1 | MODULE diffusion_v_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: diffusion_v.f90 1258 2013-11-08 16:09:09Z witha $ |
---|
27 | ! |
---|
28 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
29 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
30 | ! the FORTRAN declaration statement |
---|
31 | ! |
---|
32 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
33 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
34 | ! j_north |
---|
35 | ! |
---|
36 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
37 | ! code put under GPL (PALM 3.9) |
---|
38 | ! |
---|
39 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
40 | ! accelerator version (*_acc) added |
---|
41 | ! |
---|
42 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
43 | ! arrays comunicated by module instead of parameter list |
---|
44 | ! |
---|
45 | ! 978 2012-08-09 08:28:32Z fricke |
---|
46 | ! outflow damping layer removed |
---|
47 | ! kmxm_x/_y and kmxp_x/_y change to kmxm and kmxp |
---|
48 | ! |
---|
49 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
50 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
51 | ! |
---|
52 | ! 366 2009-08-25 08:06:27Z raasch |
---|
53 | ! bc_lr replaced by bc_lr_cyc |
---|
54 | ! |
---|
55 | ! 106 2007-08-16 14:30:26Z raasch |
---|
56 | ! Momentumflux at top (vswst) included as boundary condition, |
---|
57 | ! j loop is starting from nysv (needed for non-cyclic boundary conditions) |
---|
58 | ! |
---|
59 | ! 75 2007-03-22 09:54:05Z raasch |
---|
60 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes, |
---|
61 | ! z0 removed from argument list, vynp eliminated |
---|
62 | ! |
---|
63 | ! 20 2007-02-26 00:12:32Z raasch |
---|
64 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
65 | ! |
---|
66 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
67 | ! |
---|
68 | ! Revision 1.15 2006/02/23 10:36:00 raasch |
---|
69 | ! nzb_2d replaced by nzb_v_outer in horizontal diffusion and by nzb_v_inner |
---|
70 | ! or nzb_diff_v, respectively, in vertical diffusion, |
---|
71 | ! wall functions added for north and south walls, +z0 in argument list, |
---|
72 | ! terms containing w(k-1,..) are removed from the Prandtl-layer equation |
---|
73 | ! because they cause errors at the edges of topography |
---|
74 | ! WARNING: loops containing the MAX function are still not properly vectorized! |
---|
75 | ! |
---|
76 | ! Revision 1.1 1997/09/12 06:24:01 raasch |
---|
77 | ! Initial revision |
---|
78 | ! |
---|
79 | ! |
---|
80 | ! Description: |
---|
81 | ! ------------ |
---|
82 | ! Diffusion term of the v-component |
---|
83 | !------------------------------------------------------------------------------! |
---|
84 | |
---|
85 | USE wall_fluxes_mod |
---|
86 | |
---|
87 | PRIVATE |
---|
88 | PUBLIC diffusion_v, diffusion_v_acc |
---|
89 | |
---|
90 | INTERFACE diffusion_v |
---|
91 | MODULE PROCEDURE diffusion_v |
---|
92 | MODULE PROCEDURE diffusion_v_ij |
---|
93 | END INTERFACE diffusion_v |
---|
94 | |
---|
95 | INTERFACE diffusion_v_acc |
---|
96 | MODULE PROCEDURE diffusion_v_acc |
---|
97 | END INTERFACE diffusion_v_acc |
---|
98 | |
---|
99 | CONTAINS |
---|
100 | |
---|
101 | |
---|
102 | !------------------------------------------------------------------------------! |
---|
103 | ! Call for all grid points |
---|
104 | !------------------------------------------------------------------------------! |
---|
105 | SUBROUTINE diffusion_v |
---|
106 | |
---|
107 | USE arrays_3d |
---|
108 | USE control_parameters |
---|
109 | USE grid_variables |
---|
110 | USE indices |
---|
111 | |
---|
112 | IMPLICIT NONE |
---|
113 | |
---|
114 | INTEGER :: i, j, k |
---|
115 | REAL :: kmxm, kmxp, kmzm, kmzp |
---|
116 | |
---|
117 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: vsus |
---|
118 | |
---|
119 | ! |
---|
120 | !-- First calculate horizontal momentum flux v'u' at vertical walls, |
---|
121 | !-- if neccessary |
---|
122 | IF ( topography /= 'flat' ) THEN |
---|
123 | CALL wall_fluxes( vsus, 0.0, 1.0, 0.0, 0.0, nzb_v_inner, & |
---|
124 | nzb_v_outer, wall_v ) |
---|
125 | ENDIF |
---|
126 | |
---|
127 | DO i = nxl, nxr |
---|
128 | DO j = nysv, nyn |
---|
129 | ! |
---|
130 | !-- Compute horizontal diffusion |
---|
131 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
