1 | !> @file dynamics_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: dynamics_mod.f90 4768 2020-11-02 19:11:23Z eckhard $ |
---|
26 | ! Enable 3D data output also with 64-bit precision |
---|
27 | ! |
---|
28 | ! 4760 2020-10-26 13:26:47Z schwenkel |
---|
29 | ! Implement relative humidity as diagnostic output quantity |
---|
30 | ! |
---|
31 | ! 4731 2020-10-07 13:25:11Z schwenkel |
---|
32 | ! Move exchange_horiz from time_integration to modules |
---|
33 | ! |
---|
34 | ! 4627 2020-07-26 10:14:44Z raasch |
---|
35 | ! bugfix for r4626 |
---|
36 | ! |
---|
37 | ! 4626 2020-07-26 09:49:48Z raasch |
---|
38 | ! file re-formatted to follow the PALM coding standard |
---|
39 | ! |
---|
40 | ! 4517 2020-05-03 14:29:30Z raasch |
---|
41 | ! added restart with MPI-IO for reading local arrays |
---|
42 | ! |
---|
43 | ! 4505 2020-04-20 15:37:15Z schwenkel |
---|
44 | ! Add flag for saturation check |
---|
45 | ! |
---|
46 | ! 4495 2020-04-13 20:11:20Z resler |
---|
47 | ! restart data handling with MPI-IO added |
---|
48 | ! |
---|
49 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
50 | ! Bugfix for last commit. |
---|
51 | ! |
---|
52 | ! 4359 2019-12-30 13:36:50Z suehring |
---|
53 | ! Refine post-initialization check for realistically inital values of mixing ratio. Give an error |
---|
54 | ! message for faulty initial values, but only a warning in a restart run. |
---|
55 | ! |
---|
56 | ! 4347 2019-12-18 13:18:33Z suehring |
---|
57 | ! Implement post-initialization check for realistically inital values of mixing ratio |
---|
58 | ! |
---|
59 | ! 4281 2019-10-29 15:15:39Z schwenkel |
---|
60 | ! Moved boundary conditions in dynamics module |
---|
61 | ! |
---|
62 | ! 4097 2019-07-15 11:59:11Z suehring |
---|
63 | ! Avoid overlong lines - limit is 132 characters per line |
---|
64 | ! |
---|
65 | ! 4047 2019-06-21 18:58:09Z knoop |
---|
66 | ! Initial introduction of the dynamics module with only dynamics_swap_timelevel implemented |
---|
67 | ! |
---|
68 | ! |
---|
69 | ! Description: |
---|
70 | ! ------------ |
---|
71 | !> This module contains the dynamics of PALM. |
---|
72 | !--------------------------------------------------------------------------------------------------! |
---|
73 | MODULE dynamics_mod |
---|
74 | |
---|
75 | |
---|
76 | USE arrays_3d, & |
---|
77 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
78 | diss, & |
---|
79 | diss_p, & |
---|
80 | dzu, & |
---|
81 | e, & |
---|
82 | e_p, & |
---|
83 | exner, & |
---|
84 | hyp, & |
---|
85 | pt, pt_1, pt_2, pt_init, pt_p, & |
---|
86 | q, q_1, q_2, q_p, & |
---|
87 | s, s_1, s_2, s_p, & |
---|
88 | u, u_1, u_2, u_init, u_p, u_m_l, u_m_n, u_m_r, u_m_s, & |
---|
89 | v, v_1, v_2, v_p, v_init, v_m_l, v_m_n, v_m_r, v_m_s, & |
---|
90 | w, w_1, w_2, w_p, w_m_l, w_m_n, w_m_r, w_m_s, & |
---|
91 | zu |
---|
92 | |
---|
93 | USE basic_constants_and_equations_mod, & |
---|
94 | ONLY: magnus, & |
---|
95 | rd_d_rv |
---|
96 | |
---|
97 | USE control_parameters, & |
---|
98 | ONLY: bc_dirichlet_l, & |
---|
99 | bc_dirichlet_s, & |
---|
100 | bc_radiation_l, & |
---|
101 | bc_radiation_n, & |
---|
102 | bc_radiation_r, & |
---|
103 | bc_radiation_s, & |
---|
104 | bc_pt_t_val, & |
---|
105 | bc_q_t_val, & |
---|
106 | bc_s_t_val, & |
---|
107 | check_realistic_q, & |
---|
108 | child_domain, & |
---|
109 | coupling_mode, & |
---|
110 | constant_diffusion, & |
---|
111 | dt_3d, & |
---|
112 | humidity, & |
---|
113 | ibc_pt_b, & |
---|
114 | ibc_pt_t, & |
---|
115 | ibc_q_b, & |
---|
116 | ibc_q_t, & |
---|
117 | ibc_s_b, & |
---|
118 | ibc_s_t, & |
---|
119 | ibc_uv_b, & |
---|
120 | ibc_uv_t, & |
---|
121 | initializing_actions, & |
---|
122 | intermediate_timestep_count, & |
---|
123 | length, & |
---|
124 | message_string, & |
---|
125 | nesting_offline, & |
---|
126 | neutral, & |
---|
127 | nudging, & |
---|
128 | passive_scalar, & |
---|
129 | restart_string, & |
---|
130 | rans_mode, & |
---|
131 | rans_tke_e, & |
---|
132 | tsc, & |
---|
133 | use_cmax |
---|
134 | |
---|
135 | USE exchange_horiz_mod, & |
---|
136 | ONLY: exchange_horiz |
---|
137 | |
---|
138 | |
---|
139 | USE grid_variables, & |
---|
140 | ONLY: ddx, & |
---|
141 | ddy, & |
---|
142 | dx, & |
---|
143 | dy |
---|
144 | |
---|
145 | USE indices, & |
---|
146 | ONLY: nbgp, & |
---|
147 | nx, & |
---|
148 | nxl, & |
---|
149 | nxlg, & |
---|
150 | nxr, & |
---|
151 | nxrg, & |
---|
152 | ny, & |
---|
153 | nys, & |
---|
154 | nysg, & |
---|
155 | nyn, & |
---|
156 | nyng, & |
---|
157 | nzb, & |
---|
158 | nzt |
---|
159 | |
---|
160 | USE kinds |
---|
161 | |
---|
162 | USE pegrid |
---|
163 | |
---|
164 | USE pmc_interface, & |
---|
165 | ONLY : nesting_mode |
---|
166 | |
---|
167 | ! USE restart_data_mpi_io_mod, & |
---|
168 | ! ONLY: |
---|
169 | |
---|
170 | USE surface_mod, & |
---|
171 | ONLY : bc_h |
---|
172 | |
---|
173 | |
---|
174 | IMPLICIT NONE |
---|
175 | |
---|
176 | LOGICAL :: dynamics_module_enabled = .FALSE. !< |
---|
177 | |
---|
178 | SAVE |
---|
179 | |
---|
180 | PRIVATE |
---|
181 | |
---|
182 | ! |
---|
183 | !-- Public functions |
---|
184 | PUBLIC & |
---|
185 | dynamics_parin, & |
---|
186 | dynamics_check_parameters, & |
---|
187 | dynamics_check_data_output_ts, & |
---|
188 | dynamics_check_data_output_pr, & |
---|
189 | dynamics_check_data_output, & |
---|
190 | dynamics_init_masks, & |
---|
191 | dynamics_define_netcdf_grid, & |
---|
192 | dynamics_init_arrays, & |
---|
193 | dynamics_init, & |
---|
194 | dynamics_init_checks, & |
---|
195 | dynamics_header, & |
---|
196 | dynamics_actions, & |
---|
197 | dynamics_non_advective_processes, & |
---|
198 | dynamics_exchange_horiz, & |
---|
199 | dynamics_prognostic_equations, & |
---|
200 | dynamics_boundary_conditions, & |
---|
201 | dynamics_swap_timelevel, & |
---|
202 | dynamics_3d_data_averaging, & |
---|
203 | dynamics_data_output_2d, & |
---|
204 | dynamics_data_output_3d, & |
---|
205 | dynamics_statistics, & |
---|
206 | dynamics_rrd_global, & |
---|
207 | dynamics_rrd_local, & |
---|
208 | dynamics_wrd_global, & |
---|
209 | dynamics_wrd_local, & |
---|
210 | dynamics_last_actions |
---|
211 | |
---|
212 | ! |
---|
213 | !-- Public parameters, constants and initial values |
---|
214 | PUBLIC & |
---|
215 | dynamics_module_enabled |
---|
216 | |
---|
217 | INTERFACE dynamics_parin |
---|
218 | MODULE PROCEDURE dynamics_parin |
---|
219 | END INTERFACE dynamics_parin |
---|
220 | |
---|
221 | INTERFACE dynamics_check_parameters |
---|
222 | MODULE PROCEDURE dynamics_check_parameters |
---|
223 | END INTERFACE dynamics_check_parameters |
---|
224 | |
---|
225 | INTERFACE dynamics_check_data_output_ts |
---|
226 | MODULE PROCEDURE dynamics_check_data_output_ts |
---|
227 | END INTERFACE dynamics_check_data_output_ts |
---|
228 | |
---|
229 | INTERFACE dynamics_check_data_output_pr |
---|
230 | MODULE PROCEDURE dynamics_check_data_output_pr |
---|
231 | END INTERFACE dynamics_check_data_output_pr |
---|
232 | |
---|
233 | INTERFACE dynamics_check_data_output |
---|
234 | MODULE PROCEDURE dynamics_check_data_output |
---|
235 | END INTERFACE dynamics_check_data_output |
---|
236 | |
---|
237 | INTERFACE dynamics_init_masks |
---|
238 | MODULE PROCEDURE dynamics_init_masks |
---|
239 | END INTERFACE dynamics_init_masks |
---|
240 | |
---|
241 | INTERFACE dynamics_define_netcdf_grid |
---|
242 | MODULE PROCEDURE dynamics_define_netcdf_grid |
---|
243 | END INTERFACE dynamics_define_netcdf_grid |
---|
244 | |
---|
245 | INTERFACE dynamics_init_arrays |
---|
246 | MODULE PROCEDURE dynamics_init_arrays |
---|
247 | END INTERFACE dynamics_init_arrays |
---|
248 | |
---|
249 | INTERFACE dynamics_init |
---|
250 | MODULE PROCEDURE dynamics_init |
---|
251 | END INTERFACE dynamics_init |
---|
252 | |
---|
253 | INTERFACE dynamics_init_checks |
---|
254 | MODULE PROCEDURE dynamics_init_checks |
---|
255 | END INTERFACE dynamics_init_checks |
---|
256 | |
---|
257 | INTERFACE dynamics_header |
---|
258 | MODULE PROCEDURE dynamics_header |
---|
259 | END INTERFACE dynamics_header |
---|
260 | |
---|
261 | INTERFACE dynamics_actions |
---|
262 | MODULE PROCEDURE dynamics_actions |
---|
263 | MODULE PROCEDURE dynamics_actions_ij |
---|
264 | END INTERFACE dynamics_actions |
---|
265 | |
---|
266 | INTERFACE dynamics_non_advective_processes |
---|
267 | MODULE PROCEDURE dynamics_non_advective_processes |
---|
268 | MODULE PROCEDURE dynamics_non_advective_processes_ij |
---|
269 | END INTERFACE dynamics_non_advective_processes |
---|
270 | |
---|
271 | INTERFACE dynamics_exchange_horiz |
---|
272 | MODULE PROCEDURE dynamics_exchange_horiz |
---|
273 | END INTERFACE dynamics_exchange_horiz |
---|
274 | |
---|
275 | INTERFACE dynamics_prognostic_equations |
---|
276 | MODULE PROCEDURE dynamics_prognostic_equations |
---|
277 | MODULE PROCEDURE dynamics_prognostic_equations_ij |
---|
278 | END INTERFACE dynamics_prognostic_equations |
---|
279 | |
---|
280 | INTERFACE dynamics_boundary_conditions |
---|
281 | MODULE PROCEDURE dynamics_boundary_conditions |
---|
282 | END INTERFACE dynamics_boundary_conditions |
---|
283 | |
---|
284 | INTERFACE dynamics_swap_timelevel |
---|
285 | MODULE PROCEDURE dynamics_swap_timelevel |
---|
286 | END INTERFACE dynamics_swap_timelevel |
---|
287 | |
---|
288 | INTERFACE dynamics_3d_data_averaging |
---|
289 | MODULE PROCEDURE dynamics_3d_data_averaging |
---|
290 | END INTERFACE dynamics_3d_data_averaging |
---|
291 | |
---|
292 | INTERFACE dynamics_data_output_2d |
---|
293 | MODULE PROCEDURE dynamics_data_output_2d |
---|
294 | END INTERFACE dynamics_data_output_2d |
---|
295 | |
---|
296 | INTERFACE dynamics_data_output_3d |
---|
297 | MODULE PROCEDURE dynamics_data_output_3d |
---|
298 | END INTERFACE dynamics_data_output_3d |
---|
299 | |
---|
