1 | MODULE diffusion_e_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! Bugfix: ddzw dimensioned 1:nzt"+1" |
---|
7 | ! Calculation extended for gridpoint nzt |
---|
8 | ! |
---|
9 | ! Former revisions: |
---|
10 | ! ----------------- |
---|
11 | ! $Id: diffusion_e.f90 20 2007-02-26 00:12:32Z raasch $ |
---|
12 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
13 | ! |
---|
14 | ! Revision 1.18 2006/08/04 14:29:43 raasch |
---|
15 | ! dissipation is stored in extra array diss if needed later on for calculating |
---|
16 | ! the sgs particle velocities |
---|
17 | ! |
---|
18 | ! Revision 1.1 1997/09/19 07:40:24 raasch |
---|
19 | ! Initial revision |
---|
20 | ! |
---|
21 | ! |
---|
22 | ! Description: |
---|
23 | ! ------------ |
---|
24 | ! Diffusion- and dissipation terms for the TKE |
---|
25 | !------------------------------------------------------------------------------! |
---|
26 | |
---|
27 | PRIVATE |
---|
28 | PUBLIC diffusion_e |
---|
29 | |
---|
30 | |
---|
31 | INTERFACE diffusion_e |
---|
32 | MODULE PROCEDURE diffusion_e |
---|
33 | MODULE PROCEDURE diffusion_e_ij |
---|
34 | END INTERFACE diffusion_e |
---|
35 | |
---|
36 | CONTAINS |
---|
37 | |
---|
38 | |
---|
39 | !------------------------------------------------------------------------------! |
---|
40 | ! Call for all grid points |
---|
41 | !------------------------------------------------------------------------------! |
---|
42 | SUBROUTINE diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, theta, & |
---|
43 | rif, tend, zu ) |
---|
44 | |
---|
45 | USE control_parameters |
---|
46 | USE grid_variables |
---|
47 | USE indices |
---|
48 | USE particle_attributes |
---|
49 | |
---|
50 | IMPLICIT NONE |
---|
51 | |
---|
52 | INTEGER :: i, j, k |
---|
53 | REAL :: dpt_dz, l_stable, phi_m |
---|
54 | REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt+1), & |
---|
55 | l_grid(1:nzt), zu(0:nzt+1) |
---|
56 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend |
---|
57 | REAL, DIMENSION(:,:), POINTER :: rif |
---|
58 | REAL, DIMENSION(:,:,:), POINTER :: e, km, theta |
---|
59 | REAL, DIMENSION(nzb+1:nzt,nys:nyn) :: dissipation, l, ll |
---|
60 | |
---|
61 | |
---|
62 | DO i = nxl, nxr |
---|
63 | DO j = nys, nyn |
---|
64 | ! |
---|
65 | !-- First, calculate phi-function for eventually adjusting the & |
---|
66 | !-- mixing length to the prandtl mixing length |
---|
67 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
68 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
69 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
70 | ELSE |
---|
71 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
72 | ENDIF |
---|
73 | ENDIF |
---|
74 | |
---|
75 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
76 | ! |
---|
77 | !-- Calculate the mixing length (for dissipation) |
---|
78 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
79 | IF ( dpt_dz > 0.0 ) THEN |
---|
80 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
81 | SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 |
---|
82 | ELSE |
---|
83 | l_stable = l_grid(k) |
---|
84 | ENDIF |
---|
85 | ! |
---|
86 | !-- Adjustment of the mixing length |
---|
87 | IF ( wall_adjustment ) THEN |
---|
88 | l(k,j) = MIN( wall_adjustment_factor * zu(k), l_grid(k), & |
---|
89 | l_stable ) |
---|
90 | ll(k,j) = MIN( wall_adjustment_factor * zu(k), l_grid(k) ) |
---|
91 | ELSE |
---|
92 | l(k,j) = MIN( l_grid(k), l_stable ) |
---|
93 | ll(k,j) = l_grid(k) |
---|
94 | ENDIF |
---|
95 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
96 | l(k,j) = MIN( l(k,j), kappa * zu(k) / phi_m ) |
---|
97 | ll(k,j) = MIN( ll(k,j), kappa * zu(k) / phi_m ) |
---|
98 | ENDIF |
---|
99 | |
---|
100 | ENDDO |
---|
101 | ENDDO |
---|
102 | ! |
---|
103 | !-- Calculate the tendency terms |
---|
104 | DO j = nys, nyn |
---|
105 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
106 | |
---|
107 | dissipation(k,j) = ( 0.19 + 0.74 * l(k,j) / ll(k,j) ) * & |
---|
108 | e(k,j,i) * SQRT( e(k,j,i) ) / l(k,j) |
---|
109 | |
---|
110 | tend(k,j,i) = tend(k,j,i) & |
---|
111 | + ( & |
---|
112 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
113 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
114 | ) * ddx2 & |
---|
115 | + ( & |
---|
116 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
117 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
118 | ) * ddy2 & |
---|
119 | + ( & |
---|
120 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
121 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
122 | ) * ddzw(k) & |
---|
123 | - dissipation(k,j) |
---|
124 | |
---|
