | CALL message( 'fft_x_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 965 | |
---|
| 966 | ENDIF |
---|
| 967 | |
---|
[1106] | 968 | END SUBROUTINE fft_x_1d |
---|
[1] | 969 | |
---|
[1216] | 970 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 971 | nxr_y_l ) |
---|
[1] | 972 | |
---|
| 973 | !----------------------------------------------------------------------! |
---|
| 974 | ! fft_y ! |
---|
| 975 | ! ! |
---|
| 976 | ! Fourier-transformation along y-direction ! |
---|
[1106] | 977 | ! Version for 2D-decomposition ! |
---|
[1] | 978 | ! ! |
---|
| 979 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 980 | ! system-specific routines, if they are available ! |
---|
[1216] | 981 | ! ! |
---|
| 982 | ! direction: 'forward' or 'backward' ! |
---|
| 983 | ! ar, ar_tr: 3D data arrays ! |
---|
| 984 | ! forward: ar: before ar_tr: after transformation ! |
---|
| 985 | ! backward: ar_tr: before ar: after transfosition ! |
---|
| 986 | ! ! |
---|
| 987 | ! In case of non-overlapping transposition/transformation: ! |
---|
| 988 | ! nxl_y_bound = nxl_y_l = nxl_y ! |
---|
| 989 | ! nxr_y_bound = nxr_y_l = nxr_y ! |
---|
| 990 | ! ! |
---|
| 991 | ! In case of overlapping transposition/transformation ! |
---|
| 992 | ! - nxl_y_bound and nxr_y_bound have the original values of ! |
---|
| 993 | ! nxl_y, nxr_y. ar_tr is dimensioned using these values. ! |
---|
| 994 | ! - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that ! |
---|
| 995 | ! transformation is carried out for a 2D-plane only. ! |
---|
[1] | 996 | !----------------------------------------------------------------------! |
---|
| 997 | |
---|
[1106] | 998 | USE cuda_fft_interfaces |
---|
[1153] | 999 | #if defined( __cuda_fft ) |
---|
| 1000 | USE ISO_C_BINDING |
---|
| 1001 | #endif |
---|
[1106] | 1002 | |
---|
[1] | 1003 | IMPLICIT NONE |
---|
| 1004 | |
---|
[1320] | 1005 | CHARACTER (LEN=*) :: direction !: |
---|
| 1006 | |
---|
| 1007 | INTEGER(iwp) :: i !: |
---|
| 1008 | INTEGER(iwp) :: j !: |
---|
| 1009 | INTEGER(iwp) :: jshape(1) !: |
---|
| 1010 | INTEGER(iwp) :: k !: |
---|
| 1011 | INTEGER(iwp) :: nxl_y_bound !: |
---|
| 1012 | INTEGER(iwp) :: nxl_y_l !: |
---|
| 1013 | INTEGER(iwp) :: nxr_y_bound !: |
---|
| 1014 | INTEGER(iwp) :: nxr_y_l !: |
---|
[1106] | 1015 | |
---|
[1320] | 1016 | LOGICAL :: forward_fft !: |
---|
[1106] | 1017 | |
---|
[1320] | 1018 | REAL(wp), DIMENSION(0:ny+2) :: work !: |
---|
| 1019 | REAL(wp), DIMENSION(ny+2) :: work1 !: |
---|
| 1020 | |
---|
| 1021 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 1022 | |
---|
[1106] | 1023 | #if defined( __ibm ) |
---|
[1320] | 1024 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 1025 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1106] | 1026 | #elif defined( __nec ) |
---|
[1320] | 1027 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !: |
---|
[1106] | 1028 | #elif defined( __cuda_fft ) |
---|
[1320] | 1029 | COMPLEX(dpk), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
| 1030 | ar_tmp !: |
---|
[1111] | 1031 | !$acc declare create( ar_tmp ) |
---|
[1106] | 1032 | #endif |
---|
| 1033 | |
---|
[1320] | 1034 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
| 1035 | ar !: |
---|
| 1036 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
| 1037 | ar_tr !: |
---|
| 1038 | |
---|
[1106] | 1039 | IF ( direction == 'forward' ) THEN |
---|
| 1040 | forward_fft = .TRUE. |
---|
| 1041 | ELSE |
---|
| 1042 | forward_fft = .FALSE. |
---|
| 1043 | ENDIF |
---|
| 1044 | |
---|
| 1045 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1046 | |
---|
| 1047 | ! |
---|
| 1048 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1049 | !-- since it is part of the model |
---|
| 1050 | ALLOCATE( cwork(0:ny) ) |
---|
| 1051 | |
---|
| 1052 | IF ( forward_fft ) then |
---|
| 1053 | |
---|
| 1054 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1055 | !$OMP DO |
---|
| 1056 | DO k = nzb_y, nzt_y |
---|
[1216] | 1057 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1058 | |
---|
| 1059 | DO j = 0, ny |
---|
| 1060 | cwork(j) = CMPLX( ar(j,i,k) ) |
---|
| 1061 | ENDDO |
---|
| 1062 | |
---|
| 1063 | jshape = SHAPE( cwork ) |
---|
| 1064 | CALL FFTN( cwork, jshape ) |
---|
| 1065 | |
---|