300 | INTERFACE dynamics_statistics |
---|
301 | MODULE PROCEDURE dynamics_statistics |
---|
302 | END INTERFACE dynamics_statistics |
---|
303 | |
---|
304 | INTERFACE dynamics_rrd_global |
---|
305 | MODULE PROCEDURE dynamics_rrd_global_ftn |
---|
306 | MODULE PROCEDURE dynamics_rrd_global_mpi |
---|
307 | END INTERFACE dynamics_rrd_global |
---|
308 | |
---|
309 | INTERFACE dynamics_rrd_local |
---|
310 | MODULE PROCEDURE dynamics_rrd_local_ftn |
---|
311 | MODULE PROCEDURE dynamics_rrd_local_mpi |
---|
312 | END INTERFACE dynamics_rrd_local |
---|
313 | |
---|
314 | INTERFACE dynamics_wrd_global |
---|
315 | MODULE PROCEDURE dynamics_wrd_global |
---|
316 | END INTERFACE dynamics_wrd_global |
---|
317 | |
---|
318 | INTERFACE dynamics_wrd_local |
---|
319 | MODULE PROCEDURE dynamics_wrd_local |
---|
320 | END INTERFACE dynamics_wrd_local |
---|
321 | |
---|
322 | INTERFACE dynamics_last_actions |
---|
323 | MODULE PROCEDURE dynamics_last_actions |
---|
324 | END INTERFACE dynamics_last_actions |
---|
325 | |
---|
326 | |
---|
327 | CONTAINS |
---|
328 | |
---|
329 | |
---|
330 | !--------------------------------------------------------------------------------------------------! |
---|
331 | ! Description: |
---|
332 | ! ------------ |
---|
333 | !> Read module-specific namelist |
---|
334 | !--------------------------------------------------------------------------------------------------! |
---|
335 | SUBROUTINE dynamics_parin |
---|
336 | |
---|
337 | |
---|
338 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
339 | |
---|
340 | NAMELIST /dynamics_parameters/ & |
---|
341 | dynamics_module_enabled |
---|
342 | |
---|
343 | |
---|
344 | line = ' ' |
---|
345 | ! |
---|
346 | !-- Try to find module-specific namelist |
---|
347 | REWIND ( 11 ) |
---|
348 | line = ' ' |
---|
349 | DO WHILE ( INDEX( line, '&dynamics_parameters' ) == 0 ) |
---|
350 | READ ( 11, '(A)', END=12 ) line |
---|
351 | ENDDO |
---|
352 | BACKSPACE ( 11 ) |
---|
353 | |
---|
354 | !-- Set default module switch to true |
---|
355 | dynamics_module_enabled = .TRUE. |
---|
356 | |
---|
357 | !-- Read user-defined namelist |
---|
358 | READ ( 11, dynamics_parameters, ERR = 10 ) |
---|
359 | |
---|
360 | GOTO 12 |
---|
361 | |
---|
362 | 10 BACKSPACE( 11 ) |
---|
363 | READ( 11 , '(A)') line |
---|
364 | CALL parin_fail_message( 'dynamics_parameters', line ) |
---|
365 | |
---|
366 | 12 CONTINUE |
---|
367 | |
---|
368 | END SUBROUTINE dynamics_parin |
---|
369 | |
---|
370 | |
---|
371 | !--------------------------------------------------------------------------------------------------! |
---|
372 | ! Description: |
---|
373 | ! ------------ |
---|
374 | !> Check control parameters and deduce further quantities. |
---|
375 | !--------------------------------------------------------------------------------------------------! |
---|
376 | SUBROUTINE dynamics_check_parameters |
---|
377 | |
---|
378 | |
---|
379 | END SUBROUTINE dynamics_check_parameters |
---|
380 | |
---|
381 | |
---|
382 | !--------------------------------------------------------------------------------------------------! |
---|
383 | ! Description: |
---|
384 | ! ------------ |
---|
385 | !> Set module-specific timeseries units and labels |
---|
386 | !--------------------------------------------------------------------------------------------------! |
---|
387 | SUBROUTINE dynamics_check_data_output_ts( dots_max, dots_num, dots_label, dots_unit ) |
---|
388 | |
---|
389 | INTEGER(iwp), INTENT(IN) :: dots_max |
---|
390 | |
---|
391 | CHARACTER (LEN=*), DIMENSION(dots_max), INTENT(INOUT) :: dots_label |
---|
392 | CHARACTER (LEN=*), DIMENSION(dots_max), INTENT(INOUT) :: dots_unit |
---|
393 | |
---|
394 | INTEGER(iwp), INTENT(INOUT) :: dots_num |
---|
395 | |
---|
396 | ! |
---|
397 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
398 | IF ( dots_num == 0 .OR. dots_label(1)(1:1) == ' ' .OR. dots_unit(1)(1:1) == ' ' ) CONTINUE |
---|
399 | |
---|
400 | |
---|
401 | END SUBROUTINE dynamics_check_data_output_ts |
---|
402 | |
---|
403 | |
---|
404 | !--------------------------------------------------------------------------------------------------! |
---|
405 | ! Description: |
---|
406 | ! ------------ |
---|
407 | !> Set the unit of module-specific profile output quantities. For those variables not recognized, |
---|
408 | !> the parameter unit is set to "illegal", which tells the calling routine that the output variable |
---|
409 | !> is not defined and leads to a program abort. |
---|
410 | !--------------------------------------------------------------------------------------------------! |
---|
411 | SUBROUTINE dynamics_check_data_output_pr( variable, var_count, unit, dopr_unit ) |
---|
412 | |
---|
413 | |
---|
414 | CHARACTER (LEN=*) :: dopr_unit !< local value of dopr_unit |
---|
415 | CHARACTER (LEN=*) :: unit !< |
---|
416 | CHARACTER (LEN=*) :: variable !< |
---|
417 | |
---|
418 | INTEGER(iwp) :: var_count !< |
---|
419 | |
---|
420 | ! |
---|
421 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
422 | IF ( unit(1:1) == ' ' .OR. dopr_unit(1:1) == ' ' .OR. var_count == 0 ) CONTINUE |
---|
423 | |
---|
424 | SELECT CASE ( TRIM( variable ) ) |
---|
425 | |
---|
426 | ! CASE ( 'var_name' ) |
---|
427 | |
---|
428 | CASE DEFAULT |
---|
429 | unit = 'illegal' |
---|
430 | |
---|
431 | END SELECT |
---|
432 | |
---|
433 | |
---|
434 | END SUBROUTINE dynamics_check_data_output_pr |
---|
435 | |
---|
436 | |
---|
437 | !--------------------------------------------------------------------------------------------------! |
---|
438 | ! Description: |
---|
439 | ! ------------ |
---|
440 | !> Set the unit of module-specific output quantities. For those variables not recognized, |
---|
441 | !> the parameter unit is set to "illegal", which tells the calling routine that the output variable |
---|
442 | !< is not defined and leads to a program abort. |
---|
443 | !--------------------------------------------------------------------------------------------------! |
---|
444 | SUBROUTINE dynamics_check_data_output( variable, unit ) |
---|
445 | |
---|
446 | |
---|
447 | CHARACTER (LEN=*) :: unit !< |
---|
448 | CHARACTER (LEN=*) :: variable !< |
---|
449 | |
---|
450 | SELECT CASE ( TRIM( variable ) ) |
---|
451 | |
---|
452 | ! CASE ( 'u2' ) |
---|
453 | |
---|
454 | CASE DEFAULT |
---|
455 | unit = 'illegal' |
---|
456 | |
---|
457 | END SELECT |
---|
458 | |
---|
459 | |
---|
460 | END SUBROUTINE dynamics_check_data_output |
---|
461 | |
---|
462 | |
---|
463 | !--------------------------------------------------------------------------------------------------! |
---|
464 | ! |
---|
465 | ! Description: |
---|
466 | ! ------------ |
---|
467 | !> Initialize module-specific masked output |
---|
468 | !--------------------------------------------------------------------------------------------------! |
---|
469 | SUBROUTINE dynamics_init_masks( variable, unit ) |
---|
470 | |
---|
471 | |
---|
472 | CHARACTER (LEN=*) :: unit !< |
---|
473 | CHARACTER (LEN=*) :: variable !< |
---|
474 | |
---|
475 | |
---|
476 | SELECT CASE ( TRIM( variable ) ) |
---|
477 | |
---|
478 | ! CASE ( 'u2' ) |
---|
479 | |
---|
480 | CASE DEFAULT |
---|
481 | unit = 'illegal' |
---|
482 | |
---|
483 | END SELECT |
---|
484 | |
---|
485 | |
---|
486 | END SUBROUTINE dynamics_init_masks |
---|
487 | |
---|
488 | |
---|
489 | !--------------------------------------------------------------------------------------------------! |
---|
490 | ! Description: |
---|
491 | ! ------------ |
---|
492 | !> Initialize module-specific arrays |
---|
493 | !--------------------------------------------------------------------------------------------------! |
---|
494 | SUBROUTINE dynamics_init_arrays |
---|
495 | |
---|
496 | |
---|
497 | END SUBROUTINE dynamics_init_arrays |
---|
498 | |
---|
499 | |
---|
500 | !--------------------------------------------------------------------------------------------------! |
---|
501 | ! Description: |
---|
502 | ! ------------ |
---|
503 | !> Execution of module-specific initializing actions |
---|
504 | !--------------------------------------------------------------------------------------------------! |
---|
505 | SUBROUTINE dynamics_init |
---|
506 | |
---|
507 | |
---|
508 | END SUBROUTINE dynamics_init |
---|
509 | |
---|
510 | |
---|
511 | !--------------------------------------------------------------------------------------------------! |
---|
512 | ! Description: |
---|
513 | ! ------------ |
---|
514 | !> Perform module-specific post-initialization checks |
---|
515 | !--------------------------------------------------------------------------------------------------! |
---|
516 | SUBROUTINE dynamics_init_checks |
---|
517 | |
---|
518 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
519 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
520 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
521 | |
---|
522 | LOGICAL :: realistic_q = .TRUE. !< flag indicating realistic mixing ratios |
---|
523 | |
---|
524 | REAL(wp) :: e_s !< saturation water vapor pressure |
---|
525 | REAL(wp) :: q_s !< saturation mixing ratio |
---|
526 | REAL(wp) :: t_l !< actual temperature |
---|
527 | REAL(wp) :: rh_check = 9999999.9_wp !< relative humidity |
---|
528 | REAL(wp) :: rh_min = 9999999.9_wp !< max relative humidity |
---|
529 | REAL(wp) :: height = 9999999.9_wp !< height of supersaturated regions |
---|
530 | REAL(wp) :: min_height = 9999999.9_wp !< height of supersaturated regions |
---|
531 | |
---|
532 | ! |
---|
533 | !-- Check for realistic initial mixing ratio. This must be in a realistic phyiscial range and must |
---|
534 | !-- not exceed the saturation mixing ratio by more than 2 percent. Please note, the check is |
---|
