[1] | 1 | MODULE diffusion_u_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[53] | 6 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: diffusion_u.f90 56 2007-03-08 13:57:07Z raasch $ |
---|
[39] | 11 | ! |
---|
| 12 | ! 20 2007-02-26 00:12:32Z raasch |
---|
| 13 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
| 14 | ! |
---|
[3] | 15 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 16 | ! |
---|
[1] | 17 | ! Revision 1.15 2006/02/23 10:35:35 raasch |
---|
| 18 | ! nzb_2d replaced by nzb_u_outer in horizontal diffusion and by nzb_u_inner |
---|
| 19 | ! or nzb_diff_u, respectively, in vertical diffusion, |
---|
| 20 | ! wall functions added for north and south walls, +z0 in argument list, |
---|
| 21 | ! terms containing w(k-1,..) are removed from the Prandtl-layer equation |
---|
| 22 | ! because they cause errors at the edges of topography |
---|
| 23 | ! WARNING: loops containing the MAX function are still not properly vectorized! |
---|
| 24 | ! |
---|
| 25 | ! Revision 1.1 1997/09/12 06:23:51 raasch |
---|
| 26 | ! Initial revision |
---|
| 27 | ! |
---|
| 28 | ! |
---|
| 29 | ! Description: |
---|
| 30 | ! ------------ |
---|
| 31 | ! Diffusion term of the u-component |
---|
[51] | 32 | ! To do: additional damping (needed for non-cyclic bc) causes bad vectorization |
---|
| 33 | ! and slows down the speed on NEC about 5-10% |
---|
[1] | 34 | !------------------------------------------------------------------------------! |
---|
| 35 | |
---|
[56] | 36 | USE wall_fluxes_mod |
---|
| 37 | |
---|
[1] | 38 | PRIVATE |
---|
| 39 | PUBLIC diffusion_u |
---|
| 40 | |
---|
| 41 | INTERFACE diffusion_u |
---|
| 42 | MODULE PROCEDURE diffusion_u |
---|
| 43 | MODULE PROCEDURE diffusion_u_ij |
---|
| 44 | END INTERFACE diffusion_u |
---|
| 45 | |
---|
| 46 | CONTAINS |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | !------------------------------------------------------------------------------! |
---|
| 50 | ! Call for all grid points |
---|
| 51 | !------------------------------------------------------------------------------! |
---|
| 52 | SUBROUTINE diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w, z0 ) |
---|
| 53 | |
---|
| 54 | USE control_parameters |
---|
| 55 | USE grid_variables |
---|
| 56 | USE indices |
---|
| 57 | |
---|
| 58 | IMPLICIT NONE |
---|
| 59 | |
---|
| 60 | INTEGER :: i, j, k |
---|
[51] | 61 | REAL :: kmym_x, kmym_y, kmyp_x, kmyp_y, kmzm, kmzp |
---|
[20] | 62 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_y(nys-1:nyn+1) |
---|
[1] | 63 | REAL :: z0(nys-1:nyn+1,nxl-1:nxr+1) |
---|
| 64 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
| 65 | REAL, DIMENSION(:,:), POINTER :: usws |
---|
| 66 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
[56] | 67 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr+uxrp) :: usvs |
---|
[1] | 68 | |
---|
[56] | 69 | ! |
---|
| 70 | !-- First calculate horizontal momentum flux u'v' at vertical walls, |
---|
| 71 | !-- if neccessary |
---|
| 72 | IF ( topography /= 'flat' ) THEN |
---|
| 73 | CALL wall_fluxes( usvs, 1.0, 0.0, 0.0, 0.0, uxrp, 0, nzb_u_inner, & |
---|
