[1] | 1 | MODULE fft_xy |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1322] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[1323] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: fft_xy.f90 1323 2014-03-20 17:09:54Z maronga $ |
---|
| 27 | ! |
---|
[1323] | 28 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 29 | ! REAL functions provided with KIND-attribute |
---|
| 30 | ! |
---|
[1321] | 31 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 32 | ! ONLY-attribute added to USE-statements, |
---|
| 33 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 34 | ! kinds are defined in new module kinds, |
---|
| 35 | ! old module precision_kind is removed, |
---|
| 36 | ! revision history before 2012 removed, |
---|
| 37 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 38 | ! all variable declaration statements |
---|
[1] | 39 | ! |
---|
[1305] | 40 | ! 1304 2014-03-12 10:29:42Z raasch |
---|
| 41 | ! openmp bugfix: work1 used in Temperton algorithm must be private |
---|
| 42 | ! |
---|
[1258] | 43 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 44 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 45 | ! the FORTRAN declaration statement |
---|
| 46 | ! |
---|
[1220] | 47 | ! 1219 2013-08-30 09:33:18Z heinze |
---|
| 48 | ! bugfix: use own branch for fftw |
---|
| 49 | ! |
---|
[1217] | 50 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 51 | ! fft_x and fft_y modified for parallel / ovverlapping execution of fft and |
---|
| 52 | ! transpositions, |
---|
| 53 | ! fftw implemented for 1d-decomposition (fft_x_1d, fft_y_1d) |
---|
| 54 | ! |
---|
[1211] | 55 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 56 | ! fftw added |
---|
| 57 | ! |
---|
[1167] | 58 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 59 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 60 | ! |
---|
[1154] | 61 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 62 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 63 | ! |
---|
[1112] | 64 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 65 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 66 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 67 | ! used total domain) |
---|
| 68 | ! |
---|
[1107] | 69 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 70 | ! CUDA fft added |
---|
| 71 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 72 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 73 | ! |
---|
[1093] | 74 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 75 | ! variable sizw declared for NEC case only |
---|
| 76 | ! |
---|
[1037] | 77 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 78 | ! code put under GPL (PALM 3.9) |
---|
| 79 | ! |
---|
[1] | 80 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 81 | ! Initial revision |
---|
| 82 | ! |
---|
| 83 | ! |
---|
| 84 | ! Description: |
---|
| 85 | ! ------------ |
---|
| 86 | ! Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 87 | ! Original version: Klaus Ketelsen (May 2002) |
---|
| 88 | !------------------------------------------------------------------------------! |
---|
| 89 | |
---|
[1320] | 90 | USE control_parameters, & |
---|
| 91 | ONLY: fft_method, message_string |
---|
| 92 | |
---|
| 93 | USE indices, & |
---|
| 94 | ONLY: nx, ny, nz |
---|
| 95 | |
---|
[1153] | 96 | #if defined( __cuda_fft ) |
---|
| 97 | USE ISO_C_BINDING |
---|
[1210] | 98 | #elif defined( __fftw ) |
---|
| 99 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 100 | #endif |
---|
[1320] | 101 | |
---|
| 102 | USE kinds |
---|
| 103 | |
---|
| 104 | USE singleton, & |
---|
| 105 | ONLY: fftn |
---|
| 106 | |
---|
[1] | 107 | USE temperton_fft |
---|
[1320] | 108 | |
---|
| 109 | USE transpose_indices, & |
---|
| 110 | ONLY: nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
[1] | 111 | |
---|
| 112 | IMPLICIT NONE |
---|
| 113 | |
---|
| 114 | PRIVATE |
---|
[1106] | 115 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 116 | |
---|
[1320] | 117 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x !: |
---|
| 118 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE, SAVE :: ifax_y !: |
---|
[1] | 119 | |
---|
[1320] | 120 | LOGICAL, SAVE :: init_fft = .FALSE. !: |
---|
[1] | 121 | |
---|
[1320] | 122 | REAL(wp), SAVE :: dnx !: |
---|
| 123 | REAL(wp), SAVE :: dny !: |
---|
| 124 | REAL(wp), SAVE :: sqr_dnx !: |
---|
| 125 | REAL(wp), SAVE :: sqr_dny !: |
---|
| 126 | |
---|
| 127 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x !: |
---|
| 128 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trigs_y !: |
---|
[1] | 129 | |
---|
| 130 | #if defined( __ibm ) |
---|
[1320] | 131 | INTEGER(iwp), PARAMETER :: nau1 = 20000 !: |
---|
| 132 | INTEGER(iwp), PARAMETER :: nau2 = 22000 !: |
---|
[1] | 133 | ! |
---|
| 134 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 135 | !-- shared in OpenMP sense |
---|
[1320] | 136 | REAL(wp), DIMENSION(nau1), SAVE :: aux1 !: |
---|
| 137 | REAL(wp), DIMENSION(nau1), SAVE :: auy1 !: |
---|
| 138 | REAL(wp), DIMENSION(nau1), SAVE :: aux3 !: |
---|
| 139 | REAL(wp), DIMENSION(nau1), SAVE :: auy3 !: |
---|
| 140 | |
---|
[1] | 141 | #elif defined( __nec ) |
---|
[1320] | 142 | INTEGER(iwp), SAVE :: nz1 !: |
---|
| 143 | |
---|
| 144 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb !: |
---|
| 145 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_xf !: |
---|
| 146 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yb !: |
---|
| 147 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: trig_yf !: |
---|
| 148 | |
---|
[1106] | 149 | #elif defined( __cuda_fft ) |
---|
[1320] | 150 | INTEGER(C_INT), SAVE :: plan_xf !: |
---|
| 151 | INTEGER(C_INT), SAVE :: plan_xi !: |
---|
| 152 | INTEGER(C_INT), SAVE :: plan_yf !: |
---|
| 153 | INTEGER(C_INT), SAVE :: plan_yi !: |
---|
| 154 | |
---|
| 155 | INTEGER(iwp), SAVE :: total_points_x_transpo !: |
---|
| 156 | INTEGER(iwp), SAVE :: total_points_y_transpo !: |
---|
[1219] | 157 | #endif |
---|
| 158 | |
---|
| 159 | #if defined( __fftw ) |
---|
[1210] | 160 | INCLUDE 'fftw3.f03' |
---|
[1320] | 161 | INTEGER(KIND=C_INT) :: nx_c !: |
---|
| 162 | INTEGER(KIND=C_INT) :: ny_c !: |
---|
| 163 | |
---|
| 164 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 165 | x_out !: |
---|
| 166 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 167 | y_out !: |
---|
| 168 | |
---|
| 169 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 170 | x_in !: |
---|
| 171 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: & |
---|
| 172 | y_in !: |
---|
| 173 | |
---|
| 174 | |
---|
[1210] | 175 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 176 | #endif |
---|
| 177 | |
---|
| 178 | ! |
---|
| 179 | !-- Public interfaces |
---|
| 180 | INTERFACE fft_init |
---|
| 181 | MODULE PROCEDURE fft_init |
---|
| 182 | END INTERFACE fft_init |
---|
| 183 | |
---|
| 184 | INTERFACE fft_x |
---|
| 185 | MODULE PROCEDURE fft_x |
---|
| 186 | END INTERFACE fft_x |
---|
| 187 | |
---|
[1106] | 188 | INTERFACE fft_x_1d |
---|
| 189 | MODULE PROCEDURE fft_x_1d |
---|
| 190 | END INTERFACE fft_x_1d |
---|
| 191 | |
---|
[1] | 192 | INTERFACE fft_y |
---|
| 193 | MODULE PROCEDURE fft_y |
---|
| 194 | END INTERFACE fft_y |
---|
| 195 | |
---|
[1106] | 196 | INTERFACE fft_y_1d |
---|
| 197 | MODULE PROCEDURE fft_y_1d |
---|
| 198 | END INTERFACE fft_y_1d |
---|
| 199 | |
---|
[1] | 200 | INTERFACE fft_x_m |
---|
| 201 | MODULE PROCEDURE fft_x_m |
---|
| 202 | END INTERFACE fft_x_m |
---|
| 203 | |
---|
| 204 | INTERFACE fft_y_m |
---|
| 205 | MODULE PROCEDURE fft_y_m |
---|
| 206 | END INTERFACE fft_y_m |
---|
| 207 | |
---|
| 208 | CONTAINS |
---|
| 209 | |
---|
| 210 | |
---|
| 211 | SUBROUTINE fft_init |
---|
| 212 | |
---|
[1106] | 213 | USE cuda_fft_interfaces |
---|
| 214 | |
---|
[1] | 215 | IMPLICIT NONE |
---|
| 216 | |
---|
| 217 | ! |
---|
| 218 | !-- The following temporary working arrays have to be on stack or private |
---|
| 219 | !-- in OpenMP sense |
---|
| 220 | #if defined( __ibm ) |
---|
[1320] | 221 | REAL(wp), DIMENSION(0:nx+2) :: workx !: |
---|
| 222 | REAL(wp), DIMENSION(0:ny+2) :: worky !: |
---|
| 223 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 224 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 225 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
| 226 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1] | 227 | #elif defined( __nec ) |
---|
[1320] | 228 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: work_x !: |
