[1] | 1 | MODULE fft_xy |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
| 22 | ! |
---|
[1211] | 23 | ! |
---|
[1] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
[3] | 26 | ! $Id: fft_xy.f90 1211 2013-08-14 13:46:36Z kanani $ |
---|
[392] | 27 | ! |
---|
[1211] | 28 | ! 1210 2013-08-14 10:58:20Z raasch |
---|
| 29 | ! fftw added |
---|
| 30 | ! |
---|
[1167] | 31 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 32 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 33 | ! |
---|
[1154] | 34 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 35 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 36 | ! |
---|
[1112] | 37 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 38 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 39 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 40 | ! used total domain) |
---|
| 41 | ! |
---|
[1107] | 42 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 43 | ! CUDA fft added |
---|
| 44 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 45 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 46 | ! |
---|
[1093] | 47 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 48 | ! variable sizw declared for NEC case only |
---|
| 49 | ! |
---|
[1037] | 50 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 51 | ! code put under GPL (PALM 3.9) |
---|
| 52 | ! |
---|
[392] | 53 | ! 274 2009-03-26 15:11:21Z heinze |
---|
| 54 | ! Output of messages replaced by message handling routine. |
---|
| 55 | ! |
---|
| 56 | ! Feb. 2007 |
---|
[3] | 57 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 58 | ! |
---|
[1] | 59 | ! Revision 1.4 2006/03/28 12:27:09 raasch |
---|
| 60 | ! Stop when system-specific fft is selected on NEC. For unknown reasons this |
---|
| 61 | ! causes a program abort during first allocation in init_grid. |
---|
| 62 | ! |
---|
| 63 | ! Revision 1.2 2004/04/30 11:44:27 raasch |
---|
| 64 | ! Module renamed from fft_for_1d_decomp to fft_xy, 1d-routines renamed to |
---|
| 65 | ! fft_x and fft_y, |
---|
| 66 | ! function FFT replaced by subroutine FFTN due to problems with 64-bit |
---|
| 67 | ! mode on ibm, |
---|
| 68 | ! shape of array cwork is explicitly stored in ishape/jshape and handled |
---|
| 69 | ! to routine FFTN instead of shape-function (due to compiler error on |
---|
| 70 | ! decalpha), |
---|
| 71 | ! non vectorized FFT for nec included |
---|
| 72 | ! |
---|
| 73 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 74 | ! Initial revision |
---|
| 75 | ! |
---|
| 76 | ! |
---|
| 77 | ! Description: |
---|
| 78 | ! ------------ |
---|
| 79 | ! Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 80 | ! Original version: Klaus Ketelsen (May 2002) |
---|
| 81 | !------------------------------------------------------------------------------! |
---|
| 82 | |
---|
| 83 | USE control_parameters |
---|
| 84 | USE indices |
---|
[1153] | 85 | #if defined( __cuda_fft ) |
---|
| 86 | USE ISO_C_BINDING |
---|
[1210] | 87 | #elif defined( __fftw ) |
---|
| 88 | USE, INTRINSIC :: ISO_C_BINDING |
---|
[1153] | 89 | #endif |
---|
[1106] | 90 | USE precision_kind |
---|
[1] | 91 | USE singleton |
---|
| 92 | USE temperton_fft |
---|
[1106] | 93 | USE transpose_indices |
---|
[1] | 94 | |
---|
| 95 | IMPLICIT NONE |
---|
| 96 | |
---|
| 97 | PRIVATE |
---|
[1106] | 98 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 99 | |
---|
| 100 | INTEGER, DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x, ifax_y |
---|
| 101 | |
---|
| 102 | LOGICAL, SAVE :: init_fft = .FALSE. |
---|
| 103 | |
---|
[1106] | 104 | REAL, SAVE :: dnx, dny, sqr_dnx, sqr_dny |
---|
[1] | 105 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x, trigs_y |
---|
| 106 | |
---|
| 107 | #if defined( __ibm ) |
---|
| 108 | INTEGER, PARAMETER :: nau1 = 20000, nau2 = 22000 |
---|
| 109 | ! |
---|
| 110 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 111 | !-- shared in OpenMP sense |
---|
| 112 | REAL, DIMENSION(nau1), SAVE :: aux1, auy1, aux3, auy3 |
---|
| 113 | #elif defined( __nec ) |
---|
| 114 | INTEGER, SAVE :: nz1 |
---|
| 115 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb, trig_xf, trig_yb, & |
---|
| 116 | trig_yf |
---|
[1106] | 117 | #elif defined( __cuda_fft ) |
---|
[1153] | 118 | INTEGER(C_INT), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
| 119 | INTEGER, SAVE :: total_points_x_transpo, total_points_y_transpo |
---|
[1210] | 120 | #elif defined( __fftw ) |
---|
| 121 | INCLUDE 'fftw3.f03' |
---|
| 122 | INTEGER(KIND=C_INT) :: nx_c, ny_c |
---|
| 123 | COMPLEX(KIND=C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE, SAVE :: x_out, y_out |
---|
| 124 | REAL(KIND=C_DOUBLE), DIMENSION(:), ALLOCATABLE, SAVE :: x_in, y_in |
---|
| 125 | TYPE(C_PTR), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
[1] | 126 | #endif |
---|
| 127 | |
---|
| 128 | ! |
---|
| 129 | !-- Public interfaces |
---|
| 130 | INTERFACE fft_init |
---|
| 131 | MODULE PROCEDURE fft_init |
---|
| 132 | END INTERFACE fft_init |
---|
| 133 | |
---|
| 134 | INTERFACE fft_x |
---|
| 135 | MODULE PROCEDURE fft_x |
---|
| 136 | END INTERFACE fft_x |
---|
| 137 | |
---|
[1106] | 138 | INTERFACE fft_x_1d |
---|
| 139 | MODULE PROCEDURE fft_x_1d |
---|
| 140 | END INTERFACE fft_x_1d |
---|
| 141 | |
---|
[1] | 142 | INTERFACE fft_y |
---|
| 143 | MODULE PROCEDURE fft_y |
---|
| 144 | END INTERFACE fft_y |
---|
| 145 | |
---|
[1106] | 146 | INTERFACE fft_y_1d |
---|
| 147 | MODULE PROCEDURE fft_y_1d |
---|
| 148 | END INTERFACE fft_y_1d |
---|
| 149 | |
---|
[1] | 150 | INTERFACE fft_x_m |
---|
| 151 | MODULE PROCEDURE fft_x_m |
---|
| 152 | END INTERFACE fft_x_m |
---|
| 153 | |
---|
| 154 | INTERFACE fft_y_m |
---|
| 155 | MODULE PROCEDURE fft_y_m |
---|
| 156 | END INTERFACE fft_y_m |
---|
| 157 | |
---|
| 158 | CONTAINS |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | SUBROUTINE fft_init |
---|
| 162 | |
---|
[1106] | 163 | USE cuda_fft_interfaces |
---|
| 164 | |
---|
[1] | 165 | IMPLICIT NONE |
---|
| 166 | |
---|
| 167 | ! |
---|
| 168 | !-- The following temporary working arrays have to be on stack or private |
---|
| 169 | !-- in OpenMP sense |
---|
| 170 | #if defined( __ibm ) |
---|
| 171 | REAL, DIMENSION(0:nx+2) :: workx |
---|
| 172 | REAL, DIMENSION(0:ny+2) :: worky |
---|
| 173 | REAL, DIMENSION(nau2) :: aux2, auy2, aux4, auy4 |
---|
| 174 | #elif defined( __nec ) |
---|
| 175 | REAL, DIMENSION(0:nx+3,nz+1) :: work_x |
---|
| 176 | REAL, DIMENSION(0:ny+3,nz+1) :: work_y |
---|
| 177 | REAL, DIMENSION(6*(nx+3),nz+1) :: workx |
---|
| 178 | REAL, DIMENSION(6*(ny+3),nz+1) :: worky |
---|
| 179 | #endif |
---|
| 180 | |
---|
| 181 | ! |
---|
| 182 | !-- Return, if already called |
---|
| 183 | IF ( init_fft ) THEN |
---|
| 184 | RETURN |
---|
| 185 | ELSE |
---|
| 186 | init_fft = .TRUE. |
---|
| 187 | ENDIF |
---|
| 188 | |
---|
| 189 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 190 | |
---|
[1106] | 191 | dnx = 1.0 / ( nx + 1.0 ) |
---|
| 192 | dny = 1.0 / ( ny + 1.0 ) |
---|
| 193 | sqr_dnx = SQRT( dnx ) |
---|
| 194 | sqr_dny = SQRT( dny ) |
---|
[1] | 195 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 196 | ! |
---|
| 197 | !-- Initialize tables for fft along x |
---|
[1106] | 198 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 199 | aux2, nau2 ) |
---|
