[1] | 1 | MODULE fft_xy |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
| 22 | ! |
---|
[1167] | 23 | ! |
---|
[1] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
[3] | 26 | ! $Id: fft_xy.f90 1167 2013-05-24 14:03:34Z witha $ |
---|
[392] | 27 | ! |
---|
[1167] | 28 | ! 1166 2013-05-24 13:55:44Z raasch |
---|
| 29 | ! C_DOUBLE/COMPLEX reset to dpk |
---|
| 30 | ! |
---|
[1154] | 31 | ! 1153 2013-05-10 14:33:08Z raasch |
---|
| 32 | ! code adjustment of data types for CUDA fft required by PGI 12.3 / CUDA 5.0 |
---|
| 33 | ! |
---|
[1112] | 34 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 35 | ! further openACC statements added, CUDA branch completely runs on GPU |
---|
| 36 | ! bugfix: CUDA fft plans adjusted for domain decomposition (before they always |
---|
| 37 | ! used total domain) |
---|
| 38 | ! |
---|
[1107] | 39 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 40 | ! CUDA fft added |
---|
| 41 | ! array_kind renamed precision_kind, 3D- instead of 1D-loops in fft_x and fft_y |
---|
| 42 | ! old fft_x, fft_y become fft_x_1d, fft_y_1d and are used for 1D-decomposition |
---|
| 43 | ! |
---|
[1093] | 44 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 45 | ! variable sizw declared for NEC case only |
---|
| 46 | ! |
---|
[1037] | 47 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 48 | ! code put under GPL (PALM 3.9) |
---|
| 49 | ! |
---|
[392] | 50 | ! 274 2009-03-26 15:11:21Z heinze |
---|
| 51 | ! Output of messages replaced by message handling routine. |
---|
| 52 | ! |
---|
| 53 | ! Feb. 2007 |
---|
[3] | 54 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 55 | ! |
---|
[1] | 56 | ! Revision 1.4 2006/03/28 12:27:09 raasch |
---|
| 57 | ! Stop when system-specific fft is selected on NEC. For unknown reasons this |
---|
| 58 | ! causes a program abort during first allocation in init_grid. |
---|
| 59 | ! |
---|
| 60 | ! Revision 1.2 2004/04/30 11:44:27 raasch |
---|
| 61 | ! Module renamed from fft_for_1d_decomp to fft_xy, 1d-routines renamed to |
---|
| 62 | ! fft_x and fft_y, |
---|
| 63 | ! function FFT replaced by subroutine FFTN due to problems with 64-bit |
---|
| 64 | ! mode on ibm, |
---|
| 65 | ! shape of array cwork is explicitly stored in ishape/jshape and handled |
---|
| 66 | ! to routine FFTN instead of shape-function (due to compiler error on |
---|
| 67 | ! decalpha), |
---|
| 68 | ! non vectorized FFT for nec included |
---|
| 69 | ! |
---|
| 70 | ! Revision 1.1 2002/06/11 13:00:49 raasch |
---|
| 71 | ! Initial revision |
---|
| 72 | ! |
---|
| 73 | ! |
---|
| 74 | ! Description: |
---|
| 75 | ! ------------ |
---|
| 76 | ! Fast Fourier transformation along x and y for 1d domain decomposition along x. |
---|
| 77 | ! Original version: Klaus Ketelsen (May 2002) |
---|
| 78 | !------------------------------------------------------------------------------! |
---|
| 79 | |
---|
| 80 | USE control_parameters |
---|
| 81 | USE indices |
---|
[1153] | 82 | #if defined( __cuda_fft ) |
---|
| 83 | USE ISO_C_BINDING |
---|
| 84 | #endif |
---|
[1106] | 85 | USE precision_kind |
---|
[1] | 86 | USE singleton |
---|
| 87 | USE temperton_fft |
---|
[1106] | 88 | USE transpose_indices |
---|
[1] | 89 | |
---|
| 90 | IMPLICIT NONE |
---|
| 91 | |
---|
| 92 | PRIVATE |
---|
[1106] | 93 | PUBLIC fft_x, fft_x_1d, fft_y, fft_y_1d, fft_init, fft_x_m, fft_y_m |
---|
[1] | 94 | |
---|
| 95 | INTEGER, DIMENSION(:), ALLOCATABLE, SAVE :: ifax_x, ifax_y |
---|
| 96 | |
---|
| 97 | LOGICAL, SAVE :: init_fft = .FALSE. |
---|
| 98 | |
---|
[1106] | 99 | REAL, SAVE :: dnx, dny, sqr_dnx, sqr_dny |
---|
[1] | 100 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: trigs_x, trigs_y |
---|
| 101 | |
---|
| 102 | #if defined( __ibm ) |
---|
| 103 | INTEGER, PARAMETER :: nau1 = 20000, nau2 = 22000 |
---|
| 104 | ! |
---|
| 105 | !-- The following working arrays contain tables and have to be "save" and |
---|
| 106 | !-- shared in OpenMP sense |
---|
| 107 | REAL, DIMENSION(nau1), SAVE :: aux1, auy1, aux3, auy3 |
---|
| 108 | #elif defined( __nec ) |
---|
| 109 | INTEGER, SAVE :: nz1 |
---|
| 110 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: trig_xb, trig_xf, trig_yb, & |
---|
| 111 | trig_yf |
---|
[1106] | 112 | #elif defined( __cuda_fft ) |
---|
[1153] | 113 | INTEGER(C_INT), SAVE :: plan_xf, plan_xi, plan_yf, plan_yi |
---|
| 114 | INTEGER, SAVE :: total_points_x_transpo, total_points_y_transpo |
---|
[1] | 115 | #endif |
---|
| 116 | |
---|
| 117 | ! |
---|
| 118 | !-- Public interfaces |
---|
| 119 | INTERFACE fft_init |
---|
| 120 | MODULE PROCEDURE fft_init |
---|
| 121 | END INTERFACE fft_init |
---|
| 122 | |
---|
| 123 | INTERFACE fft_x |
---|
| 124 | MODULE PROCEDURE fft_x |
---|
| 125 | END INTERFACE fft_x |
---|
| 126 | |
---|
[1106] | 127 | INTERFACE fft_x_1d |
---|
| 128 | MODULE PROCEDURE fft_x_1d |
---|
| 129 | END INTERFACE fft_x_1d |
---|
| 130 | |
---|
[1] | 131 | INTERFACE fft_y |
---|
| 132 | MODULE PROCEDURE fft_y |
---|
| 133 | END INTERFACE fft_y |
---|
| 134 | |
---|
[1106] | 135 | INTERFACE fft_y_1d |
---|
| 136 | MODULE PROCEDURE fft_y_1d |
---|
| 137 | END INTERFACE fft_y_1d |
---|
| 138 | |
---|
[1] | 139 | INTERFACE fft_x_m |
---|
| 140 | MODULE PROCEDURE fft_x_m |
---|
| 141 | END INTERFACE fft_x_m |
---|
| 142 | |
---|
| 143 | INTERFACE fft_y_m |
---|
| 144 | MODULE PROCEDURE fft_y_m |
---|
| 145 | END INTERFACE fft_y_m |
---|
| 146 | |
---|
| 147 | CONTAINS |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | SUBROUTINE fft_init |
---|
| 151 | |
---|
[1106] | 152 | USE cuda_fft_interfaces |
---|
| 153 | |
---|
[1] | 154 | IMPLICIT NONE |
---|
| 155 | |
---|
| 156 | ! |
---|
| 157 | !-- The following temporary working arrays have to be on stack or private |
---|
| 158 | !-- in OpenMP sense |
---|
| 159 | #if defined( __ibm ) |
---|
| 160 | REAL, DIMENSION(0:nx+2) :: workx |
---|
| 161 | REAL, DIMENSION(0:ny+2) :: worky |
---|
| 162 | REAL, DIMENSION(nau2) :: aux2, auy2, aux4, auy4 |
---|
| 163 | #elif defined( __nec ) |
---|
| 164 | REAL, DIMENSION(0:nx+3,nz+1) :: work_x |
---|
| 165 | REAL, DIMENSION(0:ny+3,nz+1) :: work_y |
---|
| 166 | REAL, DIMENSION(6*(nx+3),nz+1) :: workx |
---|
| 167 | REAL, DIMENSION(6*(ny+3),nz+1) :: worky |
---|
| 168 | #endif |
---|
| 169 | |
---|
| 170 | ! |
---|
| 171 | !-- Return, if already called |
---|
| 172 | IF ( init_fft ) THEN |
---|
| 173 | RETURN |
---|
| 174 | ELSE |
---|
| 175 | init_fft = .TRUE. |
---|
| 176 | ENDIF |
---|
| 177 | |
---|
| 178 | IF ( fft_method == 'system-specific' ) THEN |
---|
| 179 | |
---|
[1106] | 180 | dnx = 1.0 / ( nx + 1.0 ) |
---|
| 181 | dny = 1.0 / ( ny + 1.0 ) |
---|
| 182 | sqr_dnx = SQRT( dnx ) |
---|
| 183 | sqr_dny = SQRT( dny ) |
---|
[1] | 184 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 185 | ! |
---|
| 186 | !-- Initialize tables for fft along x |
---|
[1106] | 187 | CALL DRCFT( 1, workx, 1, workx, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 188 | aux2, nau2 ) |