---|
| 229 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: work_y !: |
---|
| 230 | REAL(wp), DIMENSION(6*(nx+3),nz+1) :: workx !: |
---|
| 231 | REAL(wp), DIMENSION(6*(ny+3),nz+1) :: worky !: |
---|
[1] | 232 | #endif |
---|
| 233 | |
---|
| 234 | ! |
---|
| 235 | !-- Return, if already called |
---|
| 236 | IF ( init_fft ) THEN |
---|
| 237 | RETURN |
---|
| 238 | ELSE |
---|
| 239 | init_fft = .TRUE. |
---|
| 240 | ENDIF |
---|
| 241 | |
---|
| 242 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 243 | |
---|
[1106] | 244 | dnx = 1.0 / ( nx + 1.0 ) |
---|
| 245 | dny = 1.0 / ( ny + 1.0 ) |
---|
| 246 | sqr_dnx = SQRT( dnx ) |
---|
| 247 | sqr_dny = SQRT( dny ) |
---|
[1] | 248 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 249 | ! |
---|
| 250 | !-- Initialize tables for fft along x |
---|
[1106] | 251 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 252 | aux2, nau2 ) |
---|
[1106] | 253 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 254 | aux4, nau2 ) |
---|
| 255 | ! |
---|
| 256 | !-- Initialize tables for fft along y |
---|
[1106] | 257 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 258 | auy2, nau2 ) |
---|
[1106] | 259 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 260 | auy4, nau2 ) |
---|
| 261 | #elif defined( __nec ) |
---|
[254] | 262 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 263 | '" currently does not work on NEC' |
---|
| 264 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 265 | |
---|
[1320] | 266 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
[1] | 267 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 268 | |
---|
| 269 | work_x = 0.0 |
---|
| 270 | work_y = 0.0 |
---|
| 271 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 272 | ! when using the NEC ffts |
---|
| 273 | |
---|
| 274 | ! |
---|
| 275 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 276 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 277 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
[1320] | 278 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 279 | trig_xf, workx, 0 ) |
---|
[1320] | 280 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 281 | trig_xb, workx, 0 ) |
---|
| 282 | ! |
---|
| 283 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 284 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 285 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
[1320] | 286 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 287 | trig_yf, worky, 0 ) |
---|
[1320] | 288 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 289 | trig_yb, worky, 0 ) |
---|
[1106] | 290 | #elif defined( __cuda_fft ) |
---|
| 291 | total_points_x_transpo = (nx+1) * (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) |
---|
| 292 | total_points_y_transpo = (ny+1) * (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) |
---|
[1111] | 293 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 294 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 295 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 296 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 297 | #else |
---|
[254] | 298 | message_string = 'no system-specific fft-call available' |
---|
| 299 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 300 | #endif |
---|
| 301 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 302 | ! |
---|
| 303 | !-- Temperton-algorithm |
---|
| 304 | !-- Initialize tables for fft along x and y |
---|
| 305 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 306 | |
---|
| 307 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 308 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 309 | |
---|
[1210] | 310 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 311 | ! |
---|
| 312 | !-- FFTW |
---|
| 313 | #if defined( __fftw ) |
---|
| 314 | nx_c = nx+1 |
---|
| 315 | ny_c = ny+1 |
---|
[1320] | 316 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
[1210] | 317 | y_out(0:(ny+1)/2) ) |
---|
| 318 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 319 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 320 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 321 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 322 | #else |
---|
| 323 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 324 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 325 | #endif |
---|
| 326 | |
---|
[1] | 327 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 328 | |
---|
| 329 | CONTINUE |
---|
| 330 | |
---|
| 331 | ELSE |
---|
| 332 | |
---|
[254] | 333 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 334 | '" not available' |
---|
| 335 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 336 | ENDIF |
---|
| 337 | |
---|
| 338 | END SUBROUTINE fft_init |
---|
| 339 | |
---|
| 340 | |
---|
[1216] | 341 | SUBROUTINE fft_x( ar, direction, ar_2d ) |
---|
[1] | 342 | |
---|
| 343 | !----------------------------------------------------------------------! |
---|
| 344 | ! fft_x ! |
---|
| 345 | ! ! |
---|
| 346 | ! Fourier-transformation along x-direction ! |
---|
[1106] | 347 | ! Version for 2D-decomposition ! |
---|
[1] | 348 | ! ! |
---|
| 349 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 350 | ! system-specific routines, if they are available ! |
---|
| 351 | !----------------------------------------------------------------------! |
---|
| 352 | |
---|
[1106] | 353 | USE cuda_fft_interfaces |
---|
[1153] | 354 | #if defined( __cuda_fft ) |
---|
| 355 | USE ISO_C_BINDING |
---|
| 356 | #endif |
---|
[1106] | 357 | |
---|
[1] | 358 | IMPLICIT NONE |
---|
| 359 | |
---|
[1320] | 360 | CHARACTER (LEN=*) :: direction !: |
---|
| 361 | |
---|
| 362 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
[1106] | 363 | |
---|
[1320] | 364 | INTEGER(iwp) :: i !: |
---|
| 365 | INTEGER(iwp) :: ishape(1) !: |
---|
| 366 | INTEGER(iwp) :: j !: |
---|
| 367 | INTEGER(iwp) :: k !: |
---|
[1106] | 368 | |
---|
[1320] | 369 | LOGICAL :: forward_fft !: |
---|
| 370 | |
---|
| 371 | REAL(wp), DIMENSION(0:nx+2) :: work !: |
---|
| 372 | REAL(wp), DIMENSION(nx+2) :: work1 !: |
---|
| 373 | |
---|
[1106] | 374 | #if defined( __ibm ) |
---|
[1320] | 375 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 376 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
[1106] | 377 | #elif defined( __nec ) |
---|
[1320] | 378 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !: |
---|
[1106] | 379 | #elif defined( __cuda_fft ) |
---|
[1320] | 380 | COMPLEX(dpk), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 381 | ar_tmp !: |
---|
[1111] | 382 | !$acc declare create( ar_tmp ) |
---|
[1106] | 383 | #endif |
---|
| 384 | |
---|
[1320] | 385 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x), OPTIONAL :: & |
---|
| 386 | ar_2d !: |
---|
| 387 | REAL(wp), DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: & |
---|
| 388 | ar !: |
---|
| 389 | |
---|
[1106] | 390 | IF ( direction == 'forward' ) THEN |
---|
| 391 | forward_fft = .TRUE. |
---|
| 392 | ELSE |
---|
| 393 | forward_fft = .FALSE. |
---|
| 394 | ENDIF |
---|
| 395 | |
---|
| 396 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 397 | |
---|
| 398 | ! |
---|
| 399 | !-- Performing the fft with singleton's software works on every system, |
---|
| 400 | !-- since it is part of the model |
---|
| 401 | ALLOCATE( cwork(0:nx) ) |
---|
| 402 | |
---|
| 403 | IF ( forward_fft ) then |
---|
| 404 | |
---|
| 405 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 406 | !$OMP DO |
---|
| 407 | DO k = nzb_x, nzt_x |
---|
| 408 | DO j = nys_x, nyn_x |
---|
| 409 | |
---|
| 410 | DO i = 0, nx |
---|
| 411 | cwork(i) = CMPLX( ar(i,j,k) ) |
---|
| 412 | ENDDO |
---|
| 413 | |
---|
| 414 | ishape = SHAPE( cwork ) |
---|
| 415 | CALL FFTN( cwork, ishape ) |
---|
| 416 | |
---|
| 417 | DO i = 0, (nx+1)/2 |
---|
[1322] | 418 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 419 | ENDDO |
---|
| 420 | DO i = 1, (nx+1)/2 - 1 |
---|
| 421 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 422 | ENDDO |
---|
| 423 | |
---|
| 424 | ENDDO |
---|
| 425 | ENDDO |
---|
| 426 | !$OMP END PARALLEL |
---|
| 427 | |
---|
| 428 | ELSE |
---|
| 429 | |
---|
| 430 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 431 | !$OMP DO |
---|
| 432 | DO k = nzb_x, nzt_x |
---|
| 433 | DO j = nys_x, nyn_x |
---|
| 434 | |
---|
| 435 | cwork(0) = CMPLX( ar(0,j,k), 0.0 ) |
---|
| 436 | DO i = 1, (nx+1)/2 - 1 |
---|
| 437 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k) ) |
