1 | !> @file diffusion_s.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: diffusion_s.f90 4182 2019-08-22 15:20:23Z maronga $ |
---|
27 | ! Corrected "Former revisions" section |
---|
28 | ! |
---|
29 | ! 3927 2019-04-23 13:24:29Z raasch |
---|
30 | ! pointer attribute removed from scalar 3d-array for performance reasons |
---|
31 | ! |
---|
32 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
33 | ! unused variables removed |
---|
34 | ! |
---|
35 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
36 | ! nopointer option removed |
---|
37 | ! |
---|
38 | ! Revision 1.1 2000/04/13 14:54:02 schroeter |
---|
39 | ! Initial revision |
---|
40 | ! |
---|
41 | ! |
---|
42 | ! Description: |
---|
43 | ! ------------ |
---|
44 | !> Diffusion term of scalar quantities (temperature and water content) |
---|
45 | !------------------------------------------------------------------------------! |
---|
46 | MODULE diffusion_s_mod |
---|
47 | |
---|
48 | |
---|
49 | PRIVATE |
---|
50 | PUBLIC diffusion_s |
---|
51 | |
---|
52 | INTERFACE diffusion_s |
---|
53 | MODULE PROCEDURE diffusion_s |
---|
54 | MODULE PROCEDURE diffusion_s_ij |
---|
55 | END INTERFACE diffusion_s |
---|
56 | |
---|
57 | CONTAINS |
---|
58 | |
---|
59 | |
---|
60 | !------------------------------------------------------------------------------! |
---|
61 | ! Description: |
---|
62 | ! ------------ |
---|
63 | !> Call for all grid points |
---|
64 | !------------------------------------------------------------------------------! |
---|
65 | SUBROUTINE diffusion_s( s, s_flux_def_h_up, s_flux_def_h_down, & |
---|
66 | s_flux_t, & |
---|
67 | s_flux_lsm_h_up, s_flux_usm_h_up, & |
---|
68 | s_flux_def_v_north, s_flux_def_v_south, & |
---|
69 | s_flux_def_v_east, s_flux_def_v_west, & |
---|
70 | s_flux_lsm_v_north, s_flux_lsm_v_south, & |
---|
71 | s_flux_lsm_v_east, s_flux_lsm_v_west, & |
---|
72 | s_flux_usm_v_north, s_flux_usm_v_south, & |
---|
73 | s_flux_usm_v_east, s_flux_usm_v_west ) |
---|
74 | |
---|
75 | USE arrays_3d, & |
---|
76 | ONLY: ddzu, ddzw, kh, tend, drho_air, rho_air_zw |
---|
77 | |
---|
78 | USE control_parameters, & |
---|
79 | ONLY: use_surface_fluxes, use_top_fluxes |
---|
80 | |
---|
81 | USE grid_variables, & |
---|
82 | ONLY: ddx, ddx2, ddy, ddy2 |
---|
83 | |
---|
84 | USE indices, & |
---|
85 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, wall_flags_0 |
---|
86 | |
---|
87 | USE kinds |
---|
88 | |
---|
89 | USE surface_mod, & |
---|
90 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
91 | surf_usm_v |
---|
92 | |
---|
93 | IMPLICIT NONE |
---|
94 | |
---|
95 | INTEGER(iwp) :: i !< running index x direction |
---|
96 | INTEGER(iwp) :: j !< running index y direction |
---|
97 | INTEGER(iwp) :: k !< running index z direction |
---|
98 | INTEGER(iwp) :: m !< running index surface elements |
---|
99 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
100 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
101 | |
---|
102 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
103 | REAL(wp) :: mask_bottom !< flag to mask vertical upward-facing surface |
---|
104 | REAL(wp) :: mask_east !< flag to mask vertical surface east of the grid point |
---|
105 | REAL(wp) :: mask_north !< flag to mask vertical surface north of the grid point |
---|
106 | REAL(wp) :: mask_south !< flag to mask vertical surface south of the grid point |
---|
107 | REAL(wp) :: mask_west !< flag to mask vertical surface west of the grid point |
---|
108 | REAL(wp) :: mask_top !< flag to mask vertical downward-facing surface |
---|
109 | |
---|
110 | REAL(wp), DIMENSION(1:surf_def_v(0)%ns) :: s_flux_def_v_north !< flux at north-facing vertical default-type surfaces |
---|
111 | REAL(wp), DIMENSION(1:surf_def_v(1)%ns) :: s_flux_def_v_south !< flux at south-facing vertical default-type surfaces |
---|