| 74 | nzb_u_outer, wall_u ) |
---|
| 75 | ENDIF |
---|
| 76 | |
---|
[1] | 77 | DO i = nxl, nxr+uxrp |
---|
| 78 | DO j = nys,nyn |
---|
| 79 | ! |
---|
| 80 | !-- Compute horizontal diffusion |
---|
| 81 | DO k = nzb_u_outer(j,i)+1, nzt |
---|
| 82 | ! |
---|
| 83 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 84 | kmyp_x = 0.25 * & |
---|
| 85 | ( km(k,j,i)+km(k,j+1,i)+km(k,j,i-1)+km(k,j+1,i-1) ) |
---|
| 86 | kmym_x = 0.25 * & |
---|
| 87 | ( km(k,j,i)+km(k,j-1,i)+km(k,j,i-1)+km(k,j-1,i-1) ) |
---|
| 88 | kmyp_y = kmyp_x |
---|
| 89 | kmym_y = kmym_x |
---|
| 90 | ! |
---|
| 91 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 92 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 93 | !-- velocity components parallel to the outflow boundary in |
---|
| 94 | !-- the direction normal to the outflow boundary. |
---|
| 95 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
| 96 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 97 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 98 | ENDIF |
---|
| 99 | |
---|
| 100 | tend(k,j,i) = tend(k,j,i) & |
---|
| 101 | & + 2.0 * ( & |
---|
| 102 | & km(k,j,i) * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
| 103 | & - km(k,j,i-1) * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
| 104 | & ) * ddx2 & |
---|
| 105 | & + ( kmyp_y * ( u(k,j+1,i) - u(k,j,i) ) * ddy & |
---|
| 106 | & + kmyp_x * ( v(k,j+1,i) - v(k,j+1,i-1) ) * ddx & |
---|
| 107 | & - kmym_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 108 | & - kmym_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 109 | & ) * ddy |
---|
| 110 | ENDDO |
---|
| 111 | |
---|
| 112 | ! |
---|
| 113 | !-- Wall functions at the north and south walls, respectively |
---|
| 114 | IF ( wall_u(j,i) /= 0.0 ) THEN |
---|
[51] | 115 | |
---|
[1] | 116 | DO k = nzb_u_inner(j,i)+1, nzb_u_outer(j,i) |
---|
| 117 | kmyp_x = 0.25 * & |
---|
| 118 | ( km(k,j,i)+km(k,j+1,i)+km(k,j,i-1)+km(k,j+1,i-1) ) |
---|
| 119 | kmym_x = 0.25 * & |
---|
| 120 | ( km(k,j,i)+km(k,j-1,i)+km(k,j,i-1)+km(k,j-1,i-1) ) |
---|
| 121 | kmyp_y = kmyp_x |
---|
| 122 | kmym_y = kmym_x |
---|
| 123 | ! |
---|
| 124 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 125 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 126 | !-- velocity components parallel to the outflow boundary in |
---|
| 127 | !-- the direction normal to the outflow boundary. |
---|
| 128 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
| 129 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 130 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 131 | ENDIF |
---|
| 132 | |
---|
| 133 | tend(k,j,i) = tend(k,j,i) & |
---|
| 134 | + 2.0 * ( & |
---|
| 135 | km(k,j,i) * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
| 136 | - km(k,j,i-1) * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
| 137 | ) * ddx2 & |
---|
| 138 | + ( fyp(j,i) * ( & |
---|
| 139 | kmyp_y * ( u(k,j+1,i) - u(k,j,i) ) * ddy & |
---|
| 140 | + kmyp_x * ( v(k,j+1,i) - v(k,j+1,i-1) ) * ddx & |
---|
| 141 | ) & |
---|
| 142 | - fym(j,i) * ( & |
---|
| 143 | kmym_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 144 | + kmym_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 145 | ) & |
