1 | MODULE diffusion_e_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! Adjustment of mixing length calculation for the ocean version. zw added to |
---|
7 | ! argument list. |
---|
8 | ! This is also a bugfix, because the height above the topography is now |
---|
9 | ! used instead of the height above level k=0. |
---|
10 | ! |
---|
11 | ! Former revisions: |
---|
12 | ! ----------------- |
---|
13 | ! $Id: diffusion_e.f90 94 2007-06-01 15:25:22Z raasch $ |
---|
14 | ! |
---|
15 | ! 65 2007-03-13 12:11:43Z raasch |
---|
16 | ! Reference temperature pt_reference can be used in buoyancy term |
---|
17 | ! |
---|
18 | ! 20 2007-02-26 00:12:32Z raasch |
---|
19 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
20 | ! Calculation extended for gridpoint nzt |
---|
21 | ! |
---|
22 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
23 | ! |
---|
24 | ! Revision 1.18 2006/08/04 14:29:43 raasch |
---|
25 | ! dissipation is stored in extra array diss if needed later on for calculating |
---|
26 | ! the sgs particle velocities |
---|
27 | ! |
---|
28 | ! Revision 1.1 1997/09/19 07:40:24 raasch |
---|
29 | ! Initial revision |
---|
30 | ! |
---|
31 | ! |
---|
32 | ! Description: |
---|
33 | ! ------------ |
---|
34 | ! Diffusion- and dissipation terms for the TKE |
---|
35 | !------------------------------------------------------------------------------! |
---|
36 | |
---|
37 | PRIVATE |
---|
38 | PUBLIC diffusion_e |
---|
39 | |
---|
40 | |
---|
41 | INTERFACE diffusion_e |
---|
42 | MODULE PROCEDURE diffusion_e |
---|
43 | MODULE PROCEDURE diffusion_e_ij |
---|
44 | END INTERFACE diffusion_e |
---|
45 | |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | |
---|
49 | !------------------------------------------------------------------------------! |
---|
50 | ! Call for all grid points |
---|
51 | !------------------------------------------------------------------------------! |
---|
52 | SUBROUTINE diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, theta, & |
---|
53 | rif, tend, zu, zw ) |
---|
54 | |
---|
55 | USE control_parameters |
---|
56 | USE grid_variables |
---|
57 | USE indices |
---|
58 | USE particle_attributes |
---|
59 | |
---|
60 | IMPLICIT NONE |
---|
61 | |
---|
62 | INTEGER :: i, j, k |
---|
63 | REAL :: dpt_dz, l_stable, phi_m |
---|
64 | REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt+1), & |
---|
65 | l_grid(1:nzt), zu(0:nzt+1), zw(0:nzt+1) |
---|
66 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend |
---|
67 | REAL, DIMENSION(:,:), POINTER :: rif |
---|
68 | REAL, DIMENSION(:,:,:), POINTER :: e, km, theta |
---|
69 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: dissipation, l, ll |
---|
70 | |
---|
71 | |
---|
72 | ! |
---|
73 | !-- This if clause must be outside the k-loop because otherwise |
---|
74 | !-- runtime errors occur with -C hopt on NEC |
---|
75 | IF ( use_pt_reference ) THEN |
---|
76 | |
---|
77 | DO i = nxl, nxr |
---|
78 | DO j = nys, nyn |
---|
79 | ! |
---|
80 | !-- First, calculate phi-function for eventually adjusting the & |
---|
81 | !-- mixing length to the prandtl mixing length |
---|
82 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
83 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
84 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
85 | ELSE |
---|
86 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
87 | ENDIF |
---|
88 | ENDIF |
---|
89 | |
---|
90 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
91 | ! |
---|
92 | !-- Calculate the mixing length (for dissipation) |
---|
93 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
94 | IF ( dpt_dz > 0.0 ) THEN |
---|
95 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
96 | SQRT( g / pt_reference * dpt_dz ) + 1E-5 |
---|
97 | ELSE |
---|
98 | l_stable = l_grid(k) |
---|
99 | ENDIF |
---|
100 | ! |
---|
101 | !-- Adjustment of the mixing length |
---|
102 | IF ( wall_adjustment ) THEN |
---|
103 | l(k,j) = MIN( wall_adjustment_factor * & |
---|
104 | ( zu(k) - zw(nzb_s_inner(j,i)) ), & |
---|
105 | l_grid(k), l_stable ) |
---|
106 | ll(k,j) = MIN( wall_adjustment_factor * & |
---|
107 | ( zu(k) - zw(nzb_s_inner(j,i)) ), & |
---|
108 | l_grid(k) ) |
---|
109 | ELSE |
---|
110 | l(k,j) = MIN( l_grid(k), l_stable ) |
---|
111 | ll(k,j) = l_grid(k) |
---|
112 | ENDIF |
---|
113 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
114 | l(k,j) = MIN( l(k,j), kappa * & |
---|
115 | ( zu(k) - zw(nzb_s_inner(j,i)) ) & |
---|
116 | / phi_m ) |
---|
117 | ll(k,j) = MIN( ll(k,j), kappa * & |
---|
118 | ( zu(k) - zw(nzb_s_inner(j,i)) ) & |