[1106] | 200 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 201 | aux4, nau2 ) |
---|
| 202 | ! |
---|
| 203 | !-- Initialize tables for fft along y |
---|
[1106] | 204 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 205 | auy2, nau2 ) |
---|
[1106] | 206 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 207 | auy4, nau2 ) |
---|
| 208 | #elif defined( __nec ) |
---|
[254] | 209 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 210 | '" currently does not work on NEC' |
---|
| 211 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 212 | |
---|
| 213 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
| 214 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 215 | |
---|
| 216 | work_x = 0.0 |
---|
| 217 | work_y = 0.0 |
---|
| 218 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 219 | ! when using the NEC ffts |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 223 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 224 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
| 225 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 226 | trig_xf, workx, 0 ) |
---|
[1106] | 227 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 228 | trig_xb, workx, 0 ) |
---|
| 229 | ! |
---|
| 230 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 231 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 232 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
| 233 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 234 | trig_yf, worky, 0 ) |
---|
[1106] | 235 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 236 | trig_yb, worky, 0 ) |
---|
[1106] | 237 | #elif defined( __cuda_fft ) |
---|
| 238 | total_points_x_transpo = (nx+1) * (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) |
---|
| 239 | total_points_y_transpo = (ny+1) * (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) |
---|
[1111] | 240 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 241 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 242 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 243 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 244 | #else |
---|
[254] | 245 | message_string = 'no system-specific fft-call available' |
---|
| 246 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 247 | #endif |
---|
| 248 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 249 | ! |
---|
| 250 | !-- Temperton-algorithm |
---|
| 251 | !-- Initialize tables for fft along x and y |
---|
| 252 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 253 | |
---|
| 254 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 255 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 256 | |
---|
[1210] | 257 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 258 | ! |
---|
| 259 | !-- FFTW |
---|
| 260 | #if defined( __fftw ) |
---|
| 261 | nx_c = nx+1 |
---|
| 262 | ny_c = ny+1 |
---|
| 263 | ALLOCATE( x_in(0:nx+2), y_in(0:ny+2), x_out(0:(nx+1)/2), & |
---|
| 264 | y_out(0:(ny+1)/2) ) |
---|
| 265 | plan_xf = FFTW_PLAN_DFT_R2C_1D( nx_c, x_in, x_out, FFTW_ESTIMATE ) |
---|
| 266 | plan_xi = FFTW_PLAN_DFT_C2R_1D( nx_c, x_out, x_in, FFTW_ESTIMATE ) |
---|
| 267 | plan_yf = FFTW_PLAN_DFT_R2C_1D( ny_c, y_in, y_out, FFTW_ESTIMATE ) |
---|
| 268 | plan_yi = FFTW_PLAN_DFT_C2R_1D( ny_c, y_out, y_in, FFTW_ESTIMATE ) |
---|
| 269 | #else |
---|
| 270 | message_string = 'preprocessor switch for fftw is missing' |
---|
| 271 | CALL message( 'fft_init', 'PA0080', 1, 2, 0, 6, 0 ) |
---|
| 272 | #endif |
---|
| 273 | |
---|
[1] | 274 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 275 | |
---|
| 276 | CONTINUE |
---|
| 277 | |
---|
| 278 | ELSE |
---|
| 279 | |
---|
[254] | 280 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 281 | '" not available' |
---|
| 282 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 283 | ENDIF |
---|
| 284 | |
---|
| 285 | END SUBROUTINE fft_init |
---|
| 286 | |
---|
| 287 | |
---|
| 288 | SUBROUTINE fft_x( ar, direction ) |
---|
| 289 | |
---|
| 290 | !----------------------------------------------------------------------! |
---|
| 291 | ! fft_x ! |
---|
| 292 | ! ! |
---|
| 293 | ! Fourier-transformation along x-direction ! |
---|
[1106] | 294 | ! Version for 2D-decomposition ! |
---|
[1] | 295 | ! ! |
---|
| 296 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 297 | ! system-specific routines, if they are available ! |
---|
| 298 | !----------------------------------------------------------------------! |
---|
| 299 | |
---|
[1106] | 300 | USE cuda_fft_interfaces |
---|
[1153] | 301 | #if defined( __cuda_fft ) |
---|
| 302 | USE ISO_C_BINDING |
---|
| 303 | #endif |
---|
[1106] | 304 | |
---|
[1] | 305 | IMPLICIT NONE |
---|
| 306 | |
---|
| 307 | CHARACTER (LEN=*) :: direction |
---|
[1111] | 308 | INTEGER :: i, ishape(1), j, k |
---|
[1106] | 309 | |
---|
| 310 | LOGICAL :: forward_fft |
---|
| 311 | |
---|
| 312 | REAL, DIMENSION(0:nx+2) :: work |
---|
| 313 | REAL, DIMENSION(nx+2) :: work1 |
---|
| 314 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 315 | #if defined( __ibm ) |
---|
| 316 | REAL, DIMENSION(nau2) :: aux2, aux4 |
---|
| 317 | #elif defined( __nec ) |
---|
| 318 | REAL, DIMENSION(6*(nx+1)) :: work2 |
---|
| 319 | #elif defined( __cuda_fft ) |
---|
[1111] | 320 | !$acc declare create( ar_tmp ) |
---|
[1166] | 321 | COMPLEX(dpk), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: ar_tmp |
---|
[1106] | 322 | #endif |
---|
| 323 | REAL, DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: ar |
---|
| 324 | |
---|
| 325 | IF ( direction == 'forward' ) THEN |
---|
| 326 | forward_fft = .TRUE. |
---|
| 327 | ELSE |
---|
| 328 | forward_fft = .FALSE. |
---|
| 329 | ENDIF |
---|
| 330 | |
---|
| 331 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 332 | |
---|
| 333 | ! |
---|
| 334 | !-- Performing the fft with singleton's software works on every system, |
---|
| 335 | !-- since it is part of the model |
---|
| 336 | ALLOCATE( cwork(0:nx) ) |
---|
| 337 | |
---|
| 338 | IF ( forward_fft ) then |
---|
| 339 | |
---|
| 340 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 341 | !$OMP DO |
---|
| 342 | DO k = nzb_x, nzt_x |
---|
| 343 | DO j = nys_x, nyn_x |
---|
| 344 | |
---|
| 345 | DO i = 0, nx |
---|
| 346 | cwork(i) = CMPLX( ar(i,j,k) ) |
---|
| 347 | ENDDO |
---|
| 348 | |
---|
| 349 | ishape = SHAPE( cwork ) |
---|
| 350 | CALL FFTN( cwork, ishape ) |
---|
| 351 | |
---|
| 352 | DO i = 0, (nx+1)/2 |
---|
| 353 | ar(i,j,k) = REAL( cwork(i) ) |
---|
| 354 | ENDDO |
---|
| 355 | DO i = 1, (nx+1)/2 - 1 |
---|
| 356 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 357 | ENDDO |
---|
| 358 | |
---|
| 359 | ENDDO |
---|
| 360 | ENDDO |
---|
| 361 | !$OMP END PARALLEL |
---|
| 362 | |
---|
| 363 | ELSE |
---|
| 364 | |
---|
| 365 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 366 | !$OMP DO |
---|
| 367 | DO k = nzb_x, nzt_x |
---|
| 368 | DO j = nys_x, nyn_x |
---|
| 369 | |
---|
| 370 | cwork(0) = CMPLX( ar(0,j,k), 0.0 ) |
---|
| 371 | DO i = 1, (nx+1)/2 - 1 |
---|
| 372 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k) ) |
---|
| 373 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 374 | ENDDO |
---|
| 375 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
| 376 | |
---|
| 377 | ishape = SHAPE( cwork ) |
---|
| 378 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 379 | |
---|
| 380 | DO i = 0, nx |
