1 | !> @file data_output_2d.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: data_output_2d.f90 4514 2020-04-30 16:29:59Z raasch $ |
---|
27 | ! Enable output of qsurf and ssurf |
---|
28 | ! |
---|
29 | ! 4500 2020-04-17 10:12:45Z suehring |
---|
30 | ! Unify output conversion of sensible and latent heat flux |
---|
31 | ! |
---|
32 | ! 4457 2020-03-11 14:20:43Z raasch |
---|
33 | ! use statement for exchange horiz added |
---|
34 | ! |
---|
35 | ! 4444 2020-03-05 15:59:50Z raasch |
---|
36 | ! bugfix: cpp-directives for serial mode added |
---|
37 | ! |
---|
38 | ! 4442 2020-03-04 19:21:13Z suehring |
---|
39 | ! Change order of dimension in surface array %frac to allow for better |
---|
40 | ! vectorization. |
---|
41 | ! |
---|
42 | ! 4441 2020-03-04 19:20:35Z suehring |
---|
43 | ! Introduction of wall_flags_total_0, which currently sets bits based on static |
---|
44 | ! topography information used in wall_flags_static_0 |
---|
45 | ! |
---|
46 | ! 4331 2019-12-10 18:25:02Z suehring |
---|
47 | ! Move 2-m potential temperature output to diagnostic_output_quantities |
---|
48 | ! |
---|
49 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
50 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
51 | ! |
---|
52 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
53 | ! Corrected "Former revisions" section |
---|
54 | ! |
---|
55 | ! 4048 2019-06-21 21:00:21Z knoop |
---|
56 | ! Removed turbulence_closure_mod dependency |
---|
57 | ! |
---|
58 | ! 4039 2019-06-18 10:32:41Z suehring |
---|
59 | ! modularize diagnostic output |
---|
60 | ! |
---|
61 | ! 3994 2019-05-22 18:08:09Z suehring |
---|
62 | ! output of turbulence intensity added |
---|
63 | ! |
---|
64 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
65 | ! Introduce alternative switch for debug output during timestepping |
---|
66 | ! |
---|
67 | ! 3943 2019-05-02 09:50:41Z maronga |
---|
68 | ! Added output of qsws for green roofs. |
---|
69 | ! |
---|
70 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
71 | ! Changes related to global restructuring of location messages and introduction |
---|
72 | ! of additional debug messages |
---|
73 | ! |
---|
74 | ! 3766 2019-02-26 16:23:41Z raasch |
---|
75 | ! unused variables removed |
---|
76 | ! |
---|
77 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
78 | ! Bugfix: use time_since_reference_point instead of simulated_time (relevant |
---|
79 | ! when using wall/soil spinup) |
---|
80 | ! |
---|
81 | ! Revision 1.1 1997/08/11 06:24:09 raasch |
---|
82 | ! Initial revision |
---|
83 | ! |
---|
84 | ! |
---|
85 | ! Description: |
---|
86 | ! ------------ |
---|
87 | !> Data output of cross-sections in netCDF format or binary format |
---|
88 | !> to be later converted to NetCDF by helper routine combine_plot_fields. |
---|
89 | !> Attention: The position of the sectional planes is still not always computed |
---|
90 | !> --------- correctly. (zu is used always)! |
---|
91 | !------------------------------------------------------------------------------! |
---|
92 | SUBROUTINE data_output_2d( mode, av ) |
---|
93 | |
---|
94 | |
---|
95 | USE arrays_3d, & |
---|
96 | ONLY: dzw, d_exner, e, heatflux_output_conversion, p, pt, q, ql, ql_c, ql_v, s, tend, u, & |
---|
97 | v, vpt, w, waterflux_output_conversion, zu, zw |
---|
98 | |
---|
99 | USE averaging |
---|
100 | |
---|
101 | USE basic_constants_and_equations_mod, & |
---|
102 | ONLY: lv_d_cp |
---|
103 | |
---|
104 | USE bulk_cloud_model_mod, & |
---|
105 | ONLY: bulk_cloud_model |
