[1] | 1 | MODULE diffusion_e_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: diffusion_e.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
| 11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 12 | ! |
---|
[1] | 13 | ! Revision 1.18 2006/08/04 14:29:43 raasch |
---|
| 14 | ! dissipation is stored in extra array diss if needed later on for calculating |
---|
| 15 | ! the sgs particle velocities |
---|
| 16 | ! |
---|
| 17 | ! Revision 1.1 1997/09/19 07:40:24 raasch |
---|
| 18 | ! Initial revision |
---|
| 19 | ! |
---|
| 20 | ! |
---|
| 21 | ! Description: |
---|
| 22 | ! ------------ |
---|
| 23 | ! Diffusion- and dissipation terms for the TKE |
---|
| 24 | !------------------------------------------------------------------------------! |
---|
| 25 | |
---|
| 26 | PRIVATE |
---|
| 27 | PUBLIC diffusion_e |
---|
| 28 | |
---|
| 29 | |
---|
| 30 | INTERFACE diffusion_e |
---|
| 31 | MODULE PROCEDURE diffusion_e |
---|
| 32 | MODULE PROCEDURE diffusion_e_ij |
---|
| 33 | END INTERFACE diffusion_e |
---|
| 34 | |
---|
| 35 | CONTAINS |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | !------------------------------------------------------------------------------! |
---|
| 39 | ! Call for all grid points |
---|
| 40 | !------------------------------------------------------------------------------! |
---|
| 41 | SUBROUTINE diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, theta, & |
---|
| 42 | rif, tend, zu ) |
---|
| 43 | |
---|
| 44 | USE control_parameters |
---|
| 45 | USE grid_variables |
---|
| 46 | USE indices |
---|
| 47 | USE particle_attributes |
---|
| 48 | |
---|
| 49 | IMPLICIT NONE |
---|
| 50 | |
---|
| 51 | INTEGER :: i, j, k |
---|
| 52 | REAL :: dpt_dz, l_stable, phi_m |
---|
| 53 | REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt), & |
---|
| 54 | l_grid(1:nzt), zu(0:nzt+1) |
---|
| 55 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend |
---|
| 56 | REAL, DIMENSION(:,:), POINTER :: rif |
---|
| 57 | REAL, DIMENSION(:,:,:), POINTER :: e, km, theta |
---|
| 58 | REAL, DIMENSION(nzb+1:nzt-1,nys:nyn) :: dissipation, l, ll |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | DO i = nxl, nxr |
---|
| 62 | DO j = nys, nyn |
---|
| 63 | ! |
---|
| 64 | !-- First, calculate phi-function for eventually adjusting the & |
---|
| 65 | !-- mixing length to the prandtl mixing length |
---|
| 66 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
| 67 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 68 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
| 69 | ELSE |
---|
| 70 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
| 71 | ENDIF |
---|
| 72 | ENDIF |
---|
| 73 | |
---|
| 74 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 75 | ! |
---|
| 76 | !-- Calculate the mixing length (for dissipation) |
---|
| 77 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
| 78 | IF ( dpt_dz > 0.0 ) THEN |
---|
| 79 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
| 80 | SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 |
---|
| 81 | ELSE |
---|
| 82 | l_stable = l_grid(k) |
---|
| 83 | ENDIF |
---|
| 84 | ! |
---|
| 85 | !-- Adjustment of the mixing length |
---|
| 86 | IF ( wall_adjustment ) THEN |