132 | ! |
---|
133 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
134 | kmxp = 0.25 * & |
---|
135 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
136 | kmxm = 0.25 * & |
---|
137 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
138 | |
---|
139 | tend(k,j,i) = tend(k,j,i) & |
---|
140 | & + ( kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
141 | & + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
142 | & - kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
143 | & - kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
144 | & ) * ddx & |
---|
145 | & + 2.0 * ( & |
---|
146 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
147 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
148 | & ) * ddy2 |
---|
149 | ENDDO |
---|
150 | |
---|
151 | ! |
---|
152 | !-- Wall functions at the left and right walls, respectively |
---|
153 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
154 | |
---|
155 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
156 | kmxp = 0.25 * & |
---|
157 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
158 | kmxm = 0.25 * & |
---|
159 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
160 | |
---|
161 | tend(k,j,i) = tend(k,j,i) & |
---|
162 | + 2.0 * ( & |
---|
163 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
164 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
165 | ) * ddy2 & |
---|
166 | + ( fxp(j,i) * ( & |
---|
167 | kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
168 | + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
169 | ) & |
---|
170 | - fxm(j,i) * ( & |
---|
171 | kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
172 | + kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
173 | ) & |
---|
174 | + wall_v(j,i) * vsus(k,j,i) & |
---|
175 | ) * ddx |
---|
176 | ENDDO |
---|
177 | ENDIF |
---|
178 | |
---|
179 | ! |
---|
180 | !-- Compute vertical diffusion. In case of simulating a Prandtl |
---|
181 | !-- layer, index k starts at nzb_v_inner+2. |
---|
182 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
183 | ! |
---|
184 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
185 | kmzp = 0.25 * & |
---|
186 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
187 | kmzm = 0.25 * & |
---|
188 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
189 | |
---|
190 | tend(k,j,i) = tend(k,j,i) & |
---|
191 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
192 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
193 | & ) & |
---|
194 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
195 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
196 | & ) & |
---|
197 | & ) * ddzw(k) |
---|
198 | ENDDO |
---|
199 | |
---|
200 | ! |
---|
201 | !-- Vertical diffusion at the first grid point above the surface, |
---|
202 | !-- if the momentum flux at the bottom is given by the Prandtl law |
---|
203 | !-- or if it is prescribed by the user. |
---|
204 | !-- Difference quotient of the momentum flux is not formed over |
---|
205 | !-- half of the grid spacing (2.0*ddzw(k)) any more, since the |
---|
206 | !-- comparison with other (LES) modell showed that the values of |
---|
207 | !-- the momentum flux becomes too large in this case. |
---|
208 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
209 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
210 | IF ( use_surface_fluxes ) THEN |
---|
211 | k = nzb_v_inner(j,i)+1 |
---|
212 | ! |
---|
213 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
214 | kmzp = 0.25 * & |
---|
215 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
216 | kmzm = 0.25 * & |
---|
217 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
218 | |
---|
219 | tend(k,j,i) = tend(k,j,i) & |
---|
220 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
221 | & ) * ddzw(k) & |
---|
222 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
223 | & + vsws(j,i) & |
---|
224 | & ) * ddzw(k) |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ! |
---|
228 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
229 | !-- if the momentum flux at the top is prescribed by the user |
---|
230 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
231 | k = nzt |
---|
232 | ! |
---|
233 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