535 | !-- performed for each grid point (not just for a vertical profile), in order to cover also |
---|
536 | !-- three-dimensional initialization. Note, this check gives an error only for the initial run not |
---|
537 | !-- for a restart run. In case there are no cloud physics considered, the mixing ratio can exceed |
---|
538 | !-- the saturation moisture. This case a warning is given. |
---|
539 | IF ( humidity .AND. .NOT. neutral .AND. check_realistic_q ) THEN |
---|
540 | DO i = nxl, nxr |
---|
541 | DO j = nys, nyn |
---|
542 | DO k = nzb+1, nzt |
---|
543 | ! |
---|
544 | !-- Calculate actual temperature, water vapor saturation pressure, and based on this |
---|
545 | !-- the saturation mixing ratio. |
---|
546 | t_l = exner(k) * pt(k,j,i) |
---|
547 | e_s = magnus( t_l ) |
---|
548 | q_s = rd_d_rv * e_s / ( hyp(k) - e_s ) |
---|
549 | |
---|
550 | IF ( q(k,j,i) > 1.02_wp * q_s ) THEN |
---|
551 | realistic_q = .FALSE. |
---|
552 | rh_check = q(k,j,i) / q_s * 100.0_wp |
---|
553 | height = zu(k) |
---|
554 | ENDIF |
---|
555 | ENDDO |
---|
556 | ENDDO |
---|
557 | ENDDO |
---|
558 | ! |
---|
559 | !-- Since the check is performed locally, merge the logical flag from all mpi ranks, |
---|
560 | !-- in order to do not print the error message multiple times. |
---|
561 | #if defined( __parallel ) |
---|
562 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, realistic_q, 1, MPI_LOGICAL, MPI_LAND, comm2d, ierr) |
---|
563 | CALL MPI_ALLREDUCE( rh_check, rh_min, 1, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
564 | CALL MPI_ALLREDUCE( height, min_height, 1, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
565 | #endif |
---|
566 | |
---|
567 | IF ( .NOT. realistic_q .AND. & |
---|
568 | TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
569 | WRITE( message_string, * ) 'The initial mixing ratio exceeds the saturation mixing' // & |
---|
570 | 'ratio, with rh =', rh_min, '% in a height of', min_height, 'm for the first time' |
---|
571 | CALL message( 'dynamic_init_checks', 'PA0697', 2, 2, 0, 6, 0 ) |
---|
572 | ELSEIF ( .NOT. realistic_q .AND. & |
---|
573 | TRIM( initializing_actions ) == 'read_restart_data' ) THEN |
---|
574 | WRITE( message_string, * ) 'The initial mixing ratio exceeds the saturation mixing' // & |
---|
575 | 'ratio, with rh =', rh_min, '% in a height of', min_height, 'm for the first time' |
---|
576 | CALL message( 'dynamic_init_checks', 'PA0697', 0, 1, 0, 6, 0 ) |
---|
577 | ENDIF |
---|
578 | ENDIF |
---|
579 | |
---|
580 | END SUBROUTINE dynamics_init_checks |
---|
581 | |
---|
582 | |
---|
583 | !--------------------------------------------------------------------------------------------------! |
---|
584 | ! Description: |
---|
585 | ! ------------ |
---|
586 | !> Set the grids on which module-specific output quantities are defined. Allowed values for |
---|
587 | !> grid_x are "x" and "xu", for grid_y "y" and "yv", and for grid_z "zu" and "zw". |
---|
588 | !--------------------------------------------------------------------------------------------------! |
---|
589 | SUBROUTINE dynamics_define_netcdf_grid( variable, found, grid_x, grid_y, grid_z ) |
---|
590 | |
---|
591 | |
---|
592 | CHARACTER (LEN=*) :: grid_x !< |
---|
593 | CHARACTER (LEN=*) :: grid_y !< |
---|
594 | CHARACTER (LEN=*) :: grid_z !< |
---|
595 | CHARACTER (LEN=*) :: variable !< |
---|
596 | |
---|
597 | LOGICAL :: found !< |
---|
598 | |
---|
599 | |
---|
600 | SELECT CASE ( TRIM( variable ) ) |
---|
601 | |
---|
602 | ! CASE ( 'u2' ) |
---|
603 | |
---|
604 | CASE DEFAULT |
---|
605 | found = .FALSE. |
---|
606 | grid_x = 'none' |
---|
607 | grid_y = 'none' |
---|
608 | grid_z = 'none' |
---|
609 | |
---|
610 | END SELECT |
---|
611 | |
---|
612 | |
---|
613 | END SUBROUTINE dynamics_define_netcdf_grid |
---|
614 | |
---|
615 | |
---|
616 | !--------------------------------------------------------------------------------------------------! |
---|
617 | ! Description: |
---|
618 | ! ------------ |
---|
619 | !> Print a header with module-specific information. |
---|
620 | !--------------------------------------------------------------------------------------------------! |
---|
621 | SUBROUTINE dynamics_header( io ) |
---|
622 | |
---|
623 | |
---|
624 | INTEGER(iwp) :: io !< |
---|
625 | |
---|
626 | ! |
---|
627 | !-- If no module-specific variables are read from the namelist-file, no information will be printed. |
---|
628 | IF ( .NOT. dynamics_module_enabled ) THEN |
---|
629 | WRITE ( io, 100 ) |
---|
630 | RETURN |
---|
631 | ENDIF |
---|
632 | |
---|
633 | ! |
---|
634 | !-- Printing the information. |
---|
635 | WRITE ( io, 110 ) |
---|
636 | |
---|
637 | ! |
---|
638 | !-- Format-descriptors |
---|
639 | 100 FORMAT (//' *** dynamic module disabled'/) |
---|
640 | 110 FORMAT (//1X,78('#') & |
---|
641 | //' User-defined variables and actions:'/ & |
---|
642 | ' -----------------------------------'//) |
---|
643 | |
---|
644 | END SUBROUTINE dynamics_header |
---|
645 | |
---|
646 | |
---|
647 | !--------------------------------------------------------------------------------------------------! |
---|
648 | ! Description: |
---|
649 | ! ------------ |
---|
650 | !> Execute module-specific actions for all grid points |
---|
651 | !--------------------------------------------------------------------------------------------------! |
---|
652 | SUBROUTINE dynamics_actions( location ) |
---|
653 | |
---|
654 | |
---|
655 | CHARACTER (LEN=*) :: location !< |
---|
656 | |
---|
657 | ! INTEGER(iwp) :: i !< |
---|
658 | ! INTEGER(iwp) :: j !< |
---|
659 | ! INTEGER(iwp) :: k !< |
---|
660 | |
---|
661 | ! |
---|
662 | !-- Here the user-defined actions follow |
---|
663 | !-- No calls for single grid points are allowed at locations before and after the timestep, since |
---|
664 | !-- these calls are not within an i,j-loop |
---|
665 | SELECT CASE ( location ) |
---|
666 | |
---|
667 | CASE ( 'before_timestep' ) |
---|
668 | |
---|
669 | |
---|
670 | CASE ( 'before_prognostic_equations' ) |
---|
671 | |
---|
672 | |
---|
673 | CASE ( 'after_integration' ) |
---|
674 | |
---|
675 | |
---|
676 | CASE ( 'after_timestep' ) |
---|
677 | |
---|
678 | |
---|
679 | CASE ( 'u-tendency' ) |
---|
680 | |
---|
681 | |
---|
682 | CASE ( 'v-tendency' ) |
---|
683 | |
---|
684 | |
---|
685 | CASE ( 'w-tendency' ) |
---|
686 | |
---|
687 | |
---|
688 | CASE ( 'pt-tendency' ) |
---|
689 | |
---|
690 | |
---|
691 | CASE ( 'sa-tendency' ) |
---|
692 | |
---|
693 | |
---|
694 | CASE ( 'e-tendency' ) |
---|
695 | |
---|
696 | |
---|
697 | CASE ( 'q-tendency' ) |
---|
698 | |
---|
699 | |
---|
700 | CASE ( 's-tendency' ) |
---|
701 | |
---|
702 | |
---|
703 | CASE DEFAULT |
---|
704 | CONTINUE |
---|
705 | |
---|
706 | END SELECT |
---|
707 | |
---|
708 | END SUBROUTINE dynamics_actions |
---|
709 | |
---|
710 | |
---|
711 | !--------------------------------------------------------------------------------------------------! |
---|
712 | ! Description: |
---|
713 | ! ------------ |
---|
714 | !> Execute module-specific actions for grid point i,j |
---|
715 | !--------------------------------------------------------------------------------------------------! |
---|
716 | SUBROUTINE dynamics_actions_ij( i, j, location ) |
---|
717 | |
---|
718 | |
---|
719 | CHARACTER (LEN=*) :: location |
---|
720 | |
---|
721 | INTEGER(iwp) :: i |
---|
722 | INTEGER(iwp) :: j |
---|
723 | |
---|
724 | ! |
---|
725 | !-- Here the user-defined actions follow |
---|
726 | SELECT CASE ( location ) |
---|
727 | |
---|
728 | CASE ( 'u-tendency' ) |
---|
729 | |
---|
730 | ! |
---|
731 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
732 | IF ( i + j < 0 ) CONTINUE |
---|
733 | |
---|
734 | CASE ( 'v-tendency' ) |
---|
735 | |
---|
736 | |
---|
737 | CASE ( 'w-tendency' ) |
---|
738 | |
---|
739 | |
---|
740 | CASE ( 'pt-tendency' ) |
---|
741 | |
---|
742 | |
---|
743 | CASE ( 'sa-tendency' ) |
---|
744 | |
---|
745 | |
---|
746 | CASE ( 'e-tendency' ) |
---|
747 | |
---|
748 | |
---|
749 | CASE ( 'q-tendency' ) |
---|
750 | |
---|
751 | |
---|
752 | CASE ( 's-tendency' ) |
---|
753 | |
---|
754 | |
---|
755 | CASE DEFAULT |
---|
756 | CONTINUE |
---|
757 | |
---|
758 | END SELECT |
---|
759 | |
---|
760 | END SUBROUTINE dynamics_actions_ij |
---|
761 | |
---|
762 | |
---|
763 | !--------------------------------------------------------------------------------------------------! |
---|
764 | ! Description: |
---|
765 | ! ------------ |
---|
766 | !> Compute module-specific non-advective processes for all grid points |
---|
767 | !--------------------------------------------------------------------------------------------------! |
---|
768 | SUBROUTINE dynamics_non_advective_processes |
---|
769 | |
---|
770 | |
---|
771 | |
---|
772 | END SUBROUTINE dynamics_non_advective_processes |
---|
773 | |
---|
774 | |
---|
775 | !--------------------------------------------------------------------------------------------------! |
---|
776 | ! Description: |
---|
777 | ! ------------ |
---|
778 | !> Compute module-specific non-advective processes for grid points i,j |
---|
779 | !--------------------------------------------------------------------------------------------------! |
---|
780 | SUBROUTINE dynamics_non_advective_processes_ij( i, j ) |
---|
781 | |
---|
782 | |
---|
783 | INTEGER(iwp) :: i !< |
---|
784 | INTEGER(iwp) :: j !< |
---|
785 | |
---|
786 | ! |
---|
787 | !-- Next line is just to avoid compiler warnings about unused variables. You may remove it. |
---|
788 | IF ( i + j < 0 ) CONTINUE |
---|
789 | |
---|
790 | |
---|
791 | END SUBROUTINE dynamics_non_advective_processes_ij |
---|
792 | |
---|
793 | |
---|
794 | !--------------------------------------------------------------------------------------------------! |
---|
795 | ! Description: |