---|
| 381 | ar(i,j,k) = REAL( cwork(i) ) |
---|
| 382 | ENDDO |
---|
| 383 | |
---|
| 384 | ENDDO |
---|
| 385 | ENDDO |
---|
| 386 | !$OMP END PARALLEL |
---|
| 387 | |
---|
| 388 | ENDIF |
---|
| 389 | |
---|
| 390 | DEALLOCATE( cwork ) |
---|
| 391 | |
---|
| 392 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 393 | |
---|
| 394 | ! |
---|
| 395 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 396 | !-- since it is part of the model |
---|
| 397 | IF ( forward_fft ) THEN |
---|
| 398 | |
---|
| 399 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 400 | !$OMP DO |
---|
| 401 | DO k = nzb_x, nzt_x |
---|
| 402 | DO j = nys_x, nyn_x |
---|
| 403 | |
---|
| 404 | work(0:nx) = ar(0:nx,j,k) |
---|
| 405 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 406 | |
---|
| 407 | DO i = 0, (nx+1)/2 |
---|
| 408 | ar(i,j,k) = work(2*i) |
---|
| 409 | ENDDO |
---|
| 410 | DO i = 1, (nx+1)/2 - 1 |
---|
| 411 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 412 | ENDDO |
---|
| 413 | |
---|
| 414 | ENDDO |
---|
| 415 | ENDDO |
---|
| 416 | !$OMP END PARALLEL |
---|
| 417 | |
---|
| 418 | ELSE |
---|
| 419 | |
---|
| 420 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 421 | !$OMP DO |
---|
| 422 | DO k = nzb_x, nzt_x |
---|
| 423 | DO j = nys_x, nyn_x |
---|
| 424 | |
---|
| 425 | DO i = 0, (nx+1)/2 |
---|
| 426 | work(2*i) = ar(i,j,k) |
---|
| 427 | ENDDO |
---|
| 428 | DO i = 1, (nx+1)/2 - 1 |
---|
| 429 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 430 | ENDDO |
---|
| 431 | work(1) = 0.0 |
---|
| 432 | work(nx+2) = 0.0 |
---|
| 433 | |
---|
| 434 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 435 | ar(0:nx,j,k) = work(0:nx) |
---|
| 436 | |
---|
| 437 | ENDDO |
---|
| 438 | ENDDO |
---|
| 439 | !$OMP END PARALLEL |
---|
| 440 | |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
[1210] | 443 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 444 | |
---|
| 445 | #if defined( __fftw ) |
---|
| 446 | IF ( forward_fft ) THEN |
---|
| 447 | |
---|
| 448 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 449 | !$OMP DO |
---|
| 450 | DO k = nzb_x, nzt_x |
---|
| 451 | DO j = nys_x, nyn_x |
---|
| 452 | |
---|
| 453 | x_in(0:nx) = ar(0:nx,j,k) |
---|
| 454 | CALL FFTW_EXECUTE_DFT_R2C( plan_xf, x_in, x_out ) |
---|
| 455 | |
---|
| 456 | DO i = 0, (nx+1)/2 |
---|
| 457 | ar(i,j,k) = REAL( x_out(i) ) / ( nx+1 ) |
---|
| 458 | ENDDO |
---|
| 459 | DO i = 1, (nx+1)/2 - 1 |
---|
| 460 | ar(nx+1-i,j,k) = AIMAG( x_out(i) ) / ( nx+1 ) |
---|
| 461 | ENDDO |
---|
| 462 | |
---|
| 463 | ENDDO |
---|
| 464 | ENDDO |
---|
| 465 | !$OMP END PARALLEL |
---|
| 466 | |
---|
| 467 | ELSE |
---|
| 468 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 469 | !$OMP DO |
---|
| 470 | DO k = nzb_x, nzt_x |
---|
| 471 | DO j = nys_x, nyn_x |
---|
| 472 | |
---|
| 473 | x_out(0) = CMPLX( ar(0,j,k), 0.0 ) |
---|
| 474 | DO i = 1, (nx+1)/2 - 1 |
---|
| 475 | x_out(i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 476 | ENDDO |
---|
| 477 | x_out((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
| 478 | |
---|
| 479 | CALL FFTW_EXECUTE_DFT_C2R( plan_xi, x_out, x_in) |
---|
| 480 | ar(0:nx,j,k) = x_in(0:nx) |
---|
| 481 | |
---|
| 482 | ENDDO |
---|
| 483 | ENDDO |
---|
| 484 | !$OMP END PARALLEL |
---|
| 485 | |
---|
| 486 | ENDIF |
---|
| 487 | #endif |
---|
| 488 | |
---|
[1106] | 489 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 490 | |
---|
| 491 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 492 | IF ( forward_fft ) THEN |
---|
| 493 | |
---|
| 494 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 495 | !$OMP DO |
---|
| 496 | DO k = nzb_x, nzt_x |
---|
| 497 | DO j = nys_x, nyn_x |
---|
| 498 | |
---|
| 499 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
| 500 | aux2, nau2 ) |
---|
| 501 | |
---|
| 502 | DO i = 0, (nx+1)/2 |
---|
| 503 | ar(i,j,k) = work(2*i) |
---|
| 504 | ENDDO |
---|
| 505 | DO i = 1, (nx+1)/2 - 1 |
---|
| 506 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 507 | ENDDO |
---|
| 508 | |
---|
| 509 | ENDDO |
---|
| 510 | ENDDO |
---|
| 511 | !$OMP END PARALLEL |
---|
| 512 | |
---|
| 513 | ELSE |
---|
| 514 | |
---|
| 515 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 516 | !$OMP DO |
---|
| 517 | DO k = nzb_x, nzt_x |
---|
| 518 | DO j = nys_x, nyn_x |
---|
| 519 | |
---|
| 520 | DO i = 0, (nx+1)/2 |
---|
| 521 | work(2*i) = ar(i,j,k) |
---|
| 522 | ENDDO |
---|
| 523 | DO i = 1, (nx+1)/2 - 1 |
---|
| 524 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 525 | ENDDO |
---|
| 526 | work(1) = 0.0 |
---|
| 527 | work(nx+2) = 0.0 |
---|
| 528 | |
---|
| 529 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
| 530 | aux4, nau2 ) |
---|
| 531 | |
---|
| 532 | DO i = 0, nx |
---|
| 533 | ar(i,j,k) = work(i) |
---|
| 534 | ENDDO |
---|
| 535 | |
---|
| 536 | ENDDO |
---|
| 537 | ENDDO |
---|
| 538 | !$OMP END PARALLEL |
---|
| 539 | |
---|
| 540 | ENDIF |
---|
| 541 | |
---|
| 542 | #elif defined( __nec ) |
---|
| 543 | |
---|
| 544 | IF ( forward_fft ) THEN |
---|
| 545 | |
---|
| 546 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 547 | !$OMP DO |
---|
| 548 | DO k = nzb_x, nzt_x |
---|
| 549 | DO j = nys_x, nyn_x |
---|
| 550 | |
---|
| 551 | work(0:nx) = ar(0:nx,j,k) |
---|
| 552 | |
---|
| 553 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 554 | |
---|
| 555 | DO i = 0, (nx+1)/2 |
---|
| 556 | ar(i,j,k) = work(2*i) |
---|
| 557 | ENDDO |
---|
| 558 | DO i = 1, (nx+1)/2 - 1 |
---|
| 559 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 560 | ENDDO |
---|
| 561 | |
---|
| 562 | ENDDO |
---|
| 563 | ENDDO |
---|
| 564 | !$END OMP PARALLEL |
---|
| 565 | |
---|
| 566 | ELSE |
---|
| 567 | |
---|
| 568 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 569 | !$OMP DO |
---|
| 570 | DO k = nzb_x, nzt_x |
---|
| 571 | DO j = nys_x, nyn_x |
---|
| 572 | |
---|
| 573 | DO i = 0, (nx+1)/2 |
---|
| 574 | work(2*i) = ar(i,j,k) |
---|
| 575 | ENDDO |
---|
| 576 | DO i = 1, (nx+1)/2 - 1 |
---|
| 577 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 578 | ENDDO |
---|
| 579 | work(1) = 0.0 |
---|
| 580 | work(nx+2) = 0.0 |
---|
| 581 | |
---|
| 582 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 583 | |
---|
| 584 | ar(0:nx,j,k) = work(0:nx) |
---|
| 585 | |
---|
| 586 | ENDDO |
---|
| 587 | ENDDO |
---|
| 588 | !$OMP END PARALLEL |
---|
| 589 | |
---|
| 590 | ENDIF |
---|
| 591 | |
---|
| 592 | #elif defined( __cuda_fft ) |
---|
| 593 | |
---|
| 594 | IF ( forward_fft ) THEN |
---|
| 595 | |
---|
[1111] | 596 | !$acc data present( ar ) |
---|
| 597 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
[1106] | 598 | |
---|
[1111] | 599 | !$acc kernels |
---|
| 600 | !$acc loop |
---|
[1106] | 601 | DO k = nzb_x, nzt_x |
---|
| 602 | DO j = nys_x, nyn_x |
---|
| 603 | |
---|
[1111] | 604 | !$acc loop vector( 32 ) |
---|
[1106] | 605 | DO i = 0, (nx+1)/2 |
---|
[1111] | 606 | ar(i,j,k) = REAL( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 607 | ENDDO |
---|
| 608 | |
---|
[1111] | 609 | !$acc loop vector( 32 ) |
---|
[1106] | 610 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 611 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 612 | ENDDO |
---|
| 613 | |
---|
| 614 | ENDDO |
---|
| 615 | ENDDO |
---|
[1111] | 616 | !$acc end kernels |
---|
| 617 | !$acc end data |