---|
[1106] | 189 | CALL DCRFT( 1, workx, 1, workx, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 190 | aux4, nau2 ) |
---|
| 191 | ! |
---|
| 192 | !-- Initialize tables for fft along y |
---|
[1106] | 193 | CALL DRCFT( 1, worky, 1, worky, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 194 | auy2, nau2 ) |
---|
[1106] | 195 | CALL DCRFT( 1, worky, 1, worky, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 196 | auy4, nau2 ) |
---|
| 197 | #elif defined( __nec ) |
---|
[254] | 198 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 199 | '" currently does not work on NEC' |
---|
| 200 | CALL message( 'fft_init', 'PA0187', 1, 2, 0, 6, 0 ) |
---|
[1] | 201 | |
---|
| 202 | ALLOCATE( trig_xb(2*(nx+1)), trig_xf(2*(nx+1)), & |
---|
| 203 | trig_yb(2*(ny+1)), trig_yf(2*(ny+1)) ) |
---|
| 204 | |
---|
| 205 | work_x = 0.0 |
---|
| 206 | work_y = 0.0 |
---|
| 207 | nz1 = nz + MOD( nz+1, 2 ) ! odd nz slows down fft significantly |
---|
| 208 | ! when using the NEC ffts |
---|
| 209 | |
---|
| 210 | ! |
---|
| 211 | !-- Initialize tables for fft along x (non-vector and vector case (M)) |
---|
[1106] | 212 | CALL DZFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xf, workx, 0 ) |
---|
| 213 | CALL ZDFFT( 0, nx+1, sqr_dnx, work_x, work_x, trig_xb, workx, 0 ) |
---|
| 214 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 215 | trig_xf, workx, 0 ) |
---|
[1106] | 216 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work_x, nx+4, work_x, nx+4, & |
---|
[1] | 217 | trig_xb, workx, 0 ) |
---|
| 218 | ! |
---|
| 219 | !-- Initialize tables for fft along y (non-vector and vector case (M)) |
---|
[1106] | 220 | CALL DZFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yf, worky, 0 ) |
---|
| 221 | CALL ZDFFT( 0, ny+1, sqr_dny, work_y, work_y, trig_yb, worky, 0 ) |
---|
| 222 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 223 | trig_yf, worky, 0 ) |
---|
[1106] | 224 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work_y, ny+4, work_y, ny+4, & |
---|
[1] | 225 | trig_yb, worky, 0 ) |
---|
[1106] | 226 | #elif defined( __cuda_fft ) |
---|
| 227 | total_points_x_transpo = (nx+1) * (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) |
---|
| 228 | total_points_y_transpo = (ny+1) * (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) |
---|
[1111] | 229 | CALL CUFFTPLAN1D( plan_xf, nx+1, CUFFT_D2Z, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 230 | CALL CUFFTPLAN1D( plan_xi, nx+1, CUFFT_Z2D, (nyn_x-nys_x+1) * (nzt_x-nzb_x+1) ) |
---|
| 231 | CALL CUFFTPLAN1D( plan_yf, ny+1, CUFFT_D2Z, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
| 232 | CALL CUFFTPLAN1D( plan_yi, ny+1, CUFFT_Z2D, (nxr_y-nxl_y+1) * (nzt_y-nzb_y+1) ) |
---|
[1] | 233 | #else |
---|
[254] | 234 | message_string = 'no system-specific fft-call available' |
---|
| 235 | CALL message( 'fft_init', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 236 | #endif |
---|
| 237 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 238 | ! |
---|
| 239 | !-- Temperton-algorithm |
---|
| 240 | !-- Initialize tables for fft along x and y |
---|
| 241 | ALLOCATE( ifax_x(nx+1), ifax_y(ny+1), trigs_x(nx+1), trigs_y(ny+1) ) |
---|
| 242 | |
---|
| 243 | CALL set99( trigs_x, ifax_x, nx+1 ) |
---|
| 244 | CALL set99( trigs_y, ifax_y, ny+1 ) |
---|
| 245 | |
---|
| 246 | ELSEIF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 247 | |
---|
| 248 | CONTINUE |
---|
| 249 | |
---|
| 250 | ELSE |
---|
| 251 | |
---|
[254] | 252 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 253 | '" not available' |
---|
| 254 | CALL message( 'fft_init', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 255 | ENDIF |
---|
| 256 | |
---|
| 257 | END SUBROUTINE fft_init |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | SUBROUTINE fft_x( ar, direction ) |
---|
| 261 | |
---|
| 262 | !----------------------------------------------------------------------! |
---|
| 263 | ! fft_x ! |
---|
| 264 | ! ! |
---|
| 265 | ! Fourier-transformation along x-direction ! |
---|
[1106] | 266 | ! Version for 2D-decomposition ! |
---|
[1] | 267 | ! ! |
---|
| 268 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 269 | ! system-specific routines, if they are available ! |
---|
| 270 | !----------------------------------------------------------------------! |
---|
| 271 | |
---|
[1106] | 272 | USE cuda_fft_interfaces |
---|
[1153] | 273 | #if defined( __cuda_fft ) |
---|
| 274 | USE ISO_C_BINDING |
---|
| 275 | #endif |
---|
[1106] | 276 | |
---|
[1] | 277 | IMPLICIT NONE |
---|
| 278 | |
---|
| 279 | CHARACTER (LEN=*) :: direction |
---|
[1111] | 280 | INTEGER :: i, ishape(1), j, k |
---|
[1106] | 281 | |
---|
| 282 | LOGICAL :: forward_fft |
---|
| 283 | |
---|
| 284 | REAL, DIMENSION(0:nx+2) :: work |
---|
| 285 | REAL, DIMENSION(nx+2) :: work1 |
---|
| 286 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 287 | #if defined( __ibm ) |
---|
| 288 | REAL, DIMENSION(nau2) :: aux2, aux4 |
---|
| 289 | #elif defined( __nec ) |
---|
| 290 | REAL, DIMENSION(6*(nx+1)) :: work2 |
---|
| 291 | #elif defined( __cuda_fft ) |
---|
[1111] | 292 | !$acc declare create( ar_tmp ) |
---|
[1166] | 293 | COMPLEX(dpk), DIMENSION(0:(nx+1)/2,nys_x:nyn_x,nzb_x:nzt_x) :: ar_tmp |
---|
[1106] | 294 | #endif |
---|
| 295 | REAL, DIMENSION(0:nx,nys_x:nyn_x,nzb_x:nzt_x) :: ar |
---|
| 296 | |
---|
| 297 | IF ( direction == 'forward' ) THEN |
---|
| 298 | forward_fft = .TRUE. |
---|
| 299 | ELSE |
---|
| 300 | forward_fft = .FALSE. |
---|
| 301 | ENDIF |
---|
| 302 | |
---|
| 303 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 304 | |
---|
| 305 | ! |
---|
| 306 | !-- Performing the fft with singleton's software works on every system, |
---|
| 307 | !-- since it is part of the model |
---|
| 308 | ALLOCATE( cwork(0:nx) ) |
---|
| 309 | |
---|
| 310 | IF ( forward_fft ) then |
---|
| 311 | |
---|
| 312 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 313 | !$OMP DO |
---|
| 314 | DO k = nzb_x, nzt_x |
---|
| 315 | DO j = nys_x, nyn_x |
---|
| 316 | |
---|
| 317 | DO i = 0, nx |
---|
| 318 | cwork(i) = CMPLX( ar(i,j,k) ) |
---|
| 319 | ENDDO |
---|
| 320 | |
---|
| 321 | ishape = SHAPE( cwork ) |
---|
| 322 | CALL FFTN( cwork, ishape ) |
---|
| 323 | |
---|
| 324 | DO i = 0, (nx+1)/2 |
---|
| 325 | ar(i,j,k) = REAL( cwork(i) ) |
---|
| 326 | ENDDO |
---|
| 327 | DO i = 1, (nx+1)/2 - 1 |
---|
| 328 | ar(nx+1-i,j,k) = -AIMAG( cwork(i) ) |
---|
| 329 | ENDDO |
---|
| 330 | |
---|
| 331 | ENDDO |
---|
| 332 | ENDDO |
---|
| 333 | !$OMP END PARALLEL |
---|
| 334 | |
---|
| 335 | ELSE |
---|
| 336 | |
---|
| 337 | !$OMP PARALLEL PRIVATE ( cwork, i, ishape, j, k ) |
---|
| 338 | !$OMP DO |
---|
| 339 | DO k = nzb_x, nzt_x |
---|
| 340 | DO j = nys_x, nyn_x |
---|
| 341 | |
---|
| 342 | cwork(0) = CMPLX( ar(0,j,k), 0.0 ) |
---|
| 343 | DO i = 1, (nx+1)/2 - 1 |
---|
| 344 | cwork(i) = CMPLX( ar(i,j,k), -ar(nx+1-i,j,k) ) |