112 | REAL(wp), DIMENSION(1:surf_def_v(2)%ns) :: s_flux_def_v_east !< flux at east-facing vertical default-type surfaces |
---|
113 | REAL(wp), DIMENSION(1:surf_def_v(3)%ns) :: s_flux_def_v_west !< flux at west-facing vertical default-type surfaces |
---|
114 | REAL(wp), DIMENSION(1:surf_def_h(0)%ns) :: s_flux_def_h_up !< flux at horizontal upward-facing default-type surfaces |
---|
115 | REAL(wp), DIMENSION(1:surf_def_h(1)%ns) :: s_flux_def_h_down !< flux at horizontal donwward-facing default-type surfaces |
---|
116 | REAL(wp), DIMENSION(1:surf_lsm_h%ns) :: s_flux_lsm_h_up !< flux at horizontal upward-facing natural-type surfaces |
---|
117 | REAL(wp), DIMENSION(1:surf_lsm_v(0)%ns) :: s_flux_lsm_v_north !< flux at north-facing vertical natural-type surfaces |
---|
118 | REAL(wp), DIMENSION(1:surf_lsm_v(1)%ns) :: s_flux_lsm_v_south !< flux at south-facing vertical natural-type surfaces |
---|
119 | REAL(wp), DIMENSION(1:surf_lsm_v(2)%ns) :: s_flux_lsm_v_east !< flux at east-facing vertical natural-type surfaces |
---|
120 | REAL(wp), DIMENSION(1:surf_lsm_v(3)%ns) :: s_flux_lsm_v_west !< flux at west-facing vertical natural-type surfaces |
---|
121 | REAL(wp), DIMENSION(1:surf_usm_h%ns) :: s_flux_usm_h_up !< flux at horizontal upward-facing urban-type surfaces |
---|
122 | REAL(wp), DIMENSION(1:surf_usm_v(0)%ns) :: s_flux_usm_v_north !< flux at north-facing vertical urban-type surfaces |
---|
123 | REAL(wp), DIMENSION(1:surf_usm_v(1)%ns) :: s_flux_usm_v_south !< flux at south-facing vertical urban-type surfaces |
---|
124 | REAL(wp), DIMENSION(1:surf_usm_v(2)%ns) :: s_flux_usm_v_east !< flux at east-facing vertical urban-type surfaces |
---|
125 | REAL(wp), DIMENSION(1:surf_usm_v(3)%ns) :: s_flux_usm_v_west !< flux at west-facing vertical urban-type surfaces |
---|
126 | REAL(wp), DIMENSION(1:surf_def_h(2)%ns) :: s_flux_t !< flux at model top |
---|
127 | |
---|
128 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: s !< treated scalar |
---|
129 | |
---|
130 | |
---|
131 | !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j, k, m) & |
---|
132 | !$ACC PRIVATE(surf_e, surf_s, flag, mask_top, mask_bottom) & |
---|
133 | !$ACC PRIVATE(mask_north, mask_south, mask_west, mask_east) & |
---|
134 | !$ACC PRESENT(wall_flags_0, kh) & |
---|
135 | !$ACC PRESENT(s) & |
---|
136 | !$ACC PRESENT(ddzu, ddzw, drho_air, rho_air_zw) & |
---|
137 | !$ACC PRESENT(surf_def_h(0:2), surf_def_v(0:3)) & |
---|
138 | !$ACC PRESENT(surf_lsm_h, surf_lsm_v(0:3)) & |
---|
139 | !$ACC PRESENT(surf_usm_h, surf_usm_v(0:3)) & |
---|
140 | !$ACC PRESENT(s_flux_def_h_up, s_flux_def_h_down) & |
---|
141 | !$ACC PRESENT(s_flux_t) & |
---|
142 | !$ACC PRESENT(s_flux_def_v_north, s_flux_def_v_south) & |
---|
143 | !$ACC PRESENT(s_flux_def_v_east, s_flux_def_v_west) & |
---|
144 | !$ACC PRESENT(s_flux_lsm_h_up) & |
---|
145 | !$ACC PRESENT(s_flux_lsm_v_north, s_flux_lsm_v_south) & |
---|
146 | !$ACC PRESENT(s_flux_lsm_v_east, s_flux_lsm_v_west) & |
---|
147 | !$ACC PRESENT(s_flux_usm_h_up) & |
---|
148 | !$ACC PRESENT(s_flux_usm_v_north, s_flux_usm_v_south) & |
---|
149 | !$ACC PRESENT(s_flux_usm_v_east, s_flux_usm_v_west) & |
---|
150 | !$ACC PRESENT(tend) |
---|
151 | DO i = nxl, nxr |
---|
152 | DO j = nys,nyn |
---|
153 | ! |
---|
154 | !-- Compute horizontal diffusion |
---|
155 | DO k = nzb+1, nzt |
---|
156 | ! |
---|
157 | !-- Predetermine flag to mask topography and wall-bounded grid points |
---|
158 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
159 | ! |
---|
160 | !-- Predetermine flag to mask wall-bounded grid points, equivalent to |
---|
161 | !-- former s_outer array |
---|
162 | mask_west = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
163 | mask_east = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i+1), 0 ) ) |
---|
164 | mask_south = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
165 | mask_north = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j+1,i), 0 ) ) |