234 | kmzp = 0.25 * & |
---|
235 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
236 | kmzm = 0.25 * & |
---|
237 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
238 | |
---|
239 | tend(k,j,i) = tend(k,j,i) & |
---|
240 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
241 | & ) * ddzw(k) & |
---|
242 | & + ( -vswst(j,i) & |
---|
243 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
244 | & ) * ddzw(k) |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | |
---|
250 | END SUBROUTINE diffusion_v |
---|
251 | |
---|
252 | |
---|
253 | !------------------------------------------------------------------------------! |
---|
254 | ! Call for all grid points - accelerator version |
---|
255 | !------------------------------------------------------------------------------! |
---|
256 | SUBROUTINE diffusion_v_acc |
---|
257 | |
---|
258 | USE arrays_3d |
---|
259 | USE control_parameters |
---|
260 | USE grid_variables |
---|
261 | USE indices |
---|
262 | |
---|
263 | IMPLICIT NONE |
---|
264 | |
---|
265 | INTEGER :: i, j, k |
---|
266 | REAL :: kmxm, kmxp, kmzm, kmzp |
---|
267 | |
---|
268 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: vsus |
---|
269 | !$acc declare create ( vsus ) |
---|
270 | |
---|
271 | ! |
---|
272 | !-- First calculate horizontal momentum flux v'u' at vertical walls, |
---|
273 | !-- if neccessary |
---|
274 | IF ( topography /= 'flat' ) THEN |
---|
275 | CALL wall_fluxes_acc( vsus, 0.0, 1.0, 0.0, 0.0, nzb_v_inner, & |
---|
276 | nzb_v_outer, wall_v ) |
---|
277 | ENDIF |
---|
278 | |
---|
279 | !$acc kernels present ( u, v, w, km, tend, vsws, vswst ) & |
---|
280 | !$acc present ( ddzu, ddzw, fxm, fxp, wall_v ) & |
---|
281 | !$acc present ( nzb_v_inner, nzb_v_outer, nzb_diff_v ) |
---|
282 | DO i = i_left, i_right |
---|
283 | DO j = j_south, j_north |
---|
284 | ! |
---|
285 | !-- Compute horizontal diffusion |
---|
286 | DO k = 1, nzt |
---|
287 | IF ( k > nzb_v_outer(j,i) ) THEN |
---|
288 | ! |
---|
289 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
290 | kmxp = 0.25 * & |
---|
291 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
292 | kmxm = 0.25 * & |
---|
293 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
294 | |
---|
295 | tend(k,j,i) = tend(k,j,i) & |
---|
296 | & + ( kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
297 | & + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
298 | & - kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
299 | & - kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
300 | & ) * ddx & |
---|
301 | & + 2.0 * ( & |
---|
302 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
303 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
304 | & ) * ddy2 |
---|
305 | ENDIF |
---|
306 | ENDDO |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Wall functions at the left and right walls, respectively |
---|
310 | DO k = 1, nzt |
---|
311 | IF( k > nzb_v_inner(j,i) .AND. k <= nzb_v_outer(j,i) .AND. & |
---|
312 | wall_v(j,i) /= 0.0 ) THEN |
---|
313 | |
---|
314 | kmxp = 0.25 * & |
---|
315 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
316 | kmxm = 0.25 * & |
---|
317 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
318 | |
---|
319 | tend(k,j,i) = tend(k,j,i) & |
---|
320 | + 2.0 * ( & |
---|
321 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
322 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
323 | ) * ddy2 & |
---|
324 | + ( fxp(j,i) * ( & |
---|
325 | kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
326 | + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
327 | ) & |
---|
328 | - fxm(j,i) * ( & |
---|
329 | kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
330 | + kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
331 | ) & |
---|
332 | + wall_v(j,i) * vsus(k,j,i) & |
---|
333 | ) * ddx |
---|
334 | ENDIF |
---|
335 | ENDDO |
---|
336 | |
---|
337 | ! |
---|
338 | !-- Compute vertical diffusion. In case of simulating a Prandtl |
---|
339 | !-- layer, index k starts at nzb_v_inner+2. |
---|
340 | DO k = 1, nzt_diff |
---|
341 | IF ( k >= nzb_diff_v(j,i) ) THEN |
---|
342 | ! |
---|
343 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
344 | kmzp = 0.25 * & |
---|
345 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
346 | kmzm = 0.25 * & |
