[1] | 1 | MODULE diffusion_v_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
[979] | 7 | ! |
---|
[1] | 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: diffusion_v.f90 979 2012-08-09 08:50:11Z maronga $ |
---|
[39] | 11 | ! |
---|
[979] | 12 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 13 | ! outflow damping layer removed |
---|
| 14 | ! kmxm_x/_y and kmxp_x/_y change to kmxm and kmxp |
---|
| 15 | ! |
---|
[668] | 16 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 17 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 18 | ! |
---|
[392] | 19 | ! 366 2009-08-25 08:06:27Z raasch |
---|
| 20 | ! bc_lr replaced by bc_lr_cyc |
---|
| 21 | ! |
---|
[110] | 22 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 23 | ! Momentumflux at top (vswst) included as boundary condition, |
---|
| 24 | ! j loop is starting from nysv (needed for non-cyclic boundary conditions) |
---|
| 25 | ! |
---|
[77] | 26 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 27 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes, |
---|
| 28 | ! z0 removed from argument list, vynp eliminated |
---|
| 29 | ! |
---|
[39] | 30 | ! 20 2007-02-26 00:12:32Z raasch |
---|
| 31 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
| 32 | ! |
---|
[3] | 33 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 34 | ! |
---|
[1] | 35 | ! Revision 1.15 2006/02/23 10:36:00 raasch |
---|
| 36 | ! nzb_2d replaced by nzb_v_outer in horizontal diffusion and by nzb_v_inner |
---|
| 37 | ! or nzb_diff_v, respectively, in vertical diffusion, |
---|
| 38 | ! wall functions added for north and south walls, +z0 in argument list, |
---|
| 39 | ! terms containing w(k-1,..) are removed from the Prandtl-layer equation |
---|
| 40 | ! because they cause errors at the edges of topography |
---|
| 41 | ! WARNING: loops containing the MAX function are still not properly vectorized! |
---|
| 42 | ! |
---|
| 43 | ! Revision 1.1 1997/09/12 06:24:01 raasch |
---|
| 44 | ! Initial revision |
---|
| 45 | ! |
---|
| 46 | ! |
---|
| 47 | ! Description: |
---|
| 48 | ! ------------ |
---|
| 49 | ! Diffusion term of the v-component |
---|
| 50 | !------------------------------------------------------------------------------! |
---|
| 51 | |
---|
[56] | 52 | USE wall_fluxes_mod |
---|
| 53 | |
---|
[1] | 54 | PRIVATE |
---|
| 55 | PUBLIC diffusion_v |
---|
| 56 | |
---|
| 57 | INTERFACE diffusion_v |
---|
| 58 | MODULE PROCEDURE diffusion_v |
---|
| 59 | MODULE PROCEDURE diffusion_v_ij |
---|
| 60 | END INTERFACE diffusion_v |
---|
| 61 | |
---|
| 62 | CONTAINS |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | !------------------------------------------------------------------------------! |
---|
| 66 | ! Call for all grid points |
---|
| 67 | !------------------------------------------------------------------------------! |
---|
[978] | 68 | SUBROUTINE diffusion_v( ddzu, ddzw, km, tend, u, v, vsws, vswst, w ) |
---|
[1] | 69 | |
---|
| 70 | USE control_parameters |
---|
| 71 | USE grid_variables |
---|
| 72 | USE indices |
---|
| 73 | |
---|
| 74 | IMPLICIT NONE |
---|
| 75 | |
---|
| 76 | INTEGER :: i, j, k |
---|
[978] | 77 | REAL :: kmxm, kmxp, kmzm, kmzp |
---|
| 78 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1) |
---|
[667] | 79 | REAL :: tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) |
---|
[102] | 80 | REAL, DIMENSION(:,:), POINTER :: vsws, vswst |
---|
[1] | 81 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
[75] | 82 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: vsus |
---|
[1] | 83 | |
---|
[56] | 84 | ! |
---|
| 85 | !-- First calculate horizontal momentum flux v'u' at vertical walls, |
---|
| 86 | !-- if neccessary |
---|
| 87 | IF ( topography /= 'flat' ) THEN |
---|
[75] | 88 | CALL wall_fluxes( vsus, 0.0, 1.0, 0.0, 0.0, nzb_v_inner, & |
---|
[56] | 89 | nzb_v_outer, wall_v ) |
---|
| 90 | ENDIF |
---|
| 91 | |
---|