---|
796 | ! ------------ |
---|
797 | !> Perform module-specific horizontal boundary exchange |
---|
798 | !--------------------------------------------------------------------------------------------------! |
---|
799 | SUBROUTINE dynamics_exchange_horiz( location ) |
---|
800 | |
---|
801 | CHARACTER (LEN=*), INTENT(IN) :: location !< call location string |
---|
802 | |
---|
803 | SELECT CASE ( location ) |
---|
804 | |
---|
805 | CASE ( 'before_prognostic_equation' ) |
---|
806 | |
---|
807 | CASE ( 'after_prognostic_equation' ) |
---|
808 | |
---|
809 | CALL exchange_horiz( u_p, nbgp ) |
---|
810 | CALL exchange_horiz( v_p, nbgp ) |
---|
811 | CALL exchange_horiz( w_p, nbgp ) |
---|
812 | CALL exchange_horiz( pt_p, nbgp ) |
---|
813 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e_p, nbgp ) |
---|
814 | IF ( rans_tke_e ) CALL exchange_horiz( diss_p, nbgp ) |
---|
815 | IF ( humidity ) CALL exchange_horiz( q_p, nbgp ) |
---|
816 | IF ( passive_scalar ) CALL exchange_horiz( s_p, nbgp ) |
---|
817 | |
---|
818 | CASE ( 'after_anterpolation' ) |
---|
819 | |
---|
820 | CALL exchange_horiz( u, nbgp ) |
---|
821 | CALL exchange_horiz( v, nbgp ) |
---|
822 | CALL exchange_horiz( w, nbgp ) |
---|
823 | IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) |
---|
824 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
825 | IF ( passive_scalar ) CALL exchange_horiz( s, nbgp ) |
---|
826 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) |
---|
827 | IF ( .NOT. constant_diffusion .AND. rans_mode .AND. rans_tke_e ) THEN |
---|
828 | CALL exchange_horiz( diss, nbgp ) |
---|
829 | ENDIF |
---|
830 | |
---|
831 | END SELECT |
---|
832 | |
---|
833 | END SUBROUTINE dynamics_exchange_horiz |
---|
834 | |
---|
835 | |
---|
836 | !--------------------------------------------------------------------------------------------------! |
---|
837 | ! Description: |
---|
838 | ! ------------ |
---|
839 | !> Compute module-specific prognostic equations for all grid points |
---|
840 | !--------------------------------------------------------------------------------------------------! |
---|
841 | SUBROUTINE dynamics_prognostic_equations |
---|
842 | |
---|
843 | |
---|
844 | |
---|
845 | END SUBROUTINE dynamics_prognostic_equations |
---|
846 | |
---|
847 | |
---|
848 | !--------------------------------------------------------------------------------------------------! |
---|
849 | ! Description: |
---|
850 | ! ------------ |
---|
851 | !> Compute module-specific prognostic equations for grid point i,j |
---|
852 | !--------------------------------------------------------------------------------------------------! |
---|
853 | SUBROUTINE dynamics_prognostic_equations_ij( i, j, i_omp_start, tn ) |
---|
854 | |
---|
855 | |
---|
856 | INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction |
---|
857 | INTEGER(iwp), INTENT(IN) :: i_omp_start !< first loop index of i-loop in prognostic_equations |
---|
858 | INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction |
---|
859 | INTEGER(iwp), INTENT(IN) :: tn !< task number of openmp task |
---|
860 | |
---|
861 | ! |
---|
862 | !-- Next line is just to avoid compiler warnings about unused variables. You may remove it. |
---|
863 | IF ( i + j + i_omp_start + tn < 0 ) CONTINUE |
---|
864 | |
---|
865 | END SUBROUTINE dynamics_prognostic_equations_ij |
---|
866 | |
---|
867 | |
---|
868 | !--------------------------------------------------------------------------------------------------! |
---|
869 | ! Description: |
---|
870 | ! ------------ |
---|
871 | !> Compute boundary conditions of dynamics model |
---|
872 | !--------------------------------------------------------------------------------------------------! |
---|
873 | SUBROUTINE dynamics_boundary_conditions |
---|
874 | |
---|
875 | IMPLICIT NONE |
---|
876 | |
---|
877 | INTEGER(iwp) :: i !< grid index x direction |
---|
878 | INTEGER(iwp) :: j !< grid index y direction |
---|
879 | INTEGER(iwp) :: k !< grid index z direction |
---|
880 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
881 | INTEGER(iwp) :: m !< running index surface elements |
---|
882 | |
---|
883 | REAL(wp) :: c_max !< maximum phase velocity allowed by CFL criterion, used for outflow boundary condition |
---|
884 | REAL(wp) :: denom !< horizontal gradient of velocity component normal to the outflow boundary |
---|
885 | |
---|
886 | ! |
---|
887 | !-- Bottom boundary |
---|
888 | IF ( ibc_uv_b == 1 ) THEN |
---|
889 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
890 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
891 | ENDIF |
---|
892 | ! |
---|
893 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
894 | !-- of downward-facing surfaces. |
---|
895 | DO l = 0, 1 |
---|
896 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
897 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
898 | !$ACC PRESENT(bc_h, w_p) |
---|
899 | DO m = 1, bc_h(l)%ns |
---|
900 | i = bc_h(l)%i(m) |
---|
901 | j = bc_h(l)%j(m) |
---|
902 | k = bc_h(l)%k(m) |
---|
903 | w_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
904 | ENDDO |
---|
905 | ENDDO |
---|
906 | |
---|
907 | ! |
---|
908 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
909 | IF ( ibc_uv_t == 0 ) THEN |
---|
910 | !$ACC KERNELS PRESENT(u_p, v_p, u_init, v_init) |
---|
911 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
912 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
913 | !$ACC END KERNELS |
---|
914 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
915 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
916 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
917 | ENDIF |
---|
918 | |
---|
919 | ! |
---|
920 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
921 | IF ( .NOT. child_domain .AND. .NOT. nesting_offline .AND. & |
---|
922 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
923 | !$ACC KERNELS PRESENT(w_p) |
---|
924 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
925 | !$ACC END KERNELS |
---|
926 | ENDIF |
---|
927 | |
---|
928 | ! |
---|
929 | !-- Temperature at bottom and top boundary. |
---|
930 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by the sea surface temperature |
---|
931 | !-- of the coupled ocean model. |
---|
932 | !-- Dirichlet |
---|
933 | IF ( .NOT. neutral ) THEN |
---|
934 | IF ( ibc_pt_b == 0 ) THEN |
---|
935 | DO l = 0, 1 |
---|
936 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
937 | DO m = 1, bc_h(l)%ns |
---|
938 | i = bc_h(l)%i(m) |
---|
939 | j = bc_h(l)%j(m) |
---|
940 | k = bc_h(l)%k(m) |
---|
941 | pt_p(k+bc_h(l)%koff,j,i) = pt(k+bc_h(l)%koff,j,i) |
---|
942 | ENDDO |
---|
943 | ENDDO |
---|
944 | ! |
---|
945 | !-- Neumann, zero-gradient |
---|
946 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
947 | DO l = 0, 1 |
---|
948 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
949 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
950 | !$ACC PRESENT(bc_h, pt_p) |
---|
951 | DO m = 1, bc_h(l)%ns |
---|
952 | i = bc_h(l)%i(m) |
---|
953 | j = bc_h(l)%j(m) |
---|
954 | k = bc_h(l)%k(m) |
---|
955 | pt_p(k+bc_h(l)%koff,j,i) = pt_p(k,j,i) |
---|
956 | ENDDO |
---|
957 | ENDDO |
---|
958 | ENDIF |
---|
959 | |
---|
960 | ! |
---|
961 | !-- Temperature at top boundary |
---|
962 | IF ( ibc_pt_t == 0 ) THEN |
---|
963 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
964 | ! |
---|
965 | !-- In case of nudging adjust top boundary to pt which is |
---|
966 | !-- read in from NUDGING-DATA |
---|
967 | IF ( nudging ) THEN |
---|
968 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
969 | ENDIF |
---|
970 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
971 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
972 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
973 | !$ACC KERNELS PRESENT(pt_p, dzu) |
---|
974 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
975 | !$ACC END KERNELS |
---|
976 | ENDIF |
---|
977 | ENDIF |
---|
978 | ! |
---|
979 | !-- Boundary conditions for total water content, bottom and top boundary (see also temperature) |
---|
980 | IF ( humidity ) THEN |
---|
981 | ! |
---|
982 | !-- Surface conditions for constant_humidity_flux |
---|
983 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype the k coordinate |
---|
984 | !-- belongs to the atmospheric grid point, therefore, set q_p at k-1 |
---|
985 | IF ( ibc_q_b == 0 ) THEN |
---|
986 | |
---|
987 | DO l = 0, 1 |
---|
988 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
989 | DO m = 1, bc_h(l)%ns |
---|
990 | i = bc_h(l)%i(m) |
---|
991 | j = bc_h(l)%j(m) |
---|
992 | k = bc_h(l)%k(m) |
---|
993 | q_p(k+bc_h(l)%koff,j,i) = q(k+bc_h(l)%koff,j,i) |
---|
994 | ENDDO |
---|
995 | ENDDO |
---|
996 | |
---|
997 | ELSE |
---|
998 | |
---|
999 | DO l = 0, 1 |
---|
1000 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1001 | DO m = 1, bc_h(l)%ns |
---|
1002 | i = bc_h(l)%i(m) |
---|
1003 | j = bc_h(l)%j(m) |
---|
1004 | k = bc_h(l)%k(m) |
---|
1005 | q_p(k+bc_h(l)%koff,j,i) = q_p(k,j,i) |
---|
1006 | ENDDO |
---|
1007 | ENDDO |
---|
1008 | ENDIF |
---|
1009 | ! |
---|
1010 | !-- Top boundary |
---|
1011 | IF ( ibc_q_t == 0 ) THEN |
---|
1012 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
1013 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
1014 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
1015 | ENDIF |
---|
1016 | ENDIF |
---|
1017 | ! |
---|
1018 | !-- Boundary conditions for scalar, bottom and top boundary (see also temperature) |
---|
1019 | IF ( passive_scalar ) THEN |
---|
1020 | ! |
---|
1021 | !-- Surface conditions for constant_humidity_flux |
---|
1022 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype the k coordinate |
---|
1023 | !-- belongs to the atmospheric grid point, therefore, set s_p at k-1 |
---|