125 | ENDDO |
---|
126 | ENDDO |
---|
127 | |
---|
128 | ! |
---|
129 | !-- Store dissipation if needed for calculating the sgs particle |
---|
130 | !-- velocities |
---|
131 | IF ( use_sgs_for_particles ) THEN |
---|
132 | DO j = nys, nyn |
---|
133 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
134 | diss(k,j,i) = dissipation(k,j) |
---|
135 | ENDDO |
---|
136 | ENDDO |
---|
137 | ENDIF |
---|
138 | |
---|
139 | ENDDO |
---|
140 | |
---|
141 | ! |
---|
142 | !-- Boundary condition for dissipation |
---|
143 | IF ( use_sgs_for_particles ) THEN |
---|
144 | DO i = nxl, nxr |
---|
145 | DO j = nys, nyn |
---|
146 | diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) |
---|
147 | ENDDO |
---|
148 | ENDDO |
---|
149 | ENDIF |
---|
150 | |
---|
151 | END SUBROUTINE diffusion_e |
---|
152 | |
---|
153 | |
---|
154 | !------------------------------------------------------------------------------! |
---|
155 | ! Call for grid point i,j |
---|
156 | !------------------------------------------------------------------------------! |
---|
157 | SUBROUTINE diffusion_e_ij( i, j, ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
158 | theta, rif, tend, zu ) |
---|
159 | |
---|
160 | USE control_parameters |
---|
161 | USE grid_variables |
---|
162 | USE indices |
---|
163 | USE particle_attributes |
---|
164 | |
---|
165 | IMPLICIT NONE |
---|
166 | |
---|
167 | INTEGER :: i, j, k |
---|
168 | REAL :: dpt_dz, l_stable, phi_m |
---|
169 | REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt+1), & |
---|
170 | l_grid(1:nzt), zu(0:nzt+1) |
---|
171 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend |
---|
172 | REAL, DIMENSION(:,:), POINTER :: rif |
---|
173 | REAL, DIMENSION(:,:,:), POINTER :: e, km, theta |
---|
174 | REAL, DIMENSION(nzb+1:nzt) :: dissipation, l, ll |
---|
175 | |
---|
176 | |
---|
177 | ! |
---|
178 | !-- First, calculate phi-function for eventually adjusting the mixing length |
---|
179 | !-- to the prandtl mixing length |
---|
180 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
181 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
182 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
183 | ELSE |
---|
184 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
185 | ENDIF |
---|
186 | ENDIF |
---|
187 | |
---|
188 | ! |
---|
189 | !-- Calculate the mixing length (for dissipation) |
---|
190 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
191 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
192 | IF ( dpt_dz > 0.0 ) THEN |
---|
193 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
194 | SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 |
---|
195 | ELSE |
---|
196 | l_stable = l_grid(k) |
---|
197 | ENDIF |
---|
198 | ! |
---|
199 | !-- Adjustment of the mixing length |
---|
200 | IF ( wall_adjustment ) THEN |
---|
201 | l(k) = MIN( wall_adjustment_factor * zu(k), l_grid(k), l_stable ) |
---|
202 | ll(k) = MIN( wall_adjustment_factor * zu(k), l_grid(k) ) |
---|
203 | ELSE |
---|
204 | l(k) = MIN( l_grid(k), l_stable ) |
---|
205 | ll(k) = l_grid(k) |
---|
206 | ENDIF |
---|
207 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
208 | l(k) = MIN( l(k), kappa * zu(k) / phi_m ) |
---|
209 | ll(k) = MIN( ll(k), kappa * zu(k) / phi_m ) |
---|
210 | ENDIF |
---|
211 | |
---|
212 | ! |
---|
213 | !-- Calculate the tendency term |
---|
214 | dissipation(k) = ( 0.19 + 0.74 * l(k) / ll(k) ) * e(k,j,i) * & |
---|
215 | SQRT( e(k,j,i) ) / l(k) |
---|
216 | |
---|
217 | tend(k,j,i) = tend(k,j,i) & |
---|
218 | + ( & |
---|
219 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
220 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
221 | ) * ddx2 & |
---|
222 | + ( & |
---|
223 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
224 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
225 | ) * ddy2 & |
---|
226 | + ( & |
---|
227 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
228 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
229 | ) * ddzw(k) & |
---|
230 | - dissipation(k) |
---|
231 | |
---|
232 | ENDDO |
---|
233 | |
---|
234 | ! |
---|
235 | !-- Store dissipation if needed for calculating the sgs particle velocities |
---|
236 | IF ( use_sgs_for_particles ) THEN |
---|
237 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
238 | diss(k,j,i) = dissipation(k) |
---|
239 | ENDDO |
---|
240 | ! |
---|
241 | !-- Boundary condition for dissipation |
---|
242 | diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) |
---|
243 | ENDIF |
---|
244 | |
---|
245 | END SUBROUTINE diffusion_e_ij |
---|
246 | |
---|
247 | END MODULE diffusion_e_mod |
---|