---|
[1106] | 618 | |
---|
| 619 | ELSE |
---|
| 620 | |
---|
[1111] | 621 | !$acc data present( ar ) |
---|
| 622 | !$acc kernels |
---|
| 623 | !$acc loop |
---|
[1106] | 624 | DO k = nzb_x, nzt_x |
---|
| 625 | DO j = nys_x, nyn_x |
---|
| 626 | |
---|
[1111] | 627 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0 ) |
---|
[1106] | 628 | |
---|
[1111] | 629 | !$acc loop vector( 32 ) |
---|
[1106] | 630 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 631 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
[1106] | 632 | ENDDO |
---|
[1111] | 633 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
[1106] | 634 | |
---|
| 635 | ENDDO |
---|
| 636 | ENDDO |
---|
[1111] | 637 | !$acc end kernels |
---|
[1106] | 638 | |
---|
[1111] | 639 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 640 | !$acc end data |
---|
[1106] | 641 | |
---|
| 642 | ENDIF |
---|
| 643 | |
---|
| 644 | #else |
---|
| 645 | message_string = 'no system-specific fft-call available' |
---|
| 646 | CALL message( 'fft_x', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 647 | #endif |
---|
| 648 | |
---|
| 649 | ELSE |
---|
| 650 | |
---|
| 651 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 652 | '" not available' |
---|
| 653 | CALL message( 'fft_x', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 654 | |
---|
| 655 | ENDIF |
---|
| 656 | |
---|
| 657 | END SUBROUTINE fft_x |
---|
| 658 | |
---|
| 659 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 660 | |
---|
| 661 | !----------------------------------------------------------------------! |
---|
| 662 | ! fft_x_1d ! |
---|
| 663 | ! ! |
---|
| 664 | ! Fourier-transformation along x-direction ! |
---|
| 665 | ! Version for 1D-decomposition ! |
---|
| 666 | ! ! |
---|
| 667 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 668 | ! system-specific routines, if they are available ! |
---|
| 669 | !----------------------------------------------------------------------! |
---|
| 670 | |
---|
| 671 | IMPLICIT NONE |
---|
| 672 | |
---|
| 673 | CHARACTER (LEN=*) :: direction |
---|
[1] | 674 | INTEGER :: i, ishape(1) |
---|
| 675 | |
---|
[1106] | 676 | LOGICAL :: forward_fft |
---|
| 677 | |
---|
[1] | 678 | REAL, DIMENSION(0:nx) :: ar |
---|
| 679 | REAL, DIMENSION(0:nx+2) :: work |
---|
| 680 | REAL, DIMENSION(nx+2) :: work1 |
---|
| 681 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 682 | #if defined( __ibm ) |
---|
| 683 | REAL, DIMENSION(nau2) :: aux2, aux4 |
---|
| 684 | #elif defined( __nec ) |
---|
| 685 | REAL, DIMENSION(6*(nx+1)) :: work2 |
---|
| 686 | #endif |
---|
| 687 | |
---|
[1106] | 688 | IF ( direction == 'forward' ) THEN |
---|
| 689 | forward_fft = .TRUE. |
---|
| 690 | ELSE |
---|
| 691 | forward_fft = .FALSE. |
---|
| 692 | ENDIF |
---|
| 693 | |
---|
[1] | 694 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 695 | |
---|
| 696 | ! |
---|
| 697 | !-- Performing the fft with singleton's software works on every system, |
---|
| 698 | !-- since it is part of the model |
---|
| 699 | ALLOCATE( cwork(0:nx) ) |
---|
| 700 | |
---|
[1106] | 701 | IF ( forward_fft ) then |
---|
[1] | 702 | |
---|
| 703 | DO i = 0, nx |
---|
| 704 | cwork(i) = CMPLX( ar(i) ) |
---|
| 705 | ENDDO |
---|
| 706 | ishape = SHAPE( cwork ) |
---|
| 707 | CALL FFTN( cwork, ishape ) |
---|
| 708 | DO i = 0, (nx+1)/2 |
---|
| 709 | ar(i) = REAL( cwork(i) ) |
---|
| 710 | ENDDO |
---|
| 711 | DO i = 1, (nx+1)/2 - 1 |
---|
| 712 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 713 | ENDDO |
---|
| 714 | |
---|
| 715 | ELSE |
---|
| 716 | |
---|
| 717 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
| 718 | DO i = 1, (nx+1)/2 - 1 |
---|
| 719 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i) ) |
---|
| 720 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 721 | ENDDO |
---|
| 722 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0 ) |
---|
| 723 | |
---|
| 724 | ishape = SHAPE( cwork ) |
---|
| 725 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 726 | |
---|
| 727 | DO i = 0, nx |
---|
| 728 | ar(i) = REAL( cwork(i) ) |
---|
| 729 | ENDDO |
---|
| 730 | |
---|
| 731 | ENDIF |
---|
| 732 | |
---|
| 733 | DEALLOCATE( cwork ) |
---|
| 734 | |
---|
| 735 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 739 | !-- since it is part of the model |
---|
[1106] | 740 | IF ( forward_fft ) THEN |
---|
[1] | 741 | |
---|
| 742 | work(0:nx) = ar |
---|
| 743 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 744 | |
---|
| 745 | DO i = 0, (nx+1)/2 |
---|
| 746 | ar(i) = work(2*i) |
---|
| 747 | ENDDO |
---|
| 748 | DO i = 1, (nx+1)/2 - 1 |
---|
| 749 | ar(nx+1-i) = work(2*i+1) |
---|
| 750 | ENDDO |
---|
| 751 | |
---|
| 752 | ELSE |
---|
| 753 | |
---|
| 754 | DO i = 0, (nx+1)/2 |
---|
| 755 | work(2*i) = ar(i) |
---|
| 756 | ENDDO |
---|
| 757 | DO i = 1, (nx+1)/2 - 1 |
---|
| 758 | work(2*i+1) = ar(nx+1-i) |
---|
| 759 | ENDDO |
---|
| 760 | work(1) = 0.0 |
---|
| 761 | work(nx+2) = 0.0 |
---|
| 762 | |
---|
| 763 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 764 | ar = work(0:nx) |
---|
| 765 | |
---|
| 766 | ENDIF |
---|
| 767 | |
---|
| 768 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 769 | |
---|
| 770 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 771 | IF ( forward_fft ) THEN |
---|
[1] | 772 | |
---|
[1106] | 773 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 774 | aux2, nau2 ) |
---|
| 775 | |
---|
| 776 | DO i = 0, (nx+1)/2 |
---|
| 777 | ar(i) = work(2*i) |
---|
| 778 | ENDDO |
---|
| 779 | DO i = 1, (nx+1)/2 - 1 |
---|
| 780 | ar(nx+1-i) = work(2*i+1) |
---|
| 781 | ENDDO |
---|
| 782 | |
---|
| 783 | ELSE |
---|
| 784 | |
---|
| 785 | DO i = 0, (nx+1)/2 |
---|
| 786 | work(2*i) = ar(i) |
---|
| 787 | ENDDO |
---|
| 788 | DO i = 1, (nx+1)/2 - 1 |
---|
| 789 | work(2*i+1) = ar(nx+1-i) |
---|
| 790 | ENDDO |
---|
| 791 | work(1) = 0.0 |
---|
| 792 | work(nx+2) = 0.0 |
---|
| 793 | |
---|
[1106] | 794 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 795 | aux4, nau2 ) |
---|
| 796 | |
---|
| 797 | DO i = 0, nx |
---|
| 798 | ar(i) = work(i) |
---|
| 799 | ENDDO |
---|
| 800 | |
---|
| 801 | ENDIF |
---|
| 802 | #elif defined( __nec ) |
---|
[1106] | 803 | IF ( forward_fft ) THEN |
---|
[1] | 804 | |
---|
| 805 | work(0:nx) = ar(0:nx) |
---|
| 806 | |
---|
[1106] | 807 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 808 | |
---|
[1] | 809 | DO i = 0, (nx+1)/2 |
---|
| 810 | ar(i) = work(2*i) |
---|
| 811 | ENDDO |
---|
| 812 | DO i = 1, (nx+1)/2 - 1 |
---|
| 813 | ar(nx+1-i) = work(2*i+1) |
---|
| 814 | ENDDO |
---|
| 815 | |
---|
| 816 | ELSE |
---|
| 817 | |
---|
| 818 | DO i = 0, (nx+1)/2 |
---|
| 819 | work(2*i) = ar(i) |
---|
| 820 | ENDDO |
---|
| 821 | DO i = 1, (nx+1)/2 - 1 |
---|
| 822 | work(2*i+1) = ar(nx+1-i) |
---|
| 823 | ENDDO |
---|
| 824 | work(1) = 0.0 |
---|
| 825 | work(nx+2) = 0.0 |
---|
| 826 | |
---|
[1106] | 827 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 828 | |
---|
| 829 | ar(0:nx) = work(0:nx) |
---|
| 830 | |
---|
| 831 | ENDIF |
---|
| 832 | #else |
---|
[254] | 833 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 834 | CALL message( 'fft_x_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 835 | #endif |
---|
| 836 | ELSE |
---|
[274] | 837 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 838 | '" not available' |