---|
166 | |
---|
167 | tend(k,j,i) = tend(k,j,i) & |
---|
168 | + 0.5_wp * ( & |
---|
169 | mask_east * ( kh(k,j,i) + kh(k,j,i+1) ) & |
---|
170 | * ( s(k,j,i+1) - s(k,j,i) ) & |
---|
171 | - mask_west * ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
172 | * ( s(k,j,i) - s(k,j,i-1) ) & |
---|
173 | ) * ddx2 * flag & |
---|
174 | + 0.5_wp * ( & |
---|
175 | mask_north * ( kh(k,j,i) + kh(k,j+1,i) ) & |
---|
176 | * ( s(k,j+1,i) - s(k,j,i) ) & |
---|
177 | - mask_south * ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
178 | * ( s(k,j,i) - s(k,j-1,i) ) & |
---|
179 | ) * ddy2 * flag |
---|
180 | ENDDO |
---|
181 | |
---|
182 | ! |
---|
183 | !-- Apply prescribed horizontal wall heatflux where necessary. First, |
---|
184 | !-- determine start and end index for respective (j,i)-index. Please |
---|
185 | !-- note, in the flat case following loop will not be entered, as |
---|
186 | !-- surf_s=1 and surf_e=0. Furtermore, note, no vertical natural surfaces |
---|
187 | !-- so far. |
---|
188 | !-- First, for default-type surfaces |
---|
189 | !-- North-facing vertical default-type surfaces |
---|
190 | surf_s = surf_def_v(0)%start_index(j,i) |
---|
191 | surf_e = surf_def_v(0)%end_index(j,i) |
---|
192 | DO m = surf_s, surf_e |
---|
193 | k = surf_def_v(0)%k(m) |
---|
194 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_north(m) * ddy |
---|
195 | ENDDO |
---|
196 | ! |
---|
197 | !-- South-facing vertical default-type surfaces |
---|
198 | surf_s = surf_def_v(1)%start_index(j,i) |
---|
199 | surf_e = surf_def_v(1)%end_index(j,i) |
---|
200 | DO m = surf_s, surf_e |
---|
201 | k = surf_def_v(1)%k(m) |
---|
202 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_south(m) * ddy |
---|
203 | ENDDO |
---|
204 | ! |
---|
205 | !-- East-facing vertical default-type surfaces |
---|
206 | surf_s = surf_def_v(2)%start_index(j,i) |
---|
207 | surf_e = surf_def_v(2)%end_index(j,i) |
---|
208 | DO m = surf_s, surf_e |
---|
209 | k = surf_def_v(2)%k(m) |
---|
210 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_east(m) * ddx |
---|
211 | ENDDO |
---|
212 | ! |
---|
213 | !-- West-facing vertical default-type surfaces |
---|
214 | surf_s = surf_def_v(3)%start_index(j,i) |
---|
215 | surf_e = surf_def_v(3)%end_index(j,i) |
---|
216 | DO m = surf_s, surf_e |
---|
217 | k = surf_def_v(3)%k(m) |
---|
218 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_west(m) * ddx |
---|
219 | ENDDO |
---|
220 | ! |
---|
221 | !-- Now, for natural-type surfaces. |
---|
222 | !-- North-facing |
---|
223 | surf_s = surf_lsm_v(0)%start_index(j,i) |
---|
224 | surf_e = surf_lsm_v(0)%end_index(j,i) |
---|
225 | DO m = surf_s, surf_e |
---|
226 | k = surf_lsm_v(0)%k(m) |
---|
227 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_north(m) * ddy |
---|
228 | ENDDO |
---|
229 | ! |
---|
230 | !-- South-facing |
---|
231 | surf_s = surf_lsm_v(1)%start_index(j,i) |
---|
232 | surf_e = surf_lsm_v(1)%end_index(j,i) |
---|
233 | DO m = surf_s, surf_e |
---|
234 | k = surf_lsm_v(1)%k(m) |
---|
235 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_south(m) * ddy |
---|
236 | ENDDO |
---|
237 | ! |
---|
238 | !-- East-facing |
---|
239 | surf_s = surf_lsm_v(2)%start_index(j,i) |
---|
240 | surf_e = surf_lsm_v(2)%end_index(j,i) |
---|
241 | DO m = surf_s, surf_e |
---|
242 | k = surf_lsm_v(2)%k(m) |
---|
243 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_east(m) * ddx |
---|
244 | ENDDO |
---|
245 | ! |
---|
246 | !-- West-facing |
---|
247 | surf_s = surf_lsm_v(3)%start_index(j,i) |
---|
248 | surf_e = surf_lsm_v(3)%end_index(j,i) |
---|
249 | DO m = surf_s, surf_e |
---|
250 | k = surf_lsm_v(3)%k(m) |
---|
251 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_west(m) * ddx |
---|
252 | ENDDO |
---|
253 | ! |
---|
254 | !-- Now, for urban-type surfaces. |
---|
255 | !-- North-facing |
---|