---|
119 | / phi_m ) |
---|
120 | ENDIF |
---|
121 | |
---|
122 | ENDDO |
---|
123 | ENDDO |
---|
124 | |
---|
125 | ! |
---|
126 | !-- Calculate the tendency terms |
---|
127 | DO j = nys, nyn |
---|
128 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
129 | |
---|
130 | dissipation(k,j) = ( 0.19 + 0.74 * l(k,j) / ll(k,j) ) * & |
---|
131 | e(k,j,i) * SQRT( e(k,j,i) ) / l(k,j) |
---|
132 | |
---|
133 | tend(k,j,i) = tend(k,j,i) & |
---|
134 | + ( & |
---|
135 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
136 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
137 | ) * ddx2 & |
---|
138 | + ( & |
---|
139 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
140 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
141 | ) * ddy2 & |
---|
142 | + ( & |
---|
143 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
144 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
145 | ) * ddzw(k) & |
---|
146 | - dissipation(k,j) |
---|
147 | |
---|
148 | ENDDO |
---|
149 | ENDDO |
---|
150 | |
---|
151 | ! |
---|
152 | !-- Store dissipation if needed for calculating the sgs particle |
---|
153 | !-- velocities |
---|
154 | IF ( use_sgs_for_particles ) THEN |
---|
155 | DO j = nys, nyn |
---|
156 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
157 | diss(k,j,i) = dissipation(k,j) |
---|
158 | ENDDO |
---|
159 | ENDDO |
---|
160 | ENDIF |
---|
161 | |
---|
162 | ENDDO |
---|
163 | |
---|
164 | ELSE |
---|
165 | |
---|
166 | DO i = nxl, nxr |
---|
167 | DO j = nys, nyn |
---|
168 | ! |
---|
169 | !-- First, calculate phi-function for eventually adjusting the & |
---|
170 | !-- mixing length to the prandtl mixing length |
---|
171 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
172 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
173 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
174 | ELSE |
---|
175 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
176 | ENDIF |
---|
177 | ENDIF |
---|
178 | |
---|
179 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
180 | ! |
---|
181 | !-- Calculate the mixing length (for dissipation) |
---|
182 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
183 | IF ( dpt_dz > 0.0 ) THEN |
---|
184 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
185 | SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 |
---|
186 | ELSE |
---|
187 | l_stable = l_grid(k) |
---|
188 | ENDIF |
---|
189 | ! |
---|
190 | !-- Adjustment of the mixing length |
---|
191 | IF ( wall_adjustment ) THEN |
---|
192 | l(k,j) = MIN( wall_adjustment_factor * & |
---|
193 | ( zu(k) - zw(nzb_s_inner(j,i)) ), & |
---|
194 | l_grid(k), l_stable ) |
---|
195 | ll(k,j) = MIN( wall_adjustment_factor * & |
---|
196 | ( zu(k) - zw(nzb_s_inner(j,i)) ), & |
---|
197 | l_grid(k) ) |
---|
198 | ELSE |
---|
199 | l(k,j) = MIN( l_grid(k), l_stable ) |
---|
200 | ll(k,j) = l_grid(k) |
---|
201 | ENDIF |
---|
202 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
203 | l(k,j) = MIN( l(k,j), kappa * & |
---|
204 | ( zu(k) - zw(nzb_s_inner(j,i)) ) & |
---|
205 | / phi_m ) |
---|
206 | ll(k,j) = MIN( ll(k,j), kappa * & |
---|
207 | ( zu(k) - zw(nzb_s_inner(j,i)) ) & |
---|
208 | / phi_m ) |
---|
209 | ENDIF |
---|
210 | |
---|
211 | ENDDO |
---|
212 | ENDDO |
---|
213 | |
---|
214 | ! |
---|
215 | !-- Calculate the tendency terms |
---|
216 | DO j = nys, nyn |
---|
217 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
218 | |
---|
219 | dissipation(k,j) = ( 0.19 + 0.74 * l(k,j) / ll(k,j) ) * & |
---|
220 | e(k,j,i) * SQRT( e(k,j,i) ) / l(k,j) |
---|
221 | |
---|
222 | tend(k,j,i) = tend(k,j,i) & |
---|
223 | + ( & |
---|
224 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
225 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
226 | ) * ddx2 & |
---|
227 | + ( & |
---|
228 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
229 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
230 | ) * ddy2 & |
---|
231 | + ( & |
---|
232 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
233 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
234 | ) * ddzw(k) & |
---|
235 | - dissipation(k,j) |
---|
236 | |
---|
237 | ENDDO |
---|
238 | ENDDO |
---|
239 | |
---|
240 | ! |
---|
241 | !-- Store dissipation if needed for calculating the sgs particle |
---|
242 | !-- velocities |
---|
243 | IF ( use_sgs_for_particles ) THEN |
---|
244 | DO j = nys, nyn |
---|
245 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
246 | diss(k,j,i) = dissipation(k,j) |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | ENDIF |
---|
250 | |
---|
251 | ENDDO |
---|
252 | |
---|