| 1066 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1067 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1068 | ENDDO |
---|
| 1069 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1070 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1071 | ENDDO |
---|
| 1072 | |
---|
| 1073 | ENDDO |
---|
| 1074 | ENDDO |
---|
| 1075 | !$OMP END PARALLEL |
---|
| 1076 | |
---|
| 1077 | ELSE |
---|
| 1078 | |
---|
| 1079 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1080 | !$OMP DO |
---|
| 1081 | DO k = nzb_y, nzt_y |
---|
[1216] | 1082 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1083 | |
---|
[1342] | 1084 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0_wp ) |
---|
[1106] | 1085 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1086 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k) ) |
---|
| 1087 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
[1106] | 1088 | ENDDO |
---|
[1342] | 1089 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp ) |
---|
[1106] | 1090 | |
---|
| 1091 | jshape = SHAPE( cwork ) |
---|
| 1092 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1093 | |
---|
| 1094 | DO j = 0, ny |
---|
[1322] | 1095 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1096 | ENDDO |
---|
| 1097 | |
---|
| 1098 | ENDDO |
---|
| 1099 | ENDDO |
---|
| 1100 | !$OMP END PARALLEL |
---|
| 1101 | |
---|
| 1102 | ENDIF |
---|
| 1103 | |
---|
| 1104 | DEALLOCATE( cwork ) |
---|
| 1105 | |
---|
| 1106 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1107 | |
---|
| 1108 | ! |
---|
| 1109 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1110 | !-- since it is part of the model |
---|
| 1111 | IF ( forward_fft ) THEN |
---|
| 1112 | |
---|
[1304] | 1113 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1114 | !$OMP DO |
---|
| 1115 | DO k = nzb_y, nzt_y |
---|
[1216] | 1116 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1117 | |
---|
| 1118 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1119 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1120 | |
---|
| 1121 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1122 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1123 | ENDDO |
---|
| 1124 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1125 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1126 | ENDDO |
---|
| 1127 | |
---|
| 1128 | ENDDO |
---|
| 1129 | ENDDO |
---|
| 1130 | !$OMP END PARALLEL |
---|
| 1131 | |
---|
| 1132 | ELSE |
---|
| 1133 | |
---|
[1304] | 1134 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1135 | !$OMP DO |
---|
| 1136 | DO k = nzb_y, nzt_y |
---|
[1216] | 1137 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1138 | |
---|
| 1139 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1140 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1141 | ENDDO |
---|
| 1142 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1143 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1144 | ENDDO |
---|
[1342] | 1145 | work(1) = 0.0_wp |
---|
| 1146 | work(ny+2) = 0.0_wp |
---|
[1106] | 1147 | |
---|
| 1148 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1149 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1150 | |
---|
| 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
| 1153 | !$OMP END PARALLEL |
---|
| 1154 | |
---|
| 1155 | ENDIF |
---|
| 1156 | |
---|
[1210] | 1157 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1158 | |
---|
| 1159 | #if defined( __fftw ) |
---|
| 1160 | IF ( forward_fft ) THEN |
---|
| 1161 | |
---|
| 1162 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1163 | !$OMP DO |
---|
| 1164 | DO k = nzb_y, nzt_y |
---|
[1216] | 1165 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1166 | |
---|
| 1167 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1168 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1169 | |
---|
| 1170 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1171 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1172 | ENDDO |
---|
| 1173 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1174 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1175 | ENDDO |
---|
| 1176 | |
---|
| 1177 | ENDDO |
---|
| 1178 | ENDDO |
---|
| 1179 | !$OMP END PARALLEL |
---|
| 1180 | |
---|
| 1181 | ELSE |
---|