[1] | 92 | DO i = nxl, nxr |
---|
[106] | 93 | DO j = nysv, nyn |
---|
[1] | 94 | ! |
---|
| 95 | !-- Compute horizontal diffusion |
---|
| 96 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
| 97 | ! |
---|
| 98 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
[978] | 99 | kmxp = 0.25 * & |
---|
| 100 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 101 | kmxm = 0.25 * & |
---|
| 102 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
[1] | 103 | |
---|
| 104 | tend(k,j,i) = tend(k,j,i) & |
---|
[978] | 105 | & + ( kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 106 | & + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
| 107 | & - kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 108 | & - kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
[1] | 109 | & ) * ddx & |
---|
| 110 | & + 2.0 * ( & |
---|
| 111 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 112 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 113 | & ) * ddy2 |
---|
| 114 | ENDDO |
---|
| 115 | |
---|
| 116 | ! |
---|
| 117 | !-- Wall functions at the left and right walls, respectively |
---|
| 118 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
[51] | 119 | |
---|
[1] | 120 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
[978] | 121 | kmxp = 0.25 * & |
---|
| 122 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 123 | kmxm = 0.25 * & |
---|
| 124 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
| 125 | |
---|
[1] | 126 | tend(k,j,i) = tend(k,j,i) & |
---|
| 127 | + 2.0 * ( & |
---|
| 128 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 129 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 130 | ) * ddy2 & |
---|
| 131 | + ( fxp(j,i) * ( & |
---|
[978] | 132 | kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 133 | + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
[1] | 134 | ) & |
---|
| 135 | - fxm(j,i) * ( & |
---|
[978] | 136 | kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 137 | + kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
[1] | 138 | ) & |
---|
[56] | 139 | + wall_v(j,i) * vsus(k,j,i) & |
---|
[1] | 140 | ) * ddx |
---|
| 141 | ENDDO |
---|
| 142 | ENDIF |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Compute vertical diffusion. In case of simulating a Prandtl |
---|
| 146 | !-- layer, index k starts at nzb_v_inner+2. |
---|
[102] | 147 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
[1] | 148 | ! |
---|
| 149 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 150 | kmzp = 0.25 * & |
---|
| 151 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 152 | kmzm = 0.25 * & |
---|
| 153 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 154 | |
---|
| 155 | tend(k,j,i) = tend(k,j,i) & |
---|
| 156 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 157 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 158 | & ) & |
---|
| 159 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 160 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 161 | & ) & |
---|
| 162 | & ) * ddzw(k) |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
| 165 | ! |
---|
| 166 | !-- Vertical diffusion at the first grid point above the surface, |
---|
| 167 | !-- if the momentum flux at the bottom is given by the Prandtl law |
---|
| 168 | !-- or if it is prescribed by the user. |
---|
| 169 | !-- Difference quotient of the momentum flux is not formed over |
---|
| 170 | !-- half of the grid spacing (2.0*ddzw(k)) any more, since the |
---|
| 171 | !-- comparison with other (LES) modell showed that the values of |
---|
| 172 | !-- the momentum flux becomes too large in this case. |
---|
| 173 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
| 174 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
| 175 | IF ( use_surface_fluxes ) THEN |
---|
| 176 | k = nzb_v_inner(j,i)+1 |
---|
| 177 | ! |
---|
| 178 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 179 | kmzp = 0.25 * & |