256 | surf_s = surf_usm_v(0)%start_index(j,i) |
---|
257 | surf_e = surf_usm_v(0)%end_index(j,i) |
---|
258 | DO m = surf_s, surf_e |
---|
259 | k = surf_usm_v(0)%k(m) |
---|
260 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_north(m) * ddy |
---|
261 | ENDDO |
---|
262 | ! |
---|
263 | !-- South-facing |
---|
264 | surf_s = surf_usm_v(1)%start_index(j,i) |
---|
265 | surf_e = surf_usm_v(1)%end_index(j,i) |
---|
266 | DO m = surf_s, surf_e |
---|
267 | k = surf_usm_v(1)%k(m) |
---|
268 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_south(m) * ddy |
---|
269 | ENDDO |
---|
270 | ! |
---|
271 | !-- East-facing |
---|
272 | surf_s = surf_usm_v(2)%start_index(j,i) |
---|
273 | surf_e = surf_usm_v(2)%end_index(j,i) |
---|
274 | DO m = surf_s, surf_e |
---|
275 | k = surf_usm_v(2)%k(m) |
---|
276 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_east(m) * ddx |
---|
277 | ENDDO |
---|
278 | ! |
---|
279 | !-- West-facing |
---|
280 | surf_s = surf_usm_v(3)%start_index(j,i) |
---|
281 | surf_e = surf_usm_v(3)%end_index(j,i) |
---|
282 | DO m = surf_s, surf_e |
---|
283 | k = surf_usm_v(3)%k(m) |
---|
284 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_west(m) * ddx |
---|
285 | ENDDO |
---|
286 | |
---|
287 | ! |
---|
288 | !-- Compute vertical diffusion. In case that surface fluxes have been |
---|
289 | !-- prescribed or computed at bottom and/or top, index k starts/ends at |
---|
290 | !-- nzb+2 or nzt-1, respectively. Model top is also mask if top flux |
---|
291 | !-- is given. |
---|
292 | DO k = nzb+1, nzt |
---|
293 | ! |
---|
294 | !-- Determine flags to mask topography below and above. Flag 0 is |
---|
295 | !-- used to mask topography in general, and flag 8 implies |
---|
296 | !-- information about use_surface_fluxes. Flag 9 is used to control |
---|
297 | !-- flux at model top. |
---|
298 | mask_bottom = MERGE( 1.0_wp, 0.0_wp, & |
---|
299 | BTEST( wall_flags_0(k-1,j,i), 8 ) ) |
---|
300 | mask_top = MERGE( 1.0_wp, 0.0_wp, & |
---|
301 | BTEST( wall_flags_0(k+1,j,i), 8 ) ) * & |
---|
302 | MERGE( 1.0_wp, 0.0_wp, & |
---|
303 | BTEST( wall_flags_0(k+1,j,i), 9 ) ) |
---|
304 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
305 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
306 | |
---|
307 | tend(k,j,i) = tend(k,j,i) & |
---|
308 | + 0.5_wp * ( & |
---|
309 | ( kh(k,j,i) + kh(k+1,j,i) ) * & |
---|
310 | ( s(k+1,j,i)-s(k,j,i) ) * ddzu(k+1) & |
---|
311 | * rho_air_zw(k) & |
---|
312 | * mask_top & |
---|
313 | - ( kh(k,j,i) + kh(k-1,j,i) ) * & |
---|
314 | ( s(k,j,i)-s(k-1,j,i) ) * ddzu(k) & |
---|
315 | * rho_air_zw(k-1) & |
---|
316 | * mask_bottom & |
---|
317 | ) * ddzw(k) * drho_air(k) & |
---|
318 | * flag |
---|
319 | ENDDO |
---|
320 | |
---|
321 | ! |
---|
322 | !-- Vertical diffusion at horizontal walls. |
---|
323 | IF ( use_surface_fluxes ) THEN |
---|
324 | ! |
---|
325 | !-- Default-type surfaces, upward-facing |
---|
326 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
327 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
328 | DO m = surf_s, surf_e |
---|
329 | |
---|
330 | k = surf_def_h(0)%k(m) |
---|
331 | tend(k,j,i) = tend(k,j,i) + s_flux_def_h_up(m) & |
---|
332 | * ddzw(k) * drho_air(k) |
---|
333 | |
---|
334 | ENDDO |
---|
335 | ! |
---|
336 | !-- Default-type surfaces, downward-facing |
---|
337 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
338 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
339 | DO m = surf_s, surf_e |
---|
340 | |
---|
341 | k = surf_def_h(1)%k(m) |
---|
342 | tend(k,j,i) = tend(k,j,i) + s_flux_def_h_down(m) & |
---|
343 | * ddzw(k) * drho_air(k) |
---|
344 | |
---|
345 | ENDDO |
---|
346 | ! |
---|
347 | !-- Natural-type surfaces, upward-facing |
---|
348 | surf_s = surf_lsm_h%start_index(j,i) |
---|
349 | surf_e = surf_lsm_h%end_index(j,i) |
---|
350 | DO m = surf_s, surf_e |
---|
351 | |
---|
352 | k = surf_lsm_h%k(m) |
---|