| 1182 | |
---|
| 1183 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1184 | !$OMP DO |
---|
| 1185 | DO k = nzb_y, nzt_y |
---|
[1216] | 1186 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1187 | |
---|
[1342] | 1188 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0_wp ) |
---|
[1210] | 1189 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1190 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
[1210] | 1191 | ENDDO |
---|
[1342] | 1192 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0_wp ) |
---|
[1210] | 1193 | |
---|
| 1194 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1195 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1196 | |
---|
| 1197 | ENDDO |
---|
| 1198 | ENDDO |
---|
| 1199 | !$OMP END PARALLEL |
---|
| 1200 | |
---|
| 1201 | ENDIF |
---|
| 1202 | #endif |
---|
| 1203 | |
---|
[1106] | 1204 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1205 | |
---|
| 1206 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 1207 | IF ( forward_fft) THEN |
---|
| 1208 | |
---|
| 1209 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1210 | !$OMP DO |
---|
| 1211 | DO k = nzb_y, nzt_y |
---|
[1216] | 1212 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1213 | |
---|
[1320] | 1214 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1215 | nau1, auy2, nau2 ) |
---|
[1106] | 1216 | |
---|
| 1217 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1218 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1219 | ENDDO |
---|
| 1220 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1221 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1222 | ENDDO |
---|
| 1223 | |
---|
| 1224 | ENDDO |
---|
| 1225 | ENDDO |
---|
| 1226 | !$OMP END PARALLEL |
---|
| 1227 | |
---|
| 1228 | ELSE |
---|
| 1229 | |
---|
| 1230 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1231 | !$OMP DO |
---|
| 1232 | DO k = nzb_y, nzt_y |
---|
[1216] | 1233 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1234 | |
---|
| 1235 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1236 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1237 | ENDDO |
---|
| 1238 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1239 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1240 | ENDDO |
---|
[1342] | 1241 | work(1) = 0.0_wp |
---|
| 1242 | work(ny+2) = 0.0_wp |
---|
[1106] | 1243 | |
---|
[1320] | 1244 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1245 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1246 | |
---|
| 1247 | DO j = 0, ny |
---|
| 1248 | ar(j,i,k) = work(j) |
---|
| 1249 | ENDDO |
---|
| 1250 | |
---|
| 1251 | ENDDO |
---|
| 1252 | ENDDO |
---|
| 1253 | !$OMP END PARALLEL |
---|
| 1254 | |
---|
| 1255 | ENDIF |
---|
| 1256 | #elif defined( __nec ) |
---|
| 1257 | IF ( forward_fft ) THEN |
---|
| 1258 | |
---|
| 1259 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1260 | !$OMP DO |
---|
| 1261 | DO k = nzb_y, nzt_y |
---|
[1216] | 1262 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1263 | |
---|
| 1264 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1265 | |
---|
| 1266 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1267 | |
---|
| 1268 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1269 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1270 | ENDDO |
---|
| 1271 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1272 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1273 | ENDDO |
---|
| 1274 | |
---|
| 1275 | ENDDO |
---|
| 1276 | ENDDO |
---|
| 1277 | !$END OMP PARALLEL |
---|
| 1278 | |
---|
| 1279 | ELSE |
---|
| 1280 | |
---|
| 1281 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1282 | !$OMP DO |
---|
| 1283 | DO k = nzb_y, nzt_y |
---|
[1216] | 1284 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1285 | |
---|
| 1286 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1287 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1288 | ENDDO |
---|
| 1289 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1290 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1291 | ENDDO |
---|
[1342] | 1292 | work(1) = 0.0_wp |
---|
| 1293 | work(ny+2) = 0.0_wp |
---|
[1106] | 1294 | |
---|
| 1295 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1296 | |
---|