---|
| 345 | cwork(nx+1-i) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
| 346 | ENDDO |
---|
| 347 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
| 348 | |
---|
| 349 | ishape = SHAPE( cwork ) |
---|
| 350 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 351 | |
---|
| 352 | DO i = 0, nx |
---|
| 353 | ar(i,j,k) = REAL( cwork(i) ) |
---|
| 354 | ENDDO |
---|
| 355 | |
---|
| 356 | ENDDO |
---|
| 357 | ENDDO |
---|
| 358 | !$OMP END PARALLEL |
---|
| 359 | |
---|
| 360 | ENDIF |
---|
| 361 | |
---|
| 362 | DEALLOCATE( cwork ) |
---|
| 363 | |
---|
| 364 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 365 | |
---|
| 366 | ! |
---|
| 367 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 368 | !-- since it is part of the model |
---|
| 369 | IF ( forward_fft ) THEN |
---|
| 370 | |
---|
| 371 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 372 | !$OMP DO |
---|
| 373 | DO k = nzb_x, nzt_x |
---|
| 374 | DO j = nys_x, nyn_x |
---|
| 375 | |
---|
| 376 | work(0:nx) = ar(0:nx,j,k) |
---|
| 377 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 378 | |
---|
| 379 | DO i = 0, (nx+1)/2 |
---|
| 380 | ar(i,j,k) = work(2*i) |
---|
| 381 | ENDDO |
---|
| 382 | DO i = 1, (nx+1)/2 - 1 |
---|
| 383 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 384 | ENDDO |
---|
| 385 | |
---|
| 386 | ENDDO |
---|
| 387 | ENDDO |
---|
| 388 | !$OMP END PARALLEL |
---|
| 389 | |
---|
| 390 | ELSE |
---|
| 391 | |
---|
| 392 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 393 | !$OMP DO |
---|
| 394 | DO k = nzb_x, nzt_x |
---|
| 395 | DO j = nys_x, nyn_x |
---|
| 396 | |
---|
| 397 | DO i = 0, (nx+1)/2 |
---|
| 398 | work(2*i) = ar(i,j,k) |
---|
| 399 | ENDDO |
---|
| 400 | DO i = 1, (nx+1)/2 - 1 |
---|
| 401 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 402 | ENDDO |
---|
| 403 | work(1) = 0.0 |
---|
| 404 | work(nx+2) = 0.0 |
---|
| 405 | |
---|
| 406 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 407 | ar(0:nx,j,k) = work(0:nx) |
---|
| 408 | |
---|
| 409 | ENDDO |
---|
| 410 | ENDDO |
---|
| 411 | !$OMP END PARALLEL |
---|
| 412 | |
---|
| 413 | ENDIF |
---|
| 414 | |
---|
| 415 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 416 | |
---|
| 417 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 418 | IF ( forward_fft ) THEN |
---|
| 419 | |
---|
| 420 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 421 | !$OMP DO |
---|
| 422 | DO k = nzb_x, nzt_x |
---|
| 423 | DO j = nys_x, nyn_x |
---|
| 424 | |
---|
| 425 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
| 426 | aux2, nau2 ) |
---|
| 427 | |
---|
| 428 | DO i = 0, (nx+1)/2 |
---|
| 429 | ar(i,j,k) = work(2*i) |
---|
| 430 | ENDDO |
---|
| 431 | DO i = 1, (nx+1)/2 - 1 |
---|
| 432 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 433 | ENDDO |
---|
| 434 | |
---|
| 435 | ENDDO |
---|
| 436 | ENDDO |
---|
| 437 | !$OMP END PARALLEL |
---|
| 438 | |
---|
| 439 | ELSE |
---|
| 440 | |
---|
| 441 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 442 | !$OMP DO |
---|
| 443 | DO k = nzb_x, nzt_x |
---|
| 444 | DO j = nys_x, nyn_x |
---|
| 445 | |
---|
| 446 | DO i = 0, (nx+1)/2 |
---|
| 447 | work(2*i) = ar(i,j,k) |
---|
| 448 | ENDDO |
---|
| 449 | DO i = 1, (nx+1)/2 - 1 |
---|
| 450 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 451 | ENDDO |
---|
| 452 | work(1) = 0.0 |
---|
| 453 | work(nx+2) = 0.0 |
---|
| 454 | |
---|
| 455 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
| 456 | aux4, nau2 ) |
---|
| 457 | |
---|
| 458 | DO i = 0, nx |
---|
| 459 | ar(i,j,k) = work(i) |
---|
| 460 | ENDDO |
---|
| 461 | |
---|
| 462 | ENDDO |
---|
| 463 | ENDDO |
---|
| 464 | !$OMP END PARALLEL |
---|
| 465 | |
---|
| 466 | ENDIF |
---|
| 467 | |
---|
| 468 | #elif defined( __nec ) |
---|
| 469 | |
---|
| 470 | IF ( forward_fft ) THEN |
---|
| 471 | |
---|
| 472 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 473 | !$OMP DO |
---|
| 474 | DO k = nzb_x, nzt_x |
---|
| 475 | DO j = nys_x, nyn_x |
---|
| 476 | |
---|
| 477 | work(0:nx) = ar(0:nx,j,k) |
---|
| 478 | |
---|
| 479 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 480 | |
---|
| 481 | DO i = 0, (nx+1)/2 |
---|
| 482 | ar(i,j,k) = work(2*i) |
---|
| 483 | ENDDO |
---|
| 484 | DO i = 1, (nx+1)/2 - 1 |
---|
| 485 | ar(nx+1-i,j,k) = work(2*i+1) |
---|
| 486 | ENDDO |
---|
| 487 | |
---|
| 488 | ENDDO |
---|
| 489 | ENDDO |
---|
| 490 | !$END OMP PARALLEL |
---|
| 491 | |
---|
| 492 | ELSE |
---|
| 493 | |
---|
| 494 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 495 | !$OMP DO |
---|
| 496 | DO k = nzb_x, nzt_x |
---|
| 497 | DO j = nys_x, nyn_x |
---|
| 498 | |
---|
| 499 | DO i = 0, (nx+1)/2 |
---|
| 500 | work(2*i) = ar(i,j,k) |
---|
| 501 | ENDDO |
---|
| 502 | DO i = 1, (nx+1)/2 - 1 |
---|
| 503 | work(2*i+1) = ar(nx+1-i,j,k) |
---|
| 504 | ENDDO |
---|
| 505 | work(1) = 0.0 |
---|
| 506 | work(nx+2) = 0.0 |
---|
| 507 | |
---|
| 508 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
| 509 | |
---|
| 510 | ar(0:nx,j,k) = work(0:nx) |
---|
| 511 | |
---|
| 512 | ENDDO |
---|
| 513 | ENDDO |
---|
| 514 | !$OMP END PARALLEL |
---|
| 515 | |
---|
| 516 | ENDIF |
---|
| 517 | |
---|
| 518 | #elif defined( __cuda_fft ) |
---|
| 519 | |
---|
| 520 | IF ( forward_fft ) THEN |
---|
| 521 | |
---|
[1111] | 522 | !$acc data present( ar ) |
---|
| 523 | CALL CUFFTEXECD2Z( plan_xf, ar, ar_tmp ) |
---|
[1106] | 524 | |
---|
[1111] | 525 | !$acc kernels |
---|
| 526 | !$acc loop |
---|
[1106] | 527 | DO k = nzb_x, nzt_x |
---|
| 528 | DO j = nys_x, nyn_x |
---|
| 529 | |
---|
[1111] | 530 | !$acc loop vector( 32 ) |
---|
[1106] | 531 | DO i = 0, (nx+1)/2 |
---|
[1111] | 532 | ar(i,j,k) = REAL( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 533 | ENDDO |
---|
| 534 | |
---|
[1111] | 535 | !$acc loop vector( 32 ) |
---|
[1106] | 536 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 537 | ar(nx+1-i,j,k) = AIMAG( ar_tmp(i,j,k) ) * dnx |
---|
[1106] | 538 | ENDDO |
---|
| 539 | |
---|
| 540 | ENDDO |
---|
| 541 | ENDDO |
---|
[1111] | 542 | !$acc end kernels |
---|
| 543 | !$acc end data |
---|
[1106] | 544 | |
---|
| 545 | ELSE |
---|
| 546 | |
---|
[1111] | 547 | !$acc data present( ar ) |
---|
| 548 | !$acc kernels |
---|
| 549 | !$acc loop |
---|
[1106] | 550 | DO k = nzb_x, nzt_x |
---|
| 551 | DO j = nys_x, nyn_x |
---|
| 552 | |
---|
[1111] | 553 | ar_tmp(0,j,k) = CMPLX( ar(0,j,k), 0.0 ) |
---|
[1106] | 554 | |
---|
[1111] | 555 | !$acc loop vector( 32 ) |
---|
[1106] | 556 | DO i = 1, (nx+1)/2 - 1 |
---|
[1111] | 557 | ar_tmp(i,j,k) = CMPLX( ar(i,j,k), ar(nx+1-i,j,k) ) |
---|
[1106] | 558 | ENDDO |
---|
[1111] | 559 | ar_tmp((nx+1)/2,j,k) = CMPLX( ar((nx+1)/2,j,k), 0.0 ) |
---|
[1106] | 560 | |
---|
| 561 | ENDDO |
---|
| 562 | ENDDO |
---|
[1111] | 563 | !$acc end kernels |
---|
[1106] | 564 | |
---|
[1111] | 565 | CALL CUFFTEXECZ2D( plan_xi, ar_tmp, ar ) |
---|
