[1] | 1 | MODULE diffusion_w_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ----------------- |
---|
[3] | 9 | ! $Id: diffusion_w.f90 668 2010-12-23 13:22:58Z hoffmann $ |
---|
[39] | 10 | ! |
---|
[668] | 11 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 12 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 13 | ! |
---|
[392] | 14 | ! 366 2009-08-25 08:06:27Z raasch |
---|
| 15 | ! bc_lr/bc_ns replaced by bc_lr_cyc/bc_ns_cyc |
---|
| 16 | ! |
---|
[77] | 17 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 18 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes, |
---|
| 19 | ! z0 removed from argument list |
---|
| 20 | ! |
---|
[39] | 21 | ! 20 2007-02-26 00:12:32Z raasch |
---|
| 22 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
| 23 | ! |
---|
[3] | 24 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 25 | ! |
---|
[1] | 26 | ! Revision 1.12 2006/02/23 10:38:03 raasch |
---|
| 27 | ! nzb_2d replaced by nzb_w_outer, wall functions added for all vertical walls, |
---|
| 28 | ! +z0 in argument list |
---|
| 29 | ! WARNING: loops containing the MAX function are still not properly vectorized! |
---|
| 30 | ! |
---|
| 31 | ! Revision 1.1 1997/09/12 06:24:11 raasch |
---|
| 32 | ! Initial revision |
---|
| 33 | ! |
---|
| 34 | ! |
---|
| 35 | ! Description: |
---|
| 36 | ! ------------ |
---|
| 37 | ! Diffusion term of the w-component |
---|
| 38 | !------------------------------------------------------------------------------! |
---|
| 39 | |
---|
[56] | 40 | USE wall_fluxes_mod |
---|
| 41 | |
---|
[1] | 42 | PRIVATE |
---|
| 43 | PUBLIC diffusion_w |
---|
| 44 | |
---|
| 45 | INTERFACE diffusion_w |
---|
| 46 | MODULE PROCEDURE diffusion_w |
---|
| 47 | MODULE PROCEDURE diffusion_w_ij |
---|
| 48 | END INTERFACE diffusion_w |
---|
| 49 | |
---|
| 50 | CONTAINS |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | !------------------------------------------------------------------------------! |
---|
| 54 | ! Call for all grid points |
---|
| 55 | !------------------------------------------------------------------------------! |
---|
| 56 | SUBROUTINE diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, & |
---|
[57] | 57 | w ) |
---|
[1] | 58 | |
---|
| 59 | USE control_parameters |
---|
| 60 | USE grid_variables |
---|
| 61 | USE indices |
---|
| 62 | |
---|
| 63 | IMPLICIT NONE |
---|
| 64 | |
---|
| 65 | INTEGER :: i, j, k |
---|
| 66 | REAL :: kmxm_x, kmxm_z, kmxp_x, kmxp_z, kmym_y, kmym_z, kmyp_y, & |
---|
[51] | 67 | kmyp_z |
---|
[667] | 68 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxlg:nxrg), & |
---|
| 69 | km_damp_y(nysg:nyng) |
---|
| 70 | REAL :: tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) |
---|
[1] | 71 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
[56] | 72 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wsus, wsvs |
---|
[1] | 73 | |
---|
| 74 | |
---|
[56] | 75 | ! |
---|
| 76 | !-- First calculate horizontal momentum flux w'u' and/or w'v' at vertical |
---|
| 77 | !-- walls, if neccessary |
---|
| 78 | IF ( topography /= 'flat' ) THEN |
---|
[75] | 79 | CALL wall_fluxes( wsus, 0.0, 0.0, 0.0, 1.0, nzb_w_inner, & |
---|
[56] | 80 | nzb_w_outer, wall_w_x ) |
---|
[75] | 81 | CALL wall_fluxes( wsvs, 0.0, 0.0, 1.0, 0.0, nzb_w_inner, & |
---|
[56] | 82 | nzb_w_outer, wall_w_y ) |
---|
| 83 | ENDIF |
---|
| 84 | |
---|
[1] | 85 | DO i = nxl, nxr |
---|
| 86 | DO j = nys, nyn |
---|
| 87 | DO k = nzb_w_outer(j,i)+1, nzt-1 |
---|
| 88 | ! |
---|
| 89 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 90 | kmxp_x = 0.25 * & |
---|
| 91 | ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
| 92 | kmxm_x = 0.25 * & |
---|
| 93 | ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
| 94 | kmxp_z = kmxp_x |
---|
| 95 | kmxm_z = kmxm_x |
---|
| 96 | kmyp_y = 0.25 * & |
---|
| 97 | ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
| 98 | kmym_y = 0.25 * & |
---|
| 99 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 100 | kmyp_z = kmyp_y |
---|
| 101 | kmym_z = kmym_y |
---|
| 102 | ! |
---|
| 103 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 104 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 105 | !-- velocity components parallel to the outflow boundary in |
---|
| 106 | !-- the direction normal to the outflow boundary. |
---|
[366] | 107 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 108 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 109 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 110 | ENDIF |
---|
[366] | 111 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1] | 112 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 113 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 114 | ENDIF |
---|
| 115 | |
---|
| 116 | tend(k,j,i) = tend(k,j,i) & |
---|
| 117 | & + ( kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
| 118 | & + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