---|
[56] | 146 | + wall_u(j,i) * usvs(k,j,i) & |
---|
[1] | 147 | ) * ddy |
---|
| 148 | ENDDO |
---|
| 149 | ENDIF |
---|
| 150 | |
---|
| 151 | ! |
---|
| 152 | !-- Compute vertical diffusion. In case of simulating a Prandtl layer, |
---|
| 153 | !-- index k starts at nzb_u_inner+2. |
---|
| 154 | DO k = nzb_diff_u(j,i), nzt |
---|
| 155 | ! |
---|
| 156 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 157 | kmzp = 0.25 * & |
---|
| 158 | ( km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) ) |
---|
| 159 | kmzm = 0.25 * & |
---|
| 160 | ( km(k,j,i)+km(k-1,j,i)+km(k,j,i-1)+km(k-1,j,i-1) ) |
---|
| 161 | |
---|
| 162 | tend(k,j,i) = tend(k,j,i) & |
---|
| 163 | & + ( kmzp * ( ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 164 | & + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 165 | & ) & |
---|
| 166 | & - kmzm * ( ( u(k,j,i) - u(k-1,j,i) ) * ddzu(k) & |
---|
| 167 | & + ( w(k-1,j,i) - w(k-1,j,i-1) ) * ddx & |
---|
| 168 | & ) & |
---|
| 169 | & ) * ddzw(k) |
---|
| 170 | ENDDO |
---|
| 171 | |
---|
| 172 | ! |
---|
| 173 | !-- Vertical diffusion at the first grid point above the surface, |
---|
| 174 | !-- if the momentum flux at the bottom is given by the Prandtl law or |
---|
| 175 | !-- if it is prescribed by the user. |
---|
| 176 | !-- Difference quotient of the momentum flux is not formed over half |
---|
| 177 | !-- of the grid spacing (2.0*ddzw(k)) any more, since the comparison |
---|
| 178 | !-- with other (LES) modell showed that the values of the momentum |
---|
| 179 | !-- flux becomes too large in this case. |
---|
| 180 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
| 181 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
| 182 | IF ( use_surface_fluxes ) THEN |
---|
| 183 | k = nzb_u_inner(j,i)+1 |
---|
| 184 | ! |
---|
| 185 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 186 | kmzp = 0.25 * & |
---|
| 187 | ( km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) ) |
---|
| 188 | kmzm = 0.25 * & |
---|
| 189 | ( km(k,j,i)+km(k-1,j,i)+km(k,j,i-1)+km(k-1,j,i-1) ) |
---|
| 190 | |
---|
| 191 | tend(k,j,i) = tend(k,j,i) & |
---|
| 192 | & + ( kmzp * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 193 | & ) * ddzw(k) & |
---|
| 194 | & + ( kmzp * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 195 | & + usws(j,i) & |
---|
| 196 | & ) * ddzw(k) |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
| 199 | ENDDO |
---|
| 200 | ENDDO |
---|
| 201 | |
---|
| 202 | END SUBROUTINE diffusion_u |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | !------------------------------------------------------------------------------! |
---|
| 206 | ! Call for grid point i,j |
---|
| 207 | !------------------------------------------------------------------------------! |
---|
| 208 | SUBROUTINE diffusion_u_ij( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
| 209 | v, w, z0 ) |
---|
| 210 | |
---|
| 211 | USE control_parameters |
---|
| 212 | USE grid_variables |
---|
| 213 | USE indices |
---|
| 214 | |
---|
| 215 | IMPLICIT NONE |
---|
| 216 | |