| 566 | !$acc end data |
---|
[1106] | 567 | |
---|
| 568 | ENDIF |
---|
| 569 | |
---|
| 570 | #else |
---|
| 571 | message_string = 'no system-specific fft-call available' |
---|
| 572 | CALL message( 'fft_x', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 573 | #endif |
---|
| 574 | |
---|
| 575 | ELSE |
---|
| 576 | |
---|
| 577 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 578 | '" not available' |
---|
| 579 | CALL message( 'fft_x', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 580 | |
---|
| 581 | ENDIF |
---|
| 582 | |
---|
| 583 | END SUBROUTINE fft_x |
---|
| 584 | |
---|
| 585 | SUBROUTINE fft_x_1d( ar, direction ) |
---|
| 586 | |
---|
| 587 | !----------------------------------------------------------------------! |
---|
| 588 | ! fft_x_1d ! |
---|
| 589 | ! ! |
---|
| 590 | ! Fourier-transformation along x-direction ! |
---|
| 591 | ! Version for 1D-decomposition ! |
---|
| 592 | ! ! |
---|
| 593 | ! fft_x uses internal algorithms (Singleton or Temperton) or ! |
---|
| 594 | ! system-specific routines, if they are available ! |
---|
| 595 | !----------------------------------------------------------------------! |
---|
| 596 | |
---|
| 597 | IMPLICIT NONE |
---|
| 598 | |
---|
| 599 | CHARACTER (LEN=*) :: direction |
---|
[1] | 600 | INTEGER :: i, ishape(1) |
---|
| 601 | |
---|
[1106] | 602 | LOGICAL :: forward_fft |
---|
| 603 | |
---|
[1] | 604 | REAL, DIMENSION(0:nx) :: ar |
---|
| 605 | REAL, DIMENSION(0:nx+2) :: work |
---|
| 606 | REAL, DIMENSION(nx+2) :: work1 |
---|
| 607 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 608 | #if defined( __ibm ) |
---|
| 609 | REAL, DIMENSION(nau2) :: aux2, aux4 |
---|
| 610 | #elif defined( __nec ) |
---|
| 611 | REAL, DIMENSION(6*(nx+1)) :: work2 |
---|
| 612 | #endif |
---|
| 613 | |
---|
[1106] | 614 | IF ( direction == 'forward' ) THEN |
---|
| 615 | forward_fft = .TRUE. |
---|
| 616 | ELSE |
---|
| 617 | forward_fft = .FALSE. |
---|
| 618 | ENDIF |
---|
| 619 | |
---|
[1] | 620 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 621 | |
---|
| 622 | ! |
---|
| 623 | !-- Performing the fft with singleton's software works on every system, |
---|
| 624 | !-- since it is part of the model |
---|
| 625 | ALLOCATE( cwork(0:nx) ) |
---|
| 626 | |
---|
[1106] | 627 | IF ( forward_fft ) then |
---|
[1] | 628 | |
---|
| 629 | DO i = 0, nx |
---|
| 630 | cwork(i) = CMPLX( ar(i) ) |
---|
| 631 | ENDDO |
---|
| 632 | ishape = SHAPE( cwork ) |
---|
| 633 | CALL FFTN( cwork, ishape ) |
---|
| 634 | DO i = 0, (nx+1)/2 |
---|
| 635 | ar(i) = REAL( cwork(i) ) |
---|
| 636 | ENDDO |
---|
| 637 | DO i = 1, (nx+1)/2 - 1 |
---|
| 638 | ar(nx+1-i) = -AIMAG( cwork(i) ) |
---|
| 639 | ENDDO |
---|
| 640 | |
---|
| 641 | ELSE |
---|
| 642 | |
---|
| 643 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
| 644 | DO i = 1, (nx+1)/2 - 1 |
---|
| 645 | cwork(i) = CMPLX( ar(i), -ar(nx+1-i) ) |
---|
| 646 | cwork(nx+1-i) = CMPLX( ar(i), ar(nx+1-i) ) |
---|
| 647 | ENDDO |
---|
| 648 | cwork((nx+1)/2) = CMPLX( ar((nx+1)/2), 0.0 ) |
---|
| 649 | |
---|
| 650 | ishape = SHAPE( cwork ) |
---|
| 651 | CALL FFTN( cwork, ishape, inv = .TRUE. ) |
---|
| 652 | |
---|
| 653 | DO i = 0, nx |
---|
| 654 | ar(i) = REAL( cwork(i) ) |
---|
| 655 | ENDDO |
---|
| 656 | |
---|
| 657 | ENDIF |
---|
| 658 | |
---|
| 659 | DEALLOCATE( cwork ) |
---|
| 660 | |
---|
| 661 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 662 | |
---|
| 663 | ! |
---|
| 664 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 665 | !-- since it is part of the model |
---|
[1106] | 666 | IF ( forward_fft ) THEN |
---|
[1] | 667 | |
---|
| 668 | work(0:nx) = ar |
---|
| 669 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, -1 ) |
---|
| 670 | |
---|
| 671 | DO i = 0, (nx+1)/2 |
---|
| 672 | ar(i) = work(2*i) |
---|
| 673 | ENDDO |
---|
| 674 | DO i = 1, (nx+1)/2 - 1 |
---|
| 675 | ar(nx+1-i) = work(2*i+1) |
---|
| 676 | ENDDO |
---|
| 677 | |
---|
| 678 | ELSE |
---|
| 679 | |
---|
| 680 | DO i = 0, (nx+1)/2 |
---|
| 681 | work(2*i) = ar(i) |
---|
| 682 | ENDDO |
---|
| 683 | DO i = 1, (nx+1)/2 - 1 |
---|
| 684 | work(2*i+1) = ar(nx+1-i) |
---|
| 685 | ENDDO |
---|
| 686 | work(1) = 0.0 |
---|
| 687 | work(nx+2) = 0.0 |
---|
| 688 | |
---|
| 689 | CALL fft991cy( work, work1, trigs_x, ifax_x, 1, nx+1, nx+1, 1, 1 ) |
---|
| 690 | ar = work(0:nx) |
---|
| 691 | |
---|
| 692 | ENDIF |
---|
| 693 | |
---|
| 694 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 695 | |
---|
| 696 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 697 | IF ( forward_fft ) THEN |
---|
[1] | 698 | |
---|
[1106] | 699 | CALL DRCFT( 0, ar, 1, work, 1, nx+1, 1, 1, sqr_dnx, aux1, nau1, & |
---|
[1] | 700 | aux2, nau2 ) |
---|
| 701 | |
---|
| 702 | DO i = 0, (nx+1)/2 |
---|
| 703 | ar(i) = work(2*i) |
---|
| 704 | ENDDO |
---|
| 705 | DO i = 1, (nx+1)/2 - 1 |
---|
| 706 | ar(nx+1-i) = work(2*i+1) |
---|
| 707 | ENDDO |
---|
| 708 | |
---|
| 709 | ELSE |
---|
| 710 | |
---|
| 711 | DO i = 0, (nx+1)/2 |
---|
| 712 | work(2*i) = ar(i) |
---|
| 713 | ENDDO |
---|
| 714 | DO i = 1, (nx+1)/2 - 1 |
---|
| 715 | work(2*i+1) = ar(nx+1-i) |
---|
| 716 | ENDDO |
---|
| 717 | work(1) = 0.0 |
---|
| 718 | work(nx+2) = 0.0 |
---|
| 719 | |
---|
[1106] | 720 | CALL DCRFT( 0, work, 1, work, 1, nx+1, 1, -1, sqr_dnx, aux3, nau1, & |
---|
[1] | 721 | aux4, nau2 ) |
---|
| 722 | |
---|
| 723 | DO i = 0, nx |
---|
| 724 | ar(i) = work(i) |
---|
| 725 | ENDDO |
---|
| 726 | |
---|
| 727 | ENDIF |
---|
| 728 | #elif defined( __nec ) |
---|
[1106] | 729 | IF ( forward_fft ) THEN |
---|
[1] | 730 | |
---|
| 731 | work(0:nx) = ar(0:nx) |
---|
| 732 | |
---|
[1106] | 733 | CALL DZFFT( 1, nx+1, sqr_dnx, work, work, trig_xf, work2, 0 ) |
---|
| 734 | |
---|
[1] | 735 | DO i = 0, (nx+1)/2 |
---|
| 736 | ar(i) = work(2*i) |
---|
| 737 | ENDDO |
---|
| 738 | DO i = 1, (nx+1)/2 - 1 |
---|
| 739 | ar(nx+1-i) = work(2*i+1) |
---|
| 740 | ENDDO |
---|
| 741 | |
---|
| 742 | ELSE |
---|
| 743 | |
---|
| 744 | DO i = 0, (nx+1)/2 |
---|
| 745 | work(2*i) = ar(i) |
---|
| 746 | ENDDO |
---|
| 747 | DO i = 1, (nx+1)/2 - 1 |
---|
| 748 | work(2*i+1) = ar(nx+1-i) |
---|
| 749 | ENDDO |
---|
| 750 | work(1) = 0.0 |
---|
| 751 | work(nx+2) = 0.0 |
---|
| 752 | |
---|
[1106] | 753 | CALL ZDFFT( -1, nx+1, sqr_dnx, work, work, trig_xb, work2, 0 ) |
---|
[1] | 754 | |
---|
| 755 | ar(0:nx) = work(0:nx) |
---|
| 756 | |
---|
| 757 | ENDIF |
---|
| 758 | #else |
---|
[254] | 759 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 760 | CALL message( 'fft_x_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 761 | #endif |
---|
| 762 | ELSE |
---|
[274] | 763 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 764 | '" not available' |
---|
[1106] | 765 | CALL message( 'fft_x_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 766 | |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
[1106] | 769 | END SUBROUTINE fft_x_1d |
---|