| 1297 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1298 | |
---|
| 1299 | ENDDO |
---|
| 1300 | ENDDO |
---|
| 1301 | !$OMP END PARALLEL |
---|
| 1302 | |
---|
| 1303 | ENDIF |
---|
| 1304 | #elif defined( __cuda_fft ) |
---|
| 1305 | |
---|
| 1306 | IF ( forward_fft ) THEN |
---|
| 1307 | |
---|
[1111] | 1308 | !$acc data present( ar ) |
---|
| 1309 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
[1106] | 1310 | |
---|
[1111] | 1311 | !$acc kernels |
---|
[1106] | 1312 | DO k = nzb_y, nzt_y |
---|
| 1313 | DO i = nxl_y, nxr_y |
---|
| 1314 | |
---|
| 1315 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1316 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
[1106] | 1317 | ENDDO |
---|
| 1318 | |
---|
| 1319 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1320 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1321 | ENDDO |
---|
| 1322 | |
---|
| 1323 | ENDDO |
---|
| 1324 | ENDDO |
---|
[1111] | 1325 | !$acc end kernels |
---|
| 1326 | !$acc end data |
---|
[1106] | 1327 | |
---|
| 1328 | ELSE |
---|
| 1329 | |
---|
[1111] | 1330 | !$acc data present( ar ) |
---|
| 1331 | !$acc kernels |
---|
[1106] | 1332 | DO k = nzb_y, nzt_y |
---|
| 1333 | DO i = nxl_y, nxr_y |
---|
| 1334 | |
---|
[1342] | 1335 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0_wp ) |
---|
[1106] | 1336 | |
---|
| 1337 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1338 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
[1106] | 1339 | ENDDO |
---|
[1342] | 1340 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0_wp ) |
---|
[1106] | 1341 | |
---|
| 1342 | ENDDO |
---|
| 1343 | ENDDO |
---|
[1111] | 1344 | !$acc end kernels |
---|
[1106] | 1345 | |
---|
[1111] | 1346 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1347 | !$acc end data |
---|
[1106] | 1348 | |
---|
| 1349 | ENDIF |
---|
| 1350 | |
---|
| 1351 | #else |
---|
| 1352 | message_string = 'no system-specific fft-call available' |
---|
| 1353 | CALL message( 'fft_y', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 1354 | #endif |
---|
| 1355 | |
---|
| 1356 | ELSE |
---|
| 1357 | |
---|
| 1358 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1359 | '" not available' |
---|
| 1360 | CALL message( 'fft_y', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 1361 | |
---|
| 1362 | ENDIF |
---|
| 1363 | |
---|
| 1364 | END SUBROUTINE fft_y |
---|
| 1365 | |
---|
| 1366 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1367 | |
---|
| 1368 | !----------------------------------------------------------------------! |
---|
| 1369 | ! fft_y_1d ! |
---|
| 1370 | ! ! |
---|
| 1371 | ! Fourier-transformation along y-direction ! |
---|
| 1372 | ! Version for 1D-decomposition ! |
---|
| 1373 | ! ! |
---|
| 1374 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 1375 | ! system-specific routines, if they are available ! |
---|
| 1376 | !----------------------------------------------------------------------! |
---|
| 1377 | |
---|
| 1378 | IMPLICIT NONE |
---|
| 1379 | |
---|
| 1380 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1381 | |
---|
| 1382 | INTEGER(iwp) :: j !: |
---|
| 1383 | INTEGER(iwp) :: jshape(1) !: |
---|
[1] | 1384 | |
---|
[1320] | 1385 | LOGICAL :: forward_fft !: |
---|
[1106] | 1386 | |
---|
[1320] | 1387 | REAL(wp), DIMENSION(0:ny) :: ar !: |
---|
| 1388 | REAL(wp), DIMENSION(0:ny+2) :: work !: |
---|
| 1389 | REAL(wp), DIMENSION(ny+2) :: work1 !: |
---|
| 1390 | |
---|
| 1391 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 1392 | |
---|
[1] | 1393 | #if defined( __ibm ) |
---|
[1320] | 1394 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 1395 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1] | 1396 | #elif defined( __nec ) |
---|
[1320] | 1397 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !: |
---|
[1] | 1398 | #endif |
---|
| 1399 | |
---|
[1106] | 1400 | IF ( direction == 'forward' ) THEN |
---|
| 1401 | forward_fft = .TRUE. |
---|
| 1402 | ELSE |
---|
| 1403 | forward_fft = .FALSE. |
---|
| 1404 | ENDIF |
---|
| 1405 | |
---|
[1] | 1406 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1407 | |
---|
| 1408 | ! |
---|
| 1409 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1410 | !-- since it is part of the model |
---|
| 1411 | ALLOCATE( cwork(0:ny) ) |