353 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_h_up(m) & |
---|
354 | * ddzw(k) * drho_air(k) |
---|
355 | |
---|
356 | ENDDO |
---|
357 | ! |
---|
358 | !-- Urban-type surfaces, upward-facing |
---|
359 | surf_s = surf_usm_h%start_index(j,i) |
---|
360 | surf_e = surf_usm_h%end_index(j,i) |
---|
361 | DO m = surf_s, surf_e |
---|
362 | |
---|
363 | k = surf_usm_h%k(m) |
---|
364 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_h_up(m) & |
---|
365 | * ddzw(k) * drho_air(k) |
---|
366 | |
---|
367 | ENDDO |
---|
368 | |
---|
369 | ENDIF |
---|
370 | ! |
---|
371 | !-- Vertical diffusion at the last computational gridpoint along z-direction |
---|
372 | IF ( use_top_fluxes ) THEN |
---|
373 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
374 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
375 | DO m = surf_s, surf_e |
---|
376 | |
---|
377 | k = surf_def_h(2)%k(m) |
---|
378 | tend(k,j,i) = tend(k,j,i) & |
---|
379 | + ( - s_flux_t(m) ) * ddzw(k) * drho_air(k) |
---|
380 | ENDDO |
---|
381 | ENDIF |
---|
382 | |
---|
383 | ENDDO |
---|
384 | ENDDO |
---|
385 | |
---|
386 | END SUBROUTINE diffusion_s |
---|
387 | |
---|
388 | !------------------------------------------------------------------------------! |
---|
389 | ! Description: |
---|
390 | ! ------------ |
---|
391 | !> Call for grid point i,j |
---|
392 | !------------------------------------------------------------------------------! |
---|
393 | SUBROUTINE diffusion_s_ij( i, j, s, & |
---|
394 | s_flux_def_h_up, s_flux_def_h_down, & |
---|
395 | s_flux_t, & |
---|
396 | s_flux_lsm_h_up, s_flux_usm_h_up, & |
---|
397 | s_flux_def_v_north, s_flux_def_v_south, & |
---|
398 | s_flux_def_v_east, s_flux_def_v_west, & |
---|
399 | s_flux_lsm_v_north, s_flux_lsm_v_south, & |
---|
400 | s_flux_lsm_v_east, s_flux_lsm_v_west, & |
---|
401 | s_flux_usm_v_north, s_flux_usm_v_south, & |
---|
402 | s_flux_usm_v_east, s_flux_usm_v_west ) |
---|
403 | |
---|
404 | USE arrays_3d, & |
---|
405 | ONLY: ddzu, ddzw, kh, tend, drho_air, rho_air_zw |
---|
406 | |
---|
407 | USE control_parameters, & |
---|
408 | ONLY: use_surface_fluxes, use_top_fluxes |
---|
409 | |
---|
410 | USE grid_variables, & |
---|
411 | ONLY: ddx, ddx2, ddy, ddy2 |
---|
412 | |
---|
413 | USE indices, & |
---|
414 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
415 | |
---|
416 | USE kinds |
---|
417 | |
---|
418 | USE surface_mod, & |
---|
419 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
420 | surf_usm_v |
---|
421 | |
---|
422 | IMPLICIT NONE |
---|
423 | |
---|
424 | INTEGER(iwp) :: i !< running index x direction |
---|
425 | INTEGER(iwp) :: j !< running index y direction |
---|
426 | INTEGER(iwp) :: k !< running index z direction |
---|
427 | INTEGER(iwp) :: m !< running index surface elements |
---|
428 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
429 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
430 | |
---|
431 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
432 | REAL(wp) :: mask_bottom !< flag to mask vertical upward-facing surface |
---|
433 | REAL(wp) :: mask_east !< flag to mask vertical surface east of the grid point |
---|
434 | REAL(wp) :: mask_north !< flag to mask vertical surface north of the grid point |
---|
435 | REAL(wp) :: mask_south !< flag to mask vertical surface south of the grid point |
---|
436 | REAL(wp) :: mask_west !< flag to mask vertical surface west of the grid point |
---|
437 | REAL(wp) :: mask_top !< flag to mask vertical downward-facing surface |
---|
438 | |
---|
439 | REAL(wp), DIMENSION(1:surf_def_v(0)%ns) :: s_flux_def_v_north !< flux at north-facing vertical default-type surfaces |
---|
440 | REAL(wp), DIMENSION(1:surf_def_v(1)%ns) :: s_flux_def_v_south !< flux at south-facing vertical default-type surfaces |
---|
441 | REAL(wp), DIMENSION(1:surf_def_v(2)%ns) :: s_flux_def_v_east !< flux at east-facing vertical default-type surfaces |