[1] | 770 | |
---|
| 771 | SUBROUTINE fft_y( ar, direction ) |
---|
| 772 | |
---|
| 773 | !----------------------------------------------------------------------! |
---|
| 774 | ! fft_y ! |
---|
| 775 | ! ! |
---|
| 776 | ! Fourier-transformation along y-direction ! |
---|
[1106] | 777 | ! Version for 2D-decomposition ! |
---|
[1] | 778 | ! ! |
---|
| 779 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 780 | ! system-specific routines, if they are available ! |
---|
| 781 | !----------------------------------------------------------------------! |
---|
| 782 | |
---|
[1106] | 783 | USE cuda_fft_interfaces |
---|
[1153] | 784 | #if defined( __cuda_fft ) |
---|
| 785 | USE ISO_C_BINDING |
---|
| 786 | #endif |
---|
[1106] | 787 | |
---|
[1] | 788 | IMPLICIT NONE |
---|
| 789 | |
---|
| 790 | CHARACTER (LEN=*) :: direction |
---|
[1111] | 791 | INTEGER :: i, j, jshape(1), k |
---|
[1106] | 792 | |
---|
| 793 | LOGICAL :: forward_fft |
---|
| 794 | |
---|
| 795 | REAL, DIMENSION(0:ny+2) :: work |
---|
| 796 | REAL, DIMENSION(ny+2) :: work1 |
---|
| 797 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 798 | #if defined( __ibm ) |
---|
| 799 | REAL, DIMENSION(nau2) :: auy2, auy4 |
---|
| 800 | #elif defined( __nec ) |
---|
| 801 | REAL, DIMENSION(6*(ny+1)) :: work2 |
---|
| 802 | #elif defined( __cuda_fft ) |
---|
[1111] | 803 | !$acc declare create( ar_tmp ) |
---|
[1166] | 804 | COMPLEX(dpk), DIMENSION(0:(ny+1)/2,nxl_y:nxr_y,nzb_y:nzt_y) :: ar_tmp |
---|
[1106] | 805 | #endif |
---|
| 806 | REAL, DIMENSION(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) :: ar |
---|
| 807 | |
---|
| 808 | IF ( direction == 'forward' ) THEN |
---|
| 809 | forward_fft = .TRUE. |
---|
| 810 | ELSE |
---|
| 811 | forward_fft = .FALSE. |
---|
| 812 | ENDIF |
---|
| 813 | |
---|
| 814 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Performing the fft with singleton's software works on every system, |
---|
| 818 | !-- since it is part of the model |
---|
| 819 | ALLOCATE( cwork(0:ny) ) |
---|
| 820 | |
---|
| 821 | IF ( forward_fft ) then |
---|
| 822 | |
---|
| 823 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 824 | !$OMP DO |
---|
| 825 | DO k = nzb_y, nzt_y |
---|
| 826 | DO i = nxl_y, nxr_y |
---|
| 827 | |
---|
| 828 | DO j = 0, ny |
---|
| 829 | cwork(j) = CMPLX( ar(j,i,k) ) |
---|
| 830 | ENDDO |
---|
| 831 | |
---|
| 832 | jshape = SHAPE( cwork ) |
---|
| 833 | CALL FFTN( cwork, jshape ) |
---|
| 834 | |
---|
| 835 | DO j = 0, (ny+1)/2 |
---|
| 836 | ar(j,i,k) = REAL( cwork(j) ) |
---|
| 837 | ENDDO |
---|
| 838 | DO j = 1, (ny+1)/2 - 1 |
---|
| 839 | ar(ny+1-j,i,k) = -AIMAG( cwork(j) ) |
---|
| 840 | ENDDO |
---|
| 841 | |
---|
| 842 | ENDDO |
---|
| 843 | ENDDO |
---|
| 844 | !$OMP END PARALLEL |
---|
| 845 | |
---|
| 846 | ELSE |
---|
| 847 | |
---|
| 848 | !$OMP PARALLEL PRIVATE ( cwork, i, jshape, j, k ) |
---|
| 849 | !$OMP DO |
---|
| 850 | DO k = nzb_y, nzt_y |
---|
| 851 | DO i = nxl_y, nxr_y |
---|
| 852 | |
---|
| 853 | cwork(0) = CMPLX( ar(0,i,k), 0.0 ) |
---|
| 854 | DO j = 1, (ny+1)/2 - 1 |
---|
| 855 | cwork(j) = CMPLX( ar(j,i,k), -ar(ny+1-j,i,k) ) |
---|
| 856 | cwork(ny+1-j) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
| 857 | ENDDO |
---|
| 858 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2,i,k), 0.0 ) |
---|
| 859 | |
---|
| 860 | jshape = SHAPE( cwork ) |
---|
| 861 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 862 | |
---|
| 863 | DO j = 0, ny |
---|
| 864 | ar(j,i,k) = REAL( cwork(j) ) |
---|
| 865 | ENDDO |
---|
| 866 | |
---|
| 867 | ENDDO |
---|
| 868 | ENDDO |
---|
| 869 | !$OMP END PARALLEL |
---|
| 870 | |
---|
| 871 | ENDIF |
---|
| 872 | |
---|
| 873 | DEALLOCATE( cwork ) |
---|
| 874 | |
---|
| 875 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 876 | |
---|
| 877 | ! |
---|
| 878 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 879 | !-- since it is part of the model |
---|
| 880 | IF ( forward_fft ) THEN |
---|
| 881 | |
---|
| 882 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 883 | !$OMP DO |
---|
| 884 | DO k = nzb_y, nzt_y |
---|
| 885 | DO i = nxl_y, nxr_y |
---|
| 886 | |
---|
| 887 | work(0:ny) = ar(0:ny,i,k) |
---|
| 888 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 889 | |
---|
| 890 | DO j = 0, (ny+1)/2 |
---|
| 891 | ar(j,i,k) = work(2*j) |
---|
| 892 | ENDDO |
---|
| 893 | DO j = 1, (ny+1)/2 - 1 |
---|
| 894 | ar(ny+1-j,i,k) = work(2*j+1) |
---|
| 895 | ENDDO |
---|
| 896 | |
---|
| 897 | ENDDO |
---|
| 898 | ENDDO |
---|
| 899 | !$OMP END PARALLEL |
---|
| 900 | |
---|
| 901 | ELSE |
---|
| 902 | |
---|
| 903 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 904 | !$OMP DO |
---|
| 905 | DO k = nzb_y, nzt_y |
---|
| 906 | DO i = nxl_y, nxr_y |
---|
| 907 | |
---|
| 908 | DO j = 0, (ny+1)/2 |
---|
| 909 | work(2*j) = ar(j,i,k) |
---|
| 910 | ENDDO |
---|
| 911 | DO j = 1, (ny+1)/2 - 1 |
---|
| 912 | work(2*j+1) = ar(ny+1-j,i,k) |
---|
| 913 | ENDDO |
---|
| 914 | work(1) = 0.0 |
---|
| 915 | work(ny+2) = 0.0 |
---|
| 916 | |
---|
| 917 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 918 | ar(0:ny,i,k) = work(0:ny) |
---|
| 919 | |
---|
| 920 | ENDDO |
---|
| 921 | ENDDO |
---|
| 922 | !$OMP END PARALLEL |
---|
| 923 | |
---|
| 924 | ENDIF |
---|
| 925 | |
---|
| 926 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 927 | |
---|
| 928 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
| 929 | IF ( forward_fft) THEN |
---|
| 930 | |
---|
| 931 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 932 | !$OMP DO |
---|
| 933 | DO k = nzb_y, nzt_y |
---|
| 934 | DO i = nxl_y, nxr_y |
---|
| 935 | |
---|
| 936 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
| 937 | auy2, nau2 ) |
---|
| 938 | |
---|
| 939 | DO j = 0, (ny+1)/2 |
---|
| 940 | ar(j,i,k) = work(2*j) |
---|
| 941 | ENDDO |
---|
| 942 | DO j = 1, (ny+1)/2 - 1 |
---|
| 943 | ar(ny+1-j,i,k) = work(2*j+1) |
---|
| 944 | ENDDO |
---|
| 945 | |
---|
| 946 | ENDDO |
---|
| 947 | ENDDO |
---|
| 948 | !$OMP END PARALLEL |
---|
| 949 | |
---|
| 950 | ELSE |
---|
| 951 | |
---|
| 952 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 953 | !$OMP DO |
---|
| 954 | DO k = nzb_y, nzt_y |
---|
| 955 | DO i = nxl_y, nxr_y |
---|
| 956 | |
---|
| 957 | DO j = 0, (ny+1)/2 |
---|
| 958 | work(2*j) = ar(j,i,k) |
---|
| 959 | ENDDO |
---|
| 960 | DO j = 1, (ny+1)/2 - 1 |
---|
| 961 | work(2*j+1) = ar(ny+1-j,i,k) |
---|
| 962 | ENDDO |
---|
| 963 | work(1) = 0.0 |
---|
| 964 | work(ny+2) = 0.0 |
---|
| 965 | |
---|
| 966 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
| 967 | auy4, nau2 ) |
---|
| 968 | |
---|
| 969 | DO j = 0, ny |
---|
| 970 | ar(j,i,k) = work(j) |
---|
| 971 | ENDDO |
---|
| 972 | |
---|
| 973 | ENDDO |
---|
| 974 | ENDDO |
---|
| 975 | !$OMP END PARALLEL |
---|
| 976 | |
---|
| 977 | ENDIF |
---|
| 978 | #elif defined( __nec ) |
---|
| 979 | IF ( forward_fft ) THEN |
---|
| 980 | |
---|