---|
| 1412 | |
---|
[1106] | 1413 | IF ( forward_fft ) THEN |
---|
[1] | 1414 | |
---|
| 1415 | DO j = 0, ny |
---|
| 1416 | cwork(j) = CMPLX( ar(j) ) |
---|
| 1417 | ENDDO |
---|
| 1418 | |
---|
| 1419 | jshape = SHAPE( cwork ) |
---|
| 1420 | CALL FFTN( cwork, jshape ) |
---|
| 1421 | |
---|
| 1422 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1423 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1424 | ENDDO |
---|
| 1425 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1426 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1427 | ENDDO |
---|
| 1428 | |
---|
| 1429 | ELSE |
---|
| 1430 | |
---|
[1342] | 1431 | cwork(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1] | 1432 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1433 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j) ) |
---|
| 1434 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1435 | ENDDO |
---|
[1342] | 1436 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp ) |
---|
[1] | 1437 | |
---|
| 1438 | jshape = SHAPE( cwork ) |
---|
| 1439 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1440 | |
---|
| 1441 | DO j = 0, ny |
---|
[1322] | 1442 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1443 | ENDDO |
---|
| 1444 | |
---|
| 1445 | ENDIF |
---|
| 1446 | |
---|
| 1447 | DEALLOCATE( cwork ) |
---|
| 1448 | |
---|
| 1449 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1450 | |
---|
| 1451 | ! |
---|
| 1452 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1453 | !-- since it is part of the model |
---|
[1106] | 1454 | IF ( forward_fft ) THEN |
---|
[1] | 1455 | |
---|
| 1456 | work(0:ny) = ar |
---|
| 1457 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1458 | |
---|
| 1459 | DO j = 0, (ny+1)/2 |
---|
| 1460 | ar(j) = work(2*j) |
---|
| 1461 | ENDDO |
---|
| 1462 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1463 | ar(ny+1-j) = work(2*j+1) |
---|
| 1464 | ENDDO |
---|
| 1465 | |
---|
| 1466 | ELSE |
---|
| 1467 | |
---|
| 1468 | DO j = 0, (ny+1)/2 |
---|
| 1469 | work(2*j) = ar(j) |
---|
| 1470 | ENDDO |
---|
| 1471 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1472 | work(2*j+1) = ar(ny+1-j) |
---|
| 1473 | ENDDO |
---|
[1342] | 1474 | work(1) = 0.0_wp |
---|
| 1475 | work(ny+2) = 0.0_wp |
---|
[1] | 1476 | |
---|
| 1477 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1478 | ar = work(0:ny) |
---|
| 1479 | |
---|
| 1480 | ENDIF |
---|
| 1481 | |
---|
[1216] | 1482 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1483 | |
---|
| 1484 | #if defined( __fftw ) |
---|
| 1485 | IF ( forward_fft ) THEN |
---|
| 1486 | |
---|
| 1487 | y_in(0:ny) = ar(0:ny) |
---|
| 1488 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1489 | |
---|
| 1490 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1491 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1492 | ENDDO |
---|
| 1493 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1494 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1495 | ENDDO |
---|
| 1496 | |
---|
| 1497 | ELSE |
---|
| 1498 | |
---|
[1342] | 1499 | y_out(0) = CMPLX( ar(0), 0.0_wp ) |
---|
[1216] | 1500 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1501 | y_out(j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1502 | ENDDO |
---|
[1342] | 1503 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0_wp ) |
---|
[1216] | 1504 | |
---|
| 1505 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1506 | ar(0:ny) = y_in(0:ny) |
---|
| 1507 | |
---|
| 1508 | ENDIF |
---|
| 1509 | #endif |
---|
| 1510 | |
---|
[1] | 1511 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1512 | |
---|
| 1513 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 1514 | IF ( forward_fft ) THEN |
---|
[1] | 1515 | |
---|
[1320] | 1516 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1517 | auy2, nau2 ) |
---|
| 1518 | |
---|
| 1519 | DO j = 0, (ny+1)/2 |
---|
| 1520 | ar(j) = work(2*j) |
---|
| 1521 | ENDDO |
---|
| 1522 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1523 | ar(ny+1-j) = work(2*j+1) |
---|
| 1524 | ENDDO |
---|
| 1525 | |
---|
| 1526 | ELSE |
---|
| 1527 | |
---|
| 1528 | DO j = 0, (ny+1)/2 |
---|
| 1529 | work(2*j) = ar(j) |
---|
| 1530 | ENDDO |
---|