1024 | IF ( ibc_s_b == 0 ) THEN |
---|
1025 | |
---|
1026 | DO l = 0, 1 |
---|
1027 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1028 | DO m = 1, bc_h(l)%ns |
---|
1029 | i = bc_h(l)%i(m) |
---|
1030 | j = bc_h(l)%j(m) |
---|
1031 | k = bc_h(l)%k(m) |
---|
1032 | s_p(k+bc_h(l)%koff,j,i) = s(k+bc_h(l)%koff,j,i) |
---|
1033 | ENDDO |
---|
1034 | ENDDO |
---|
1035 | |
---|
1036 | ELSE |
---|
1037 | |
---|
1038 | DO l = 0, 1 |
---|
1039 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1040 | DO m = 1, bc_h(l)%ns |
---|
1041 | i = bc_h(l)%i(m) |
---|
1042 | j = bc_h(l)%j(m) |
---|
1043 | k = bc_h(l)%k(m) |
---|
1044 | s_p(k+bc_h(l)%koff,j,i) = s_p(k,j,i) |
---|
1045 | ENDDO |
---|
1046 | ENDDO |
---|
1047 | ENDIF |
---|
1048 | ! |
---|
1049 | !-- Top boundary condition |
---|
1050 | IF ( ibc_s_t == 0 ) THEN |
---|
1051 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
1052 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
1053 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
1054 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
1055 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
1056 | ENDIF |
---|
1057 | |
---|
1058 | ENDIF |
---|
1059 | ! |
---|
1060 | !-- In case of inflow or nest boundary at the south boundary the boundary for v is at nys and in |
---|
1061 | !-- case of inflow or nest boundary at the left boundary the boundary for u is at nxl. Since in |
---|
1062 | !-- prognostic_equations (cache optimized version) these levels are handled as a prognostic level, |
---|
1063 | !-- boundary values have to be restored here. |
---|
1064 | IF ( bc_dirichlet_s ) THEN |
---|
1065 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
1066 | ELSEIF ( bc_dirichlet_l ) THEN |
---|
1067 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
1068 | ENDIF |
---|
1069 | |
---|
1070 | ! |
---|
1071 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made in case of nest |
---|
1072 | !-- boundaries. This must not be done in case of vertical nesting mode as in that case the lateral |
---|
1073 | !-- boundaries are actually cyclic. |
---|
1074 | !-- Lateral oundary conditions for TKE and dissipation are set in tcm_boundary_conds. |
---|
1075 | IF ( nesting_mode /= 'vertical' .OR. nesting_offline ) THEN |
---|
1076 | IF ( bc_dirichlet_s ) THEN |
---|
1077 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
1078 | ENDIF |
---|
1079 | IF ( bc_dirichlet_l ) THEN |
---|
1080 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
1081 | ENDIF |
---|
1082 | ENDIF |
---|
1083 | |
---|
1084 | ! |
---|
1085 | !-- Lateral boundary conditions for scalar quantities at the outflow. |
---|
1086 | !-- Lateral oundary conditions for TKE and dissipation are set in tcm_boundary_conds. |
---|
1087 | IF ( bc_radiation_s ) THEN |
---|
1088 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
1089 | IF ( humidity ) THEN |
---|
1090 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
1091 | ENDIF |
---|
1092 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
1093 | ELSEIF ( bc_radiation_n ) THEN |
---|
1094 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
1095 | IF ( humidity ) THEN |
---|
1096 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
1097 | ENDIF |
---|
1098 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
1099 | ELSEIF ( bc_radiation_l ) THEN |
---|
1100 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
1101 | IF ( humidity ) THEN |
---|
1102 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
1103 | ENDIF |
---|
1104 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
1105 | ELSEIF ( bc_radiation_r ) THEN |
---|
1106 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
1107 | IF ( humidity ) THEN |
---|
1108 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
1109 | ENDIF |
---|
1110 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
1111 | ENDIF |
---|
1112 | |
---|
1113 | ! |
---|
1114 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
1115 | !-- The phase velocity is either assumed to the maximum phase velocity that ensures numerical |
---|
1116 | !-- stability (CFL-condition) or calculated after Orlanski(1976) and averaged along the outflow |
---|
1117 | !-- boundary. |
---|
1118 | IF ( bc_radiation_s ) THEN |
---|
1119 | |
---|
1120 | IF ( use_cmax ) THEN |
---|
1121 | u_p(:,-1,:) = u(:,0,:) |
---|
1122 | v_p(:,0,:) = v(:,1,:) |
---|
1123 | w_p(:,-1,:) = w(:,0,:) |
---|
1124 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1125 | |
---|
1126 | c_max = dy / dt_3d |
---|
1127 | |
---|
1128 | c_u_m_l = 0.0_wp |
---|
1129 | c_v_m_l = 0.0_wp |
---|
1130 | c_w_m_l = 0.0_wp |
---|
1131 | |
---|
1132 | c_u_m = 0.0_wp |
---|
1133 | c_v_m = 0.0_wp |
---|
1134 | c_w_m = 0.0_wp |
---|
1135 | |
---|
1136 | ! |
---|
1137 | !-- Calculate the phase speeds for u, v, and w, first local and then average along the outflow |
---|
1138 | !-- boundary. |
---|
1139 | DO k = nzb+1, nzt+1 |
---|
1140 | DO i = nxl, nxr |
---|
1141 | |
---|
1142 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
1143 | |
---|
1144 | IF ( denom /= 0.0_wp ) THEN |
---|
1145 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
1146 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
1147 | c_u(k,i) = 0.0_wp |
---|
1148 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
1149 | c_u(k,i) = c_max |
---|
1150 | ENDIF |
---|
1151 | ELSE |
---|
1152 | c_u(k,i) = c_max |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
1156 | |
---|
1157 | IF ( denom /= 0.0_wp ) THEN |
---|
1158 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
1159 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
1160 | c_v(k,i) = 0.0_wp |
---|
1161 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
1162 | c_v(k,i) = c_max |
---|
1163 | ENDIF |
---|
1164 | ELSE |
---|
1165 | c_v(k,i) = c_max |
---|
1166 | ENDIF |
---|
1167 | |
---|
1168 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
1169 | |
---|
1170 | IF ( denom /= 0.0_wp ) THEN |
---|
1171 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
1172 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
1173 | c_w(k,i) = 0.0_wp |
---|
1174 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
1175 | c_w(k,i) = c_max |
---|
1176 | ENDIF |
---|
1177 | ELSE |
---|
1178 | c_w(k,i) = c_max |
---|
1179 | ENDIF |
---|
1180 | |
---|
1181 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
1182 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
1183 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
1184 | |
---|
1185 | ENDDO |
---|
1186 | ENDDO |
---|
1187 | |
---|
1188 | #if defined( __parallel ) |
---|
1189 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1190 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dx, & |
---|
1191 | ierr ) |
---|
1192 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1193 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dx, & |
---|
1194 | ierr ) |
---|
1195 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1196 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dx, & |
---|
1197 | ierr ) |
---|
1198 | #else |
---|
1199 | c_u_m = c_u_m_l |
---|
1200 | c_v_m = c_v_m_l |
---|
1201 | c_w_m = c_w_m_l |
---|
1202 | #endif |
---|
1203 | |
---|
1204 | c_u_m = c_u_m / (nx+1) |
---|
1205 | c_v_m = c_v_m / (nx+1) |
---|
1206 | c_w_m = c_w_m / (nx+1) |
---|
1207 | |
---|
1208 | ! |
---|
1209 | !-- Save old timelevels for the next timestep |
---|
1210 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1211 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
1212 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
1213 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
1214 | ENDIF |
---|
1215 | |
---|
1216 | ! |
---|
1217 | !-- Calculate the new velocities |
---|
1218 | DO k = nzb+1, nzt+1 |
---|
1219 | DO i = nxlg, nxrg |
---|
1220 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1221 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
1222 | |
---|
1223 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1224 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
1225 | |
---|
1226 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1227 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
1228 | ENDDO |
---|
1229 | ENDDO |
---|
1230 | |
---|
1231 | ! |
---|
1232 | !-- Bottom boundary at the outflow |
---|
1233 | IF ( ibc_uv_b == 0 ) THEN |
---|
1234 | u_p(nzb,-1,:) = 0.0_wp |
---|
1235 | v_p(nzb,0,:) = 0.0_wp |
---|
1236 | ELSE |
---|
1237 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
1238 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
1239 | ENDIF |
---|
1240 | w_p(nzb,-1,:) = 0.0_wp |
---|
1241 | |
---|
1242 | ! |
---|
1243 | !-- Top boundary at the outflow |
---|
1244 | IF ( ibc_uv_t == 0 ) THEN |
---|
1245 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
1246 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
1247 | ELSE |
---|
1248 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
1249 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
1250 | ENDIF |
---|
1251 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
1252 | |
---|
1253 | ENDIF |
---|
1254 | |
---|
1255 | ENDIF |
---|
1256 | |
---|
1257 | IF ( bc_radiation_n ) THEN |
---|
1258 | |
---|
1259 | IF ( use_cmax ) THEN |
---|
1260 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
1261 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
1262 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
1263 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1264 | |
---|
1265 | c_max = dy / dt_3d |
---|
1266 | |
---|
1267 | c_u_m_l = 0.0_wp |
---|
1268 | c_v_m_l = 0.0_wp |
---|
1269 | c_w_m_l = 0.0_wp |
---|
1270 | |
---|
1271 | c_u_m = 0.0_wp |
---|
1272 | c_v_m = 0.0_wp |
---|
1273 | c_w_m = 0.0_wp |
---|
1274 | |
---|
1275 | ! |
---|
1276 | !-- Calculate the phase speeds for u, v, and w, first local and then average along the outflow |