---|
| 217 | INTEGER :: i, j, k |
---|
[51] | 218 | REAL :: kmym_x, kmym_y, kmyp_x, kmyp_y, kmzm, kmzp |
---|
[20] | 219 | REAL :: ddzu(1:nzt+1), ddzw(1:nzt+1), km_damp_y(nys-1:nyn+1) |
---|
[1] | 220 | REAL :: z0(nys-1:nyn+1,nxl-1:nxr+1) |
---|
| 221 | REAL :: tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
[51] | 222 | REAL, DIMENSION(nzb:nzt+1) :: usvs |
---|
[1] | 223 | REAL, DIMENSION(:,:), POINTER :: usws |
---|
| 224 | REAL, DIMENSION(:,:,:), POINTER :: km, u, v, w |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- Compute horizontal diffusion |
---|
| 228 | DO k = nzb_u_outer(j,i)+1, nzt |
---|
| 229 | ! |
---|
| 230 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 231 | kmyp_x = 0.25 * ( km(k,j,i)+km(k,j+1,i)+km(k,j,i-1)+km(k,j+1,i-1) ) |
---|
| 232 | kmym_x = 0.25 * ( km(k,j,i)+km(k,j-1,i)+km(k,j,i-1)+km(k,j-1,i-1) ) |
---|
| 233 | kmyp_y = kmyp_x |
---|
| 234 | kmym_y = kmym_x |
---|
| 235 | |
---|
| 236 | ! |
---|
| 237 | !-- Increase diffusion at the outflow boundary in case of non-cyclic |
---|
| 238 | !-- lateral boundaries. Damping is only needed for velocity components |
---|
| 239 | !-- parallel to the outflow boundary in the direction normal to the |
---|
| 240 | !-- outflow boundary. |
---|
| 241 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
| 242 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 243 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 244 | ENDIF |
---|
| 245 | |
---|
| 246 | tend(k,j,i) = tend(k,j,i) & |
---|
| 247 | & + 2.0 * ( & |
---|
| 248 | & km(k,j,i) * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
| 249 | & - km(k,j,i-1) * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
| 250 | & ) * ddx2 & |
---|
| 251 | & + ( kmyp_y * ( u(k,j+1,i) - u(k,j,i) ) * ddy & |
---|
| 252 | & + kmyp_x * ( v(k,j+1,i) - v(k,j+1,i-1) ) * ddx & |
---|
| 253 | & - kmym_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 254 | & - kmym_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 255 | & ) * ddy |
---|
| 256 | ENDDO |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- Wall functions at the north and south walls, respectively |
---|
| 260 | IF ( wall_u(j,i) .NE. 0.0 ) THEN |
---|
[51] | 261 | |
---|
| 262 | ! |
---|
| 263 | !-- Calculate the horizontal momentum flux u'v' |
---|
| 264 | CALL wall_fluxes( i, j, nzb_u_inner(j,i)+1, nzb_u_outer(j,i), & |
---|
| 265 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
| 266 | |
---|
[1] | 267 | DO k = nzb_u_inner(j,i)+1, nzb_u_outer(j,i) |
---|
| 268 | kmyp_x = 0.25 * ( km(k,j,i)+km(k,j+1,i)+km(k,j,i-1)+km(k,j+1,i-1) ) |
---|
| 269 | kmym_x = 0.25 * ( km(k,j,i)+km(k,j-1,i)+km(k,j,i-1)+km(k,j-1,i-1) ) |
---|
| 270 | kmyp_y = kmyp_x |
---|
| 271 | kmym_y = kmym_x |
---|
| 272 | ! |
---|
| 273 | !-- Increase diffusion at the outflow boundary in case of |
---|
| 274 | !-- non-cyclic lateral boundaries. Damping is only needed for |
---|
| 275 | !-- velocity components parallel to the outflow boundary in |
---|
| 276 | !-- the direction normal to the outflow boundary. |
---|
| 277 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
| 278 | kmyp_y = MAX( kmyp_y, km_damp_y(j) ) |