---|
442 | REAL(wp), DIMENSION(1:surf_def_v(3)%ns) :: s_flux_def_v_west !< flux at west-facing vertical default-type surfaces |
---|
443 | REAL(wp), DIMENSION(1:surf_def_h(0)%ns) :: s_flux_def_h_up !< flux at horizontal upward-facing default-type surfaces |
---|
444 | REAL(wp), DIMENSION(1:surf_def_h(1)%ns) :: s_flux_def_h_down !< flux at horizontal donwward-facing default-type surfaces |
---|
445 | REAL(wp), DIMENSION(1:surf_lsm_h%ns) :: s_flux_lsm_h_up !< flux at horizontal upward-facing natural-type surfaces |
---|
446 | REAL(wp), DIMENSION(1:surf_lsm_v(0)%ns) :: s_flux_lsm_v_north !< flux at north-facing vertical urban-type surfaces |
---|
447 | REAL(wp), DIMENSION(1:surf_lsm_v(1)%ns) :: s_flux_lsm_v_south !< flux at south-facing vertical urban-type surfaces |
---|
448 | REAL(wp), DIMENSION(1:surf_lsm_v(2)%ns) :: s_flux_lsm_v_east !< flux at east-facing vertical urban-type surfaces |
---|
449 | REAL(wp), DIMENSION(1:surf_lsm_v(3)%ns) :: s_flux_lsm_v_west !< flux at west-facing vertical urban-type surfaces |
---|
450 | REAL(wp), DIMENSION(1:surf_usm_h%ns) :: s_flux_usm_h_up !< flux at horizontal upward-facing urban-type surfaces |
---|
451 | REAL(wp), DIMENSION(1:surf_usm_v(0)%ns) :: s_flux_usm_v_north !< flux at north-facing vertical urban-type surfaces |
---|
452 | REAL(wp), DIMENSION(1:surf_usm_v(1)%ns) :: s_flux_usm_v_south !< flux at south-facing vertical urban-type surfaces |
---|
453 | REAL(wp), DIMENSION(1:surf_usm_v(2)%ns) :: s_flux_usm_v_east !< flux at east-facing vertical urban-type surfaces |
---|
454 | REAL(wp), DIMENSION(1:surf_usm_v(3)%ns) :: s_flux_usm_v_west !< flux at west-facing vertical urban-type surfaces |
---|
455 | REAL(wp), DIMENSION(1:surf_def_h(2)%ns) :: s_flux_t !< flux at model top |
---|
456 | |
---|
457 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: s !< treated scalar |
---|
458 | |
---|
459 | ! |
---|
460 | !-- Compute horizontal diffusion |
---|
461 | DO k = nzb+1, nzt |
---|
462 | ! |
---|
463 | !-- Predetermine flag to mask topography and wall-bounded grid points |
---|
464 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
465 | ! |
---|
466 | !-- Predetermine flag to mask wall-bounded grid points, equivalent to |
---|
467 | !-- former s_outer array |
---|
468 | mask_west = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
469 | mask_east = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i+1), 0 ) ) |
---|
470 | mask_south = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
471 | mask_north = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j+1,i), 0 ) ) |
---|
472 | ! |
---|
473 | !-- Finally, determine flag to mask both topography itself as well |
---|
474 | !-- as wall-bounded grid points, which will be treated further below |
---|
475 | |
---|
476 | tend(k,j,i) = tend(k,j,i) & |
---|
477 | + 0.5_wp * ( & |
---|
478 | mask_east * ( kh(k,j,i) + kh(k,j,i+1) ) & |
---|
479 | * ( s(k,j,i+1) - s(k,j,i) ) & |
---|
480 | - mask_west * ( kh(k,j,i) + kh(k,j,i-1) ) & |
---|
481 | * ( s(k,j,i) - s(k,j,i-1) ) & |
---|
482 | ) * ddx2 * flag & |
---|
483 | + 0.5_wp * ( & |
---|
484 | mask_north * ( kh(k,j,i) + kh(k,j+1,i) ) & |
---|
485 | * ( s(k,j+1,i) - s(k,j,i) ) & |
---|
486 | - mask_south * ( kh(k,j,i) + kh(k,j-1,i) ) & |
---|
487 | * ( s(k,j,i) - s(k,j-1,i) ) & |
---|
488 | ) * ddy2 * flag |
---|
489 | ENDDO |
---|
490 | |
---|
491 | ! |
---|
492 | !-- Apply prescribed horizontal wall heatflux where necessary. First, |
---|
493 | !-- determine start and end index for respective (j,i)-index. Please |
---|
494 | !-- note, in the flat case following loops will not be entered, as |
---|
495 | !-- surf_s=1 and surf_e=0. Furtermore, note, no vertical natural surfaces |
---|
496 | !-- so far. |
---|
497 | !-- First, for default-type surfaces |
---|
498 | !-- North-facing vertical default-type surfaces |
---|
499 | surf_s = surf_def_v(0)%start_index(j,i) |