---|
[1106] | 839 | CALL message( 'fft_x_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 840 | |
---|
| 841 | ENDIF |
---|
| 842 | |
---|
[1106] | 843 | END SUBROUTINE fft_x_1d |
---|
[1] | 844 | |
---|
| 845 | SUBROUTINE fft_y( ar, direction ) |
---|
| 846 | |
---|
| 847 | !----------------------------------------------------------------------! |
---|
| 848 | ! fft_y ! |
---|
| 849 | ! ! |
---|
| 850 | ! Fourier-transformation along y-direction ! |
---|
[1106] | 851 | ! Version for 2D-decomposition ! |
---|
[1] | 852 | ! ! |
---|
| 853 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 854 | ! system-specific routines, if they are available ! |
---|
| 855 | !----------------------------------------------------------------------! |
---|
| 856 | |
---|
[1106] | 857 | USE cuda_fft_interfaces |
---|
[1153] | 858 | #if defined( __cuda_fft ) |
---|
| 859 | USE ISO_C_BINDING |
---|
| 860 | #endif |
---|
[1106] | 861 | |
---|
[1] | 862 | IMPLICIT NONE |
---|
| 863 | |
---|
| 864 | CHARACTER (LEN=*) :: direction |
---|
[1111] | 865 | INTEGER :: i, j, jshape(1), k |
---|
[1106] | 866 | |
---|
| 867 | LOGICAL :: forward_fft |
---|
| 868 | |
---|
| 869 | REAL, DIMENSION(0:ny+2) :: work |
---|
| 870 | REAL, DIMENSION(ny+2) :: work1 |
---|
| 871 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 872 | #if defined( __ibm ) |
---|
| 873 | REAL, DIMENSION(nau2) :: auy2, auy4 |
---|
| 874 | #elif defined( __nec ) |
---|
| 875 | REAL, DIMENSION(6*(ny+1)) :: work2 |
---|
| 876 | #elif defined( __cuda_fft ) |
---|
[1111] | 877 | !$acc declare create( ar_tmp ) |
---|
[1166] | 878 | COMPLEX(dpk), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: ar_tmp |
---|
[1106] | 879 | #endif |
---|
| 880 | REAL, DIMENSION(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) :: ar |
---|
| 881 | |
---|
| 882 | IF ( direction == 'forward' ) THEN |
---|
| 883 | forward_fft = .TRUE. |
---|
| 884 | ELSE |
---|
| 885 | forward_fft = .FALSE. |
---|
| 886 | ENDIF |
---|
| 887 | |
---|
| 888 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Performing the fft with singleton's software works on every system, |
---|
| 892 | !-- since it is part of the model |
---|
| 893 | ALLOCATE( cwork(0:ny) ) |
---|
| 894 | |
---|
| 895 | IF ( forward_fft ) then |
---|
| 896 | |
---|
| 897 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 898 | !$OMP DO |
---|
| 899 | DO k = nzb_y, nzt_y |
---|
| 900 | DO i = nxl_y, nxr_y |
---|
| 901 | |
---|
| 902 | DO j = 0, ny |
---|
| 903 | cwork(j) = CMPLX( ar(j,i,k) ) |
---|
| 904 | ENDDO |
---|
| 905 | |
---|
| 906 | jshape = SHAPE( cwork ) |
---|
| 907 | CALL FFTN( cwork, jshape ) |
---|
| 908 | |
---|
| 909 | DO j = 0, (ny+1)/2 |
---|
| 910 | ar(j,i,k) = REAL( cwork(j) ) |
---|
| 911 | ENDDO |
---|
| 912 | DO j = 1, (ny+1)/2 - 1 |
---|
| 913 | ar(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
| 914 | ENDDO |
---|
| 915 | |
---|
| 916 | ENDDO |
---|
| 917 | ENDDO |
---|
| 918 | !$OMP END PARALLEL |
---|
| 919 | |
---|
| 920 | ELSE |
---|
| 921 | |
---|
| 922 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 923 | !$OMP DO |
---|
| 924 | DO k = nzb_y, nzt_y |
---|
| 925 | DO i = nxl_y, nxr_y |
---|
| 926 | |
---|
| 927 | cwork(0) = CMPLX( ar(0,i,k), 0.0 ) |
---|
| 928 | DO j = 1, (ny+1)/2 - 1 |
---|
| 929 | cwork(j) = CMPLX( ar(j,i,k), -ar(ny+1-j,i,k) ) |
---|
| 930 | cwork(ny+1-j) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
| 931 | ENDDO |
---|
| 932 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2,i,k), 0.0 ) |
---|
| 933 | |
---|
| 934 | jshape = SHAPE( cwork ) |
---|
| 935 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 936 | |
---|
| 937 | DO j = 0, ny |
---|
| 938 | ar(j,i,k) = REAL( cwork(j) ) |
---|
| 939 | ENDDO |
---|
| 940 | |
---|
| 941 | ENDDO |
---|
| 942 | ENDDO |
---|
| 943 | !$OMP END PARALLEL |
---|
| 944 | |
---|
| 945 | ENDIF |
---|
| 946 | |
---|
| 947 | DEALLOCATE( cwork ) |
---|
| 948 | |
---|
| 949 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 950 | |
---|
| 951 | ! |
---|
| 952 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 953 | !-- since it is part of the model |
---|
| 954 | IF ( forward_fft ) THEN |
---|
| 955 | |
---|
| 956 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 957 | !$OMP DO |
---|
| 958 | DO k = nzb_y, nzt_y |
---|
| 959 | DO i = nxl_y, nxr_y |
---|
| 960 | |
---|
| 961 | work(0:ny) = ar(0:ny,i,k) |
---|
| 962 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 963 | |
---|
| 964 | DO j = 0, (ny+1)/2 |
---|
| 965 | ar(j,i,k) = work(2*j) |
---|
| 966 | ENDDO |
---|
| 967 | DO j = 1, (ny+1)/2 - 1 |
---|
| 968 | ar(ny+1-j,i,k) = work(2*j+1) |
---|
| 969 | ENDDO |
---|
| 970 | |
---|
| 971 | ENDDO |
---|
| 972 | ENDDO |
---|
| 973 | !$OMP END PARALLEL |
---|
| 974 | |
---|
| 975 | ELSE |
---|
| 976 | |
---|
| 977 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 978 | !$OMP DO |
---|
| 979 | DO k = nzb_y, nzt_y |
---|
| 980 | DO i = nxl_y, nxr_y |
---|
| 981 | |
---|
| 982 | DO j = 0, (ny+1)/2 |
---|
| 983 | work(2*j) = ar(j,i,k) |
---|
| 984 | ENDDO |
---|
| 985 | DO j = 1, (ny+1)/2 - 1 |
---|
| 986 | work(2*j+1) = ar(ny+1-j,i,k) |
---|
| 987 | ENDDO |
---|
| 988 | work(1) = 0.0 |
---|
| 989 | work(ny+2) = 0.0 |
---|
| 990 | |
---|
| 991 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 992 | ar(0:ny,i,k) = work(0:ny) |
---|
| 993 | |
---|
| 994 | ENDDO |
---|
| 995 | ENDDO |
---|
| 996 | !$OMP END PARALLEL |
---|
| 997 | |
---|
| 998 | ENDIF |
---|
| 999 | |
---|
[1210] | 1000 | ELSEIF ( fft_method == 'fftw' ) THEN |
---|
| 1001 | |
---|
| 1002 | #if defined( __fftw ) |
---|
| 1003 | IF ( forward_fft ) THEN |
---|
| 1004 | |
---|
| 1005 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1006 | !$OMP DO |
---|
| 1007 | DO k = nzb_y, nzt_y |
---|
| 1008 | DO i = nxl_y, nxr_y |
---|
| 1009 | |
---|
| 1010 | y_in(0:ny) = ar(0:ny,i,k) |
---|
| 1011 | CALL FFTW_EXECUTE_DFT_R2C( plan_yf, y_in, y_out ) |
---|
| 1012 | |
---|
| 1013 | DO j = 0, (ny+1)/2 |
---|
| 1014 | ar(j,i,k) = REAL( y_out(j) ) /(ny+1) |
---|
| 1015 | ENDDO |
---|
| 1016 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1017 | ar(ny+1-j,i,k) = AIMAG( y_out(j) ) /(ny+1) |
---|
| 1018 | ENDDO |
---|
| 1019 | |
---|
| 1020 | ENDDO |
---|
| 1021 | ENDDO |
---|
| 1022 | !$OMP END PARALLEL |
---|
| 1023 | |
---|
| 1024 | ELSE |
---|
| 1025 | |
---|
| 1026 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1027 | !$OMP DO |
---|
| 1028 | DO k = nzb_y, nzt_y |
---|
| 1029 | DO i = nxl_y, nxr_y |
---|
| 1030 | |
---|
| 1031 | y_out(0) = CMPLX( ar(0,i,k), 0.0 ) |
---|
| 1032 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1033 | y_out(j) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
| 1034 | ENDDO |
---|
| 1035 | y_out((ny+1)/2) = CMPLX( ar((ny+1)/2,i,k), 0.0 ) |
---|
| 1036 | |
---|
| 1037 | CALL FFTW_EXECUTE_DFT_C2R( plan_yi, y_out, y_in ) |
---|
| 1038 | ar(0:ny,i,k) = y_in(0:ny) |
---|
| 1039 | |
---|
| 1040 | ENDDO |
---|
| 1041 | ENDDO |
---|
| 1042 | !$OMP END PARALLEL |
---|
| 1043 | |
---|
| 1044 | ENDIF |
---|
| 1045 | #endif |
---|
| 1046 | |
---|
[1106] | 1047 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1048 | |
---|
| 1049 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 1050 | IF ( forward_fft) THEN |
---|
| 1051 | |
---|