---|
| 180 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 181 | kmzm = 0.25 * & |
---|
| 182 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 183 | |
---|
| 184 | tend(k,j,i) = tend(k,j,i) & |
---|
| 185 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 186 | & ) * ddzw(k) & |
---|
[102] | 187 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
[1] | 188 | & + vsws(j,i) & |
---|
| 189 | & ) * ddzw(k) |
---|
| 190 | ENDIF |
---|
| 191 | |
---|
[102] | 192 | ! |
---|
| 193 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
| 194 | !-- if the momentum flux at the top is prescribed by the user |
---|
[103] | 195 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
[102] | 196 | k = nzt |
---|
| 197 | ! |
---|
| 198 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 199 | kmzp = 0.25 * & |
---|
| 200 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 201 | kmzm = 0.25 * & |
---|
| 202 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 203 | |
---|
| 204 | tend(k,j,i) = tend(k,j,i) & |
---|
| 205 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 206 | & ) * ddzw(k) & |
---|
| 207 | & + ( -vswst(j,i) & |
---|
| 208 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 209 | & ) * ddzw(k) |
---|
| 210 | ENDIF |
---|
| 211 | |
---|
[1] | 212 | ENDDO |
---|
| 213 | ENDDO |
---|
| 214 | |
---|
| 215 | END SUBROUTINE diffusion_v |
---|
| 216 | |
---|
| 217 | |
---|
| 218 | !------------------------------------------------------------------------------! |
---|
| 219 | ! Call for grid point i,j |
---|
| 220 | !------------------------------------------------------------------------------! |
---|
[978] | 221 | SUBROUTINE diffusion_v_ij( i, j, ddzu, ddzw, km, tend, u, v, & |
---|
[102] | 222 | vsws, vswst, w ) |
---|
[1] | 223 | |
---|
| 224 | USE control_parameters |
---|
| 225 | USE grid_variables |
---|
| 226 | USE indices |
---|
| 227 | |
---|
| 228 | IMPLICIT NONE |
---|
| 229 | |
---|
| 230 | INTEGER :: i, j, k |
---|
[978] | 231 | REAL :: kmxm, kmxp, kmzm, kmzp |
---|
| 232 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1) |
---|
[667] | 233 | REAL :: tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) |
---|
[51] | 234 | REAL, DIMENSION(nzb:nzt+1) :: vsus |
---|
[102] | 235 | REAL, DIMENSION(:,:), POINTER :: vsws, vswst |
---|
[1] | 236 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
| 237 | |
---|
| 238 | ! |
---|
| 239 | !-- Compute horizontal diffusion |
---|
| 240 | DO k = nzb_v_outer(j,i)+1, nzt |
---|
| 241 | ! |
---|
| 242 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
[978] | 243 | kmxp = 0.25 * ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 244 | kmxm = 0.25 * ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
[1] | 245 | |
---|
| 246 | tend(k,j,i) = tend(k,j,i) & |
---|
[978] | 247 | & + ( kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 248 | & + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
| 249 | & - kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 250 | & - kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
[1] | 251 | & ) * ddx & |
---|
| 252 | & + 2.0 * ( & |
---|
| 253 | & km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 254 | & - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 255 | & ) * ddy2 |
---|
| 256 | ENDDO |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- Wall functions at the left and right walls, respectively |
---|
| 260 | IF ( wall_v(j,i) /= 0.0 ) THEN |
---|
[51] | 261 | |
---|
| 262 | ! |
---|
| 263 | !-- Calculate the horizontal momentum flux v'u' |
---|
| 264 | CALL wall_fluxes( i, j, nzb_v_inner(j,i)+1, nzb_v_outer(j,i), & |
---|
| 265 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 266 | |
---|
[1] | 267 | DO k = nzb_v_inner(j,i)+1, nzb_v_outer(j,i) |
---|
[978] | 268 | kmxp = 0.25 * & |
---|
| 269 | ( km(k,j,i)+km(k,j,i+1)+km(k,j-1,i)+km(k,j-1,i+1) ) |
---|
| 270 | kmxm = 0.25 * & |
---|