---|
| 438 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 439 | ENDDO |
---|
| 440 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
| 441 | |
---|
| 442 | ishape = SHAPE( cwork ) |
---|
| 443 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 444 | |
---|
| 445 | DO i = 0, nx |
---|
[1322] | 446 | ar(i,j,k) = REAL( cwork(i), KIND=wp ) |
---|
[1106] | 447 | ENDDO |
---|
| 448 | |
---|
| 449 | ENDDO |
---|
| 450 | ENDDO |
---|
| 451 | !$OMP END PARALLEL |
---|
| 452 | |
---|
| 453 | ENDIF |
---|
| 454 | |
---|
| 455 | DEALLOCATE( cwork ) |
---|
| 456 | |
---|
| 457 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 458 | |
---|
| 459 | ! |
---|
| 460 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 461 | !-- since it is part of the model |
---|
| 462 | IF ( forward_fft ) THEN |
---|
| 463 | |
---|
[1304] | 464 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 465 | !$OMP DO |
---|
| 466 | DO k = nzb_x, nzt_x |
---|
| 467 | DO j = nys_x, nyn_x |
---|
| 468 | |
---|
| 469 | work(0:nx) = ar(0:nx,j,k) |
---|
| 470 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 471 | |
---|
| 472 | DO i = 0, (nx+1)/2 |
---|
| 473 | ar(i,j,k) = work(2*i) |
---|
| 474 | ENDDO |
---|
| 475 | DO i = 1, (nx+1)/2 - 1 |
---|
| 476 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 477 | ENDDO |
---|
| 478 | |
---|
| 479 | ENDDO |
---|
| 480 | ENDDO |
---|
| 481 | !$OMP END PARALLEL |
---|
| 482 | |
---|
| 483 | ELSE |
---|
| 484 | |
---|
[1304] | 485 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 486 | !$OMP DO |
---|
| 487 | DO k = nzb_x, nzt_x |
---|
| 488 | DO j = nys_x, nyn_x |
---|
| 489 | |
---|
| 490 | DO i = 0, (nx+1)/2 |
---|
| 491 | work(2*i) = ar(i,j,k) |
---|
| 492 | ENDDO |
---|
| 493 | DO i = 1, (nx+1)/2 - 1 |
---|
| 494 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 495 | ENDDO |
---|
| 496 | work(1) = 0.0 |
---|
| 497 | work(nx+2) = 0.0 |
---|
| 498 | |
---|
| 499 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 500 | ar(0:nx,j,k) = work(0:nx) |
---|
| 501 | |
---|
| 502 | ENDDO |
---|
| 503 | ENDDO |
---|
| 504 | !$OMP END PARALLEL |
---|
| 505 | |
---|
| 506 | ENDIF |
---|
| 507 | |
---|
[1210] | 508 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 509 | |
---|
| 510 | #if defined( __fftw ) |
---|
| 511 | IF ( forward_fft ) THEN |
---|
| 512 | |
---|
| 513 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 514 | !$OMP DO |
---|
| 515 | DO k = nzb_x, nzt_x |
---|
| 516 | DO j = nys_x, nyn_x |
---|
| 517 | |
---|
| 518 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 519 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 520 | |
---|
[1216] | 521 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 522 | |
---|
[1216] | 523 | DO i = 0, (nx+1)/2 |
---|
[1322] | 524 | ar_2d(i,j) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 525 | ENDDO |
---|
| 526 | DO i = 1, (nx+1)/2 - 1 |
---|
| 527 | ar_2d(nx+1-i,j) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 528 | ENDDO |
---|
| 529 | |
---|
| 530 | ELSE |
---|
| 531 | |
---|
| 532 | DO i = 0, (nx+1)/2 |
---|
[1322] | 533 | ar(i,j,k) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 534 | ENDDO |
---|
| 535 | DO i = 1, (nx+1)/2 - 1 |
---|
| 536 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 537 | ENDDO |
---|
| 538 | |
---|
| 539 | ENDIF |
---|
| 540 | |
---|
[1210] | 541 | ENDDO |
---|
| 542 | ENDDO |
---|
| 543 | !$OMP END PARALLEL |
---|
| 544 | |
---|
[1216] | 545 | ELSE |
---|
[1210] | 546 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 547 | !$OMP DO |
---|
| 548 | DO k = nzb_x, nzt_x |
---|
| 549 | DO j = nys_x, nyn_x |
---|
| 550 | |
---|
[1216] | 551 | IF ( PRESENT( ar_2d ) ) THEN |
---|
[1210] | 552 | |
---|
[1216] | 553 | x_out(0) = CMPLX( ar_2d(0,j), 0.0 ) |
---|
| 554 | DO i = 1, (nx+1)/2 - 1 |
---|
| 555 | x_out(i) = CMPLX( ar_2d(i,j), ar_2d(nx+1-i,j) ) |
---|
| 556 | ENDDO |
---|
| 557 | x_out((nx+1)/2) = CMPLX( ar_2d((nx+1)/2,j), 0.0 ) |
---|
| 558 | |
---|
| 559 | ELSE |
---|
| 560 | |
---|
| 561 | x_out(0) = CMPLX( ar(0,j,k), 0.0 ) |
---|
| 562 | DO i = 1, (nx+1)/2 - 1 |
---|
| 563 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 564 | ENDDO |
---|
| 565 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
| 566 | |
---|
| 567 | ENDIF |
---|
| 568 | |
---|
[1210] | 569 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 570 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 571 | |
---|
| 572 | ENDDO |
---|
| 573 | ENDDO |
---|
| 574 | !$OMP END PARALLEL |
---|
| 575 | |
---|
[1216] | 576 | ENDIF |
---|
[1210] | 577 | #endif |
---|
| 578 | |
---|
[1106] | 579 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 580 | |
---|
| 581 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 582 | IF ( forward_fft ) THEN |
---|
| 583 | |
---|
| 584 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 585 | !$OMP DO |
---|
| 586 | DO k = nzb_x, nzt_x |
---|
| 587 | DO j = nys_x, nyn_x |
---|
| 588 | |
---|
[1320] | 589 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, & |
---|
| 590 | nau1, aux2, nau2 ) |
---|
[1106] | 591 | |
---|
| 592 | DO i = 0, (nx+1)/2 |
---|
| 593 | ar(i,j,k) = work(2*i) |
---|
| 594 | ENDDO |
---|
| 595 | DO i = 1, (nx+1)/2 - 1 |
---|
| 596 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 597 | ENDDO |
---|
| 598 | |
---|
| 599 | ENDDO |
---|
| 600 | ENDDO |
---|
| 601 | !$OMP END PARALLEL |
---|
| 602 | |
---|
| 603 | ELSE |
---|
| 604 | |
---|
| 605 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 606 | !$OMP DO |
---|
| 607 | DO k = nzb_x, nzt_x |
---|
| 608 | DO j = nys_x, nyn_x |
---|
| 609 | |
---|
| 610 | DO i = 0, (nx+1)/2 |
---|
| 611 | work(2*i) = ar(i,j,k) |
---|
| 612 | ENDDO |
---|
| 613 | DO i = 1, (nx+1)/2 - 1 |
---|
| 614 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 615 | ENDDO |
---|
| 616 | work(1) = 0.0 |
---|
| 617 | work(nx+2) = 0.0 |
---|
| 618 | |
---|
[1320] | 619 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, & |
---|
| 620 | aux3, nau1, aux4, nau2 ) |
---|
[1106] | 621 | |
---|
| 622 | DO i = 0, nx |
---|
| 623 | ar(i,j,k) = work(i) |
---|
| 624 | ENDDO |
---|
| 625 | |
---|
| 626 | ENDDO |
---|
| 627 | ENDDO |
---|
| 628 | !$OMP END PARALLEL |
---|
| 629 | |
---|
| 630 | ENDIF |
---|
| 631 | |
---|
| 632 | #elif defined( __nec ) |
---|
| 633 | |
---|
| 634 | IF ( forward_fft ) THEN |
---|
| 635 | |
---|
| 636 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 637 | !$OMP DO |
---|
| 638 | DO k = nzb_x, nzt_x |
---|
| 639 | DO j = nys_x, nyn_x |
---|
| 640 | |
---|
| 641 | work(0:nx) = ar(0:nx,j,k) |
---|
| 642 | |
---|
| 643 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 644 | |
---|
| 645 | DO i = 0, (nx+1)/2 |
---|
| 646 | ar(i,j,k) = work(2*i) |
---|
| 647 | ENDDO |
---|
| 648 | DO i = 1, (nx+1)/2 - 1 |
---|
| 649 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 650 | ENDDO |
---|
| 651 | |
---|
| 652 | ENDDO |
---|
| 653 | ENDDO |
---|
| 654 | !$END OMP PARALLEL |
---|
| 655 | |
---|
| 656 | ELSE |
---|
| 657 | |
---|
| 658 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 659 | !$OMP DO |
---|
| 660 | DO k = nzb_x, nzt_x |
---|
| 661 | DO j = nys_x, nyn_x |
---|
| 662 | |
---|
| 663 | DO i = 0, (nx+1)/2 |
---|
| 664 | work(2*i) = ar(i,j,k) |
---|
| 665 | ENDDO |
---|
| 666 | DO i = 1, (nx+1)/2 - 1 |
---|
| 667 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 668 | ENDDO |
---|
| 669 | work(1) = 0.0 |
---|
| 670 | work(nx+2) = 0.0 |
---|
| 671 | |
---|
| 672 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 673 | |
---|
| 674 | ar(0:nx,j,k) = work(0:nx) |
---|
| 675 | |
---|
| 676 | ENDDO |
---|
| 677 | ENDDO |
---|
| 678 | !$OMP END PARALLEL |
---|
| 679 | |
---|
| 680 | ENDIF |
---|
| 681 | |
---|
| 682 | #elif defined( __cuda_fft ) |
---|
| 683 | |
---|
| 684 | IF ( forward_fft ) THEN |
---|
| 685 | |
---|
[1111] | 686 | !$acc data present( ar ) |
---|
| 687 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
[1106] | 688 | |
---|
[1111] | 689 | !$acc kernels |
---|
[1106] | 690 | DO k = nzb_x, nzt_x |
---|
| 691 | DO j = nys_x, nyn_x |
---|
| 692 | |
---|
| 693 | DO i = 0, (nx+1)/2 |
---|
[1322] | 694 | ar(i,j,k) = REAL( ar_tmp(i,j,k), KIND=wp ) * dnx |
---|
[1106] | 695 | ENDDO |
---|
| 696 | |
---|
| 697 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 698 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 699 | ENDDO |
---|
| 700 | |
---|
| 701 | ENDDO |
---|
| 702 | ENDDO |
---|