| 1052 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1053 | !$OMP DO |
---|
| 1054 | DO k = nzb_y, nzt_y |
---|
| 1055 | DO i = nxl_y, nxr_y |
---|
| 1056 | |
---|
| 1057 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
| 1058 | auy2, nau2 ) |
---|
| 1059 | |
---|
| 1060 | DO j = 0, (ny+1)/2 |
---|
| 1061 | ar(j,i,k) = work(2*j) |
---|
| 1062 | ENDDO |
---|
| 1063 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1064 | ar(ny+1-j,i,k) = work(2*j+1) |
---|
| 1065 | ENDDO |
---|
| 1066 | |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDDO |
---|
| 1069 | !$OMP END PARALLEL |
---|
| 1070 | |
---|
| 1071 | ELSE |
---|
| 1072 | |
---|
| 1073 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1074 | !$OMP DO |
---|
| 1075 | DO k = nzb_y, nzt_y |
---|
| 1076 | DO i = nxl_y, nxr_y |
---|
| 1077 | |
---|
| 1078 | DO j = 0, (ny+1)/2 |
---|
| 1079 | work(2*j) = ar(j,i,k) |
---|
| 1080 | ENDDO |
---|
| 1081 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1082 | work(2*j+1) = ar(ny+1-j,i,k) |
---|
| 1083 | ENDDO |
---|
| 1084 | work(1) = 0.0 |
---|
| 1085 | work(ny+2) = 0.0 |
---|
| 1086 | |
---|
| 1087 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
| 1088 | auy4, nau2 ) |
---|
| 1089 | |
---|
| 1090 | DO j = 0, ny |
---|
| 1091 | ar(j,i,k) = work(j) |
---|
| 1092 | ENDDO |
---|
| 1093 | |
---|
| 1094 | ENDDO |
---|
| 1095 | ENDDO |
---|
| 1096 | !$OMP END PARALLEL |
---|
| 1097 | |
---|
| 1098 | ENDIF |
---|
| 1099 | #elif defined( __nec ) |
---|
| 1100 | IF ( forward_fft ) THEN |
---|
| 1101 | |
---|
| 1102 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1103 | !$OMP DO |
---|
| 1104 | DO k = nzb_y, nzt_y |
---|
| 1105 | DO i = nxl_y, nxr_y |
---|
| 1106 | |
---|
| 1107 | work(0:ny) = ar(0:ny,i,k) |
---|
| 1108 | |
---|
| 1109 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 1110 | |
---|
| 1111 | DO j = 0, (ny+1)/2 |
---|
| 1112 | ar(j,i,k) = work(2*j) |
---|
| 1113 | ENDDO |
---|
| 1114 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1115 | ar(ny+1-j,i,k) = work(2*j+1) |
---|
| 1116 | ENDDO |
---|
| 1117 | |
---|
| 1118 | ENDDO |
---|
| 1119 | ENDDO |
---|
| 1120 | !$END OMP PARALLEL |
---|
| 1121 | |
---|
| 1122 | ELSE |
---|
| 1123 | |
---|
| 1124 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1125 | !$OMP DO |
---|
| 1126 | DO k = nzb_y, nzt_y |
---|
| 1127 | DO i = nxl_y, nxr_y |
---|
| 1128 | |
---|
| 1129 | DO j = 0, (ny+1)/2 |
---|
| 1130 | work(2*j) = ar(j,i,k) |
---|
| 1131 | ENDDO |
---|
| 1132 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1133 | work(2*j+1) = ar(ny+1-j,i,k) |
---|
| 1134 | ENDDO |
---|
| 1135 | work(1) = 0.0 |
---|
| 1136 | work(ny+2) = 0.0 |
---|
| 1137 | |
---|
| 1138 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1139 | |
---|
| 1140 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1141 | |
---|
| 1142 | ENDDO |
---|
| 1143 | ENDDO |
---|
| 1144 | !$OMP END PARALLEL |
---|
| 1145 | |
---|
| 1146 | ENDIF |
---|
| 1147 | #elif defined( __cuda_fft ) |
---|
| 1148 | |
---|
| 1149 | IF ( forward_fft ) THEN |
---|
| 1150 | |
---|
[1111] | 1151 | !$acc data present( ar ) |
---|
| 1152 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
[1106] | 1153 | |
---|
[1111] | 1154 | !$acc kernels |
---|
| 1155 | !$acc loop |
---|
[1106] | 1156 | DO k = nzb_y, nzt_y |
---|
| 1157 | DO i = nxl_y, nxr_y |
---|
| 1158 | |
---|
[1111] | 1159 | !$acc loop vector( 32 ) |
---|
[1106] | 1160 | DO j = 0, (ny+1)/2 |
---|
[1111] | 1161 | ar(j,i,k) = REAL( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1162 | ENDDO |
---|
| 1163 | |
---|
[1111] | 1164 | !$acc loop vector( 32 ) |
---|
[1106] | 1165 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1166 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1167 | ENDDO |
---|
| 1168 | |
---|
| 1169 | ENDDO |
---|
| 1170 | ENDDO |
---|
[1111] | 1171 | !$acc end kernels |
---|
| 1172 | !$acc end data |
---|
[1106] | 1173 | |
---|
| 1174 | ELSE |
---|
| 1175 | |
---|
[1111] | 1176 | !$acc data present( ar ) |
---|
| 1177 | !$acc kernels |
---|
| 1178 | !$acc loop |
---|
[1106] | 1179 | DO k = nzb_y, nzt_y |
---|
| 1180 | DO i = nxl_y, nxr_y |
---|
| 1181 | |
---|
[1111] | 1182 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0 ) |
---|
[1106] | 1183 | |
---|
[1111] | 1184 | !$acc loop vector( 32 ) |
---|
[1106] | 1185 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1186 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
[1106] | 1187 | ENDDO |
---|
[1111] | 1188 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0 ) |
---|
[1106] | 1189 | |
---|
| 1190 | ENDDO |
---|
| 1191 | ENDDO |
---|
[1111] | 1192 | !$acc end kernels |
---|
[1106] | 1193 | |
---|
[1111] | 1194 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1195 | !$acc end data |
---|
[1106] | 1196 | |
---|
| 1197 | ENDIF |
---|
| 1198 | |
---|
| 1199 | #else |
---|
| 1200 | message_string = 'no system-specific fft-call available' |
---|
| 1201 | CALL message( 'fft_y', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 1202 | #endif |
---|
| 1203 | |
---|
| 1204 | ELSE |
---|
| 1205 | |
---|
| 1206 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1207 | '" not available' |
---|
| 1208 | CALL message( 'fft_y', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 1209 | |
---|
| 1210 | ENDIF |
---|
| 1211 | |
---|
| 1212 | END SUBROUTINE fft_y |
---|
| 1213 | |
---|
| 1214 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1215 | |
---|
| 1216 | !----------------------------------------------------------------------! |
---|
| 1217 | ! fft_y_1d ! |
---|
| 1218 | ! ! |
---|
| 1219 | ! Fourier-transformation along y-direction ! |
---|
| 1220 | ! Version for 1D-decomposition ! |
---|
| 1221 | ! ! |
---|
| 1222 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 1223 | ! system-specific routines, if they are available ! |
---|
| 1224 | !----------------------------------------------------------------------! |
---|
| 1225 | |
---|
| 1226 | IMPLICIT NONE |
---|
| 1227 | |
---|
| 1228 | CHARACTER (LEN=*) :: direction |
---|
[1] | 1229 | INTEGER :: j, jshape(1) |
---|
| 1230 | |
---|
[1106] | 1231 | LOGICAL :: forward_fft |
---|
| 1232 | |
---|
[1] | 1233 | REAL, DIMENSION(0:ny) :: ar |
---|
| 1234 | REAL, DIMENSION(0:ny+2) :: work |
---|
| 1235 | REAL, DIMENSION(ny+2) :: work1 |
---|
| 1236 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 1237 | #if defined( __ibm ) |
---|
| 1238 | REAL, DIMENSION(nau2) :: auy2, auy4 |
---|
| 1239 | #elif defined( __nec ) |
---|
| 1240 | REAL, DIMENSION(6*(ny+1)) :: work2 |
---|
| 1241 | #endif |
---|
| 1242 | |
---|
[1106] | 1243 | IF ( direction == 'forward' ) THEN |
---|
| 1244 | forward_fft = .TRUE. |
---|
| 1245 | ELSE |
---|
| 1246 | forward_fft = .FALSE. |
---|
| 1247 | ENDIF |
---|
| 1248 | |
---|
[1] | 1249 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1250 | |
---|
| 1251 | ! |
---|
| 1252 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1253 | !-- since it is part of the model |
---|
| 1254 | ALLOCATE( cwork(0:ny) ) |
---|
| 1255 | |
---|
[1106] | 1256 | IF ( forward_fft ) THEN |
---|
[1] | 1257 | |
---|
| 1258 | DO j = 0, ny |
---|
| 1259 | cwork(j) = CMPLX( ar(j) ) |
---|
| 1260 | ENDDO |
---|
| 1261 | |
---|
| 1262 | jshape = SHAPE( cwork ) |
---|
| 1263 | CALL FFTN( cwork, jshape ) |
---|
| 1264 | |
---|
| 1265 | DO j = 0, (ny+1)/2 |
---|
| 1266 | ar(j) = REAL( cwork(j) ) |