| 271 | ( km(k,j,i)+km(k,j,i-1)+km(k,j-1,i)+km(k,j-1,i-1) ) |
---|
[1] | 272 | |
---|
| 273 | tend(k,j,i) = tend(k,j,i) & |
---|
| 274 | + 2.0 * ( & |
---|
| 275 | km(k,j,i) * ( v(k,j+1,i) - v(k,j,i) ) & |
---|
| 276 | - km(k,j-1,i) * ( v(k,j,i) - v(k,j-1,i) ) & |
---|
| 277 | ) * ddy2 & |
---|
| 278 | + ( fxp(j,i) * ( & |
---|
[978] | 279 | kmxp * ( v(k,j,i+1) - v(k,j,i) ) * ddx & |
---|
| 280 | + kmxp * ( u(k,j,i+1) - u(k,j-1,i+1) ) * ddy & |
---|
[1] | 281 | ) & |
---|
| 282 | - fxm(j,i) * ( & |
---|
[978] | 283 | kmxm * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 284 | + kmxm * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
[1] | 285 | ) & |
---|
[51] | 286 | + wall_v(j,i) * vsus(k) & |
---|
[1] | 287 | ) * ddx |
---|
| 288 | ENDDO |
---|
| 289 | ENDIF |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- Compute vertical diffusion. In case of simulating a Prandtl layer, |
---|
| 293 | !-- index k starts at nzb_v_inner+2. |
---|
[102] | 294 | DO k = nzb_diff_v(j,i), nzt_diff |
---|
[1] | 295 | ! |
---|
| 296 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 297 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 298 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 299 | |
---|
| 300 | tend(k,j,i) = tend(k,j,i) & |
---|
| 301 | & + ( kmzp * ( ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
| 302 | & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 303 | & ) & |
---|
| 304 | & - kmzm * ( ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 305 | & + ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 306 | & ) & |
---|
| 307 | & ) * ddzw(k) |
---|
| 308 | ENDDO |
---|
| 309 | |
---|
| 310 | ! |
---|
| 311 | !-- Vertical diffusion at the first grid point above the surface, if the |
---|
| 312 | !-- momentum flux at the bottom is given by the Prandtl law or if it is |
---|
| 313 | !-- prescribed by the user. |
---|
| 314 | !-- Difference quotient of the momentum flux is not formed over half of |
---|
| 315 | !-- the grid spacing (2.0*ddzw(k)) any more, since the comparison with |
---|
| 316 | !-- other (LES) modell showed that the values of the momentum flux becomes |
---|
| 317 | !-- too large in this case. |
---|
| 318 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
| 319 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
| 320 | IF ( use_surface_fluxes ) THEN |
---|
| 321 | k = nzb_v_inner(j,i)+1 |
---|
| 322 | ! |
---|
| 323 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 324 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 325 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 326 | |
---|
| 327 | tend(k,j,i) = tend(k,j,i) & |
---|
| 328 | & + ( kmzp * ( w(k,j,i) - w(k,j-1,i) ) * ddy & |
---|
| 329 | & ) * ddzw(k) & |
---|
[102] | 330 | & + ( kmzp * ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & |
---|
[1] | 331 | & + vsws(j,i) & |
---|
| 332 | & ) * ddzw(k) |
---|
| 333 | ENDIF |
---|
| 334 | |
---|
[102] | 335 | ! |
---|
| 336 | !-- Vertical diffusion at the first gridpoint below the top boundary, |
---|
| 337 | !-- if the momentum flux at the top is prescribed by the user |
---|
[103] | 338 | IF ( use_top_fluxes .AND. constant_top_momentumflux ) THEN |
---|
[102] | 339 | k = nzt |
---|
| 340 | ! |
---|
| 341 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 342 | kmzp = 0.25 * & |
---|
| 343 | ( km(k,j,i)+km(k+1,j,i)+km(k,j-1,i)+km(k+1,j-1,i) ) |
---|
| 344 | kmzm = 0.25 * & |
---|
| 345 | ( km(k,j,i)+km(k-1,j,i)+km(k,j-1,i)+km(k-1,j-1,i) ) |
---|
| 346 | |
---|
| 347 | tend(k,j,i) = tend(k,j,i) & |
---|
| 348 | & - ( kmzm * ( w(k-1,j,i) - w(k-1,j-1,i) ) * ddy & |
---|
| 349 | & ) * ddzw(k) & |
---|
| 350 | & + ( -vswst(j,i) & |
---|
| 351 | & - kmzm * ( v(k,j,i) - v(k-1,j,i) ) * ddzu(k) & |
---|
| 352 | & ) * ddzw(k) |
---|
| 353 | ENDIF |
---|
| 354 | |
---|
[1] | 355 | END SUBROUTINE diffusion_v_ij |
---|
| 356 | |
---|
| 357 | END MODULE diffusion_v_mod |
---|