---|
500 | surf_e = surf_def_v(0)%end_index(j,i) |
---|
501 | DO m = surf_s, surf_e |
---|
502 | k = surf_def_v(0)%k(m) |
---|
503 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_north(m) * ddy |
---|
504 | ENDDO |
---|
505 | ! |
---|
506 | !-- South-facing vertical default-type surfaces |
---|
507 | surf_s = surf_def_v(1)%start_index(j,i) |
---|
508 | surf_e = surf_def_v(1)%end_index(j,i) |
---|
509 | DO m = surf_s, surf_e |
---|
510 | k = surf_def_v(1)%k(m) |
---|
511 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_south(m) * ddy |
---|
512 | ENDDO |
---|
513 | ! |
---|
514 | !-- East-facing vertical default-type surfaces |
---|
515 | surf_s = surf_def_v(2)%start_index(j,i) |
---|
516 | surf_e = surf_def_v(2)%end_index(j,i) |
---|
517 | DO m = surf_s, surf_e |
---|
518 | k = surf_def_v(2)%k(m) |
---|
519 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_east(m) * ddx |
---|
520 | ENDDO |
---|
521 | ! |
---|
522 | !-- West-facing vertical default-type surfaces |
---|
523 | surf_s = surf_def_v(3)%start_index(j,i) |
---|
524 | surf_e = surf_def_v(3)%end_index(j,i) |
---|
525 | DO m = surf_s, surf_e |
---|
526 | k = surf_def_v(3)%k(m) |
---|
527 | tend(k,j,i) = tend(k,j,i) + s_flux_def_v_west(m) * ddx |
---|
528 | ENDDO |
---|
529 | ! |
---|
530 | !-- Now, for natural-type surfaces |
---|
531 | !-- North-facing |
---|
532 | surf_s = surf_lsm_v(0)%start_index(j,i) |
---|
533 | surf_e = surf_lsm_v(0)%end_index(j,i) |
---|
534 | DO m = surf_s, surf_e |
---|
535 | k = surf_lsm_v(0)%k(m) |
---|
536 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_north(m) * ddy |
---|
537 | ENDDO |
---|
538 | ! |
---|
539 | !-- South-facing |
---|
540 | surf_s = surf_lsm_v(1)%start_index(j,i) |
---|
541 | surf_e = surf_lsm_v(1)%end_index(j,i) |
---|
542 | DO m = surf_s, surf_e |
---|
543 | k = surf_lsm_v(1)%k(m) |
---|
544 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_south(m) * ddy |
---|
545 | ENDDO |
---|
546 | ! |
---|
547 | !-- East-facing |
---|
548 | surf_s = surf_lsm_v(2)%start_index(j,i) |
---|
549 | surf_e = surf_lsm_v(2)%end_index(j,i) |
---|
550 | DO m = surf_s, surf_e |
---|
551 | k = surf_lsm_v(2)%k(m) |
---|
552 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_east(m) * ddx |
---|
553 | ENDDO |
---|
554 | ! |
---|
555 | !-- West-facing |
---|
556 | surf_s = surf_lsm_v(3)%start_index(j,i) |
---|
557 | surf_e = surf_lsm_v(3)%end_index(j,i) |
---|
558 | DO m = surf_s, surf_e |
---|
559 | k = surf_lsm_v(3)%k(m) |
---|
560 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_v_west(m) * ddx |
---|
561 | ENDDO |
---|
562 | ! |
---|
563 | !-- Now, for urban-type surfaces |
---|
564 | !-- North-facing |
---|
565 | surf_s = surf_usm_v(0)%start_index(j,i) |
---|
566 | surf_e = surf_usm_v(0)%end_index(j,i) |
---|
567 | DO m = surf_s, surf_e |
---|
568 | k = surf_usm_v(0)%k(m) |
---|
569 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_north(m) * ddy |
---|
570 | ENDDO |
---|
571 | ! |
---|
572 | !-- South-facing |
---|
573 | surf_s = surf_usm_v(1)%start_index(j,i) |
---|
574 | surf_e = surf_usm_v(1)%end_index(j,i) |
---|
575 | DO m = surf_s, surf_e |
---|
576 | k = surf_usm_v(1)%k(m) |
---|
577 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_south(m) * ddy |
---|
578 | ENDDO |
---|
579 | ! |
---|
580 | !-- East-facing |
---|
581 | surf_s = surf_usm_v(2)%start_index(j,i) |
---|
582 | surf_e = surf_usm_v(2)%end_index(j,i) |
---|
583 | DO m = surf_s, surf_e |
---|
584 | k = surf_usm_v(2)%k(m) |
---|
585 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_east(m) * ddx |
---|
586 | ENDDO |
---|
587 | ! |
---|
588 | !-- West-facing |
---|
589 | surf_s = surf_usm_v(3)%start_index(j,i) |
---|
590 | surf_e = surf_usm_v(3)%end_index(j,i) |
---|
591 | DO m = surf_s, surf_e |
---|
592 | k = surf_usm_v(3)%k(m) |
---|
593 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_v_west(m) * ddx |