[1111] | 703 | !$acc end kernels |
---|
| 704 | !$acc end data |
---|
[1106] | 705 | |
---|
| 706 | ELSE |
---|
| 707 | |
---|
[1111] | 708 | !$acc data present( ar ) |
---|
| 709 | !$acc kernels |
---|
[1106] | 710 | DO k = nzb_x, nzt_x |
---|
| 711 | DO j = nys_x, nyn_x |
---|
| 712 | |
---|
[1111] | 713 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0 ) |
---|
[1106] | 714 | |
---|
| 715 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 716 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
[1106] | 717 | ENDDO |
---|
[1111] | 718 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
[1106] | 719 | |
---|
| 720 | ENDDO |
---|
| 721 | ENDDO |
---|
[1111] | 722 | !$acc end kernels |
---|
[1106] | 723 | |
---|
[1111] | 724 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 725 | !$acc end data |
---|
[1106] | 726 | |
---|
| 727 | ENDIF |
---|
| 728 | |
---|
| 729 | #else |
---|
| 730 | message_string = 'no system-specific fft-call available' |
---|
| 731 | CALL message( 'fft_x', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 732 | #endif |
---|
| 733 | |
---|
| 734 | ELSE |
---|
| 735 | |
---|
| 736 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 737 | '" not available' |
---|
| 738 | CALL message( 'fft_x', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 739 | |
---|
| 740 | ENDIF |
---|
| 741 | |
---|
| 742 | END SUBROUTINE fft_x |
---|
| 743 | |
---|
| 744 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 745 | |
---|
| 746 | !----------------------------------------------------------------------! |
---|
| 747 | ! fft_x_1d ! |
---|
| 748 | ! ! |
---|
| 749 | ! Fourier-transformation along x-direction ! |
---|
| 750 | ! Version for 1D-decomposition ! |
---|
| 751 | ! ! |
---|
| 752 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 753 | ! system-specific routines, if they are available ! |
---|
| 754 | !----------------------------------------------------------------------! |
---|
| 755 | |
---|
| 756 | IMPLICIT NONE |
---|
| 757 | |
---|
[1320] | 758 | CHARACTER (LEN=*) :: direction !: |
---|
| 759 | |
---|
| 760 | INTEGER(iwp) :: i !: |
---|
| 761 | INTEGER(iwp) :: ishape(1) !: |
---|
[1] | 762 | |
---|
[1320] | 763 | LOGICAL :: forward_fft !: |
---|
[1106] | 764 | |
---|
[1320] | 765 | REAL(wp), DIMENSION(0:nx) :: ar !: |
---|
| 766 | REAL(wp), DIMENSION(0:nx+2) :: work !: |
---|
| 767 | REAL(wp), DIMENSION(nx+2) :: work1 !: |
---|
| 768 | |
---|
| 769 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 770 | |
---|
[1] | 771 | #if defined( __ibm ) |
---|
[1320] | 772 | REAL(wp), DIMENSION(nau2) :: aux2 !: |
---|
| 773 | REAL(wp), DIMENSION(nau2) :: aux4 !: |
---|
[1] | 774 | #elif defined( __nec ) |
---|
[1320] | 775 | REAL(wp), DIMENSION(6*(nx+1)) :: work2 !: |
---|
[1] | 776 | #endif |
---|
| 777 | |
---|
[1106] | 778 | IF ( direction == 'forward' ) THEN |
---|
| 779 | forward_fft = .TRUE. |
---|
| 780 | ELSE |
---|
| 781 | forward_fft = .FALSE. |
---|
| 782 | ENDIF |
---|
| 783 | |
---|
[1] | 784 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 785 | |
---|
| 786 | ! |
---|
| 787 | !-- Performing the fft with singleton's software works on every system, |
---|
| 788 | !-- since it is part of the model |
---|
| 789 | ALLOCATE( cwork(0:nx) ) |
---|
| 790 | |
---|
[1106] | 791 | IF ( forward_fft ) then |
---|
[1] | 792 | |
---|
| 793 | DO i = 0, nx |
---|
| 794 | cwork(i) = CMPLX( ar(i) ) |
---|
| 795 | ENDDO |
---|
| 796 | ishape = SHAPE( cwork ) |
---|
| 797 | CALL FFTN( cwork, ishape ) |
---|
| 798 | DO i = 0, (nx+1)/2 |
---|
[1322] | 799 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 800 | ENDDO |
---|
| 801 | DO i = 1, (nx+1)/2 - 1 |
---|
| 802 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 803 | ENDDO |
---|
| 804 | |
---|
| 805 | ELSE |
---|
| 806 | |
---|
| 807 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
| 808 | DO i = 1, (nx+1)/2 - 1 |
---|
| 809 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i) ) |
---|
| 810 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 811 | ENDDO |
---|
| 812 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0 ) |
---|
| 813 | |
---|
| 814 | ishape = SHAPE( cwork ) |
---|
| 815 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 816 | |
---|
| 817 | DO i = 0, nx |
---|
[1322] | 818 | ar(i) = REAL( cwork(i), KIND=wp ) |
---|
[1] | 819 | ENDDO |
---|
| 820 | |
---|
| 821 | ENDIF |
---|
| 822 | |
---|
| 823 | DEALLOCATE( cwork ) |
---|
| 824 | |
---|
| 825 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 826 | |
---|
| 827 | ! |
---|
| 828 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 829 | !-- since it is part of the model |
---|
[1106] | 830 | IF ( forward_fft ) THEN |
---|
[1] | 831 | |
---|
| 832 | work(0:nx) = ar |
---|
| 833 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 834 | |
---|
| 835 | DO i = 0, (nx+1)/2 |
---|
| 836 | ar(i) = work(2*i) |
---|
| 837 | ENDDO |
---|
| 838 | DO i = 1, (nx+1)/2 - 1 |
---|
| 839 | ar(nx+1-i) = work(2*i+1) |
---|
| 840 | ENDDO |
---|
| 841 | |
---|
| 842 | ELSE |
---|
| 843 | |
---|
| 844 | DO i = 0, (nx+1)/2 |
---|
| 845 | work(2*i) = ar(i) |
---|
| 846 | ENDDO |
---|
| 847 | DO i = 1, (nx+1)/2 - 1 |
---|
| 848 | work(2*i+1) = ar(nx+1-i) |
---|
| 849 | ENDDO |
---|
| 850 | work(1) = 0.0 |
---|
| 851 | work(nx+2) = 0.0 |
---|
| 852 | |
---|
| 853 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 854 | ar = work(0:nx) |
---|
| 855 | |
---|
| 856 | ENDIF |
---|
| 857 | |
---|
[1216] | 858 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 859 | |
---|
| 860 | #if defined( __fftw ) |
---|
| 861 | IF ( forward_fft ) THEN |
---|
| 862 | |
---|
| 863 | x_in(0:nx) = ar(0:nx) |
---|
| 864 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 865 | |
---|
| 866 | DO i = 0, (nx+1)/2 |
---|
[1322] | 867 | ar(i) = REAL( x_out(i), KIND=wp ) / ( nx+1 ) |
---|
[1216] | 868 | ENDDO |
---|
| 869 | DO i = 1, (nx+1)/2 - 1 |
---|
| 870 | ar(nx+1-i) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 871 | ENDDO |
---|
| 872 | |
---|
| 873 | ELSE |
---|
| 874 | |
---|
| 875 | x_out(0) = CMPLX( ar(0), 0.0 ) |
---|
| 876 | DO i = 1, (nx+1)/2 - 1 |
---|
| 877 | x_out(i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 878 | ENDDO |
---|
| 879 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0 ) |
---|
| 880 | |
---|
| 881 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 882 | ar(0:nx) = x_in(0:nx) |
---|
| 883 | |
---|
| 884 | ENDIF |
---|
| 885 | #endif |
---|
| 886 | |
---|
[1] | 887 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 888 | |
---|
| 889 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 890 | IF ( forward_fft ) THEN |
---|
[1] | 891 | |
---|
[1320] | 892 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 893 | aux2, nau2 ) |
---|
| 894 | |
---|
| 895 | DO i = 0, (nx+1)/2 |
---|
| 896 | ar(i) = work(2*i) |
---|
| 897 | ENDDO |
---|
| 898 | DO i = 1, (nx+1)/2 - 1 |
---|
| 899 | ar(nx+1-i) = work(2*i+1) |
---|
| 900 | ENDDO |
---|
| 901 | |
---|
| 902 | ELSE |
---|
| 903 | |
---|
| 904 | DO i = 0, (nx+1)/2 |
---|
| 905 | work(2*i) = ar(i) |
---|
| 906 | ENDDO |
---|
| 907 | DO i = 1, (nx+1)/2 - 1 |
---|
| 908 | work(2*i+1) = ar(nx+1-i) |
---|
| 909 | ENDDO |
---|
| 910 | work(1) = 0.0 |
---|
| 911 | work(nx+2) = 0.0 |
---|
| 912 | |
---|
[1106] | 913 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 914 | aux4, nau2 ) |
---|
| 915 | |
---|
| 916 | DO i = 0, nx |
---|
| 917 | ar(i) = work(i) |
---|
| 918 | ENDDO |
---|
| 919 | |
---|
| 920 | ENDIF |
---|
| 921 | #elif defined( __nec ) |
---|
[1106] | 922 | IF ( forward_fft ) THEN |
---|
[1] | 923 | |
---|
| 924 | work(0:nx) = ar(0:nx) |
---|
| 925 | |
---|
[1106] | 926 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 927 | |
---|
[1] | 928 | DO i = 0, (nx+1)/2 |
---|
| 929 | ar(i) = work(2*i) |
---|
| 930 | ENDDO |
---|
| 931 | DO i = 1, (nx+1)/2 - 1 |
---|
| 932 | ar(nx+1-i) = work(2*i+1) |
---|
| 933 | ENDDO |
---|
| 934 | |
---|
| 935 | ELSE |
---|
| 936 | |
---|
| 937 | DO i = 0, (nx+1)/2 |
---|
| 938 | work(2*i) = ar(i) |
---|
| 939 | ENDDO |
---|
| 940 | DO i = 1, (nx+1)/2 - 1 |
---|
| 941 | work(2*i+1) = ar(nx+1-i) |
---|
| 942 | ENDDO |
---|
| 943 | work(1) = 0.0 |
---|
| 944 | work(nx+2) = 0.0 |
---|
| 945 | |
---|
[1106] | 946 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 947 | |
---|
| 948 | ar(0:nx) = work(0:nx) |
---|
| 949 | |
---|
| 950 | ENDIF |
---|
| 951 | #else |
---|