| 981 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 982 | !$OMP DO |
---|
| 983 | DO k = nzb_y, nzt_y |
---|
| 984 | DO i = nxl_y, nxr_y |
---|
| 985 | |
---|
| 986 | work(0:ny) = ar(0:ny,i,k) |
---|
| 987 | |
---|
| 988 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
| 989 | |
---|
| 990 | DO j = 0, (ny+1)/2 |
---|
| 991 | ar(j,i,k) = work(2*j) |
---|
| 992 | ENDDO |
---|
| 993 | DO j = 1, (ny+1)/2 - 1 |
---|
| 994 | ar(ny+1-j,i,k) = work(2*j+1) |
---|
| 995 | ENDDO |
---|
| 996 | |
---|
| 997 | ENDDO |
---|
| 998 | ENDDO |
---|
| 999 | !$END OMP PARALLEL |
---|
| 1000 | |
---|
| 1001 | ELSE |
---|
| 1002 | |
---|
| 1003 | !$OMP PARALLEL PRIVATE ( work, i, j, k ) |
---|
| 1004 | !$OMP DO |
---|
| 1005 | DO k = nzb_y, nzt_y |
---|
| 1006 | DO i = nxl_y, nxr_y |
---|
| 1007 | |
---|
| 1008 | DO j = 0, (ny+1)/2 |
---|
| 1009 | work(2*j) = ar(j,i,k) |
---|
| 1010 | ENDDO |
---|
| 1011 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1012 | work(2*j+1) = ar(ny+1-j,i,k) |
---|
| 1013 | ENDDO |
---|
| 1014 | work(1) = 0.0 |
---|
| 1015 | work(ny+2) = 0.0 |
---|
| 1016 | |
---|
| 1017 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
| 1018 | |
---|
| 1019 | ar(0:ny,i,k) = work(0:ny) |
---|
| 1020 | |
---|
| 1021 | ENDDO |
---|
| 1022 | ENDDO |
---|
| 1023 | !$OMP END PARALLEL |
---|
| 1024 | |
---|
| 1025 | ENDIF |
---|
| 1026 | #elif defined( __cuda_fft ) |
---|
| 1027 | |
---|
| 1028 | IF ( forward_fft ) THEN |
---|
| 1029 | |
---|
[1111] | 1030 | !$acc data present( ar ) |
---|
| 1031 | CALL CUFFTEXECD2Z( plan_yf, ar, ar_tmp ) |
---|
[1106] | 1032 | |
---|
[1111] | 1033 | !$acc kernels |
---|
| 1034 | !$acc loop |
---|
[1106] | 1035 | DO k = nzb_y, nzt_y |
---|
| 1036 | DO i = nxl_y, nxr_y |
---|
| 1037 | |
---|
[1111] | 1038 | !$acc loop vector( 32 ) |
---|
[1106] | 1039 | DO j = 0, (ny+1)/2 |
---|
[1111] | 1040 | ar(j,i,k) = REAL( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1041 | ENDDO |
---|
| 1042 | |
---|
[1111] | 1043 | !$acc loop vector( 32 ) |
---|
[1106] | 1044 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1045 | ar(ny+1-j,i,k) = AIMAG( ar_tmp(j,i,k) ) * dny |
---|
[1106] | 1046 | ENDDO |
---|
| 1047 | |
---|
| 1048 | ENDDO |
---|
| 1049 | ENDDO |
---|
[1111] | 1050 | !$acc end kernels |
---|
| 1051 | !$acc end data |
---|
[1106] | 1052 | |
---|
| 1053 | ELSE |
---|
| 1054 | |
---|
[1111] | 1055 | !$acc data present( ar ) |
---|
| 1056 | !$acc kernels |
---|
| 1057 | !$acc loop |
---|
[1106] | 1058 | DO k = nzb_y, nzt_y |
---|
| 1059 | DO i = nxl_y, nxr_y |
---|
| 1060 | |
---|
[1111] | 1061 | ar_tmp(0,i,k) = CMPLX( ar(0,i,k), 0.0 ) |
---|
[1106] | 1062 | |
---|
[1111] | 1063 | !$acc loop vector( 32 ) |
---|
[1106] | 1064 | DO j = 1, (ny+1)/2 - 1 |
---|
[1111] | 1065 | ar_tmp(j,i,k) = CMPLX( ar(j,i,k), ar(ny+1-j,i,k) ) |
---|
[1106] | 1066 | ENDDO |
---|
[1111] | 1067 | ar_tmp((ny+1)/2,i,k) = CMPLX( ar((ny+1)/2,i,k), 0.0 ) |
---|
[1106] | 1068 | |
---|
| 1069 | ENDDO |
---|
| 1070 | ENDDO |
---|
[1111] | 1071 | !$acc end kernels |
---|
[1106] | 1072 | |
---|
[1111] | 1073 | CALL CUFFTEXECZ2D( plan_yi, ar_tmp, ar ) |
---|
| 1074 | !$acc end data |
---|
[1106] | 1075 | |
---|
| 1076 | ENDIF |
---|
| 1077 | |
---|
| 1078 | #else |
---|
| 1079 | message_string = 'no system-specific fft-call available' |
---|
| 1080 | CALL message( 'fft_y', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
| 1081 | #endif |
---|
| 1082 | |
---|
| 1083 | ELSE |
---|
| 1084 | |
---|
| 1085 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1086 | '" not available' |
---|
| 1087 | CALL message( 'fft_y', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
| 1088 | |
---|
| 1089 | ENDIF |
---|
| 1090 | |
---|
| 1091 | END SUBROUTINE fft_y |
---|
| 1092 | |
---|
| 1093 | SUBROUTINE fft_y_1d( ar, direction ) |
---|
| 1094 | |
---|
| 1095 | !----------------------------------------------------------------------! |
---|
| 1096 | ! fft_y_1d ! |
---|
| 1097 | ! ! |
---|
| 1098 | ! Fourier-transformation along y-direction ! |
---|
| 1099 | ! Version for 1D-decomposition ! |
---|
| 1100 | ! ! |
---|
| 1101 | ! fft_y uses internal algorithms (Singleton or Temperton) or ! |
---|
| 1102 | ! system-specific routines, if they are available ! |
---|
| 1103 | !----------------------------------------------------------------------! |
---|
| 1104 | |
---|
| 1105 | IMPLICIT NONE |
---|
| 1106 | |
---|
| 1107 | CHARACTER (LEN=*) :: direction |
---|
[1] | 1108 | INTEGER :: j, jshape(1) |
---|
| 1109 | |
---|
[1106] | 1110 | LOGICAL :: forward_fft |
---|
| 1111 | |
---|
[1] | 1112 | REAL, DIMENSION(0:ny) :: ar |
---|
| 1113 | REAL, DIMENSION(0:ny+2) :: work |
---|
| 1114 | REAL, DIMENSION(ny+2) :: work1 |
---|
| 1115 | COMPLEX, DIMENSION(:), ALLOCATABLE :: cwork |
---|
| 1116 | #if defined( __ibm ) |
---|
| 1117 | REAL, DIMENSION(nau2) :: auy2, auy4 |
---|
| 1118 | #elif defined( __nec ) |
---|
| 1119 | REAL, DIMENSION(6*(ny+1)) :: work2 |
---|
| 1120 | #endif |
---|
| 1121 | |
---|
[1106] | 1122 | IF ( direction == 'forward' ) THEN |
---|
| 1123 | forward_fft = .TRUE. |
---|
| 1124 | ELSE |
---|
| 1125 | forward_fft = .FALSE. |
---|
| 1126 | ENDIF |
---|
| 1127 | |
---|
[1] | 1128 | IF ( fft_method == 'singleton-algorithm' ) THEN |
---|
| 1129 | |
---|
| 1130 | ! |
---|
| 1131 | !-- Performing the fft with singleton's software works on every system, |
---|
| 1132 | !-- since it is part of the model |
---|
| 1133 | ALLOCATE( cwork(0:ny) ) |
---|
| 1134 | |
---|
[1106] | 1135 | IF ( forward_fft ) THEN |
---|
[1] | 1136 | |
---|
| 1137 | DO j = 0, ny |
---|
| 1138 | cwork(j) = CMPLX( ar(j) ) |
---|
| 1139 | ENDDO |
---|
| 1140 | |
---|
| 1141 | jshape = SHAPE( cwork ) |
---|
| 1142 | CALL FFTN( cwork, jshape ) |
---|
| 1143 | |
---|
| 1144 | DO j = 0, (ny+1)/2 |
---|
| 1145 | ar(j) = REAL( cwork(j) ) |
---|
| 1146 | ENDDO |
---|
| 1147 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1148 | ar(ny+1-j) = -AIMAG( cwork(j) ) |
---|
| 1149 | ENDDO |
---|
| 1150 | |
---|
| 1151 | ELSE |
---|
| 1152 | |
---|
| 1153 | cwork(0) = CMPLX( ar(0), 0.0 ) |
---|
| 1154 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1155 | cwork(j) = CMPLX( ar(j), -ar(ny+1-j) ) |
---|
| 1156 | cwork(ny+1-j) = CMPLX( ar(j), ar(ny+1-j) ) |
---|
| 1157 | ENDDO |
---|
| 1158 | cwork((ny+1)/2) = CMPLX( ar((ny+1)/2), 0.0 ) |
---|
| 1159 | |
---|
| 1160 | jshape = SHAPE( cwork ) |
---|
| 1161 | CALL FFTN( cwork, jshape, inv = .TRUE. ) |
---|
| 1162 | |
---|
| 1163 | DO j = 0, ny |
---|
| 1164 | ar(j) = REAL( cwork(j) ) |
---|
| 1165 | ENDDO |
---|
| 1166 | |
---|
| 1167 | ENDIF |
---|
| 1168 | |
---|
| 1169 | DEALLOCATE( cwork ) |
---|
| 1170 | |
---|
| 1171 | ELSEIF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1172 | |
---|
| 1173 | ! |
---|
| 1174 | !-- Performing the fft with Temperton's software works on every system, |
---|
| 1175 | !-- since it is part of the model |
---|
[1106] | 1176 | IF ( forward_fft ) THEN |