---|
347 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
348 | |
---|
349 | tend(k,j,i) = tend(k,j,i) & |
---|
350 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1)& |
---|
351 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
352 | & ) & |
---|
353 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k)& |
---|
354 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
355 | & ) & |
---|
356 | & ) * ddzw(k) |
---|
357 | ENDIF |
---|
358 | ENDDO |
---|
359 | |
---|
360 | ENDDO |
---|
361 | ENDDO |
---|
362 | |
---|
363 | ! |
---|
364 | !-- Vertical diffusion at the first grid point above the surface, |
---|
365 | !-- if the momentum flux at the bottom is given by the Prandtl law |
---|
366 | !-- or if it is prescribed by the user. |
---|
367 | !-- Difference quotient of the momentum flux is not formed over |
---|
368 | !-- half of the grid spacing (2.0*ddzw(k)) any more, since the |
---|
369 | !-- comparison with other (LES) modell showed that the values of |
---|
370 | !-- the momentum flux becomes too large in this case. |
---|
371 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
372 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
373 | IF ( use_surface_fluxes ) THEN |
---|
374 | |
---|
375 | DO i = i_left, i_right |
---|
376 | DO j = j_south, j_north |
---|
377 | |
---|
378 | k = nzb_v_inner(j,i)+1 |
---|
379 | ! |
---|
380 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
381 | kmzp = 0.25 * & |
---|
382 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
383 | kmzm = 0.25 * & |
---|
384 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
385 | |
---|
386 | tend(k,j,i) = tend(k,j,i) & |
---|
387 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
388 | & ) * ddzw(k) & |
---|
389 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
390 | & + vsws(j,i) & |
---|
391 | & ) * ddzw(k) |
---|
392 | ENDDO |
---|
393 | ENDDO |
---|
394 | |
---|
395 | ENDIF |
---|
396 | |
---|
397 | ! |
---|
398 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
399 | !-- if the momentum flux at the top is prescribed by the user |
---|
400 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
401 | |
---|
402 | k = nzt |
---|
403 | |
---|
404 | DO i = i_left, i_right |
---|
405 | DO j = j_south, j_north |
---|
406 | |
---|
407 | ! |
---|
408 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
409 | kmzp = 0.25 * & |
---|
410 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
411 | kmzm = 0.25 * & |
---|
412 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
413 | |
---|
414 | tend(k,j,i) = tend(k,j,i) & |
---|
415 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
416 | & ) * ddzw(k) & |
---|
417 | & + ( -vswst(j,i) & |
---|
418 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
419 | & ) * ddzw(k) |
---|
420 | ENDDO |
---|
421 | ENDDO |
---|
422 | |
---|
423 | ENDIF |
---|
424 | !$acc end kernels |
---|
425 | |
---|
426 | END SUBROUTINE diffusion_v_acc |
---|
427 | |
---|
428 | |
---|
429 | !------------------------------------------------------------------------------! |
---|
430 | ! Call for grid point i,j |
---|
431 | !------------------------------------------------------------------------------! |
---|
432 | SUBROUTINE diffusion_v_ij( i, j ) |
---|
433 | |
---|
434 | USE arrays_3d |
---|
435 | USE control_parameters |
---|
436 | USE grid_variables |
---|
437 | USE indices |
---|
438 | |
---|
439 | IMPLICIT NONE |
---|
440 | |
---|
441 | INTEGER :: i, j, k |
---|
442 | REAL :: kmxm, kmxp, kmzm, kmzp |
---|
443 | |
---|
444 | REAL, DIMENSION(nzb:nzt+1) :: vsus |
---|
445 | |
---|
446 | ! |
---|
447 | !-- Compute horizontal diffusion |
---|
448 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
449 | ! |
---|
450 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
451 | kmxp = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
452 | kmxm = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
453 | |
---|
454 | tend(k,j,i) = tend(k,j,i) & |
---|
455 | & + ( kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
456 | & + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
457 | & - kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
458 | & - kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
459 | & ) * ddx & |
---|
460 | & + 2.0 * ( & |
---|