---|
1277 | !-- boundary. |
---|
1278 | DO k = nzb+1, nzt+1 |
---|
1279 | DO i = nxl, nxr |
---|
1280 | |
---|
1281 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
1282 | |
---|
1283 | IF ( denom /= 0.0_wp ) THEN |
---|
1284 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
1285 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
1286 | c_u(k,i) = 0.0_wp |
---|
1287 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
1288 | c_u(k,i) = c_max |
---|
1289 | ENDIF |
---|
1290 | ELSE |
---|
1291 | c_u(k,i) = c_max |
---|
1292 | ENDIF |
---|
1293 | |
---|
1294 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
1295 | |
---|
1296 | IF ( denom /= 0.0_wp ) THEN |
---|
1297 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
1298 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
1299 | c_v(k,i) = 0.0_wp |
---|
1300 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
1301 | c_v(k,i) = c_max |
---|
1302 | ENDIF |
---|
1303 | ELSE |
---|
1304 | c_v(k,i) = c_max |
---|
1305 | ENDIF |
---|
1306 | |
---|
1307 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
1308 | |
---|
1309 | IF ( denom /= 0.0_wp ) THEN |
---|
1310 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
1311 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
1312 | c_w(k,i) = 0.0_wp |
---|
1313 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
1314 | c_w(k,i) = c_max |
---|
1315 | ENDIF |
---|
1316 | ELSE |
---|
1317 | c_w(k,i) = c_max |
---|
1318 | ENDIF |
---|
1319 | |
---|
1320 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
1321 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
1322 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
1323 | |
---|
1324 | ENDDO |
---|
1325 | ENDDO |
---|
1326 | |
---|
1327 | #if defined( __parallel ) |
---|
1328 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1329 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dx, & |
---|
1330 | ierr ) |
---|
1331 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1332 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dx, & |
---|
1333 | ierr ) |
---|
1334 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1335 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dx, & |
---|
1336 | ierr ) |
---|
1337 | #else |
---|
1338 | c_u_m = c_u_m_l |
---|
1339 | c_v_m = c_v_m_l |
---|
1340 | c_w_m = c_w_m_l |
---|
1341 | #endif |
---|
1342 | |
---|
1343 | c_u_m = c_u_m / (nx+1) |
---|
1344 | c_v_m = c_v_m / (nx+1) |
---|
1345 | c_w_m = c_w_m / (nx+1) |
---|
1346 | |
---|
1347 | ! |
---|
1348 | !-- Save old timelevels for the next timestep |
---|
1349 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1350 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
1351 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
1352 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
1353 | ENDIF |
---|
1354 | |
---|
1355 | ! |
---|
1356 | !-- Calculate the new velocities |
---|
1357 | DO k = nzb+1, nzt+1 |
---|
1358 | DO i = nxlg, nxrg |
---|
1359 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1360 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
1361 | |
---|
1362 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1363 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
1364 | |
---|
1365 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1366 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
1367 | ENDDO |
---|
1368 | ENDDO |
---|
1369 | |
---|
1370 | ! |
---|
1371 | !-- Bottom boundary at the outflow |
---|
1372 | IF ( ibc_uv_b == 0 ) THEN |
---|
1373 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
1374 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
1375 | ELSE |
---|
1376 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
1377 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
1378 | ENDIF |
---|
1379 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
1380 | |
---|
1381 | ! |
---|
1382 | !-- Top boundary at the outflow |
---|
1383 | IF ( ibc_uv_t == 0 ) THEN |
---|
1384 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
1385 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
1386 | ELSE |
---|
1387 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
1388 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
1389 | ENDIF |
---|
1390 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
1391 | |
---|
1392 | ENDIF |
---|
1393 | |
---|
1394 | ENDIF |
---|
1395 | |
---|
1396 | IF ( bc_radiation_l ) THEN |
---|
1397 | |
---|
1398 | IF ( use_cmax ) THEN |
---|
1399 | u_p(:,:,0) = u(:,:,1) |
---|
1400 | v_p(:,:,-1) = v(:,:,0) |
---|
1401 | w_p(:,:,-1) = w(:,:,0) |
---|
1402 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1403 | |
---|
1404 | c_max = dx / dt_3d |
---|
1405 | |
---|
1406 | c_u_m_l = 0.0_wp |
---|
1407 | c_v_m_l = 0.0_wp |
---|
1408 | c_w_m_l = 0.0_wp |
---|
1409 | |
---|
1410 | c_u_m = 0.0_wp |
---|
1411 | c_v_m = 0.0_wp |
---|
1412 | c_w_m = 0.0_wp |
---|
1413 | |
---|
1414 | ! |
---|
1415 | !-- Calculate the phase speeds for u, v, and w, first local and then average along the outflow |
---|
1416 | !-- boundary. |
---|
1417 | DO k = nzb+1, nzt+1 |
---|
1418 | DO j = nys, nyn |
---|
1419 | |
---|
1420 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
1421 | |
---|
1422 | IF ( denom /= 0.0_wp ) THEN |
---|
1423 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
1424 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1425 | c_u(k,j) = 0.0_wp |
---|
1426 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1427 | c_u(k,j) = c_max |
---|
1428 | ENDIF |
---|
1429 | ELSE |
---|
1430 | c_u(k,j) = c_max |
---|
1431 | ENDIF |
---|
1432 | |
---|
1433 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
1434 | |
---|
1435 | IF ( denom /= 0.0_wp ) THEN |
---|
1436 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
1437 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1438 | c_v(k,j) = 0.0_wp |
---|
1439 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1440 | c_v(k,j) = c_max |
---|
1441 | ENDIF |
---|
1442 | ELSE |
---|
1443 | c_v(k,j) = c_max |
---|
1444 | ENDIF |
---|
1445 | |
---|
1446 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
1447 | |
---|
1448 | IF ( denom /= 0.0_wp ) THEN |
---|
1449 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
1450 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1451 | c_w(k,j) = 0.0_wp |
---|
1452 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1453 | c_w(k,j) = c_max |
---|
1454 | ENDIF |
---|
1455 | ELSE |
---|
1456 | c_w(k,j) = c_max |
---|
1457 | ENDIF |
---|
1458 | |
---|
1459 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1460 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1461 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1462 | |
---|
1463 | ENDDO |
---|
1464 | ENDDO |
---|
1465 | |
---|
1466 | #if defined( __parallel ) |
---|
1467 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1468 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1469 | ierr ) |
---|
1470 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1471 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1472 | ierr ) |
---|
1473 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1474 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1475 | ierr ) |
---|
1476 | #else |
---|
1477 | c_u_m = c_u_m_l |
---|
1478 | c_v_m = c_v_m_l |
---|
1479 | c_w_m = c_w_m_l |
---|
1480 | #endif |
---|
1481 | |
---|
1482 | c_u_m = c_u_m / (ny+1) |
---|
1483 | c_v_m = c_v_m / (ny+1) |
---|
1484 | c_w_m = c_w_m / (ny+1) |
---|
1485 | |
---|
1486 | ! |
---|
1487 | !-- Save old timelevels for the next timestep |
---|
1488 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1489 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
1490 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
1491 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
1492 | ENDIF |
---|
1493 | |
---|
1494 | ! |
---|
1495 | !-- Calculate the new velocities |
---|
1496 | DO k = nzb+1, nzt+1 |
---|
1497 | DO j = nysg, nyng |
---|
1498 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1499 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
1500 | |
---|
1501 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1502 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
1503 | |
---|
1504 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1505 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
1506 | ENDDO |
---|
1507 | ENDDO |
---|
1508 | |
---|
1509 | ! |
---|
1510 | !-- Bottom boundary at the outflow |
---|
1511 | IF ( ibc_uv_b == 0 ) THEN |
---|
1512 | u_p(nzb,:,0) = 0.0_wp |
---|
1513 | v_p(nzb,:,-1) = 0.0_wp |
---|
1514 | ELSE |
---|
1515 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
1516 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
1517 | ENDIF |
---|
1518 | w_p(nzb,:,-1) = 0.0_wp |
---|
1519 | |
---|
1520 | ! |
---|
1521 | !-- Top boundary at the outflow |
---|
1522 | IF ( ibc_uv_t == 0 ) THEN |
---|
1523 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
1524 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
1525 | ELSE |
---|
1526 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
1527 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
1528 | ENDIF |
---|
1529 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
1530 | |
---|
1531 | ENDIF |
---|
1532 | |
---|
1533 | ENDIF |
---|
1534 | |
---|
1535 | IF ( bc_radiation_r ) THEN |
---|
1536 | |
---|
1537 | IF ( use_cmax ) THEN |
---|
1538 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
1539 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
1540 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
1541 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1542 | |
---|
1543 | c_max = dx / dt_3d |
---|
1544 | |
---|
1545 | c_u_m_l = 0.0_wp |
---|
1546 | c_v_m_l = 0.0_wp |
---|
1547 | c_w_m_l = 0.0_wp |
---|