---|
| 87 | l(k,j) = MIN( wall_adjustment_factor * zu(k), l_grid(k), & |
---|
| 88 | l_stable ) |
---|
| 89 | ll(k,j) = MIN( wall_adjustment_factor * zu(k), l_grid(k) ) |
---|
| 90 | ELSE |
---|
| 91 | l(k,j) = MIN( l_grid(k), l_stable ) |
---|
| 92 | ll(k,j) = l_grid(k) |
---|
| 93 | ENDIF |
---|
| 94 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
| 95 | l(k,j) = MIN( l(k,j), kappa * zu(k) / phi_m ) |
---|
| 96 | ll(k,j) = MIN( ll(k,j), kappa * zu(k) / phi_m ) |
---|
| 97 | ENDIF |
---|
| 98 | |
---|
| 99 | ENDDO |
---|
| 100 | ENDDO |
---|
| 101 | ! |
---|
| 102 | !-- Calculate the tendency terms |
---|
| 103 | DO j = nys, nyn |
---|
| 104 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 105 | |
---|
| 106 | dissipation(k,j) = ( 0.19 + 0.74 * l(k,j) / ll(k,j) ) * & |
---|
| 107 | e(k,j,i) * SQRT( e(k,j,i) ) / l(k,j) |
---|
| 108 | |
---|
| 109 | tend(k,j,i) = tend(k,j,i) & |
---|
| 110 | + ( & |
---|
| 111 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
| 112 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
| 113 | ) * ddx2 & |
---|
| 114 | + ( & |
---|
| 115 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
| 116 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
| 117 | ) * ddy2 & |
---|
| 118 | + ( & |
---|
| 119 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
| 120 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
| 121 | ) * ddzw(k) & |
---|
| 122 | - dissipation(k,j) |
---|
| 123 | |
---|
| 124 | ENDDO |
---|
| 125 | ENDDO |
---|
| 126 | |
---|
| 127 | ! |
---|
| 128 | !-- Store dissipation if needed for calculating the sgs particle |
---|
| 129 | !-- velocities |
---|
| 130 | IF ( use_sgs_for_particles ) THEN |
---|
| 131 | DO j = nys, nyn |
---|
| 132 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 133 | diss(k,j,i) = dissipation(k,j) |
---|
| 134 | ENDDO |
---|
| 135 | ENDDO |
---|
| 136 | ENDIF |
---|
| 137 | |
---|
| 138 | ENDDO |
---|
| 139 | |
---|
| 140 | ! |
---|
| 141 | !-- Boundary condition for dissipation |
---|
| 142 | IF ( use_sgs_for_particles ) THEN |
---|
| 143 | DO i = nxl, nxr |
---|
| 144 | DO j = nys, nyn |
---|
| 145 | diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) |
---|
| 146 | ENDDO |
---|
| 147 | ENDDO |
---|
| 148 | ENDIF |
---|
| 149 | |
---|
| 150 | END SUBROUTINE diffusion_e |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | !------------------------------------------------------------------------------! |
---|
| 154 | ! Call for grid point i,j |
---|
| 155 | !------------------------------------------------------------------------------! |
---|
| 156 | SUBROUTINE diffusion_e_ij( i, j, ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 157 | theta, rif, tend, zu ) |
---|
| 158 | |
---|
| 159 | USE control_parameters |
---|
| 160 | USE grid_variables |
---|
| 161 | USE indices |
---|
| 162 | USE particle_attributes |
---|
| 163 | |
---|
| 164 | IMPLICIT NONE |
---|
| 165 | |
---|
| 166 | INTEGER :: i, j, k |
---|
| 167 | REAL :: dpt_dz, l_stable, phi_m |
---|
| 168 | REAL :: ddzu(1:nzt+1), dd2zu(1:nzt), ddzw(1:nzt), & |
---|
| 169 | l_grid(1:nzt), zu(0:nzt+1) |
---|
| 170 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: diss, tend |
---|