---|
| 1267 | ENDDO |
---|
| 1268 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1269 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1270 | ENDDO |
---|
| 1271 | |
---|
| 1272 | ELSE |
---|
| 1273 | |
---|
| 1274 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
| 1275 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1276 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j) ) |
---|
| 1277 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1278 | ENDDO |
---|
| 1279 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0 ) |
---|
| 1280 | |
---|
| 1281 | jshape = SHAPE( cwork ) |
---|
| 1282 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1283 | |
---|
| 1284 | DO j = 0, ny |
---|
| 1285 | ar(j) = REAL( cwork(j) ) |
---|
| 1286 | ENDDO |
---|
| 1287 | |
---|
| 1288 | ENDIF |
---|
| 1289 | |
---|
| 1290 | DEALLOCATE( cwork ) |
---|
| 1291 | |
---|
| 1292 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1293 | |
---|
| 1294 | ! |
---|
| 1295 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1296 | !-- since it is part of the model |
---|
[1106] | 1297 | IF ( forward_fft ) THEN |
---|
[1] | 1298 | |
---|
| 1299 | work(0:ny) = ar |
---|
| 1300 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1301 | |
---|
| 1302 | DO j = 0, (ny+1)/2 |
---|
| 1303 | ar(j) = work(2*j) |
---|
| 1304 | ENDDO |
---|
| 1305 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1306 | ar(ny+1-j) = work(2*j+1) |
---|
| 1307 | ENDDO |
---|
| 1308 | |
---|
| 1309 | ELSE |
---|
| 1310 | |
---|
| 1311 | DO j = 0, (ny+1)/2 |
---|
| 1312 | work(2*j) = ar(j) |
---|
| 1313 | ENDDO |
---|
| 1314 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1315 | work(2*j+1) = ar(ny+1-j) |
---|
| 1316 | ENDDO |
---|
| 1317 | work(1) = 0.0 |
---|
| 1318 | work(ny+2) = 0.0 |
---|
| 1319 | |
---|
| 1320 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1321 | ar = work(0:ny) |
---|
| 1322 | |
---|
| 1323 | ENDIF |
---|
| 1324 | |
---|
| 1325 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1326 | |
---|
| 1327 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 1328 | IF ( forward_fft ) THEN |
---|
[1] | 1329 | |
---|
[1106] | 1330 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1331 | auy2, nau2 ) |
---|
| 1332 | |
---|
| 1333 | DO j = 0, (ny+1)/2 |
---|
| 1334 | ar(j) = work(2*j) |
---|
| 1335 | ENDDO |
---|
| 1336 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1337 | ar(ny+1-j) = work(2*j+1) |
---|
| 1338 | ENDDO |
---|
| 1339 | |
---|
| 1340 | ELSE |
---|
| 1341 | |
---|
| 1342 | DO j = 0, (ny+1)/2 |
---|
| 1343 | work(2*j) = ar(j) |
---|
| 1344 | ENDDO |
---|
| 1345 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1346 | work(2*j+1) = ar(ny+1-j) |
---|
| 1347 | ENDDO |
---|
| 1348 | work(1) = 0.0 |
---|
| 1349 | work(ny+2) = 0.0 |
---|
| 1350 | |
---|
[1106] | 1351 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 1352 | auy4, nau2 ) |
---|
| 1353 | |
---|
| 1354 | DO j = 0, ny |
---|
| 1355 | ar(j) = work(j) |
---|
| 1356 | ENDDO |
---|
| 1357 | |
---|
| 1358 | ENDIF |
---|
| 1359 | #elif defined( __nec ) |
---|
[1106] | 1360 | IF ( forward_fft ) THEN |
---|
[1] | 1361 | |
---|
| 1362 | work(0:ny) = ar(0:ny) |
---|
| 1363 | |
---|
[1106] | 1364 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1365 | |
---|
| 1366 | DO j = 0, (ny+1)/2 |
---|
| 1367 | ar(j) = work(2*j) |
---|
| 1368 | ENDDO |
---|
| 1369 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1370 | ar(ny+1-j) = work(2*j+1) |
---|
| 1371 | ENDDO |
---|
| 1372 | |
---|
| 1373 | ELSE |
---|
| 1374 | |
---|
| 1375 | DO j = 0, (ny+1)/2 |
---|
| 1376 | work(2*j) = ar(j) |
---|
| 1377 | ENDDO |
---|
| 1378 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1379 | work(2*j+1) = ar(ny+1-j) |
---|
| 1380 | ENDDO |
---|
| 1381 | work(1) = 0.0 |
---|
| 1382 | work(ny+2) = 0.0 |
---|
| 1383 | |
---|
[1106] | 1384 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1385 | |
---|
| 1386 | ar(0:ny) = work(0:ny) |
---|
| 1387 | |
---|
| 1388 | ENDIF |
---|
| 1389 | #else |
---|
[254] | 1390 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 1391 | CALL message( 'fft_y_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[254] | 1392 | |
---|
[1] | 1393 | #endif |
---|
| 1394 | |
---|
| 1395 | ELSE |
---|
| 1396 | |
---|
[274] | 1397 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1398 | '" not available' |
---|
[1106] | 1399 | CALL message( 'fft_y_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1400 | |
---|
| 1401 | ENDIF |
---|
| 1402 | |
---|
[1106] | 1403 | END SUBROUTINE fft_y_1d |
---|
[1] | 1404 | |
---|
| 1405 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1406 | |
---|
| 1407 | !----------------------------------------------------------------------! |
---|
| 1408 | ! fft_x_m ! |
---|
| 1409 | ! ! |
---|
| 1410 | ! Fourier-transformation along x-direction ! |
---|
| 1411 | ! Version for 1d domain decomposition ! |
---|
| 1412 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1413 | ! or Temperton-algorithm ! |
---|
| 1414 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1415 | ! ! |
---|
| 1416 | !----------------------------------------------------------------------! |
---|
| 1417 | |
---|
| 1418 | IMPLICIT NONE |
---|
| 1419 | |
---|
| 1420 | CHARACTER (LEN=*) :: direction |
---|
[1092] | 1421 | INTEGER :: i, k, siza |
---|
[1] | 1422 | |
---|
| 1423 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 1424 | REAL, DIMENSION(0:nx+3,nz+1) :: ai |
---|
| 1425 | REAL, DIMENSION(6*(nx+4),nz+1) :: work1 |
---|
| 1426 | #if defined( __nec ) |
---|
[1092] | 1427 | INTEGER :: sizw |
---|
[1] | 1428 | COMPLEX, DIMENSION((nx+4)/2+1,nz+1) :: work |
---|
| 1429 | #endif |
---|
| 1430 | |
---|
| 1431 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1432 | |
---|
| 1433 | siza = SIZE( ai, 1 ) |
---|
| 1434 | |
---|
| 1435 | IF ( direction == 'forward') THEN |
---|
| 1436 | |
---|
| 1437 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1438 | ai(nx+1:,:) = 0.0 |
---|
| 1439 | |
---|
| 1440 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1441 | |
---|
| 1442 | DO k = 1, nz |
---|
| 1443 | DO i = 0, (nx+1)/2 |
---|
| 1444 | ar(i,k) = ai(2*i,k) |
---|
| 1445 | ENDDO |
---|
| 1446 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1447 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1448 | ENDDO |
---|
| 1449 | ENDDO |
---|
| 1450 | |
---|
| 1451 | ELSE |
---|
| 1452 | |
---|
| 1453 | DO k = 1, nz |
---|
| 1454 | DO i = 0, (nx+1)/2 |
---|
| 1455 | ai(2*i,k) = ar(i,k) |
---|
| 1456 | ENDDO |
---|
| 1457 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1458 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1459 | ENDDO |
---|
| 1460 | ai(1,k) = 0.0 |
---|
| 1461 | ai(nx+2,k) = 0.0 |
---|
| 1462 | ENDDO |
---|
| 1463 | |
---|
| 1464 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1465 | |
---|
| 1466 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1467 | |
---|
| 1468 | ENDIF |
---|
| 1469 | |
---|
| 1470 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1471 | |
---|
| 1472 | #if defined( __nec ) |
---|
| 1473 | siza = SIZE( ai, 1 ) |
---|
| 1474 | sizw = SIZE( work, 1 ) |
---|
| 1475 | |
---|
| 1476 | IF ( direction == 'forward') THEN |
---|
| 1477 | |
---|
| 1478 | ! |
---|
| 1479 | !-- Tables are initialized once more. This call should not be |