1548 | |
---|
1549 | c_u_m = 0.0_wp |
---|
1550 | c_v_m = 0.0_wp |
---|
1551 | c_w_m = 0.0_wp |
---|
1552 | |
---|
1553 | ! |
---|
1554 | !-- Calculate the phase speeds for u, v, and w, first local and then average along the outflow |
---|
1555 | !-- boundary. |
---|
1556 | DO k = nzb+1, nzt+1 |
---|
1557 | DO j = nys, nyn |
---|
1558 | |
---|
1559 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
1560 | |
---|
1561 | IF ( denom /= 0.0_wp ) THEN |
---|
1562 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1563 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1564 | c_u(k,j) = 0.0_wp |
---|
1565 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1566 | c_u(k,j) = c_max |
---|
1567 | ENDIF |
---|
1568 | ELSE |
---|
1569 | c_u(k,j) = c_max |
---|
1570 | ENDIF |
---|
1571 | |
---|
1572 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
1573 | |
---|
1574 | IF ( denom /= 0.0_wp ) THEN |
---|
1575 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1576 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1577 | c_v(k,j) = 0.0_wp |
---|
1578 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1579 | c_v(k,j) = c_max |
---|
1580 | ENDIF |
---|
1581 | ELSE |
---|
1582 | c_v(k,j) = c_max |
---|
1583 | ENDIF |
---|
1584 | |
---|
1585 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
1586 | |
---|
1587 | IF ( denom /= 0.0_wp ) THEN |
---|
1588 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1589 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1590 | c_w(k,j) = 0.0_wp |
---|
1591 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1592 | c_w(k,j) = c_max |
---|
1593 | ENDIF |
---|
1594 | ELSE |
---|
1595 | c_w(k,j) = c_max |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1599 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1600 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1601 | |
---|
1602 | ENDDO |
---|
1603 | ENDDO |
---|
1604 | |
---|
1605 | #if defined( __parallel ) |
---|
1606 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1607 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1608 | ierr ) |
---|
1609 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1610 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1611 | ierr ) |
---|
1612 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1613 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1614 | ierr ) |
---|
1615 | #else |
---|
1616 | c_u_m = c_u_m_l |
---|
1617 | c_v_m = c_v_m_l |
---|
1618 | c_w_m = c_w_m_l |
---|
1619 | #endif |
---|
1620 | |
---|
1621 | c_u_m = c_u_m / (ny+1) |
---|
1622 | c_v_m = c_v_m / (ny+1) |
---|
1623 | c_w_m = c_w_m / (ny+1) |
---|
1624 | |
---|
1625 | ! |
---|
1626 | !-- Save old timelevels for the next timestep |
---|
1627 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1628 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
1629 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
1630 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
1631 | ENDIF |
---|
1632 | |
---|
1633 | ! |
---|
1634 | !-- Calculate the new velocities |
---|
1635 | DO k = nzb+1, nzt+1 |
---|
1636 | DO j = nysg, nyng |
---|
1637 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1638 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
1639 | |
---|
1640 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1641 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
1642 | |
---|
1643 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1644 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
1645 | ENDDO |
---|
1646 | ENDDO |
---|
1647 | |
---|
1648 | ! |
---|
1649 | !-- Bottom boundary at the outflow |
---|
1650 | IF ( ibc_uv_b == 0 ) THEN |
---|
1651 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
1652 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
1653 | ELSE |
---|
1654 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
1655 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
1656 | ENDIF |
---|
1657 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
1658 | |
---|
1659 | ! |
---|
1660 | !-- Top boundary at the outflow |
---|
1661 | IF ( ibc_uv_t == 0 ) THEN |
---|
1662 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
1663 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
1664 | ELSE |
---|
1665 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
1666 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
1667 | ENDIF |
---|
1668 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
1669 | |
---|
1670 | ENDIF |
---|
1671 | |
---|
1672 | ENDIF |
---|
1673 | |
---|
1674 | END SUBROUTINE dynamics_boundary_conditions |
---|
1675 | !--------------------------------------------------------------------------------------------------! |
---|
1676 | ! Description: |
---|
1677 | ! ------------ |
---|
1678 | !> Swap timelevels of module-specific array pointers |
---|
1679 | !--------------------------------------------------------------------------------------------------! |
---|
1680 | SUBROUTINE dynamics_swap_timelevel ( mod_count ) |
---|
1681 | |
---|
1682 | |
---|
1683 | INTEGER, INTENT(IN) :: mod_count |
---|
1684 | |
---|
1685 | |
---|
1686 | SELECT CASE ( mod_count ) |
---|
1687 | |
---|
1688 | CASE ( 0 ) |
---|
1689 | |
---|
1690 | u => u_1; u_p => u_2 |
---|
1691 | v => v_1; v_p => v_2 |
---|
1692 | w => w_1; w_p => w_2 |
---|
1693 | IF ( .NOT. neutral ) THEN |
---|
1694 | pt => pt_1; pt_p => pt_2 |
---|
1695 | ENDIF |
---|
1696 | IF ( humidity ) THEN |
---|
1697 | q => q_1; q_p => q_2 |
---|
1698 | ENDIF |
---|
1699 | IF ( passive_scalar ) THEN |
---|
1700 | s => s_1; s_p => s_2 |
---|
1701 | ENDIF |
---|
1702 | |
---|
1703 | CASE ( 1 ) |
---|
1704 | |
---|
1705 | u => u_2; u_p => u_1 |
---|
1706 | v => v_2; v_p => v_1 |
---|
1707 | w => w_2; w_p => w_1 |
---|
1708 | IF ( .NOT. neutral ) THEN |
---|
1709 | pt => pt_2; pt_p => pt_1 |
---|
1710 | ENDIF |
---|
1711 | IF ( humidity ) THEN |
---|
1712 | q => q_2; q_p => q_1 |
---|
1713 | ENDIF |
---|
1714 | IF ( passive_scalar ) THEN |
---|
1715 | s => s_2; s_p => s_1 |
---|
1716 | ENDIF |
---|
1717 | |
---|
1718 | END SELECT |
---|
1719 | |
---|
1720 | END SUBROUTINE dynamics_swap_timelevel |
---|
1721 | |
---|
1722 | |
---|
1723 | !--------------------------------------------------------------------------------------------------! |
---|
1724 | ! Description: |
---|
1725 | ! ------------ |
---|
1726 | !> Sum up and time-average module-specific output quantities as well as allocate the array necessary |
---|
1727 | !> for storing the average. |
---|
1728 | !--------------------------------------------------------------------------------------------------! |
---|
1729 | SUBROUTINE dynamics_3d_data_averaging( mode, variable ) |
---|
1730 | |
---|
1731 | |
---|
1732 | CHARACTER (LEN=*) :: mode !< |
---|
1733 | CHARACTER (LEN=*) :: variable !< |
---|
1734 | |
---|
1735 | |
---|
1736 | IF ( mode == 'allocate' ) THEN |
---|
1737 | |
---|
1738 | SELECT CASE ( TRIM( variable ) ) |
---|
1739 | |
---|
1740 | ! CASE ( 'u2' ) |
---|
1741 | |
---|
1742 | CASE DEFAULT |
---|
1743 | CONTINUE |
---|
1744 | |
---|
1745 | END SELECT |
---|
1746 | |
---|
1747 | ELSEIF ( mode == 'sum' ) THEN |
---|
1748 | |
---|
1749 | SELECT CASE ( TRIM( variable ) ) |
---|
1750 | |
---|
1751 | ! CASE ( 'u2' ) |
---|
1752 | |
---|
1753 | CASE DEFAULT |
---|
1754 | CONTINUE |
---|
1755 | |
---|
1756 | END SELECT |
---|
1757 | |
---|
1758 | ELSEIF ( mode == 'average' ) THEN |
---|
1759 | |
---|
1760 | SELECT CASE ( TRIM( variable ) ) |
---|
1761 | |
---|
1762 | ! CASE ( 'u2' ) |
---|
1763 | |
---|
1764 | END SELECT |
---|
1765 | |
---|
1766 | ENDIF |
---|
1767 | |
---|
1768 | |
---|
1769 | END SUBROUTINE dynamics_3d_data_averaging |
---|
1770 | |
---|
1771 | |
---|
1772 | !--------------------------------------------------------------------------------------------------! |
---|
1773 | ! Description: |
---|
1774 | ! ------------ |
---|
1775 | !> Resorts the module-specific output quantity with indices (k,j,i) to a temporary array with |
---|
1776 | !> indices (i,j,k) and sets the grid on which it is defined. |
---|
1777 | !> Allowed values for grid are "zu" and "zw". |
---|
1778 | !--------------------------------------------------------------------------------------------------! |
---|
1779 | SUBROUTINE dynamics_data_output_2d( av, variable, found, grid, mode, local_pf, two_d, nzb_do, & |
---|
1780 | nzt_do, fill_value ) |
---|
1781 | |
---|
1782 | |
---|
1783 | CHARACTER (LEN=*) :: grid !< |
---|
1784 | CHARACTER (LEN=*), INTENT(IN) :: mode !< either 'xy', 'xz' or 'yz' |
---|
1785 | CHARACTER (LEN=*) :: variable !< |
---|
1786 | |
---|
1787 | INTEGER(iwp) :: av !< flag to control data output of instantaneous or time-averaged data |
---|
1788 | ! INTEGER(iwp) :: i !< grid index along x-direction |
---|
1789 | ! INTEGER(iwp) :: j !< grid index along y-direction |
---|
1790 | ! INTEGER(iwp) :: k !< grid index along z-direction |
---|
1791 | ! INTEGER(iwp) :: m !< running index surface elements |
---|
1792 | INTEGER(iwp) :: nzb_do !< lower limit of the domain (usually nzb) |
---|
1793 | INTEGER(iwp) :: nzt_do !< upper limit of the domain (usually nzt+1) |
---|
1794 | |
---|
1795 | LOGICAL :: found !< |
---|
1796 | LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections) |
---|
1797 | |
---|
1798 | REAL(wp), INTENT(IN) :: fill_value |
---|
1799 | |
---|
1800 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
1801 | |
---|
1802 | ! |
---|
1803 | !-- Next line is just to avoid compiler warnings about unused variables. You may remove it. |
---|
1804 | IF ( two_d .AND. av + LEN( mode ) + local_pf(nxl,nys,nzb_do) + fill_value < 0.0 ) CONTINUE |
---|
1805 | |
---|
1806 | found = .TRUE. |
---|
1807 | |
---|
1808 | SELECT CASE ( TRIM( variable ) ) |
---|
1809 | |
---|
1810 | ! CASE ( 'u2_xy', 'u2_xz', 'u2_yz' ) |
---|
1811 | |
---|