---|
106 | |
---|
107 | USE control_parameters, & |
---|
108 | ONLY: data_output_2d_on_each_pe, & |
---|
109 | data_output_xy, data_output_xz, data_output_yz, & |
---|
110 | debug_output_timestep, & |
---|
111 | do2d, & |
---|
112 | do2d_xy_last_time, do2d_xy_time_count, & |
---|
113 | do2d_xz_last_time, do2d_xz_time_count, & |
---|
114 | do2d_yz_last_time, do2d_yz_time_count, & |
---|
115 | ibc_uv_b, io_blocks, io_group, message_string, & |
---|
116 | ntdim_2d_xy, ntdim_2d_xz, ntdim_2d_yz, & |
---|
117 | psolver, section, & |
---|
118 | time_since_reference_point |
---|
119 | |
---|
120 | USE cpulog, & |
---|
121 | ONLY: cpu_log, log_point |
---|
122 | |
---|
123 | USE exchange_horiz_mod, & |
---|
124 | ONLY: exchange_horiz |
---|
125 | |
---|
126 | USE indices, & |
---|
127 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
128 | nzb, nzt, & |
---|
129 | topo_top_ind, & |
---|
130 | wall_flags_total_0 |
---|
131 | |
---|
132 | USE kinds |
---|
133 | |
---|
134 | USE land_surface_model_mod, & |
---|
135 | ONLY: zs |
---|
136 | |
---|
137 | USE module_interface, & |
---|
138 | ONLY: module_interface_data_output_2d |
---|
139 | |
---|
140 | #if defined( __netcdf ) |
---|
141 | USE NETCDF |
---|
142 | #endif |
---|
143 | |
---|
144 | USE netcdf_interface, & |
---|
145 | ONLY: fill_value, id_set_xy, id_set_xz, id_set_yz, id_var_do2d, & |
---|
146 | id_var_time_xy, id_var_time_xz, id_var_time_yz, nc_stat, & |
---|
147 | netcdf_data_format, netcdf_handle_error |
---|
148 | |
---|
149 | USE particle_attributes, & |
---|
150 | ONLY: grid_particles, number_of_particles, particle_advection_start, & |
---|
151 | particles, prt_count |
---|
152 | |
---|
153 | USE pegrid |
---|
154 | |
---|
155 | USE surface_mod, & |
---|
156 | ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_def_h, & |
---|
157 | surf_lsm_h, surf_usm_h |
---|
158 | |
---|
159 | |
---|
160 | IMPLICIT NONE |
---|
161 | |
---|
162 | CHARACTER (LEN=2) :: do2d_mode !< output mode of variable ('xy', 'xz', 'yz') |
---|
163 | CHARACTER (LEN=2) :: mode !< mode with which the routine is called ('xy', 'xz', 'yz') |
---|
164 | CHARACTER (LEN=4) :: grid !< string defining the vertical grid |
---|
165 | |
---|
166 | INTEGER(iwp) :: av !< flag for (non-)average output |
---|
167 | INTEGER(iwp) :: ngp !< number of grid points of an output slice |
---|
168 | INTEGER(iwp) :: file_id !< id of output files |
---|
169 | INTEGER(iwp) :: flag_nr !< number of masking flag |
---|
170 | INTEGER(iwp) :: i !< loop index |
---|
171 | INTEGER(iwp) :: is !< slice index |
---|
172 | INTEGER(iwp) :: ivar !< variable index |
---|
173 | INTEGER(iwp) :: j !< loop index |
---|
174 | INTEGER(iwp) :: k !< loop index |
---|
175 | INTEGER(iwp) :: l !< loop index |
---|
176 | INTEGER(iwp) :: layer_xy !< vertical index of a xy slice in array 'local_pf' |
---|
177 | INTEGER(iwp) :: m !< loop index |
---|
178 | INTEGER(iwp) :: n !< loop index |
---|
179 | INTEGER(iwp) :: nis !< number of vertical slices to be written via parallel NetCDF output |
---|
180 | INTEGER(iwp) :: ns !< number of output slices |
---|
181 | INTEGER(iwp) :: nzb_do !< lower limit of the data field (usually nzb) |
---|
182 | INTEGER(iwp) :: nzt_do !< upper limit of the data field (usually nzt+1) |
---|
183 | INTEGER(iwp) :: s_ind !< index of slice types (xy=1, xz=2, yz=3) |
---|
184 | #if defined( __parallel ) |
---|
185 | INTEGER(iwp) :: iis !< vertical index of a xy slice in array 'local_2d_sections' |
---|
186 | INTEGER(iwp) :: sender !< PE id of sending PE |