| 119 | & - kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 120 | & - kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 121 | & ) * ddx & |
---|
| 122 | & + ( kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
| 123 | & + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
| 124 | & - kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 125 | & - kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 126 | & ) * ddy & |
---|
| 127 | & + 2.0 * ( & |
---|
| 128 | & km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
| 129 | & - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
| 130 | & ) * ddzu(k+1) |
---|
| 131 | ENDDO |
---|
| 132 | |
---|
| 133 | ! |
---|
| 134 | !-- Wall functions at all vertical walls, where necessary |
---|
| 135 | IF ( wall_w_x(j,i) /= 0.0 .OR. wall_w_y(j,i) /= 0.0 ) THEN |
---|
[51] | 136 | |
---|
[1] | 137 | DO k = nzb_w_inner(j,i)+1, nzb_w_outer(j,i) |
---|
| 138 | ! |
---|
| 139 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 140 | kmxp_x = 0.25 * & |
---|
| 141 | ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
| 142 | kmxm_x = 0.25 * & |
---|
| 143 | ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
| 144 | kmxp_z = kmxp_x |
---|
| 145 | kmxm_z = kmxm_x |
---|
| 146 | kmyp_y = 0.25 * & |
---|
| 147 | ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
| 148 | kmym_y = 0.25 * & |
---|
| 149 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 150 | kmyp_z = kmyp_y |
---|
| 151 | kmym_z = kmym_y |
---|
| 152 | ! |
---|
| 153 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 154 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 155 | !-- velocity components parallel to the outflow boundary in |
---|
| 156 | !-- the direction normal to the outflow boundary. |
---|
[366] | 157 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 158 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 159 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 160 | ENDIF |
---|
[366] | 161 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1] | 162 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 163 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 164 | ENDIF |
---|
| 165 | |
---|
| 166 | tend(k,j,i) = tend(k,j,i) & |
---|
| 167 | + ( fwxp(j,i) * ( & |
---|
| 168 | kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
| 169 | + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
| 170 | ) & |
---|
| 171 | - fwxm(j,i) * ( & |
---|
| 172 | kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 173 | + kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 174 | ) & |
---|
[56] | 175 | + wall_w_x(j,i) * wsus(k,j,i) & |
---|
[1] | 176 | ) * ddx & |
---|
| 177 | + ( fwyp(j,i) * ( & |
---|
| 178 | kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
| 179 | + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
| 180 | ) & |
---|
| 181 | - fwym(j,i) * ( & |
---|
| 182 | kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 183 | + kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 184 | ) & |
---|
[56] | 185 | + wall_w_y(j,i) * wsvs(k,j,i) & |
---|
[1] | 186 | ) * ddy & |
---|
| 187 | + 2.0 * ( & |
---|
| 188 | km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
| 189 | - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
| 190 | ) * ddzu(k+1) |
---|
| 191 | ENDDO |
---|
| 192 | ENDIF |
---|
| 193 | |
---|
| 194 | ENDDO |
---|
| 195 | ENDDO |
---|
| 196 | |
---|
| 197 | END SUBROUTINE diffusion_w |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | !------------------------------------------------------------------------------! |
---|
| 201 | ! Call for grid point i,j |
---|
| 202 | !------------------------------------------------------------------------------! |
---|
| 203 | SUBROUTINE diffusion_w_ij( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 204 | tend, u, v, w ) |
---|
[1] | 205 | |
---|
| 206 | USE control_parameters |
---|
| 207 | USE grid_variables |
---|
| 208 | USE indices |
---|
| 209 | |
---|
| 210 | IMPLICIT NONE |
---|
| 211 | |
---|
| 212 | INTEGER :: i, j, k |
---|
| 213 | REAL :: kmxm_x, kmxm_z, kmxp_x, kmxp_z, kmym_y, kmym_z, kmyp_y, & |
---|
[51] | 214 | kmyp_z |
---|
[667] | 215 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_x(nxlg:nxrg), & |
---|
| 216 | km_damp_y(nysg:nyng) |
---|
| 217 | REAL :: tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) |
---|
[51] | 218 | REAL, DIMENSION(nzb:nzt+1) :: wsus, wsvs |
---|
[1] | 219 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | DO k = nzb_w_outer(j,i)+1, nzt-1 |
---|
| 223 | ! |
---|
| 224 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 225 | kmxp_x = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
| 226 | kmxm_x = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
| 227 | kmxp_z = kmxp_x |
---|
| 228 | kmxm_z = kmxm_x |
---|
| 229 | kmyp_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
| 230 | kmym_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 231 | kmyp_z = kmyp_y |
---|
| 232 | kmym_z = kmym_y |
---|
| 233 | ! |
---|