[254] | 952 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 953 | CALL message( 'fft_x_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 954 | #endif |
---|
| 955 | ELSE |
---|
[274] | 956 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 957 | '" not available' |
---|
[1106] | 958 | CALL message( 'fft_x_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 959 | |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
[1106] | 962 | END SUBROUTINE fft_x_1d |
---|
[1] | 963 | |
---|
[1216] | 964 | SUBROUTINE fft_y( ar, direction, ar_tr, nxl_y_bound, nxr_y_bound, nxl_y_l, & |
---|
| 965 | nxr_y_l ) |
---|
[1] | 966 | |
---|
| 967 | !----------------------------------------------------------------------! |
---|
| 968 | ! fft_y ! |
---|
| 969 | ! ! |
---|
| 970 | ! Fourier-transformation along y-direction ! |
---|
[1106] | 971 | ! Version for 2D-decomposition ! |
---|
[1] | 972 | ! ! |
---|
| 973 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 974 | ! system-specific routines, if they are available ! |
---|
[1216] | 975 | ! ! |
---|
| 976 | ! direction: 'forward' or 'backward' ! |
---|
| 977 | ! ar, ar_tr: 3D data arrays ! |
---|
| 978 | ! forward: ar: before ar_tr: after transformation ! |
---|
| 979 | ! backward: ar_tr: before ar: after transfosition ! |
---|
| 980 | ! ! |
---|
| 981 | ! In case of non-overlapping transposition/transformation: ! |
---|
| 982 | ! nxl_y_bound = nxl_y_l = nxl_y ! |
---|
| 983 | ! nxr_y_bound = nxr_y_l = nxr_y ! |
---|
| 984 | ! ! |
---|
| 985 | ! In case of overlapping transposition/transformation ! |
---|
| 986 | ! - nxl_y_bound and nxr_y_bound have the original values of ! |
---|
| 987 | ! nxl_y, nxr_y. ar_tr is dimensioned using these values. ! |
---|
| 988 | ! - nxl_y_l = nxr_y_r. ar is dimensioned with these values, so that ! |
---|
| 989 | ! transformation is carried out for a 2D-plane only. ! |
---|
[1] | 990 | !----------------------------------------------------------------------! |
---|
| 991 | |
---|
[1106] | 992 | USE cuda_fft_interfaces |
---|
[1153] | 993 | #if defined( __cuda_fft ) |
---|
| 994 | USE ISO_C_BINDING |
---|
| 995 | #endif |
---|
[1106] | 996 | |
---|
[1] | 997 | IMPLICIT NONE |
---|
| 998 | |
---|
[1320] | 999 | CHARACTER (LEN=*) :: direction !: |
---|
| 1000 | |
---|
| 1001 | INTEGER(iwp) :: i !: |
---|
| 1002 | INTEGER(iwp) :: j !: |
---|
| 1003 | INTEGER(iwp) :: jshape(1) !: |
---|
| 1004 | INTEGER(iwp) :: k !: |
---|
| 1005 | INTEGER(iwp) :: nxl_y_bound !: |
---|
| 1006 | INTEGER(iwp) :: nxl_y_l !: |
---|
| 1007 | INTEGER(iwp) :: nxr_y_bound !: |
---|
| 1008 | INTEGER(iwp) :: nxr_y_l !: |
---|
[1106] | 1009 | |
---|
[1320] | 1010 | LOGICAL :: forward_fft !: |
---|
[1106] | 1011 | |
---|
[1320] | 1012 | REAL(wp), DIMENSION(0:ny+2) :: work !: |
---|
| 1013 | REAL(wp), DIMENSION(ny+2) :: work1 !: |
---|
| 1014 | |
---|
| 1015 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 1016 | |
---|
[1106] | 1017 | #if defined( __ibm ) |
---|
[1320] | 1018 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 1019 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1106] | 1020 | #elif defined( __nec ) |
---|
[1320] | 1021 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !: |
---|
[1106] | 1022 | #elif defined( __cuda_fft ) |
---|
[1320] | 1023 | COMPLEX(dpk), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: & |
---|
| 1024 | ar_tmp !: |
---|
[1111] | 1025 | !$acc declare create( ar_tmp ) |
---|
[1106] | 1026 | #endif |
---|
| 1027 | |
---|
[1320] | 1028 | REAL(wp), DIMENSION(0:ny,nxl_y_l:nxr_y_l,nzb_y:nzt_y) :: & |
---|
| 1029 | ar !: |
---|
| 1030 | REAL(wp), DIMENSION(0:ny,nxl_y_bound:nxr_y_bound,nzb_y:nzt_y) :: & |
---|
| 1031 | ar_tr !: |
---|
| 1032 | |
---|
[1106] | 1033 | IF ( direction == 'forward' ) THEN |
---|
| 1034 | forward_fft = .TRUE. |
---|
| 1035 | ELSE |
---|
| 1036 | forward_fft = .FALSE. |
---|
| 1037 | ENDIF |
---|
| 1038 | |
---|
| 1039 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1043 | !-- since it is part of the model |
---|
| 1044 | ALLOCATE( cwork(0:ny) ) |
---|
| 1045 | |
---|
| 1046 | IF ( forward_fft ) then |
---|
| 1047 | |
---|
| 1048 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1049 | !$OMP DO |
---|
| 1050 | DO k = nzb_y, nzt_y |
---|
[1216] | 1051 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1052 | |
---|
| 1053 | DO j = 0, ny |
---|
| 1054 | cwork(j) = CMPLX( ar(j,i,k) ) |
---|
| 1055 | ENDDO |
---|
| 1056 | |
---|
| 1057 | jshape = SHAPE( cwork ) |
---|
| 1058 | CALL FFTN( cwork, jshape ) |
---|
| 1059 | |
---|
| 1060 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1061 | ar_tr(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1062 | ENDDO |
---|
| 1063 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1064 | ar_tr(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
[1106] | 1065 | ENDDO |
---|
| 1066 | |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDDO |
---|
| 1069 | !$OMP END PARALLEL |
---|
| 1070 | |
---|
| 1071 | ELSE |
---|
| 1072 | |
---|
| 1073 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 1074 | !$OMP DO |
---|
| 1075 | DO k = nzb_y, nzt_y |
---|
[1216] | 1076 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1077 | |
---|
[1216] | 1078 | cwork(0) = CMPLX( ar_tr(0,i,k), 0.0 ) |
---|
[1106] | 1079 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1080 | cwork(j) = CMPLX( ar_tr(j,i,k), -ar_tr(ny+1-j,i,k) ) |
---|
| 1081 | cwork(ny+1-j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
[1106] | 1082 | ENDDO |
---|
[1216] | 1083 | cwork((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0 ) |
---|
[1106] | 1084 | |
---|
| 1085 | jshape = SHAPE( cwork ) |
---|
| 1086 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1087 | |
---|
| 1088 | DO j = 0, ny |
---|
[1322] | 1089 | ar(j,i,k) = REAL( cwork(j), KIND=wp ) |
---|
[1106] | 1090 | ENDDO |
---|
| 1091 | |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDDO |
---|
| 1094 | !$OMP END PARALLEL |
---|
| 1095 | |
---|
| 1096 | ENDIF |
---|
| 1097 | |
---|
| 1098 | DEALLOCATE( cwork ) |
---|
| 1099 | |
---|
| 1100 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1101 | |
---|
| 1102 | ! |
---|
| 1103 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1104 | !-- since it is part of the model |
---|
| 1105 | IF ( forward_fft ) THEN |
---|
| 1106 | |
---|
[1304] | 1107 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1108 | !$OMP DO |
---|
| 1109 | DO k = nzb_y, nzt_y |
---|
[1216] | 1110 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1111 | |
---|
| 1112 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1113 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1114 | |
---|
| 1115 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1116 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1117 | ENDDO |
---|
| 1118 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1119 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1120 | ENDDO |
---|
| 1121 | |
---|
| 1122 | ENDDO |
---|
| 1123 | ENDDO |
---|
| 1124 | !$OMP END PARALLEL |
---|
| 1125 | |
---|
| 1126 | ELSE |
---|
| 1127 | |
---|
[1304] | 1128 | !$OMP PARALLEL PRIVATE ( work, work1, i, j, k ) |
---|
[1106] | 1129 | !$OMP DO |
---|
| 1130 | DO k = nzb_y, nzt_y |
---|
[1216] | 1131 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1132 | |
---|
| 1133 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1134 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1135 | ENDDO |
---|
| 1136 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1137 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1138 | ENDDO |
---|
| 1139 | work(1) = 0.0 |
---|
| 1140 | work(ny+2) = 0.0 |
---|
| 1141 | |
---|
| 1142 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1143 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1144 | |
---|
| 1145 | ENDDO |
---|
| 1146 | ENDDO |
---|
| 1147 | !$OMP END PARALLEL |
---|
| 1148 | |
---|
| 1149 | ENDIF |
---|
| 1150 | |
---|
[1210] | 1151 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1152 | |
---|
| 1153 | #if defined( __fftw ) |
---|
| 1154 | IF ( forward_fft ) THEN |
---|
| 1155 | |
---|
| 1156 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1157 | !$OMP DO |
---|
| 1158 | DO k = nzb_y, nzt_y |
---|
[1216] | 1159 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1160 | |
---|
| 1161 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1162 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1163 | |
---|