253 | ENDIF |
---|
254 | |
---|
255 | ! |
---|
256 | !-- Boundary condition for dissipation |
---|
257 | IF ( use_sgs_for_particles ) THEN |
---|
258 | DO i = nxl, nxr |
---|
259 | DO j = nys, nyn |
---|
260 | diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) |
---|
261 | ENDDO |
---|
262 | ENDDO |
---|
263 | ENDIF |
---|
264 | |
---|
265 | END SUBROUTINE diffusion_e |
---|
266 | |
---|
267 | |
---|
268 | !------------------------------------------------------------------------------! |
---|
269 | ! Call for grid point i,j |
---|
270 | !------------------------------------------------------------------------------! |
---|
271 | SUBROUTINE diffusion_e_ij( i, j, ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
272 | theta, rif, tend, zu, zw ) |
---|
273 | |
---|
274 | USE control_parameters |
---|
275 | USE grid_variables |
---|
276 | USE indices |
---|
277 | USE particle_attributes |
---|
278 | |
---|
279 | IMPLICIT NONE |
---|
280 | |
---|
281 | INTEGER :: i, j, k |
---|
282 | REAL :: dpt_dz, l_stable, phi_m |
---|
283 | REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt+1), & |
---|
284 | l_grid(1:nzt), zu(0:nzt+1), zw(0:nzt+1) |
---|
285 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend |
---|
286 | REAL, DIMENSION(:,:), POINTER :: rif |
---|
287 | REAL, DIMENSION(:,:,:), POINTER :: e, km, theta |
---|
288 | REAL, DIMENSION(nzb+1:nzt) :: dissipation, l, ll |
---|
289 | |
---|
290 | |
---|
291 | ! |
---|
292 | !-- First, calculate phi-function for eventually adjusting the mixing length |
---|
293 | !-- to the prandtl mixing length |
---|
294 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
295 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
296 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
297 | ELSE |
---|
298 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
299 | ENDIF |
---|
300 | ENDIF |
---|
301 | |
---|
302 | ! |
---|
303 | !-- Calculate the mixing length (for dissipation) |
---|
304 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
305 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
306 | IF ( dpt_dz > 0.0 ) THEN |
---|
307 | IF ( use_pt_reference ) THEN |
---|
308 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
309 | SQRT( g / pt_reference * dpt_dz ) + 1E-5 |
---|
310 | ELSE |
---|
311 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
312 | SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 |
---|
313 | ENDIF |
---|
314 | ELSE |
---|
315 | l_stable = l_grid(k) |
---|
316 | ENDIF |
---|
317 | ! |
---|
318 | !-- Adjustment of the mixing length |
---|
319 | IF ( wall_adjustment ) THEN |
---|
320 | l(k) = MIN( wall_adjustment_factor * & |
---|
321 | ( zu(k) - zw(nzb_s_inner(j,i)) ), l_grid(k), & |
---|
322 | l_stable ) |
---|
323 | ll(k) = MIN( wall_adjustment_factor * & |
---|
324 | ( zu(k) - zw(nzb_s_inner(j,i)) ), l_grid(k) ) |
---|
325 | ELSE |
---|
326 | l(k) = MIN( l_grid(k), l_stable ) |
---|
327 | ll(k) = l_grid(k) |
---|
328 | ENDIF |
---|
329 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
330 | l(k) = MIN( l(k), kappa * & |
---|
331 | ( zu(k) - zw(nzb_s_inner(j,i)) ) / phi_m ) |
---|
332 | ll(k) = MIN( ll(k), kappa * & |
---|
333 | ( zu(k) - zw(nzb_s_inner(j,i)) ) / phi_m ) |
---|
334 | ENDIF |
---|
335 | |
---|
336 | ! |
---|
337 | !-- Calculate the tendency term |
---|
338 | dissipation(k) = ( 0.19 + 0.74 * l(k) / ll(k) ) * e(k,j,i) * & |
---|
339 | SQRT( e(k,j,i) ) / l(k) |
---|
340 | |
---|
341 | tend(k,j,i) = tend(k,j,i) & |
---|
342 | + ( & |
---|
343 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
344 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
345 | ) * ddx2 & |
---|
346 | + ( & |
---|
347 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
348 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
349 | ) * ddy2 & |
---|
350 | + ( & |
---|
351 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
352 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
353 | ) * ddzw(k) & |
---|
354 | - dissipation(k) |
---|
355 | |
---|
356 | ENDDO |
---|
357 | |
---|
358 | ! |
---|
359 | !-- Store dissipation if needed for calculating the sgs particle velocities |
---|
360 | IF ( use_sgs_for_particles ) THEN |
---|
361 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
362 | diss(k,j,i) = dissipation(k) |
---|
363 | ENDDO |
---|
364 | ! |
---|
365 | !-- Boundary condition for dissipation |
---|
366 | diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) |
---|
367 | ENDIF |
---|
368 | |
---|
369 | END SUBROUTINE diffusion_e_ij |
---|
370 | |
---|
371 | END MODULE diffusion_e_mod |
---|