| 234 | !-- Increase diffusion at the outflow boundary in case of non-cyclic |
---|
| 235 | !-- lateral boundaries. Damping is only needed for velocity components |
---|
| 236 | !-- parallel to the outflow boundary in the direction normal to the |
---|
| 237 | !-- outflow boundary. |
---|
[366] | 238 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 239 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 240 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 241 | ENDIF |
---|
[366] | 242 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1] | 243 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 244 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 245 | ENDIF |
---|
| 246 | |
---|
| 247 | tend(k,j,i) = tend(k,j,i) & |
---|
| 248 | & + ( kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
| 249 | & + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
| 250 | & - kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 251 | & - kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 252 | & ) * ddx & |
---|
| 253 | & + ( kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
| 254 | & + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
| 255 | & - kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 256 | & - kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 257 | & ) * ddy & |
---|
| 258 | & + 2.0 * ( & |
---|
| 259 | & km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
| 260 | & - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
| 261 | & ) * ddzu(k+1) |
---|
| 262 | ENDDO |
---|
| 263 | |
---|
| 264 | ! |
---|
| 265 | !-- Wall functions at all vertical walls, where necessary |
---|
| 266 | IF ( wall_w_x(j,i) /= 0.0 .OR. wall_w_y(j,i) /= 0.0 ) THEN |
---|
[51] | 267 | |
---|
| 268 | ! |
---|
| 269 | !-- Calculate the horizontal momentum fluxes w'u' and/or w'v' |
---|
| 270 | IF ( wall_w_x(j,i) /= 0.0 ) THEN |
---|
| 271 | CALL wall_fluxes( i, j, nzb_w_inner(j,i)+1, nzb_w_outer(j,i), & |
---|
| 272 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
| 273 | ELSE |
---|
| 274 | wsus = 0.0 |
---|
| 275 | ENDIF |
---|
| 276 | |
---|
| 277 | IF ( wall_w_y(j,i) /= 0.0 ) THEN |
---|
| 278 | CALL wall_fluxes( i, j, nzb_w_inner(j,i)+1, nzb_w_outer(j,i), & |
---|
| 279 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
| 280 | ELSE |
---|
| 281 | wsvs = 0.0 |
---|
| 282 | ENDIF |
---|
| 283 | |
---|
[1] | 284 | DO k = nzb_w_inner(j,i)+1, nzb_w_outer(j,i) |
---|
| 285 | ! |
---|
| 286 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 287 | kmxp_x = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k+1,j,i)+km(k+1,j,i+1) ) |
---|
| 288 | kmxm_x = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k+1,j,i)+km(k+1,j,i-1) ) |
---|
| 289 | kmxp_z = kmxp_x |
---|
| 290 | kmxm_z = kmxm_x |
---|
| 291 | kmyp_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j+1,i)+km(k+1,j+1,i) ) |
---|
| 292 | kmym_y = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 293 | kmyp_z = kmyp_y |
---|
| 294 | kmym_z = kmym_y |
---|
| 295 | ! |
---|
| 296 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 297 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 298 | !-- velocity components parallel to the outflow boundary in |
---|
| 299 | !-- the direction normal to the outflow boundary. |
---|
[366] | 300 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 301 | kmxp_x = MAX( kmxp_x, km_damp_x(i) ) |
---|
| 302 | kmxm_x = MAX( kmxm_x, km_damp_x(i) ) |
---|
| 303 | ENDIF |
---|
[366] | 304 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1] | 305 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 306 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 307 | ENDIF |
---|
| 308 | |
---|
| 309 | tend(k,j,i) = tend(k,j,i) & |
---|
| 310 | + ( fwxp(j,i) * ( & |
---|
| 311 | kmxp_x * ( w(k,j,i+1) - w(k,j,i) ) * ddx & |
---|
| 312 | + kmxp_z * ( u(k+1,j,i+1) - u(k,j,i+1) ) * ddzu(k+1) & |
---|
| 313 | ) & |
---|
| 314 | - fwxm(j,i) * ( & |
---|
| 315 | kmxm_x * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 316 | + kmxm_z * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 317 | ) & |
---|
[51] | 318 | + wall_w_x(j,i) * wsus(k) & |
---|
[1] | 319 | ) * ddx & |
---|
| 320 | + ( fwyp(j,i) * ( & |
---|
| 321 | kmyp_y * ( w(k,j+1,i) - w(k,j,i) ) * ddy & |
---|
| 322 | + kmyp_z * ( v(k+1,j+1,i) - v(k,j+1,i) ) * ddzu(k+1) & |
---|
| 323 | ) & |
---|
| 324 | - fwym(j,i) * ( & |
---|
| 325 | kmym_y * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 326 | + kmym_z * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 327 | ) & |
---|
[51] | 328 | + wall_w_y(j,i) * wsvs(k) & |
---|
[1] | 329 | ) * ddy & |
---|
| 330 | + 2.0 * ( & |
---|
| 331 | km(k+1,j,i) * ( w(k+1,j,i) - w(k,j,i) ) * ddzw(k+1) & |
---|
| 332 | - km(k,j,i) * ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) & |
---|
| 333 | ) * ddzu(k+1) |
---|
| 334 | ENDDO |
---|
| 335 | ENDIF |
---|
| 336 | |
---|
| 337 | END SUBROUTINE diffusion_w_ij |
---|
| 338 | |
---|
| 339 | END MODULE diffusion_w_mod |
---|