1812 | CASE DEFAULT |
---|
1813 | found = .FALSE. |
---|
1814 | grid = 'none' |
---|
1815 | |
---|
1816 | END SELECT |
---|
1817 | |
---|
1818 | |
---|
1819 | END SUBROUTINE dynamics_data_output_2d |
---|
1820 | |
---|
1821 | |
---|
1822 | !--------------------------------------------------------------------------------------------------! |
---|
1823 | ! Description: |
---|
1824 | ! ------------ |
---|
1825 | !> Resorts the module-specific output quantity with indices (k,j,i) to a temporary array with |
---|
1826 | !> indices (i,j,k). |
---|
1827 | !--------------------------------------------------------------------------------------------------! |
---|
1828 | SUBROUTINE dynamics_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do ) |
---|
1829 | |
---|
1830 | |
---|
1831 | CHARACTER (LEN=*) :: variable !< |
---|
1832 | |
---|
1833 | INTEGER(iwp) :: av !< |
---|
1834 | ! INTEGER(iwp) :: i !< |
---|
1835 | ! INTEGER(iwp) :: j !< |
---|
1836 | ! INTEGER(iwp) :: k !< |
---|
1837 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
1838 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
1839 | |
---|
1840 | LOGICAL :: found !< |
---|
1841 | |
---|
1842 | REAL(wp), INTENT(IN) :: fill_value !< value for the _FillValue attribute |
---|
1843 | |
---|
1844 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
1845 | |
---|
1846 | ! |
---|
1847 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
1848 | IF ( av + local_pf(nxl,nys,nzb_do) + fill_value < 0.0 ) CONTINUE |
---|
1849 | |
---|
1850 | |
---|
1851 | found = .TRUE. |
---|
1852 | |
---|
1853 | SELECT CASE ( TRIM( variable ) ) |
---|
1854 | |
---|
1855 | ! CASE ( 'u2' ) |
---|
1856 | |
---|
1857 | CASE DEFAULT |
---|
1858 | found = .FALSE. |
---|
1859 | |
---|
1860 | END SELECT |
---|
1861 | |
---|
1862 | |
---|
1863 | END SUBROUTINE dynamics_data_output_3d |
---|
1864 | |
---|
1865 | |
---|
1866 | !--------------------------------------------------------------------------------------------------! |
---|
1867 | ! Description: |
---|
1868 | ! ------------ |
---|
1869 | !> Calculation of module-specific statistics, i.e. horizontally averaged profiles and time series. |
---|
1870 | !> This is called for every statistic region sr, but at least for the region "total domain" (sr=0). |
---|
1871 | !--------------------------------------------------------------------------------------------------! |
---|
1872 | SUBROUTINE dynamics_statistics( mode, sr, tn ) |
---|
1873 | |
---|
1874 | |
---|
1875 | CHARACTER (LEN=*) :: mode !< |
---|
1876 | ! INTEGER(iwp) :: i !< |
---|
1877 | ! INTEGER(iwp) :: j !< |
---|
1878 | ! INTEGER(iwp) :: k !< |
---|
1879 | INTEGER(iwp) :: sr !< |
---|
1880 | INTEGER(iwp) :: tn !< |
---|
1881 | |
---|
1882 | ! |
---|
1883 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
1884 | IF ( sr == 0 .OR. tn == 0 ) CONTINUE |
---|
1885 | |
---|
1886 | IF ( mode == 'profiles' ) THEN |
---|
1887 | |
---|
1888 | ELSEIF ( mode == 'time_series' ) THEN |
---|
1889 | |
---|
1890 | ENDIF |
---|
1891 | |
---|
1892 | END SUBROUTINE dynamics_statistics |
---|
1893 | |
---|
1894 | |
---|
1895 | !--------------------------------------------------------------------------------------------------! |
---|
1896 | ! Description: |
---|
1897 | ! ------------ |
---|
1898 | !> Read module-specific global restart data (Fortran binary format). |
---|
1899 | !--------------------------------------------------------------------------------------------------! |
---|
1900 | SUBROUTINE dynamics_rrd_global_ftn( found ) |
---|
1901 | |
---|
1902 | LOGICAL, INTENT(OUT) :: found |
---|
1903 | |
---|
1904 | |
---|
1905 | found = .TRUE. |
---|
1906 | |
---|
1907 | |
---|
1908 | SELECT CASE ( restart_string(1:length) ) |
---|
1909 | |
---|
1910 | CASE ( 'global_paramter' ) |
---|
1911 | ! READ ( 13 ) global_parameter |
---|
1912 | |
---|
1913 | CASE DEFAULT |
---|
1914 | |
---|
1915 | found = .FALSE. |
---|
1916 | |
---|
1917 | END SELECT |
---|
1918 | |
---|
1919 | |
---|
1920 | END SUBROUTINE dynamics_rrd_global_ftn |
---|
1921 | |
---|
1922 | |
---|
1923 | !--------------------------------------------------------------------------------------------------! |
---|
1924 | ! Description: |
---|
1925 | ! ------------ |
---|
1926 | !> Read module-specific global restart data (MPI-IO). |
---|
1927 | !--------------------------------------------------------------------------------------------------! |
---|
1928 | SUBROUTINE dynamics_rrd_global_mpi |
---|
1929 | |
---|
1930 | ! CALL rrd_mpi_io( 'global_parameter', global_parameter ) |
---|
1931 | CONTINUE |
---|
1932 | |
---|
1933 | END SUBROUTINE dynamics_rrd_global_mpi |
---|
1934 | |
---|
1935 | |
---|
1936 | !--------------------------------------------------------------------------------------------------! |
---|
1937 | ! Description: |
---|
1938 | ! ------------ |
---|
1939 | !> Read module-specific local restart data arrays (Fortran binary format). |
---|
1940 | !> Subdomain index limits on file are given by nxl_on_file, etc. |
---|
1941 | !> Indices nxlc, etc. indicate the range of gridpoints to be mapped from the subdomain on file (f) |
---|
1942 | !> to the subdomain of the current PE (c). They have been calculated in routine rrd_local. |
---|
1943 | !--------------------------------------------------------------------------------------------------! |
---|
1944 | SUBROUTINE dynamics_rrd_local_ftn( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, nxr_on_file, nynf, & |
---|
1945 | nync, nyn_on_file, nysf, nysc, nys_on_file, tmp_2d, tmp_3d, & |
---|
1946 | found ) |
---|
1947 | |
---|
1948 | |
---|
1949 | INTEGER(iwp) :: k !< |
---|
1950 | INTEGER(iwp) :: nxlc !< |
---|
1951 | INTEGER(iwp) :: nxlf !< |
---|
1952 | INTEGER(iwp) :: nxl_on_file !< |
---|
1953 | INTEGER(iwp) :: nxrc !< |
---|
1954 | INTEGER(iwp) :: nxrf !< |
---|
1955 | INTEGER(iwp) :: nxr_on_file !< |
---|
1956 | INTEGER(iwp) :: nync !< |
---|
1957 | INTEGER(iwp) :: nynf !< |
---|
1958 | INTEGER(iwp) :: nyn_on_file !< |
---|
1959 | INTEGER(iwp) :: nysc !< |
---|
1960 | INTEGER(iwp) :: nysf !< |
---|
1961 | INTEGER(iwp) :: nys_on_file !< |
---|
1962 | |
---|
1963 | LOGICAL, INTENT(OUT) :: found |
---|
1964 | |
---|
1965 | REAL(wp), DIMENSION(nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_2d !< |
---|
1966 | REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
1967 | |
---|
1968 | ! |
---|
1969 | !-- Next line is to avoid compiler warning about unused variables. Please remove. |
---|
1970 | IF ( k + nxlc + nxlf + nxrc + nxrf + nync + nynf + nysc + nysf + & |
---|
1971 | tmp_2d(nys_on_file,nxl_on_file) + & |
---|
1972 | tmp_3d(nzb,nys_on_file,nxl_on_file) < 0.0 ) CONTINUE |
---|
1973 | ! |
---|
1974 | !-- Here the reading of user-defined restart data follows: |
---|
1975 | !-- Sample for user-defined output |
---|
1976 | |
---|
1977 | found = .TRUE. |
---|
1978 | |
---|
1979 | SELECT CASE ( restart_string(1:length) ) |
---|
1980 | |
---|
1981 | ! CASE ( 'u2_av' ) |
---|
1982 | |
---|
1983 | CASE DEFAULT |
---|
1984 | |
---|
1985 | found = .FALSE. |
---|
1986 | |
---|
1987 | END SELECT |
---|
1988 | |
---|
1989 | END SUBROUTINE dynamics_rrd_local_ftn |
---|
1990 | |
---|
1991 | |
---|
1992 | !--------------------------------------------------------------------------------------------------! |
---|
1993 | ! Description: |
---|
1994 | ! ------------ |
---|
1995 | !> Read module-specific local restart data arrays (MPI-IO). |
---|
1996 | !--------------------------------------------------------------------------------------------------! |
---|
1997 | SUBROUTINE dynamics_rrd_local_mpi |
---|
1998 | |
---|
1999 | IMPLICIT NONE |
---|
2000 | |
---|
2001 | ! LOGICAL :: array_found !< |
---|
2002 | |
---|
2003 | |
---|
2004 | ! CALL rd_mpi_io_check_array( 'u2_av' , found = array_found ) |
---|
2005 | ! IF ( array_found ) THEN |
---|
2006 | ! IF ( .NOT. ALLOCATED( u2_av ) ) ALLOCATE( u2_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2007 | ! CALL rrd_mpi_io( 'u2_av', u2_av ) |
---|
2008 | ! ENDIF |
---|
2009 | |
---|
2010 | CONTINUE |
---|
2011 | |
---|
2012 | END SUBROUTINE dynamics_rrd_local_mpi |
---|
2013 | |
---|
2014 | |
---|
2015 | |
---|
2016 | !--------------------------------------------------------------------------------------------------! |
---|
2017 | ! Description: |
---|
2018 | ! ------------ |
---|
2019 | !> Writes global module-specific restart data into binary file(s) for restart runs. |
---|
2020 | !--------------------------------------------------------------------------------------------------! |
---|
2021 | SUBROUTINE dynamics_wrd_global |
---|
2022 | |
---|
2023 | |
---|
2024 | END SUBROUTINE dynamics_wrd_global |
---|
2025 | |
---|
2026 | |
---|
2027 | !--------------------------------------------------------------------------------------------------! |
---|
2028 | ! Description: |
---|
2029 | ! ------------ |
---|
2030 | !> Writes processor specific and module-specific restart data into binary file(s) for restart runs. |
---|
2031 | !--------------------------------------------------------------------------------------------------! |
---|
2032 | SUBROUTINE dynamics_wrd_local |
---|
2033 | |
---|
2034 | |
---|
2035 | END SUBROUTINE dynamics_wrd_local |
---|
2036 | |
---|
2037 | |
---|
2038 | !--------------------------------------------------------------------------------------------------! |
---|
2039 | ! Description: |
---|
2040 | ! ------------ |
---|
2041 | !> Execute module-specific actions at the very end of the program. |
---|
2042 | !--------------------------------------------------------------------------------------------------! |
---|
2043 | SUBROUTINE dynamics_last_actions |
---|
2044 | |
---|
2045 | |
---|
2046 | END SUBROUTINE dynamics_last_actions |
---|
2047 | |
---|
2048 | END MODULE dynamics_mod |
---|