| 1531 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1532 | work(2*j+1) = ar(ny+1-j) |
---|
| 1533 | ENDDO |
---|
[1342] | 1534 | work(1) = 0.0_wp |
---|
| 1535 | work(ny+2) = 0.0_wp |
---|
[1] | 1536 | |
---|
[1320] | 1537 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1538 | nau1, auy4, nau2 ) |
---|
[1] | 1539 | |
---|
| 1540 | DO j = 0, ny |
---|
| 1541 | ar(j) = work(j) |
---|
| 1542 | ENDDO |
---|
| 1543 | |
---|
| 1544 | ENDIF |
---|
| 1545 | #elif defined( __nec ) |
---|
[1106] | 1546 | IF ( forward_fft ) THEN |
---|
[1] | 1547 | |
---|
| 1548 | work(0:ny) = ar(0:ny) |
---|
| 1549 | |
---|
[1106] | 1550 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1551 | |
---|
| 1552 | DO j = 0, (ny+1)/2 |
---|
| 1553 | ar(j) = work(2*j) |
---|
| 1554 | ENDDO |
---|
| 1555 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1556 | ar(ny+1-j) = work(2*j+1) |
---|
| 1557 | ENDDO |
---|
| 1558 | |
---|
| 1559 | ELSE |
---|
| 1560 | |
---|
| 1561 | DO j = 0, (ny+1)/2 |
---|
| 1562 | work(2*j) = ar(j) |
---|
| 1563 | ENDDO |
---|
| 1564 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1565 | work(2*j+1) = ar(ny+1-j) |
---|
| 1566 | ENDDO |
---|
[1342] | 1567 | work(1) = 0.0_wp |
---|
| 1568 | work(ny+2) = 0.0_wp |
---|
[1] | 1569 | |
---|
[1106] | 1570 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1571 | |
---|
| 1572 | ar(0:ny) = work(0:ny) |
---|
| 1573 | |
---|
| 1574 | ENDIF |
---|
| 1575 | #else |
---|
[254] | 1576 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 1577 | CALL message( 'fft_y_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[254] | 1578 | |
---|
[1] | 1579 | #endif |
---|
| 1580 | |
---|
| 1581 | ELSE |
---|
| 1582 | |
---|
[274] | 1583 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1584 | '" not available' |
---|
[1106] | 1585 | CALL message( 'fft_y_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1586 | |
---|
| 1587 | ENDIF |
---|
| 1588 | |
---|
[1106] | 1589 | END SUBROUTINE fft_y_1d |
---|
[1] | 1590 | |
---|
| 1591 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1592 | |
---|
| 1593 | !----------------------------------------------------------------------! |
---|
| 1594 | ! fft_x_m ! |
---|
| 1595 | ! ! |
---|
| 1596 | ! Fourier-transformation along x-direction ! |
---|
| 1597 | ! Version for 1d domain decomposition ! |
---|
| 1598 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1599 | ! or Temperton-algorithm ! |
---|
| 1600 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1601 | ! ! |
---|
| 1602 | !----------------------------------------------------------------------! |
---|
| 1603 | |
---|
| 1604 | IMPLICIT NONE |
---|
| 1605 | |
---|
[1320] | 1606 | CHARACTER (LEN=*) :: direction !: |
---|
| 1607 | |
---|
| 1608 | INTEGER(iwp) :: i !: |
---|
| 1609 | INTEGER(iwp) :: k !: |
---|
| 1610 | INTEGER(iwp) :: siza !: |
---|
[1] | 1611 | |
---|
[1320] | 1612 | REAL(wp), DIMENSION(0:nx,nz) :: ar !: |
---|
| 1613 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !: |
---|
| 1614 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !: |
---|
| 1615 | |
---|
[1] | 1616 | #if defined( __nec ) |
---|
[1320] | 1617 | INTEGER(iwp) :: sizw !: |
---|
| 1618 | |
---|
| 1619 | COMPLEX(wp), DIMENSION((nx+4)/2+1,nz+1) :: work !: |
---|
[1] | 1620 | #endif |
---|
| 1621 | |
---|
| 1622 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1623 | |
---|
| 1624 | siza = SIZE( ai, 1 ) |
---|
| 1625 | |
---|
| 1626 | IF ( direction == 'forward') THEN |
---|
| 1627 | |
---|
| 1628 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
[1342] | 1629 | ai(nx+1:,:) = 0.0_wp |
---|
[1] | 1630 | |
---|
| 1631 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1632 | |
---|
| 1633 | DO k = 1, nz |
---|
| 1634 | DO i = 0, (nx+1)/2 |
---|
| 1635 | ar(i,k) = ai(2*i,k) |
---|
| 1636 | ENDDO |
---|
| 1637 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1638 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1639 | ENDDO |
---|
| 1640 | ENDDO |
---|
| 1641 | |
---|
| 1642 | ELSE |
---|
| 1643 | |
---|
| 1644 | DO k = 1, nz |
---|
| 1645 | DO i = 0, (nx+1)/2 |
---|
| 1646 | ai(2*i,k) = ar(i,k) |
---|
| 1647 | ENDDO |
---|
| 1648 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1649 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1650 | ENDDO |