---|
594 | ENDDO |
---|
595 | |
---|
596 | |
---|
597 | ! |
---|
598 | !-- Compute vertical diffusion. In case that surface fluxes have been |
---|
599 | !-- prescribed or computed at bottom and/or top, index k starts/ends at |
---|
600 | !-- nzb+2 or nzt-1, respectively. Model top is also mask if top flux |
---|
601 | !-- is given. |
---|
602 | DO k = nzb+1, nzt |
---|
603 | ! |
---|
604 | !-- Determine flags to mask topography below and above. Flag 0 is |
---|
605 | !-- used to mask topography in general, and flag 8 implies |
---|
606 | !-- information about use_surface_fluxes. Flag 9 is used to control |
---|
607 | !-- flux at model top. |
---|
608 | mask_bottom = MERGE( 1.0_wp, 0.0_wp, & |
---|
609 | BTEST( wall_flags_0(k-1,j,i), 8 ) ) |
---|
610 | mask_top = MERGE( 1.0_wp, 0.0_wp, & |
---|
611 | BTEST( wall_flags_0(k+1,j,i), 8 ) ) * & |
---|
612 | MERGE( 1.0_wp, 0.0_wp, & |
---|
613 | BTEST( wall_flags_0(k+1,j,i), 9 ) ) |
---|
614 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
615 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
616 | |
---|
617 | tend(k,j,i) = tend(k,j,i) & |
---|
618 | + 0.5_wp * ( & |
---|
619 | ( kh(k,j,i) + kh(k+1,j,i) ) * & |
---|
620 | ( s(k+1,j,i)-s(k,j,i) ) * ddzu(k+1) & |
---|
621 | * rho_air_zw(k) & |
---|
622 | * mask_top & |
---|
623 | - ( kh(k,j,i) + kh(k-1,j,i) ) * & |
---|
624 | ( s(k,j,i)-s(k-1,j,i) ) * ddzu(k) & |
---|
625 | * rho_air_zw(k-1) & |
---|
626 | * mask_bottom & |
---|
627 | ) * ddzw(k) * drho_air(k) & |
---|
628 | * flag |
---|
629 | ENDDO |
---|
630 | |
---|
631 | ! |
---|
632 | !-- Vertical diffusion at horizontal walls. |
---|
633 | !-- TO DO: Adjust for downward facing walls and mask already in main loop |
---|
634 | IF ( use_surface_fluxes ) THEN |
---|
635 | ! |
---|
636 | !-- Default-type surfaces, upward-facing |
---|
637 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
638 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
639 | DO m = surf_s, surf_e |
---|
640 | |
---|
641 | k = surf_def_h(0)%k(m) |
---|
642 | |
---|
643 | tend(k,j,i) = tend(k,j,i) + s_flux_def_h_up(m) & |
---|
644 | * ddzw(k) * drho_air(k) |
---|
645 | ENDDO |
---|
646 | ! |
---|
647 | !-- Default-type surfaces, downward-facing |
---|
648 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
649 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
650 | DO m = surf_s, surf_e |
---|
651 | |
---|
652 | k = surf_def_h(1)%k(m) |
---|
653 | |
---|
654 | tend(k,j,i) = tend(k,j,i) + s_flux_def_h_down(m) & |
---|
655 | * ddzw(k) * drho_air(k) |
---|
656 | ENDDO |
---|
657 | ! |
---|
658 | !-- Natural-type surfaces, upward-facing |
---|
659 | surf_s = surf_lsm_h%start_index(j,i) |
---|
660 | surf_e = surf_lsm_h%end_index(j,i) |
---|
661 | DO m = surf_s, surf_e |
---|
662 | k = surf_lsm_h%k(m) |
---|
663 | |
---|
664 | tend(k,j,i) = tend(k,j,i) + s_flux_lsm_h_up(m) & |
---|
665 | * ddzw(k) * drho_air(k) |
---|
666 | ENDDO |
---|
667 | ! |
---|
668 | !-- Urban-type surfaces, upward-facing |
---|
669 | surf_s = surf_usm_h%start_index(j,i) |
---|
670 | surf_e = surf_usm_h%end_index(j,i) |
---|
671 | DO m = surf_s, surf_e |
---|
672 | k = surf_usm_h%k(m) |
---|
673 | |
---|
674 | tend(k,j,i) = tend(k,j,i) + s_flux_usm_h_up(m) & |
---|
675 | * ddzw(k) * drho_air(k) |
---|
676 | ENDDO |
---|
677 | ENDIF |
---|
678 | ! |
---|
679 | !-- Vertical diffusion at the last computational gridpoint along z-direction |
---|
680 | IF ( use_top_fluxes ) THEN |
---|
681 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
682 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
683 | DO m = surf_s, surf_e |
---|
684 | |
---|
685 | k = surf_def_h(2)%k(m) |
---|
686 | tend(k,j,i) = tend(k,j,i) & |
---|
687 | + ( - s_flux_t(m) ) * ddzw(k) * drho_air(k) |
---|
688 | ENDDO |
---|
689 | ENDIF |
---|
690 | |
---|
691 | END SUBROUTINE diffusion_s_ij |
---|
692 | |
---|
693 | END MODULE diffusion_s_mod |
---|