| 1164 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1165 | ar_tr(j,i,k) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1210] | 1166 | ENDDO |
---|
| 1167 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1168 | ar_tr(ny+1-j,i,k) = AIMAG( y_out(j) ) / (ny+1) |
---|
[1210] | 1169 | ENDDO |
---|
| 1170 | |
---|
| 1171 | ENDDO |
---|
| 1172 | ENDDO |
---|
| 1173 | !$OMP END PARALLEL |
---|
| 1174 | |
---|
| 1175 | ELSE |
---|
| 1176 | |
---|
| 1177 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1178 | !$OMP DO |
---|
| 1179 | DO k = nzb_y, nzt_y |
---|
[1216] | 1180 | DO i = nxl_y_l, nxr_y_l |
---|
[1210] | 1181 | |
---|
[1216] | 1182 | y_out(0) = CMPLX( ar_tr(0,i,k), 0.0 ) |
---|
[1210] | 1183 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1184 | y_out(j) = CMPLX( ar_tr(j,i,k), ar_tr(ny+1-j,i,k) ) |
---|
[1210] | 1185 | ENDDO |
---|
[1216] | 1186 | y_out((ny+1)/2) = CMPLX( ar_tr((ny+1)/2,i,k), 0.0 ) |
---|
[1210] | 1187 | |
---|
| 1188 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1189 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1190 | |
---|
| 1191 | ENDDO |
---|
| 1192 | ENDDO |
---|
| 1193 | !$OMP END PARALLEL |
---|
| 1194 | |
---|
| 1195 | ENDIF |
---|
| 1196 | #endif |
---|
| 1197 | |
---|
[1106] | 1198 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1199 | |
---|
| 1200 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 1201 | IF ( forward_fft) THEN |
---|
| 1202 | |
---|
| 1203 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1204 | !$OMP DO |
---|
| 1205 | DO k = nzb_y, nzt_y |
---|
[1216] | 1206 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1207 | |
---|
[1320] | 1208 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, & |
---|
| 1209 | nau1, auy2, nau2 ) |
---|
[1106] | 1210 | |
---|
| 1211 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1212 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1213 | ENDDO |
---|
| 1214 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1215 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1216 | ENDDO |
---|
| 1217 | |
---|
| 1218 | ENDDO |
---|
| 1219 | ENDDO |
---|
| 1220 | !$OMP END PARALLEL |
---|
| 1221 | |
---|
| 1222 | ELSE |
---|
| 1223 | |
---|
| 1224 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1225 | !$OMP DO |
---|
| 1226 | DO k = nzb_y, nzt_y |
---|
[1216] | 1227 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1228 | |
---|
| 1229 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1230 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1231 | ENDDO |
---|
| 1232 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1233 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1234 | ENDDO |
---|
| 1235 | work(1) = 0.0 |
---|
| 1236 | work(ny+2) = 0.0 |
---|
| 1237 | |
---|
[1320] | 1238 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, & |
---|
| 1239 | auy3, nau1, auy4, nau2 ) |
---|
[1106] | 1240 | |
---|
| 1241 | DO j = 0, ny |
---|
| 1242 | ar(j,i,k) = work(j) |
---|
| 1243 | ENDDO |
---|
| 1244 | |
---|
| 1245 | ENDDO |
---|
| 1246 | ENDDO |
---|
| 1247 | !$OMP END PARALLEL |
---|
| 1248 | |
---|
| 1249 | ENDIF |
---|
| 1250 | #elif defined( __nec ) |
---|
| 1251 | IF ( forward_fft ) THEN |
---|
| 1252 | |
---|
| 1253 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1254 | !$OMP DO |
---|
| 1255 | DO k = nzb_y, nzt_y |
---|
[1216] | 1256 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1257 | |
---|
| 1258 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1259 | |
---|
| 1260 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1261 | |
---|
| 1262 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1263 | ar_tr(j,i,k) = work(2*j) |
---|
[1106] | 1264 | ENDDO |
---|
| 1265 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1266 | ar_tr(ny+1-j,i,k) = work(2*j+1) |
---|
[1106] | 1267 | ENDDO |
---|
| 1268 | |
---|
| 1269 | ENDDO |
---|
| 1270 | ENDDO |
---|
| 1271 | !$END OMP PARALLEL |
---|
| 1272 | |
---|
| 1273 | ELSE |
---|
| 1274 | |
---|
| 1275 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1276 | !$OMP DO |
---|
| 1277 | DO k = nzb_y, nzt_y |
---|
[1216] | 1278 | DO i = nxl_y_l, nxr_y_l |
---|
[1106] | 1279 | |
---|
| 1280 | DO j = 0, (ny+1)/2 |
---|
[1216] | 1281 | work(2*j) = ar_tr(j,i,k) |
---|
[1106] | 1282 | ENDDO |
---|
| 1283 | DO j = 1, (ny+1)/2 - 1 |
---|
[1216] | 1284 | work(2*j+1) = ar_tr(ny+1-j,i,k) |
---|
[1106] | 1285 | ENDDO |
---|
| 1286 | work(1) = 0.0 |
---|
| 1287 | work(ny+2) = 0.0 |
---|
| 1288 | |
---|
| 1289 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1290 | |
---|
| 1291 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1292 | |
---|
| 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
| 1295 | !$OMP END PARALLEL |
---|
| 1296 | |
---|
| 1297 | ENDIF |
---|
| 1298 | #elif defined( __cuda_fft ) |
---|
| 1299 | |
---|
| 1300 | IF ( forward_fft ) THEN |
---|
| 1301 | |
---|
[1111] | 1302 | !$acc data present( ar ) |
---|
| 1303 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
[1106] | 1304 | |
---|
[1111] | 1305 | !$acc kernels |
---|
[1106] | 1306 | DO k = nzb_y, nzt_y |
---|
| 1307 | DO i = nxl_y, nxr_y |
---|
| 1308 | |
---|
| 1309 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1310 | ar(j,i,k) = REAL( ar_tmp(j,i,k), KIND=wp ) * dny |
---|
[1106] | 1311 | ENDDO |
---|
| 1312 | |
---|
| 1313 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1314 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1315 | ENDDO |
---|
| 1316 | |
---|
| 1317 | ENDDO |
---|
| 1318 | ENDDO |
---|
[1111] | 1319 | !$acc end kernels |
---|
| 1320 | !$acc end data |
---|
[1106] | 1321 | |
---|
| 1322 | ELSE |
---|
| 1323 | |
---|
[1111] | 1324 | !$acc data present( ar ) |
---|
| 1325 | !$acc kernels |
---|
[1106] | 1326 | DO k = nzb_y, nzt_y |
---|
| 1327 | DO i = nxl_y, nxr_y |
---|
| 1328 | |
---|
[1111] | 1329 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0 ) |
---|
[1106] | 1330 | |
---|
| 1331 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1332 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
[1106] | 1333 | ENDDO |
---|
[1111] | 1334 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0 ) |
---|
[1106] | 1335 | |
---|
| 1336 | ENDDO |
---|
| 1337 | ENDDO |
---|
[1111] | 1338 | !$acc end kernels |
---|
[1106] | 1339 | |
---|
[1111] | 1340 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1341 | !$acc end data |
---|
[1106] | 1342 | |
---|
| 1343 | ENDIF |
---|
| 1344 | |
---|
| 1345 | #else |
---|
| 1346 | message_string = 'no system-specific fft-call available' |
---|
| 1347 | CALL message( 'fft_y', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 1348 | #endif |
---|
| 1349 | |
---|
| 1350 | ELSE |
---|
| 1351 | |
---|
| 1352 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1353 | '" not available' |
---|
| 1354 | CALL message( 'fft_y', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 1355 | |
---|
| 1356 | ENDIF |
---|
| 1357 | |
---|
| 1358 | END SUBROUTINE fft_y |
---|
| 1359 | |
---|
| 1360 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1361 | |
---|
| 1362 | !----------------------------------------------------------------------! |
---|
| 1363 | ! fft_y_1d ! |
---|
| 1364 | ! ! |
---|
| 1365 | ! Fourier-transformation along y-direction ! |
---|
| 1366 | ! Version for 1D-decomposition ! |
---|
| 1367 | ! ! |
---|
| 1368 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 1369 | ! system-specific routines, if they are available ! |
---|
| 1370 | !----------------------------------------------------------------------! |
---|
| 1371 | |
---|
| 1372 | IMPLICIT NONE |
---|
| 1373 | |
---|
| 1374 | CHARACTER (LEN=*) :: direction |
---|
[1320] | 1375 | |
---|
| 1376 | INTEGER(iwp) :: j !: |
---|
| 1377 | INTEGER(iwp) :: jshape(1) !: |
---|
[1] | 1378 | |
---|
[1320] | 1379 | LOGICAL :: forward_fft !: |
---|
[1106] | 1380 | |
---|
[1320] | 1381 | REAL(wp), DIMENSION(0:ny) :: ar !: |
---|
| 1382 | REAL(wp), DIMENSION(0:ny+2) :: work !: |
---|
| 1383 | REAL(wp), DIMENSION(ny+2) :: work1 !: |
---|
| 1384 | |
---|
| 1385 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: cwork !: |
---|
| 1386 | |
---|
[1] | 1387 | #if defined( __ibm ) |
---|
[1320] | 1388 | REAL(wp), DIMENSION(nau2) :: auy2 !: |
---|
| 1389 | REAL(wp), DIMENSION(nau2) :: auy4 !: |
---|
[1] | 1390 | #elif defined( __nec ) |
---|
[1320] | 1391 | REAL(wp), DIMENSION(6*(ny+1)) :: work2 !: |
---|
[1] | 1392 | #endif |
---|
| 1393 | |
---|
[1106] | 1394 | IF ( direction == 'forward' ) THEN |
---|
| 1395 | forward_fft = .TRUE. |
---|
| 1396 | ELSE |
---|