---|
| 279 | kmym_y = MAX( kmym_y, km_damp_y(j) ) |
---|
| 280 | ENDIF |
---|
| 281 | |
---|
| 282 | tend(k,j,i) = tend(k,j,i) & |
---|
| 283 | + 2.0 * ( & |
---|
| 284 | km(k,j,i) * ( u(k,j,i+1) - u(k,j,i) ) & |
---|
| 285 | - km(k,j,i-1) * ( u(k,j,i) - u(k,j,i-1) ) & |
---|
| 286 | ) * ddx2 & |
---|
| 287 | + ( fyp(j,i) * ( & |
---|
| 288 | kmyp_y * ( u(k,j+1,i) - u(k,j,i) ) * ddy & |
---|
| 289 | + kmyp_x * ( v(k,j+1,i) - v(k,j+1,i-1) ) * ddx & |
---|
| 290 | ) & |
---|
| 291 | - fym(j,i) * ( & |
---|
| 292 | kmym_y * ( u(k,j,i) - u(k,j-1,i) ) * ddy & |
---|
| 293 | + kmym_x * ( v(k,j,i) - v(k,j,i-1) ) * ddx & |
---|
| 294 | ) & |
---|
[51] | 295 | + wall_u(j,i) * usvs(k) & |
---|
[1] | 296 | ) * ddy |
---|
| 297 | ENDDO |
---|
| 298 | ENDIF |
---|
| 299 | |
---|
| 300 | ! |
---|
| 301 | !-- Compute vertical diffusion. In case of simulating a Prandtl layer, |
---|
| 302 | !-- index k starts at nzb_u_inner+2. |
---|
| 303 | DO k = nzb_diff_u(j,i), nzt |
---|
| 304 | ! |
---|
| 305 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 306 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) ) |
---|
| 307 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j,i-1)+km(k-1,j,i-1) ) |
---|
| 308 | |
---|
| 309 | tend(k,j,i) = tend(k,j,i) & |
---|
| 310 | & + ( kmzp * ( ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 311 | & + ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 312 | & ) & |
---|
| 313 | & - kmzm * ( ( u(k,j,i) - u(k-1,j,i) ) * ddzu(k) & |
---|
| 314 | & + ( w(k-1,j,i) - w(k-1,j,i-1) ) * ddx & |
---|
| 315 | & ) & |
---|
| 316 | & ) * ddzw(k) |
---|
| 317 | ENDDO |
---|
| 318 | |
---|
| 319 | ! |
---|
| 320 | !-- Vertical diffusion at the first grid point above the surface, if the |
---|
| 321 | !-- momentum flux at the bottom is given by the Prandtl law or if it is |
---|
| 322 | !-- prescribed by the user. |
---|
| 323 | !-- Difference quotient of the momentum flux is not formed over half of |
---|
| 324 | !-- the grid spacing (2.0*ddzw(k)) any more, since the comparison with |
---|
| 325 | !-- other (LES) modell showed that the values of the momentum flux becomes |
---|
| 326 | !-- too large in this case. |
---|
| 327 | !-- The term containing w(k-1,..) (see above equation) is removed here |
---|
| 328 | !-- because the vertical velocity is assumed to be zero at the surface. |
---|
| 329 | IF ( use_surface_fluxes ) THEN |
---|
| 330 | k = nzb_u_inner(j,i)+1 |
---|
| 331 | ! |
---|
| 332 | !-- Interpolate eddy diffusivities on staggered gridpoints |
---|
| 333 | kmzp = 0.25 * ( km(k,j,i)+km(k+1,j,i)+km(k,j,i-1)+km(k+1,j,i-1) ) |
---|
| 334 | kmzm = 0.25 * ( km(k,j,i)+km(k-1,j,i)+km(k,j,i-1)+km(k-1,j,i-1) ) |
---|
| 335 | |
---|
| 336 | tend(k,j,i) = tend(k,j,i) & |
---|
| 337 | & + ( kmzp * ( w(k,j,i) - w(k,j,i-1) ) * ddx & |
---|
| 338 | & ) * ddzw(k) & |
---|
| 339 | & + ( kmzp * ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & |
---|
| 340 | & + usws(j,i) & |
---|
| 341 | & ) * ddzw(k) |
---|
| 342 | ENDIF |
---|
| 343 | |
---|
| 344 | END SUBROUTINE diffusion_u_ij |
---|
| 345 | |
---|
| 346 | END MODULE diffusion_u_mod |
---|