1 | SUBROUTINE diffusivities( theta ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: diffusivities.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
12 | ! |
---|
13 | ! Revision 1.24 2006/04/26 12:16:26 raasch |
---|
14 | ! OpenMP optimization (+sums_l_l_t), sqrt_e must be private |
---|
15 | ! |
---|
16 | ! Revision 1.1 1997/09/19 07:41:10 raasch |
---|
17 | ! Initial revision |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Description: |
---|
21 | ! ------------ |
---|
22 | ! Computation of the turbulent diffusion coefficients for momentum and heat |
---|
23 | ! according to Prandtl-Kolmogorov |
---|
24 | !------------------------------------------------------------------------------! |
---|
25 | |
---|
26 | USE arrays_3d |
---|
27 | USE control_parameters |
---|
28 | USE grid_variables |
---|
29 | USE indices |
---|
30 | USE pegrid |
---|
31 | USE statistics |
---|
32 | |
---|
33 | IMPLICIT NONE |
---|
34 | |
---|
35 | INTEGER :: i, j, k, omp_get_thread_num, sr, tn |
---|
36 | |
---|
37 | REAL :: dpt_dz, l_stable, phi_m = 1.0 |
---|
38 | |
---|
39 | REAL :: theta(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
40 | |
---|
41 | REAL, DIMENSION(1:nzt) :: l, ll, sqrt_e |
---|
42 | |
---|
43 | |
---|
44 | ! |
---|
45 | !-- Default thread number in case of one thread |
---|
46 | tn = 0 |
---|
47 | |
---|
48 | ! |
---|
49 | !-- Initialization for calculation of the mixing length profile |
---|
50 | sums_l_l = 0.0 |
---|
51 | |
---|
52 | ! |
---|
53 | !-- Compute the turbulent diffusion coefficient for momentum |
---|
54 | !$OMP PARALLEL PRIVATE (dpt_dz,i,j,k,l,ll,l_stable,phi_m,sqrt_e,sr,tn) |
---|
55 | !$ tn = omp_get_thread_num() |
---|
56 | |
---|
57 | !$OMP DO |
---|
58 | DO i = nxl-1, nxr+1 |
---|
59 | DO j = nys-1, nyn+1 |
---|
60 | |
---|
61 | ! |
---|
62 | !-- Compute the Phi-function for a possible adaption of the mixing length |
---|
63 | !-- to the Prandtl mixing length |
---|
64 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
65 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
66 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
67 | ELSE |
---|
68 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
69 | ENDIF |
---|
70 | ENDIF |
---|
71 | |
---|
72 | ! |
---|
73 | !-- Introduce an optional minimum tke |
---|
74 | IF ( e_min > 0.0 ) THEN |
---|
75 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
76 | e(k,j,i) = MAX( e(k,j,i), e_min ) |
---|
77 | ENDDO |
---|
78 | ENDIF |
---|
79 | |
---|
80 | ! |
---|
81 | !-- Calculate square root of e in a seperate loop, because it is used |
---|
82 | !-- twice in the next loop (better vectorization) |
---|
83 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
84 | sqrt_e(k) = SQRT( e(k,j,i) ) |
---|
85 | ENDDO |
---|
86 | |
---|
87 | ! |
---|
88 | !-- Determine the mixing length |
---|
89 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
90 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
91 | IF ( dpt_dz > 0.0 ) THEN |
---|