| 1397 | forward_fft = .FALSE. |
---|
| 1398 | ENDIF |
---|
| 1399 | |
---|
[1] | 1400 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1401 | |
---|
| 1402 | ! |
---|
| 1403 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1404 | !-- since it is part of the model |
---|
| 1405 | ALLOCATE( cwork(0:ny) ) |
---|
| 1406 | |
---|
[1106] | 1407 | IF ( forward_fft ) THEN |
---|
[1] | 1408 | |
---|
| 1409 | DO j = 0, ny |
---|
| 1410 | cwork(j) = CMPLX( ar(j) ) |
---|
| 1411 | ENDDO |
---|
| 1412 | |
---|
| 1413 | jshape = SHAPE( cwork ) |
---|
| 1414 | CALL FFTN( cwork, jshape ) |
---|
| 1415 | |
---|
| 1416 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1417 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1418 | ENDDO |
---|
| 1419 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1420 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1421 | ENDDO |
---|
| 1422 | |
---|
| 1423 | ELSE |
---|
| 1424 | |
---|
| 1425 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
| 1426 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1427 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j) ) |
---|
| 1428 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1429 | ENDDO |
---|
| 1430 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0 ) |
---|
| 1431 | |
---|
| 1432 | jshape = SHAPE( cwork ) |
---|
| 1433 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1434 | |
---|
| 1435 | DO j = 0, ny |
---|
[1322] | 1436 | ar(j) = REAL( cwork(j), KIND=wp ) |
---|
[1] | 1437 | ENDDO |
---|
| 1438 | |
---|
| 1439 | ENDIF |
---|
| 1440 | |
---|
| 1441 | DEALLOCATE( cwork ) |
---|
| 1442 | |
---|
| 1443 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1444 | |
---|
| 1445 | ! |
---|
| 1446 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1447 | !-- since it is part of the model |
---|
[1106] | 1448 | IF ( forward_fft ) THEN |
---|
[1] | 1449 | |
---|
| 1450 | work(0:ny) = ar |
---|
| 1451 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1452 | |
---|
| 1453 | DO j = 0, (ny+1)/2 |
---|
| 1454 | ar(j) = work(2*j) |
---|
| 1455 | ENDDO |
---|
| 1456 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1457 | ar(ny+1-j) = work(2*j+1) |
---|
| 1458 | ENDDO |
---|
| 1459 | |
---|
| 1460 | ELSE |
---|
| 1461 | |
---|
| 1462 | DO j = 0, (ny+1)/2 |
---|
| 1463 | work(2*j) = ar(j) |
---|
| 1464 | ENDDO |
---|
| 1465 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1466 | work(2*j+1) = ar(ny+1-j) |
---|
| 1467 | ENDDO |
---|
| 1468 | work(1) = 0.0 |
---|
| 1469 | work(ny+2) = 0.0 |
---|
| 1470 | |
---|
| 1471 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1472 | ar = work(0:ny) |
---|
| 1473 | |
---|
| 1474 | ENDIF |
---|
| 1475 | |
---|
[1216] | 1476 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1477 | |
---|
| 1478 | #if defined( __fftw ) |
---|
| 1479 | IF ( forward_fft ) THEN |
---|
| 1480 | |
---|
| 1481 | y_in(0:ny) = ar(0:ny) |
---|
| 1482 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1483 | |
---|
| 1484 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1485 | ar(j) = REAL( y_out(j), KIND=wp ) / (ny+1) |
---|
[1216] | 1486 | ENDDO |
---|
| 1487 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1488 | ar(ny+1-j) = AIMAG( y_out(j) ) / (ny+1) |
---|
| 1489 | ENDDO |
---|
| 1490 | |
---|
| 1491 | ELSE |
---|
| 1492 | |
---|
| 1493 | y_out(0) = CMPLX( ar(0), 0.0 ) |
---|
| 1494 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1495 | y_out(j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1496 | ENDDO |
---|
| 1497 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0 ) |
---|
| 1498 | |
---|
| 1499 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1500 | ar(0:ny) = y_in(0:ny) |
---|
| 1501 | |
---|
| 1502 | ENDIF |
---|
| 1503 | #endif |
---|
| 1504 | |
---|
[1] | 1505 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1506 | |
---|
| 1507 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 1508 | IF ( forward_fft ) THEN |
---|
[1] | 1509 | |
---|
[1320] | 1510 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1511 | auy2, nau2 ) |
---|
| 1512 | |
---|
| 1513 | DO j = 0, (ny+1)/2 |
---|
| 1514 | ar(j) = work(2*j) |
---|
| 1515 | ENDDO |
---|
| 1516 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1517 | ar(ny+1-j) = work(2*j+1) |
---|
| 1518 | ENDDO |
---|
| 1519 | |
---|
| 1520 | ELSE |
---|
| 1521 | |
---|
| 1522 | DO j = 0, (ny+1)/2 |
---|
| 1523 | work(2*j) = ar(j) |
---|
| 1524 | ENDDO |
---|
| 1525 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1526 | work(2*j+1) = ar(ny+1-j) |
---|
| 1527 | ENDDO |
---|
| 1528 | work(1) = 0.0 |
---|
| 1529 | work(ny+2) = 0.0 |
---|
| 1530 | |
---|
[1320] | 1531 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, & |
---|
| 1532 | nau1, auy4, nau2 ) |
---|
[1] | 1533 | |
---|
| 1534 | DO j = 0, ny |
---|
| 1535 | ar(j) = work(j) |
---|
| 1536 | ENDDO |
---|
| 1537 | |
---|
| 1538 | ENDIF |
---|
| 1539 | #elif defined( __nec ) |
---|
[1106] | 1540 | IF ( forward_fft ) THEN |
---|
[1] | 1541 | |
---|
| 1542 | work(0:ny) = ar(0:ny) |
---|
| 1543 | |
---|
[1106] | 1544 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1545 | |
---|
| 1546 | DO j = 0, (ny+1)/2 |
---|
| 1547 | ar(j) = work(2*j) |
---|
| 1548 | ENDDO |
---|
| 1549 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1550 | ar(ny+1-j) = work(2*j+1) |
---|
| 1551 | ENDDO |
---|
| 1552 | |
---|
| 1553 | ELSE |
---|
| 1554 | |
---|
| 1555 | DO j = 0, (ny+1)/2 |
---|
| 1556 | work(2*j) = ar(j) |
---|
| 1557 | ENDDO |
---|
| 1558 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1559 | work(2*j+1) = ar(ny+1-j) |
---|
| 1560 | ENDDO |
---|
| 1561 | work(1) = 0.0 |
---|
| 1562 | work(ny+2) = 0.0 |
---|
| 1563 | |
---|
[1106] | 1564 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1565 | |
---|
| 1566 | ar(0:ny) = work(0:ny) |
---|
| 1567 | |
---|
| 1568 | ENDIF |
---|
| 1569 | #else |
---|
[254] | 1570 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 1571 | CALL message( 'fft_y_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[254] | 1572 | |
---|
[1] | 1573 | #endif |
---|
| 1574 | |
---|
| 1575 | ELSE |
---|
| 1576 | |
---|
[274] | 1577 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1578 | '" not available' |
---|
[1106] | 1579 | CALL message( 'fft_y_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1580 | |
---|
| 1581 | ENDIF |
---|
| 1582 | |
---|
[1106] | 1583 | END SUBROUTINE fft_y_1d |
---|
[1] | 1584 | |
---|
| 1585 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1586 | |
---|
| 1587 | !----------------------------------------------------------------------! |
---|
| 1588 | ! fft_x_m ! |
---|
| 1589 | ! ! |
---|
| 1590 | ! Fourier-transformation along x-direction ! |
---|
| 1591 | ! Version for 1d domain decomposition ! |
---|
| 1592 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1593 | ! or Temperton-algorithm ! |
---|
| 1594 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1595 | ! ! |
---|
| 1596 | !----------------------------------------------------------------------! |
---|
| 1597 | |
---|
| 1598 | IMPLICIT NONE |
---|
| 1599 | |
---|
[1320] | 1600 | CHARACTER (LEN=*) :: direction !: |
---|
| 1601 | |
---|
| 1602 | INTEGER(iwp) :: i !: |
---|
| 1603 | INTEGER(iwp) :: k !: |
---|
| 1604 | INTEGER(iwp) :: siza !: |
---|
[1] | 1605 | |
---|
[1320] | 1606 | REAL(wp), DIMENSION(0:nx,nz) :: ar !: |
---|
| 1607 | REAL(wp), DIMENSION(0:nx+3,nz+1) :: ai !: |
---|
| 1608 | REAL(wp), DIMENSION(6*(nx+4),nz+1) :: work1 !: |
---|
| 1609 | |
---|
[1] | 1610 | #if defined( __nec ) |
---|
[1320] | 1611 | INTEGER(iwp) :: sizw !: |
---|
| 1612 | |
---|
| 1613 | COMPLEX(wp), DIMENSION((nx+4)/2+1,nz+1) :: work !: |
---|
[1] | 1614 | #endif |
---|
| 1615 | |
---|
| 1616 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1617 | |
---|
| 1618 | siza = SIZE( ai, 1 ) |
---|
| 1619 | |
---|
| 1620 | IF ( direction == 'forward') THEN |
---|
| 1621 | |
---|
| 1622 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1623 | ai(nx+1:,:) = 0.0 |
---|
| 1624 | |
---|
| 1625 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1626 | |
---|
| 1627 | DO k = 1, nz |
---|
| 1628 | DO i = 0, (nx+1)/2 |
---|
| 1629 | ar(i,k) = ai(2*i,k) |
---|
| 1630 | ENDDO |
---|
| 1631 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1632 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1633 | ENDDO |
---|
| 1634 | ENDDO |
---|
| 1635 | |
---|
| 1636 | ELSE |
---|
| 1637 | |
---|
| 1638 | DO k = 1, nz |
---|