461 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
462 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
463 | & ) * ddy2 |
---|
464 | ENDDO |
---|
465 | |
---|
466 | ! |
---|
467 | !-- Wall functions at the left and right walls, respectively |
---|
468 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
469 | |
---|
470 | ! |
---|
471 | !-- Calculate the horizontal momentum flux v'u' |
---|
472 | CALL wall_fluxes( i, j, nzb_v_inner(j,i)+1, nzb_v_outer(j,i), & |
---|
473 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
474 | |
---|
475 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
476 | kmxp = 0.25 * & |
---|
477 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
478 | kmxm = 0.25 * & |
---|
479 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
480 | |
---|
481 | tend(k,j,i) = tend(k,j,i) & |
---|
482 | + 2.0 * ( & |
---|
483 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
484 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
485 | ) * ddy2 & |
---|
486 | + ( fxp(j,i) * ( & |
---|
487 | kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
488 | + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
489 | ) & |
---|
490 | - fxm(j,i) * ( & |
---|
491 | kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
492 | + kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
493 | ) & |
---|
494 | + wall_v(j,i) * vsus(k) & |
---|
495 | ) * ddx |
---|
496 | ENDDO |
---|
497 | ENDIF |
---|
498 | |
---|
499 | ! |
---|
500 | !-- Compute vertical diffusion. In case of simulating a Prandtl layer, |
---|
501 | !-- index k starts at nzb_v_inner+2. |
---|
502 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
503 | ! |
---|
504 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
505 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
506 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
507 | |
---|
508 | tend(k,j,i) = tend(k,j,i) & |
---|
509 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
510 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
511 | & ) & |
---|
512 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
513 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
514 | & ) & |
---|
515 | & ) * ddzw(k) |
---|
516 | ENDDO |
---|
517 | |
---|
518 | ! |
---|
519 | !-- Vertical diffusion at the first grid point above the surface, if the |
---|
520 | !-- momentum flux at the bottom is given by the Prandtl law or if it is |
---|
521 | !-- prescribed by the user. |
---|
522 | !-- Difference quotient of the momentum flux is not formed over half of |
---|
523 | !-- the grid spacing (2.0*ddzw(k)) any more, since the comparison with |
---|
524 | !-- other (LES) modell showed that the values of the momentum flux becomes |
---|
525 | !-- too large in this case. |
---|
526 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
527 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
528 | IF ( use_surface_fluxes ) THEN |
---|
529 | k = nzb_v_inner(j,i)+1 |
---|
530 | ! |
---|
531 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
532 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
533 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
534 | |
---|
535 | tend(k,j,i) = tend(k,j,i) & |
---|
536 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
537 | & ) * ddzw(k) & |
---|
538 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
539 | & + vsws(j,i) & |
---|
540 | & ) * ddzw(k) |
---|
541 | ENDIF |
---|
542 | |
---|
543 | ! |
---|
544 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
545 | !-- if the momentum flux at the top is prescribed by the user |
---|
546 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
547 | k = nzt |
---|
548 | ! |
---|
549 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
550 | kmzp = 0.25 * & |
---|
551 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
552 | kmzm = 0.25 * & |
---|
553 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
554 | |
---|
555 | tend(k,j,i) = tend(k,j,i) & |
---|
556 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
557 | & ) * ddzw(k) & |
---|
558 | & + ( -vswst(j,i) & |
---|
559 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
560 | & ) * ddzw(k) |
---|
561 | ENDIF |
---|
562 | |
---|
563 | END SUBROUTINE diffusion_v_ij |
---|
564 | |
---|
565 | END MODULE diffusion_v_mod |
---|