---|
[1] | 1177 | |
---|
| 1178 | work(0:ny) = ar |
---|
| 1179 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, -1 ) |
---|
| 1180 | |
---|
| 1181 | DO j = 0, (ny+1)/2 |
---|
| 1182 | ar(j) = work(2*j) |
---|
| 1183 | ENDDO |
---|
| 1184 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1185 | ar(ny+1-j) = work(2*j+1) |
---|
| 1186 | ENDDO |
---|
| 1187 | |
---|
| 1188 | ELSE |
---|
| 1189 | |
---|
| 1190 | DO j = 0, (ny+1)/2 |
---|
| 1191 | work(2*j) = ar(j) |
---|
| 1192 | ENDDO |
---|
| 1193 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1194 | work(2*j+1) = ar(ny+1-j) |
---|
| 1195 | ENDDO |
---|
| 1196 | work(1) = 0.0 |
---|
| 1197 | work(ny+2) = 0.0 |
---|
| 1198 | |
---|
| 1199 | CALL fft991cy( work, work1, trigs_y, ifax_y, 1, ny+1, ny+1, 1, 1 ) |
---|
| 1200 | ar = work(0:ny) |
---|
| 1201 | |
---|
| 1202 | ENDIF |
---|
| 1203 | |
---|
| 1204 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1205 | |
---|
| 1206 | #if defined( __ibm ) && ! defined( __ibmy_special ) |
---|
[1106] | 1207 | IF ( forward_fft ) THEN |
---|
[1] | 1208 | |
---|
[1106] | 1209 | CALL DRCFT( 0, ar, 1, work, 1, ny+1, 1, 1, sqr_dny, auy1, nau1, & |
---|
[1] | 1210 | auy2, nau2 ) |
---|
| 1211 | |
---|
| 1212 | DO j = 0, (ny+1)/2 |
---|
| 1213 | ar(j) = work(2*j) |
---|
| 1214 | ENDDO |
---|
| 1215 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1216 | ar(ny+1-j) = work(2*j+1) |
---|
| 1217 | ENDDO |
---|
| 1218 | |
---|
| 1219 | ELSE |
---|
| 1220 | |
---|
| 1221 | DO j = 0, (ny+1)/2 |
---|
| 1222 | work(2*j) = ar(j) |
---|
| 1223 | ENDDO |
---|
| 1224 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1225 | work(2*j+1) = ar(ny+1-j) |
---|
| 1226 | ENDDO |
---|
| 1227 | work(1) = 0.0 |
---|
| 1228 | work(ny+2) = 0.0 |
---|
| 1229 | |
---|
[1106] | 1230 | CALL DCRFT( 0, work, 1, work, 1, ny+1, 1, -1, sqr_dny, auy3, nau1, & |
---|
[1] | 1231 | auy4, nau2 ) |
---|
| 1232 | |
---|
| 1233 | DO j = 0, ny |
---|
| 1234 | ar(j) = work(j) |
---|
| 1235 | ENDDO |
---|
| 1236 | |
---|
| 1237 | ENDIF |
---|
| 1238 | #elif defined( __nec ) |
---|
[1106] | 1239 | IF ( forward_fft ) THEN |
---|
[1] | 1240 | |
---|
| 1241 | work(0:ny) = ar(0:ny) |
---|
| 1242 | |
---|
[1106] | 1243 | CALL DZFFT( 1, ny+1, sqr_dny, work, work, trig_yf, work2, 0 ) |
---|
[1] | 1244 | |
---|
| 1245 | DO j = 0, (ny+1)/2 |
---|
| 1246 | ar(j) = work(2*j) |
---|
| 1247 | ENDDO |
---|
| 1248 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1249 | ar(ny+1-j) = work(2*j+1) |
---|
| 1250 | ENDDO |
---|
| 1251 | |
---|
| 1252 | ELSE |
---|
| 1253 | |
---|
| 1254 | DO j = 0, (ny+1)/2 |
---|
| 1255 | work(2*j) = ar(j) |
---|
| 1256 | ENDDO |
---|
| 1257 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1258 | work(2*j+1) = ar(ny+1-j) |
---|
| 1259 | ENDDO |
---|
| 1260 | work(1) = 0.0 |
---|
| 1261 | work(ny+2) = 0.0 |
---|
| 1262 | |
---|
[1106] | 1263 | CALL ZDFFT( -1, ny+1, sqr_dny, work, work, trig_yb, work2, 0 ) |
---|
[1] | 1264 | |
---|
| 1265 | ar(0:ny) = work(0:ny) |
---|
| 1266 | |
---|
| 1267 | ENDIF |
---|
| 1268 | #else |
---|
[254] | 1269 | message_string = 'no system-specific fft-call available' |
---|
[1106] | 1270 | CALL message( 'fft_y_1d', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[254] | 1271 | |
---|
[1] | 1272 | #endif |
---|
| 1273 | |
---|
| 1274 | ELSE |
---|
| 1275 | |
---|
[274] | 1276 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1277 | '" not available' |
---|
[1106] | 1278 | CALL message( 'fft_y_1d', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1279 | |
---|
| 1280 | ENDIF |
---|
| 1281 | |
---|
[1106] | 1282 | END SUBROUTINE fft_y_1d |
---|
[1] | 1283 | |
---|
| 1284 | SUBROUTINE fft_x_m( ar, direction ) |
---|
| 1285 | |
---|
| 1286 | !----------------------------------------------------------------------! |
---|
| 1287 | ! fft_x_m ! |
---|
| 1288 | ! ! |
---|
| 1289 | ! Fourier-transformation along x-direction ! |
---|
| 1290 | ! Version for 1d domain decomposition ! |
---|
| 1291 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1292 | ! or Temperton-algorithm ! |
---|
| 1293 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1294 | ! ! |
---|
| 1295 | !----------------------------------------------------------------------! |
---|
| 1296 | |
---|
| 1297 | IMPLICIT NONE |
---|
| 1298 | |
---|
| 1299 | CHARACTER (LEN=*) :: direction |
---|
[1092] | 1300 | INTEGER :: i, k, siza |
---|
[1] | 1301 | |
---|
| 1302 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 1303 | REAL, DIMENSION(0:nx+3,nz+1) :: ai |
---|
| 1304 | REAL, DIMENSION(6*(nx+4),nz+1) :: work1 |
---|
| 1305 | #if defined( __nec ) |
---|
[1092] | 1306 | INTEGER :: sizw |
---|
[1] | 1307 | COMPLEX, DIMENSION((nx+4)/2+1,nz+1) :: work |
---|
| 1308 | #endif |
---|
| 1309 | |
---|
| 1310 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1311 | |
---|
| 1312 | siza = SIZE( ai, 1 ) |
---|
| 1313 | |
---|
| 1314 | IF ( direction == 'forward') THEN |
---|
| 1315 | |
---|
| 1316 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1317 | ai(nx+1:,:) = 0.0 |
---|
| 1318 | |
---|
| 1319 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, -1 ) |
---|
| 1320 | |
---|
| 1321 | DO k = 1, nz |
---|
| 1322 | DO i = 0, (nx+1)/2 |
---|
| 1323 | ar(i,k) = ai(2*i,k) |
---|
| 1324 | ENDDO |
---|
| 1325 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1326 | ar(nx+1-i,k) = ai(2*i+1,k) |
---|
| 1327 | ENDDO |
---|
| 1328 | ENDDO |
---|
| 1329 | |
---|
| 1330 | ELSE |
---|
| 1331 | |
---|
| 1332 | DO k = 1, nz |
---|
| 1333 | DO i = 0, (nx+1)/2 |
---|
| 1334 | ai(2*i,k) = ar(i,k) |
---|
| 1335 | ENDDO |
---|
| 1336 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1337 | ai(2*i+1,k) = ar(nx+1-i,k) |
---|
| 1338 | ENDDO |
---|
| 1339 | ai(1,k) = 0.0 |
---|
| 1340 | ai(nx+2,k) = 0.0 |
---|
| 1341 | ENDDO |
---|
| 1342 | |
---|
| 1343 | CALL fft991cy( ai, work1, trigs_x, ifax_x, 1, siza, nx+1, nz, 1 ) |
---|
| 1344 | |
---|
| 1345 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1346 | |
---|
| 1347 | ENDIF |
---|
| 1348 | |
---|
| 1349 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1350 | |
---|
| 1351 | #if defined( __nec ) |
---|
| 1352 | siza = SIZE( ai, 1 ) |
---|
| 1353 | sizw = SIZE( work, 1 ) |
---|
| 1354 | |
---|
| 1355 | IF ( direction == 'forward') THEN |
---|
| 1356 | |
---|
| 1357 | ! |
---|
| 1358 | !-- Tables are initialized once more. This call should not be |
---|
| 1359 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1360 | CALL DZFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1361 | trig_xf, work1, 0 ) |
---|
| 1362 | |
---|
| 1363 | ai(0:nx,1:nz) = ar(0:nx,1:nz) |
---|
| 1364 | IF ( nz1 > nz ) THEN |
---|
| 1365 | ai(:,nz1) = 0.0 |
---|
| 1366 | ENDIF |
---|
| 1367 | |
---|
[1106] | 1368 | CALL DZFFTM( 1, nx+1, nz1, sqr_dnx, ai, siza, work, sizw, & |
---|
[1] | 1369 | trig_xf, work1, 0 ) |
---|
| 1370 | |
---|
| 1371 | DO k = 1, nz |
---|
| 1372 | DO i = 0, (nx+1)/2 |