| 171 | REAL, DIMENSION(:,:), POINTER :: rif |
---|
| 172 | REAL, DIMENSION(:,:,:), POINTER :: e, km, theta |
---|
| 173 | REAL, DIMENSION(nzb+1:nzt-1) :: dissipation, l, ll |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | ! |
---|
| 177 | !-- First, calculate phi-function for eventually adjusting the mixing length |
---|
| 178 | !-- to the prandtl mixing length |
---|
| 179 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
| 180 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 181 | phi_m = 1.0 + 5.0 * rif(j,i) |
---|
| 182 | ELSE |
---|
| 183 | phi_m = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
| 184 | ENDIF |
---|
| 185 | ENDIF |
---|
| 186 | |
---|
| 187 | ! |
---|
| 188 | !-- Calculate the mixing length (for dissipation) |
---|
| 189 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 190 | dpt_dz = ( theta(k+1,j,i) - theta(k-1,j,i) ) * dd2zu(k) |
---|
| 191 | IF ( dpt_dz > 0.0 ) THEN |
---|
| 192 | l_stable = 0.76 * SQRT( e(k,j,i) ) / & |
---|
| 193 | SQRT( g / theta(k,j,i) * dpt_dz ) + 1E-5 |
---|
| 194 | ELSE |
---|
| 195 | l_stable = l_grid(k) |
---|
| 196 | ENDIF |
---|
| 197 | ! |
---|
| 198 | !-- Adjustment of the mixing length |
---|
| 199 | IF ( wall_adjustment ) THEN |
---|
| 200 | l(k) = MIN( wall_adjustment_factor * zu(k), l_grid(k), l_stable ) |
---|
| 201 | ll(k) = MIN( wall_adjustment_factor * zu(k), l_grid(k) ) |
---|
| 202 | ELSE |
---|
| 203 | l(k) = MIN( l_grid(k), l_stable ) |
---|
| 204 | ll(k) = l_grid(k) |
---|
| 205 | ENDIF |
---|
| 206 | IF ( adjust_mixing_length .AND. prandtl_layer ) THEN |
---|
| 207 | l(k) = MIN( l(k), kappa * zu(k) / phi_m ) |
---|
| 208 | ll(k) = MIN( ll(k), kappa * zu(k) / phi_m ) |
---|
| 209 | ENDIF |
---|
| 210 | |
---|
| 211 | ! |
---|
| 212 | !-- Calculate the tendency term |
---|
| 213 | dissipation(k) = ( 0.19 + 0.74 * l(k) / ll(k) ) * e(k,j,i) * & |
---|
| 214 | SQRT( e(k,j,i) ) / l(k) |
---|
| 215 | |
---|
| 216 | tend(k,j,i) = tend(k,j,i) & |
---|
| 217 | + ( & |
---|
| 218 | ( km(k,j,i)+km(k,j,i+1) ) * ( e(k,j,i+1)-e(k,j,i) ) & |
---|
| 219 | - ( km(k,j,i)+km(k,j,i-1) ) * ( e(k,j,i)-e(k,j,i-1) ) & |
---|
| 220 | ) * ddx2 & |
---|
| 221 | + ( & |
---|
| 222 | ( km(k,j,i)+km(k,j+1,i) ) * ( e(k,j+1,i)-e(k,j,i) ) & |
---|
| 223 | - ( km(k,j,i)+km(k,j-1,i) ) * ( e(k,j,i)-e(k,j-1,i) ) & |
---|
| 224 | ) * ddy2 & |
---|
| 225 | + ( & |
---|
| 226 | ( km(k,j,i)+km(k+1,j,i) ) * ( e(k+1,j,i)-e(k,j,i) ) * ddzu(k+1) & |
---|
| 227 | - ( km(k,j,i)+km(k-1,j,i) ) * ( e(k,j,i)-e(k-1,j,i) ) * ddzu(k) & |
---|
| 228 | ) * ddzw(k) & |
---|
| 229 | - dissipation(k) |
---|
| 230 | |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
| 233 | ! |
---|
| 234 | !-- Store dissipation if needed for calculating the sgs particle velocities |
---|
| 235 | IF ( use_sgs_for_particles ) THEN |
---|
| 236 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 237 | diss(k,j,i) = dissipation(k) |
---|
| 238 | ENDDO |
---|
| 239 | ! |
---|
| 240 | !-- Boundary condition for dissipation |
---|
| 241 | diss(nzb_s_inner(j,i),j,i) = diss(nzb_s_inner(j,i)+1,j,i) |
---|
| 242 | ENDIF |
---|
| 243 | |
---|
| 244 | END SUBROUTINE diffusion_e_ij |
---|
| 245 | |
---|
| 246 | END MODULE diffusion_e_mod |
---|