---|
[1342] | 1651 | ai(1,k) = 0.0_wp |
---|
| 1652 | ai(nx+2,k) = 0.0_wp |
---|
[1] | 1653 | ENDDO |
---|
| 1654 | |
---|
| 1655 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1656 | |
---|
| 1657 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1658 | |
---|
| 1659 | ENDIF |
---|
| 1660 | |
---|
| 1661 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1662 | |
---|
| 1663 | #if defined( __nec ) |
---|
| 1664 | siza = SIZE( ai, 1 ) |
---|
| 1665 | sizw = SIZE( work, 1 ) |
---|
| 1666 | |
---|
| 1667 | IF ( direction == 'forward') THEN |
---|
| 1668 | |
---|
| 1669 | ! |
---|
| 1670 | !-- Tables are initialized once more. This call should not be |
---|
| 1671 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1672 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1673 | trig_xf, work1, 0 ) |
---|
| 1674 | |
---|
| 1675 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1676 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1677 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1678 | ENDIF |
---|
| 1679 | |
---|
[1320] | 1680 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1681 | trig_xf, work1, 0 ) |
---|
| 1682 | |
---|
| 1683 | DO k = 1, nz |
---|
| 1684 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1685 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1686 | ENDDO |
---|
| 1687 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1688 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1689 | ENDDO |
---|
| 1690 | ENDDO |
---|
| 1691 | |
---|
| 1692 | ELSE |
---|
| 1693 | |
---|
| 1694 | ! |
---|
| 1695 | !-- Tables are initialized once more. This call should not be |
---|
| 1696 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1697 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1698 | trig_xb, work1, 0 ) |
---|
| 1699 | |
---|
| 1700 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1701 | work(:,nz1) = 0.0_wp |
---|
[1] | 1702 | ENDIF |
---|
| 1703 | DO k = 1, nz |
---|
[1342] | 1704 | work(1,k) = CMPLX( ar(0,k), 0.0_wp ) |
---|
[1] | 1705 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1706 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k) ) |
---|
| 1707 | ENDDO |
---|
[1342] | 1708 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0_wp ) |
---|
[1] | 1709 | ENDDO |
---|
| 1710 | |
---|
[1106] | 1711 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1712 | trig_xb, work1, 0 ) |
---|
| 1713 | |
---|
| 1714 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1715 | |
---|
| 1716 | ENDIF |
---|
| 1717 | |
---|
| 1718 | #else |
---|
[254] | 1719 | message_string = 'no system-specific fft-call available' |
---|
| 1720 | CALL message( 'fft_x_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1721 | #endif |
---|
| 1722 | |
---|
| 1723 | ELSE |
---|
| 1724 | |
---|
[274] | 1725 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1726 | '" not available' |
---|
[254] | 1727 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1728 | |
---|
| 1729 | ENDIF |
---|
| 1730 | |
---|
| 1731 | END SUBROUTINE fft_x_m |
---|
| 1732 | |
---|
| 1733 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1734 | |
---|
| 1735 | !----------------------------------------------------------------------! |
---|
| 1736 | ! fft_y_m ! |
---|
| 1737 | ! ! |
---|
| 1738 | ! Fourier-transformation along y-direction ! |
---|
| 1739 | ! Version for 1d domain decomposition ! |
---|
| 1740 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1741 | ! or Temperton-algorithm ! |
---|
| 1742 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1743 | ! ! |
---|
| 1744 | !----------------------------------------------------------------------! |
---|
| 1745 | |
---|
| 1746 | IMPLICIT NONE |
---|
| 1747 | |
---|
[1320] | 1748 | CHARACTER (LEN=*) :: direction !: |
---|
| 1749 | |
---|
| 1750 | INTEGER(iwp) :: j !: |
---|
| 1751 | INTEGER(iwp) :: k !: |
---|
| 1752 | INTEGER(iwp) :: ny1 !: |
---|
| 1753 | INTEGER(iwp) :: siza !: |
---|
[1] | 1754 | |
---|
[1320] | 1755 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !: |
---|
| 1756 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !: |
---|
| 1757 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !: |
---|
| 1758 | |
---|
[1] | 1759 | #if defined( __nec ) |
---|