| 1639 | DO i = 0, (nx+1)/2 |
---|
| 1640 | ai(2*i,k) = ar(i,k) |
---|
| 1641 | ENDDO |
---|
| 1642 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1643 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1644 | ENDDO |
---|
| 1645 | ai(1,k) = 0.0 |
---|
| 1646 | ai(nx+2,k) = 0.0 |
---|
| 1647 | ENDDO |
---|
| 1648 | |
---|
| 1649 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1650 | |
---|
| 1651 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1652 | |
---|
| 1653 | ENDIF |
---|
| 1654 | |
---|
| 1655 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1656 | |
---|
| 1657 | #if defined( __nec ) |
---|
| 1658 | siza = SIZE( ai, 1 ) |
---|
| 1659 | sizw = SIZE( work, 1 ) |
---|
| 1660 | |
---|
| 1661 | IF ( direction == 'forward') THEN |
---|
| 1662 | |
---|
| 1663 | ! |
---|
| 1664 | !-- Tables are initialized once more. This call should not be |
---|
| 1665 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1666 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1667 | trig_xf, work1, 0 ) |
---|
| 1668 | |
---|
| 1669 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1670 | IF ( nz1 > nz ) THEN |
---|
| 1671 | ai(:,nz1) = 0.0 |
---|
| 1672 | ENDIF |
---|
| 1673 | |
---|
[1320] | 1674 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1675 | trig_xf, work1, 0 ) |
---|
| 1676 | |
---|
| 1677 | DO k = 1, nz |
---|
| 1678 | DO i = 0, (nx+1)/2 |
---|
[1322] | 1679 | ar(i,k) = REAL( work(i+1,k), KIND=wp ) |
---|
[1] | 1680 | ENDDO |
---|
| 1681 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1682 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1683 | ENDDO |
---|
| 1684 | ENDDO |
---|
| 1685 | |
---|
| 1686 | ELSE |
---|
| 1687 | |
---|
| 1688 | ! |
---|
| 1689 | !-- Tables are initialized once more. This call should not be |
---|
| 1690 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1320] | 1691 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1692 | trig_xb, work1, 0 ) |
---|
| 1693 | |
---|
| 1694 | IF ( nz1 > nz ) THEN |
---|
| 1695 | work(:,nz1) = 0.0 |
---|
| 1696 | ENDIF |
---|
| 1697 | DO k = 1, nz |
---|
| 1698 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
| 1699 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1700 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k) ) |
---|
| 1701 | ENDDO |
---|
| 1702 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0 ) |
---|
| 1703 | ENDDO |
---|
| 1704 | |
---|
[1106] | 1705 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1706 | trig_xb, work1, 0 ) |
---|
| 1707 | |
---|
| 1708 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1709 | |
---|
| 1710 | ENDIF |
---|
| 1711 | |
---|
| 1712 | #else |
---|
[254] | 1713 | message_string = 'no system-specific fft-call available' |
---|
| 1714 | CALL message( 'fft_x_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1715 | #endif |
---|
| 1716 | |
---|
| 1717 | ELSE |
---|
| 1718 | |
---|
[274] | 1719 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1720 | '" not available' |
---|
[254] | 1721 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1722 | |
---|
| 1723 | ENDIF |
---|
| 1724 | |
---|
| 1725 | END SUBROUTINE fft_x_m |
---|
| 1726 | |
---|
| 1727 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1728 | |
---|
| 1729 | !----------------------------------------------------------------------! |
---|
| 1730 | ! fft_y_m ! |
---|
| 1731 | ! ! |
---|
| 1732 | ! Fourier-transformation along y-direction ! |
---|
| 1733 | ! Version for 1d domain decomposition ! |
---|
| 1734 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1735 | ! or Temperton-algorithm ! |
---|
| 1736 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1737 | ! ! |
---|
| 1738 | !----------------------------------------------------------------------! |
---|
| 1739 | |
---|
| 1740 | IMPLICIT NONE |
---|
| 1741 | |
---|
[1320] | 1742 | CHARACTER (LEN=*) :: direction !: |
---|
| 1743 | |
---|
| 1744 | INTEGER(iwp) :: j !: |
---|
| 1745 | INTEGER(iwp) :: k !: |
---|
| 1746 | INTEGER(iwp) :: ny1 !: |
---|
| 1747 | INTEGER(iwp) :: siza !: |
---|
[1] | 1748 | |
---|
[1320] | 1749 | REAL(wp), DIMENSION(0:ny1,nz) :: ar !: |
---|
| 1750 | REAL(wp), DIMENSION(0:ny+3,nz+1) :: ai !: |
---|
| 1751 | REAL(wp), DIMENSION(6*(ny+4),nz+1) :: work1 !: |
---|
| 1752 | |
---|
[1] | 1753 | #if defined( __nec ) |
---|
[1320] | 1754 | INTEGER(iwp) :: sizw !: |
---|
| 1755 | |
---|
| 1756 | COMPLEX(wp), DIMENSION((ny+4)/2+1,nz+1) :: work !: |
---|
[1] | 1757 | #endif |
---|
| 1758 | |
---|
| 1759 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1760 | |
---|
| 1761 | siza = SIZE( ai, 1 ) |
---|
| 1762 | |
---|
| 1763 | IF ( direction == 'forward') THEN |
---|
| 1764 | |
---|
| 1765 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1766 | ai(ny+1:,:) = 0.0 |
---|
| 1767 | |
---|
| 1768 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1769 | |
---|
| 1770 | DO k = 1, nz |
---|
| 1771 | DO j = 0, (ny+1)/2 |
---|
| 1772 | ar(j,k) = ai(2*j,k) |
---|
| 1773 | ENDDO |
---|
| 1774 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1775 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1776 | ENDDO |
---|
| 1777 | ENDDO |
---|
| 1778 | |
---|
| 1779 | ELSE |
---|
| 1780 | |
---|
| 1781 | DO k = 1, nz |
---|
| 1782 | DO j = 0, (ny+1)/2 |
---|
| 1783 | ai(2*j,k) = ar(j,k) |
---|
| 1784 | ENDDO |
---|
| 1785 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1786 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1787 | ENDDO |
---|
| 1788 | ai(1,k) = 0.0 |
---|
| 1789 | ai(ny+2,k) = 0.0 |
---|
| 1790 | ENDDO |
---|
| 1791 | |
---|
| 1792 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1793 | |
---|
| 1794 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1795 | |
---|
| 1796 | ENDIF |
---|
| 1797 | |
---|
| 1798 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1799 | |
---|
| 1800 | #if defined( __nec ) |
---|
| 1801 | siza = SIZE( ai, 1 ) |
---|
| 1802 | sizw = SIZE( work, 1 ) |
---|
| 1803 | |
---|
| 1804 | IF ( direction == 'forward') THEN |
---|
| 1805 | |
---|
| 1806 | ! |
---|
| 1807 | !-- Tables are initialized once more. This call should not be |
---|
| 1808 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1809 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1810 | trig_yf, work1, 0 ) |
---|
| 1811 | |
---|
| 1812 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1813 | IF ( nz1 > nz ) THEN |
---|
| 1814 | ai(:,nz1) = 0.0 |
---|
| 1815 | ENDIF |
---|
| 1816 | |
---|
[1106] | 1817 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1818 | trig_yf, work1, 0 ) |
---|
| 1819 | |
---|
| 1820 | DO k = 1, nz |
---|
| 1821 | DO j = 0, (ny+1)/2 |
---|
[1322] | 1822 | ar(j,k) = REAL( work(j+1,k), KIND=wp ) |
---|
[1] | 1823 | ENDDO |
---|
| 1824 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1825 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1826 | ENDDO |
---|
| 1827 | ENDDO |
---|
| 1828 | |
---|
| 1829 | ELSE |
---|
| 1830 | |
---|
| 1831 | ! |
---|
| 1832 | !-- Tables are initialized once more. This call should not be |
---|
| 1833 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1834 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1835 | trig_yb, work1, 0 ) |
---|
| 1836 | |
---|
| 1837 | IF ( nz1 > nz ) THEN |
---|
| 1838 | work(:,nz1) = 0.0 |
---|
| 1839 | ENDIF |
---|
| 1840 | DO k = 1, nz |
---|
| 1841 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
| 1842 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1843 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k) ) |
---|
| 1844 | ENDDO |
---|
| 1845 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0 ) |
---|
| 1846 | ENDDO |
---|
| 1847 | |
---|
[1106] | 1848 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1849 | trig_yb, work1, 0 ) |
---|
| 1850 | |
---|
| 1851 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1852 | |
---|
| 1853 | ENDIF |
---|
| 1854 | |
---|
| 1855 | #else |
---|
[254] | 1856 | message_string = 'no system-specific fft-call available' |
---|
| 1857 | CALL message( 'fft_y_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1858 | #endif |
---|
| 1859 | |
---|
| 1860 | ELSE |
---|
[254] | 1861 | |
---|
[274] | 1862 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1863 | '" not available' |
---|
[254] | 1864 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1865 | |
---|
| 1866 | ENDIF |
---|
| 1867 | |
---|
| 1868 | END SUBROUTINE fft_y_m |
---|
| 1869 | |
---|
[1106] | 1870 | |
---|
[1] | 1871 | END MODULE fft_xy |
---|