---|
| 1480 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1481 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1482 | trig_xf, work1, 0 ) |
---|
| 1483 | |
---|
| 1484 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1485 | IF ( nz1 > nz ) THEN |
---|
| 1486 | ai(:,nz1) = 0.0 |
---|
| 1487 | ENDIF |
---|
| 1488 | |
---|
[1106] | 1489 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1490 | trig_xf, work1, 0 ) |
---|
| 1491 | |
---|
| 1492 | DO k = 1, nz |
---|
| 1493 | DO i = 0, (nx+1)/2 |
---|
| 1494 | ar(i,k) = REAL( work(i+1,k) ) |
---|
| 1495 | ENDDO |
---|
| 1496 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1497 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1498 | ENDDO |
---|
| 1499 | ENDDO |
---|
| 1500 | |
---|
| 1501 | ELSE |
---|
| 1502 | |
---|
| 1503 | ! |
---|
| 1504 | !-- Tables are initialized once more. This call should not be |
---|
| 1505 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1506 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1507 | trig_xb, work1, 0 ) |
---|
| 1508 | |
---|
| 1509 | IF ( nz1 > nz ) THEN |
---|
| 1510 | work(:,nz1) = 0.0 |
---|
| 1511 | ENDIF |
---|
| 1512 | DO k = 1, nz |
---|
| 1513 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
| 1514 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1515 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k) ) |
---|
| 1516 | ENDDO |
---|
| 1517 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0 ) |
---|
| 1518 | ENDDO |
---|
| 1519 | |
---|
[1106] | 1520 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1521 | trig_xb, work1, 0 ) |
---|
| 1522 | |
---|
| 1523 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1524 | |
---|
| 1525 | ENDIF |
---|
| 1526 | |
---|
| 1527 | #else |
---|
[254] | 1528 | message_string = 'no system-specific fft-call available' |
---|
| 1529 | CALL message( 'fft_x_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1530 | #endif |
---|
| 1531 | |
---|
| 1532 | ELSE |
---|
| 1533 | |
---|
[274] | 1534 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1535 | '" not available' |
---|
[254] | 1536 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1537 | |
---|
| 1538 | ENDIF |
---|
| 1539 | |
---|
| 1540 | END SUBROUTINE fft_x_m |
---|
| 1541 | |
---|
| 1542 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1543 | |
---|
| 1544 | !----------------------------------------------------------------------! |
---|
| 1545 | ! fft_y_m ! |
---|
| 1546 | ! ! |
---|
| 1547 | ! Fourier-transformation along y-direction ! |
---|
| 1548 | ! Version for 1d domain decomposition ! |
---|
| 1549 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1550 | ! or Temperton-algorithm ! |
---|
| 1551 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1552 | ! ! |
---|
| 1553 | !----------------------------------------------------------------------! |
---|
| 1554 | |
---|
| 1555 | IMPLICIT NONE |
---|
| 1556 | |
---|
| 1557 | CHARACTER (LEN=*) :: direction |
---|
[1092] | 1558 | INTEGER :: j, k, ny1, siza |
---|
[1] | 1559 | |
---|
| 1560 | REAL, DIMENSION(0:ny1,nz) :: ar |
---|
| 1561 | REAL, DIMENSION(0:ny+3,nz+1) :: ai |
---|
| 1562 | REAL, DIMENSION(6*(ny+4),nz+1) :: work1 |
---|
| 1563 | #if defined( __nec ) |
---|
[1092] | 1564 | INTEGER :: sizw |
---|
[1] | 1565 | COMPLEX, DIMENSION((ny+4)/2+1,nz+1) :: work |
---|
| 1566 | #endif |
---|
| 1567 | |
---|
| 1568 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1569 | |
---|
| 1570 | siza = SIZE( ai, 1 ) |
---|
| 1571 | |
---|
| 1572 | IF ( direction == 'forward') THEN |
---|
| 1573 | |
---|
| 1574 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1575 | ai(ny+1:,:) = 0.0 |
---|
| 1576 | |
---|
| 1577 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1578 | |
---|
| 1579 | DO k = 1, nz |
---|
| 1580 | DO j = 0, (ny+1)/2 |
---|
| 1581 | ar(j,k) = ai(2*j,k) |
---|
| 1582 | ENDDO |
---|
| 1583 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1584 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1585 | ENDDO |
---|
| 1586 | ENDDO |
---|
| 1587 | |
---|
| 1588 | ELSE |
---|
| 1589 | |
---|
| 1590 | DO k = 1, nz |
---|
| 1591 | DO j = 0, (ny+1)/2 |
---|
| 1592 | ai(2*j,k) = ar(j,k) |
---|
| 1593 | ENDDO |
---|
| 1594 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1595 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1596 | ENDDO |
---|
| 1597 | ai(1,k) = 0.0 |
---|
| 1598 | ai(ny+2,k) = 0.0 |
---|
| 1599 | ENDDO |
---|
| 1600 | |
---|
| 1601 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1602 | |
---|
| 1603 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1604 | |
---|
| 1605 | ENDIF |
---|
| 1606 | |
---|
| 1607 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1608 | |
---|
| 1609 | #if defined( __nec ) |
---|
| 1610 | siza = SIZE( ai, 1 ) |
---|
| 1611 | sizw = SIZE( work, 1 ) |
---|
| 1612 | |
---|
| 1613 | IF ( direction == 'forward') THEN |
---|
| 1614 | |
---|
| 1615 | ! |
---|
| 1616 | !-- Tables are initialized once more. This call should not be |
---|
| 1617 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1618 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1619 | trig_yf, work1, 0 ) |
---|
| 1620 | |
---|
| 1621 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1622 | IF ( nz1 > nz ) THEN |
---|
| 1623 | ai(:,nz1) = 0.0 |
---|
| 1624 | ENDIF |
---|
| 1625 | |
---|
[1106] | 1626 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1627 | trig_yf, work1, 0 ) |
---|
| 1628 | |
---|
| 1629 | DO k = 1, nz |
---|
| 1630 | DO j = 0, (ny+1)/2 |
---|
| 1631 | ar(j,k) = REAL( work(j+1,k) ) |
---|
| 1632 | ENDDO |
---|
| 1633 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1634 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1635 | ENDDO |
---|
| 1636 | ENDDO |
---|
| 1637 | |
---|
| 1638 | ELSE |
---|
| 1639 | |
---|
| 1640 | ! |
---|
| 1641 | !-- Tables are initialized once more. This call should not be |
---|
| 1642 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1643 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1644 | trig_yb, work1, 0 ) |
---|
| 1645 | |
---|
| 1646 | IF ( nz1 > nz ) THEN |
---|
| 1647 | work(:,nz1) = 0.0 |
---|
| 1648 | ENDIF |
---|
| 1649 | DO k = 1, nz |
---|
| 1650 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
| 1651 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1652 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k) ) |
---|
| 1653 | ENDDO |
---|
| 1654 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0 ) |
---|
| 1655 | ENDDO |
---|
| 1656 | |
---|
[1106] | 1657 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1658 | trig_yb, work1, 0 ) |
---|
| 1659 | |
---|
| 1660 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1661 | |
---|
| 1662 | ENDIF |
---|
| 1663 | |
---|
| 1664 | #else |
---|
[254] | 1665 | message_string = 'no system-specific fft-call available' |
---|
| 1666 | CALL message( 'fft_y_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1667 | #endif |
---|
| 1668 | |
---|
| 1669 | ELSE |
---|
[254] | 1670 | |
---|
[274] | 1671 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1672 | '" not available' |
---|
[254] | 1673 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1674 | |
---|
| 1675 | ENDIF |
---|
| 1676 | |
---|
| 1677 | END SUBROUTINE fft_y_m |
---|
| 1678 | |
---|
[1106] | 1679 | |
---|
[1] | 1680 | END MODULE fft_xy |
---|