92 | l_stable = 0.76 * sqrt_e(k) / & |
---|
93 | SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 |
---|
94 | ELSE |
---|
95 | l_stable = l_grid(k) |
---|
96 | ENDIF |
---|
97 | ! |
---|
98 | !-- Adjustment of the mixing length |
---|
99 | IF ( wall_adjustment ) THEN |
---|
100 | l(k) = MIN( l_wall(k,j,i), l_grid(k), l_stable ) |
---|
101 | ll(k) = MIN( l_wall(k,j,i), l_grid(k) ) |
---|
102 | ELSE |
---|
103 | l(k) = MIN( l_grid(k), l_stable ) |
---|
104 | ll(k) = l_grid(k) |
---|
105 | ENDIF |
---|
106 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
107 | l(k) = MIN( l(k), kappa * zu(k) / phi_m ) |
---|
108 | ll(k) = MIN( ll(k), kappa * zu(k) / phi_m ) |
---|
109 | ENDIF |
---|
110 | |
---|
111 | ! |
---|
112 | !-- Compute diffusion coefficients for momentum and heat |
---|
113 | km(k,j,i) = 0.1 * l(k) * sqrt_e(k) |
---|
114 | kh(k,j,i) = ( 1.0 + 2.0 * l(k) / ll(k) ) * km(k,j,i) |
---|
115 | |
---|
116 | ENDDO |
---|
117 | |
---|
118 | ! |
---|
119 | !-- Summation for averaged profile (cf. flow_statistics) |
---|
120 | DO sr = 0, statistic_regions |
---|
121 | IF ( rmask(j,i,sr) /= 0.0 ) THEN |
---|
122 | DO k = nzb_s_outer(j,i)+1, nzt |
---|
123 | sums_l_l(k,sr,tn) = sums_l_l(k,sr,tn) + l(k) |
---|
124 | ENDDO |
---|
125 | ENDIF |
---|
126 | ENDDO |
---|
127 | |
---|
128 | ENDDO |
---|
129 | ENDDO |
---|
130 | |
---|
131 | sums_l_l(nzt+1,:,tn) = sums_l_l(nzt,:,tn) ! quasi boundary-condition for |
---|
132 | ! data output |
---|
133 | |
---|
134 | !$OMP END PARALLEL |
---|
135 | |
---|
136 | ! |
---|
137 | !-- Set vertical boundary values (Neumann conditions both at bottom and top). |
---|
138 | !-- Horizontal boundary conditions at vertical walls are not set because |
---|
139 | !-- so far vertical walls require usage of a Prandtl-layer where the boundary |
---|
140 | !-- values of the diffusivities are not needed |
---|
141 | !$OMP PARALLEL DO |
---|
142 | DO i = nxl-1, nxr+1 |
---|
143 | DO j = nys-1, nyn+1 |
---|
144 | km(nzb_s_inner(j,i),j,i) = km(nzb_s_inner(j,i)+1,j,i) |
---|
145 | km(nzt+1,j,i) = km(nzt,j,i) |
---|
146 | kh(nzb_s_inner(j,i),j,i) = kh(nzb_s_inner(j,i)+1,j,i) |
---|
147 | kh(nzt+1,j,i) = kh(nzt,j,i) |
---|
148 | ENDDO |
---|
149 | ENDDO |
---|
150 | |
---|
151 | ! |
---|
152 | !-- Set Neumann boundary conditions at the outflow boundaries in case of |
---|
153 | !-- non-cyclic lateral boundaries |
---|
154 | IF ( outflow_l ) THEN |
---|
155 | km(:,:,nxl-1) = km(:,:,nxl) |
---|
156 | kh(:,:,nxl-1) = kh(:,:,nxl) |
---|
157 | ENDIF |
---|
158 | IF ( outflow_r ) THEN |
---|
159 | km(:,:,nxr+1) = km(:,:,nxr) |
---|
160 | kh(:,:,nxr+1) = kh(:,:,nxr) |
---|
161 | ENDIF |
---|
162 | IF ( outflow_s ) THEN |
---|
163 | km(:,nys-1,:) = km(:,nys,:) |
---|
164 | kh(:,nys-1,:) = kh(:,nys,:) |
---|
165 | ENDIF |
---|
166 | IF ( outflow_n ) THEN |
---|
167 | km(:,nyn+1,:) = km(:,nyn,:) |
---|
168 | kh(:,nyn+1,:) = kh(:,nyn,:) |
---|
169 | ENDIF |
---|
170 | |
---|
171 | |
---|
172 | END SUBROUTINE diffusivities |
---|