---|
| 1373 | ar(i,k) = REAL( work(i+1,k) ) |
---|
| 1374 | ENDDO |
---|
| 1375 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1376 | ar(nx+1-i,k) = AIMAG( work(i+1,k) ) |
---|
| 1377 | ENDDO |
---|
| 1378 | ENDDO |
---|
| 1379 | |
---|
| 1380 | ELSE |
---|
| 1381 | |
---|
| 1382 | ! |
---|
| 1383 | !-- Tables are initialized once more. This call should not be |
---|
| 1384 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1385 | CALL ZDFFTM( 0, nx+1, nz1, sqr_dnx, work, nx+4, work, nx+4, & |
---|
[1] | 1386 | trig_xb, work1, 0 ) |
---|
| 1387 | |
---|
| 1388 | IF ( nz1 > nz ) THEN |
---|
| 1389 | work(:,nz1) = 0.0 |
---|
| 1390 | ENDIF |
---|
| 1391 | DO k = 1, nz |
---|
| 1392 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
| 1393 | DO i = 1, (nx+1)/2 - 1 |
---|
| 1394 | work(i+1,k) = CMPLX( ar(i,k), ar(nx+1-i,k) ) |
---|
| 1395 | ENDDO |
---|
| 1396 | work(((nx+1)/2)+1,k) = CMPLX( ar((nx+1)/2,k), 0.0 ) |
---|
| 1397 | ENDDO |
---|
| 1398 | |
---|
[1106] | 1399 | CALL ZDFFTM( -1, nx+1, nz1, sqr_dnx, work, sizw, ai, siza, & |
---|
[1] | 1400 | trig_xb, work1, 0 ) |
---|
| 1401 | |
---|
| 1402 | ar(0:nx,1:nz) = ai(0:nx,1:nz) |
---|
| 1403 | |
---|
| 1404 | ENDIF |
---|
| 1405 | |
---|
| 1406 | #else |
---|
[254] | 1407 | message_string = 'no system-specific fft-call available' |
---|
| 1408 | CALL message( 'fft_x_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1409 | #endif |
---|
| 1410 | |
---|
| 1411 | ELSE |
---|
| 1412 | |
---|
[274] | 1413 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1414 | '" not available' |
---|
[254] | 1415 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1416 | |
---|
| 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | END SUBROUTINE fft_x_m |
---|
| 1420 | |
---|
| 1421 | SUBROUTINE fft_y_m( ar, ny1, direction ) |
---|
| 1422 | |
---|
| 1423 | !----------------------------------------------------------------------! |
---|
| 1424 | ! fft_y_m ! |
---|
| 1425 | ! ! |
---|
| 1426 | ! Fourier-transformation along y-direction ! |
---|
| 1427 | ! Version for 1d domain decomposition ! |
---|
| 1428 | ! using multiple 1D FFT from Math Keisan on NEC ! |
---|
| 1429 | ! or Temperton-algorithm ! |
---|
| 1430 | ! (no singleton-algorithm on NEC because it does not vectorize) ! |
---|
| 1431 | ! ! |
---|
| 1432 | !----------------------------------------------------------------------! |
---|
| 1433 | |
---|
| 1434 | IMPLICIT NONE |
---|
| 1435 | |
---|
| 1436 | CHARACTER (LEN=*) :: direction |
---|
[1092] | 1437 | INTEGER :: j, k, ny1, siza |
---|
[1] | 1438 | |
---|
| 1439 | REAL, DIMENSION(0:ny1,nz) :: ar |
---|
| 1440 | REAL, DIMENSION(0:ny+3,nz+1) :: ai |
---|
| 1441 | REAL, DIMENSION(6*(ny+4),nz+1) :: work1 |
---|
| 1442 | #if defined( __nec ) |
---|
[1092] | 1443 | INTEGER :: sizw |
---|
[1] | 1444 | COMPLEX, DIMENSION((ny+4)/2+1,nz+1) :: work |
---|
| 1445 | #endif |
---|
| 1446 | |
---|
| 1447 | IF ( fft_method == 'temperton-algorithm' ) THEN |
---|
| 1448 | |
---|
| 1449 | siza = SIZE( ai, 1 ) |
---|
| 1450 | |
---|
| 1451 | IF ( direction == 'forward') THEN |
---|
| 1452 | |
---|
| 1453 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1454 | ai(ny+1:,:) = 0.0 |
---|
| 1455 | |
---|
| 1456 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, -1 ) |
---|
| 1457 | |
---|
| 1458 | DO k = 1, nz |
---|
| 1459 | DO j = 0, (ny+1)/2 |
---|
| 1460 | ar(j,k) = ai(2*j,k) |
---|
| 1461 | ENDDO |
---|
| 1462 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1463 | ar(ny+1-j,k) = ai(2*j+1,k) |
---|
| 1464 | ENDDO |
---|
| 1465 | ENDDO |
---|
| 1466 | |
---|
| 1467 | ELSE |
---|
| 1468 | |
---|
| 1469 | DO k = 1, nz |
---|
| 1470 | DO j = 0, (ny+1)/2 |
---|
| 1471 | ai(2*j,k) = ar(j,k) |
---|
| 1472 | ENDDO |
---|
| 1473 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1474 | ai(2*j+1,k) = ar(ny+1-j,k) |
---|
| 1475 | ENDDO |
---|
| 1476 | ai(1,k) = 0.0 |
---|
| 1477 | ai(ny+2,k) = 0.0 |
---|
| 1478 | ENDDO |
---|
| 1479 | |
---|
| 1480 | CALL fft991cy( ai, work1, trigs_y, ifax_y, 1, siza, ny+1, nz, 1 ) |
---|
| 1481 | |
---|
| 1482 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1483 | |
---|
| 1484 | ENDIF |
---|
| 1485 | |
---|
| 1486 | ELSEIF ( fft_method == 'system-specific' ) THEN |
---|
| 1487 | |
---|
| 1488 | #if defined( __nec ) |
---|
| 1489 | siza = SIZE( ai, 1 ) |
---|
| 1490 | sizw = SIZE( work, 1 ) |
---|
| 1491 | |
---|
| 1492 | IF ( direction == 'forward') THEN |
---|
| 1493 | |
---|
| 1494 | ! |
---|
| 1495 | !-- Tables are initialized once more. This call should not be |
---|
| 1496 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1497 | CALL DZFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1498 | trig_yf, work1, 0 ) |
---|
| 1499 | |
---|
| 1500 | ai(0:ny,1:nz) = ar(0:ny,1:nz) |
---|
| 1501 | IF ( nz1 > nz ) THEN |
---|
| 1502 | ai(:,nz1) = 0.0 |
---|
| 1503 | ENDIF |
---|
| 1504 | |
---|
[1106] | 1505 | CALL DZFFTM( 1, ny+1, nz1, sqr_dny, ai, siza, work, sizw, & |
---|
[1] | 1506 | trig_yf, work1, 0 ) |
---|
| 1507 | |
---|
| 1508 | DO k = 1, nz |
---|
| 1509 | DO j = 0, (ny+1)/2 |
---|
| 1510 | ar(j,k) = REAL( work(j+1,k) ) |
---|
| 1511 | ENDDO |
---|
| 1512 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1513 | ar(ny+1-j,k) = AIMAG( work(j+1,k) ) |
---|
| 1514 | ENDDO |
---|
| 1515 | ENDDO |
---|
| 1516 | |
---|
| 1517 | ELSE |
---|
| 1518 | |
---|
| 1519 | ! |
---|
| 1520 | !-- Tables are initialized once more. This call should not be |
---|
| 1521 | !-- necessary, but otherwise program aborts in asymmetric case |
---|
[1106] | 1522 | CALL ZDFFTM( 0, ny+1, nz1, sqr_dny, work, ny+4, work, ny+4, & |
---|
[1] | 1523 | trig_yb, work1, 0 ) |
---|
| 1524 | |
---|
| 1525 | IF ( nz1 > nz ) THEN |
---|
| 1526 | work(:,nz1) = 0.0 |
---|
| 1527 | ENDIF |
---|
| 1528 | DO k = 1, nz |
---|
| 1529 | work(1,k) = CMPLX( ar(0,k), 0.0 ) |
---|
| 1530 | DO j = 1, (ny+1)/2 - 1 |
---|
| 1531 | work(j+1,k) = CMPLX( ar(j,k), ar(ny+1-j,k) ) |
---|
| 1532 | ENDDO |
---|
| 1533 | work(((ny+1)/2)+1,k) = CMPLX( ar((ny+1)/2,k), 0.0 ) |
---|
| 1534 | ENDDO |
---|
| 1535 | |
---|
[1106] | 1536 | CALL ZDFFTM( -1, ny+1, nz1, sqr_dny, work, sizw, ai, siza, & |
---|
[1] | 1537 | trig_yb, work1, 0 ) |
---|
| 1538 | |
---|
| 1539 | ar(0:ny,1:nz) = ai(0:ny,1:nz) |
---|
| 1540 | |
---|
| 1541 | ENDIF |
---|
| 1542 | |
---|
| 1543 | #else |
---|
[254] | 1544 | message_string = 'no system-specific fft-call available' |
---|
| 1545 | CALL message( 'fft_y_m', 'PA0188', 1, 2, 0, 6, 0 ) |
---|
[1] | 1546 | #endif |
---|
| 1547 | |
---|
| 1548 | ELSE |
---|
[254] | 1549 | |
---|
[274] | 1550 | message_string = 'fft method "' // TRIM( fft_method) // & |
---|
| 1551 | '" not available' |
---|
[254] | 1552 | CALL message( 'fft_x_m', 'PA0189', 1, 2, 0, 6, 0 ) |
---|
[1] | 1553 | |
---|
| 1554 | ENDIF |
---|
| 1555 | |
---|
| 1556 | END SUBROUTINE fft_y_m |
---|
| 1557 | |
---|
[1106] | 1558 | |
---|
[1] | 1559 | END MODULE fft_xy |
---|