[1320] | 1760 | INTEGER(iwp) :: sizw !: |
---|
| 1761 | |
---|
| 1762 | COMPLEX(wp), DIMENSION((ny+4)/2+1,nz+1) :: work !: |
---|
[1] | 1763 | #endif |
---|
| 1764 | |
---|
| 1765 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1766 | |
---|
| 1767 | siza = SIZE( ai, 1 ) |
---|
| 1768 | |
---|
| 1769 | IF ( direction == 'forward') THEN |
---|
| 1770 | |
---|
| 1771 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
[1342] | 1772 | ai(ny+1:,:) = 0.0_wp |
---|
[1] | 1773 | |
---|
| 1774 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1775 | |
---|
| 1776 | DO k = 1, nz |
---|
| 1777 | DO j = 0, (ny+1)/2 |
---|
| 1778 | ar(j,k) = ai(2*j,k) |
---|
| 1779 | ENDDO |
---|
| 1780 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1781 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1782 | ENDDO |
---|
| 1783 | ENDDO |
---|
| 1784 | |
---|
| 1785 | ELSE |
---|
| 1786 | |
---|
| 1787 | DO k = 1, nz |
---|
| 1788 | DO j = 0, (ny+1)/2 |
---|
| 1789 | ai(2*j,k) = ar(j,k) |
---|
| 1790 | ENDDO |
---|
| 1791 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1792 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1793 | ENDDO |
---|
[1342] | 1794 | ai(1,k) = 0.0_wp |
---|
| 1795 | ai(ny+2,k) = 0.0_wp |
---|
[1] | 1796 | ENDDO |
---|
| 1797 | |
---|
| 1798 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1799 | |
---|
| 1800 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1801 | |
---|
| 1802 | ENDIF |
---|
| 1803 | |
---|
| 1804 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1805 | |
---|
| 1806 | #if defined( __nec ) |
---|
| 1807 | siza = SIZE( ai, 1 ) |
---|
| 1808 | sizw = SIZE( work, 1 ) |
---|
| 1809 | |
---|
| 1810 | IF ( direction == 'forward') THEN |
---|
| 1811 | |
---|
| 1812 | ! |
---|
| 1813 | !-- Tables are initialized once more. This call should not be |
---|
| 1814 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1815 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1816 | trig_yf, work1, 0 ) |
---|
| 1817 | |
---|
| 1818 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1819 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1820 | ai(:,nz1) = 0.0_wp |
---|
[1] | 1821 | ENDIF |
---|
| 1822 | |
---|
[1106] | 1823 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1824 | trig_yf, work1, 0 ) |
---|
| 1825 | |
---|
| 1826 | DO k = 1, nz |
---|
| 1827 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1828 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1829 | ENDDO |
---|
| 1830 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1831 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1832 | ENDDO |
---|
| 1833 | ENDDO |
---|
| 1834 | |
---|
| 1835 | ELSE |
---|
| 1836 | |
---|
| 1837 | ! |
---|
| 1838 | !-- Tables are initialized once more. This call should not be |
---|
| 1839 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1840 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1841 | trig_yb, work1, 0 ) |
---|
| 1842 | |
---|
| 1843 | IF ( nz1 > nz ) THEN |
---|
[1342] | 1844 | work(:,nz1) = 0.0_wp |
---|
[1] | 1845 | ENDIF |
---|
| 1846 | DO k = 1, nz |
---|
[1342] | 1847 | work(1,k) = CMPLX( ar(0,k), 0.0_wp ) |
---|
[1] | 1848 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1849 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k) ) |
---|
| 1850 | ENDDO |
---|
[1342] | 1851 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0_wp ) |
---|
[1] | 1852 | ENDDO |
---|
| 1853 | |
---|
[1106] | 1854 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1855 | trig_yb, work1, 0 ) |
---|
| 1856 | |
---|
| 1857 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1858 | |
---|
| 1859 | ENDIF |
---|
| 1860 | |
---|
| 1861 | #else |
---|
[254] | 1862 | message_string = 'no system-specific fft-call available' |
---|
| 1863 | CALL message( 'fft_y_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1864 | #endif |
---|
| 1865 | |
---|
| 1866 | ELSE |
---|
[254] | 1867 | |
---|
[274] | 1868 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1869 | '" not available' |
---|
[254] | 1870 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1871 | |
---|
| 1872 | ENDIF |
---|
| 1873 | |
---|
| 1874 | END SUBROUTINE fft_y_m |
---|
| 1875 | |
---|
[1106] | 1876 | |
---|
[1] | 1877 | END MODULE fft_xy |
---|