---|
187 | INTEGER(iwp) :: ind(4) !< index limits (lower/upper bounds) of array 'local_2d' |
---|
188 | #endif |
---|
189 | |
---|
190 | LOGICAL :: found !< true if output variable was found |
---|
191 | LOGICAL :: resorted !< true if variable is resorted |
---|
192 | LOGICAL :: two_d !< true if variable is only two dimensional |
---|
193 | |
---|
194 | REAL(wp) :: mean_r !< mean particle radius |
---|
195 | REAL(wp) :: s_r2 !< sum( particle-radius**2 ) |
---|
196 | REAL(wp) :: s_r3 !< sum( particle-radius**3 ) |
---|
197 | |
---|
198 | REAL(wp), DIMENSION(:), ALLOCATABLE :: level_z !< z levels for output array |
---|
199 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d !< local 2-dimensional array containing output values |
---|
200 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d_l !< local 2-dimensional array containing output values |
---|
201 | |
---|
202 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_pf !< output array |
---|
203 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections !< local array containing values at all slices |
---|
204 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections_l !< local array containing values at all slices |
---|
205 | |
---|
206 | #if defined( __parallel ) |
---|
207 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: total_2d !< same as local_2d |
---|
208 | #endif |
---|
209 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to array which shall be output |
---|
210 | |
---|
211 | |
---|
212 | IF ( debug_output_timestep ) CALL debug_message( 'data_output_2d', 'start' ) |
---|
213 | ! |
---|
214 | !-- Immediate return, if no output is requested (no respective sections |
---|
215 | !-- found in parameter data_output) |
---|
216 | IF ( mode == 'xy' .AND. .NOT. data_output_xy(av) ) RETURN |
---|
217 | IF ( mode == 'xz' .AND. .NOT. data_output_xz(av) ) RETURN |
---|
218 | IF ( mode == 'yz' .AND. .NOT. data_output_yz(av) ) RETURN |
---|
219 | |
---|
220 | CALL cpu_log (log_point(3),'data_output_2d','start') |
---|
221 | |
---|
222 | two_d = .FALSE. ! local variable to distinguish between output of pure 2D |
---|
223 | ! arrays and cross-sections of 3D arrays. |
---|
224 | |
---|
225 | ! |
---|
226 | !-- Depending on the orientation of the cross-section, the respective output |
---|
227 | !-- files have to be opened. |
---|
228 | SELECT CASE ( mode ) |
---|
229 | |
---|
230 | CASE ( 'xy' ) |
---|
231 | s_ind = 1 |
---|
232 | ALLOCATE( level_z(nzb:nzt+1), local_2d(nxl:nxr,nys:nyn) ) |
---|
233 | |
---|
234 | IF ( netcdf_data_format > 4 ) THEN |
---|
235 | ns = 1 |
---|
236 | DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) |
---|
237 | ns = ns + 1 |
---|
238 | ENDDO |
---|
239 | ns = ns - 1 |
---|
240 | ALLOCATE( local_2d_sections(nxl:nxr,nys:nyn,1:ns) ) |
---|
241 | local_2d_sections = 0.0_wp |
---|
242 | ENDIF |
---|
243 | |
---|
244 | ! |
---|
245 | !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only |
---|
246 | IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN |
---|
247 | CALL check_open( 101+av*10 ) |
---|
248 | ENDIF |
---|
249 | IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN |
---|
250 | CALL check_open( 21 ) |
---|
251 | ELSE |
---|
252 | IF ( myid == 0 ) THEN |
---|
253 | #if defined( __parallel ) |
---|
254 | ALLOCATE( total_2d(0:nx,0:ny) ) |
---|
255 | #endif |
---|
256 | ENDIF |
---|
257 | ENDIF |
---|
258 | |
---|
259 | CASE ( 'xz' ) |
---|
260 | s_ind = 2 |
---|
261 | ALLOCATE( local_2d(nxl:nxr,nzb:nzt+1) ) |
---|
262 | |
---|
263 | IF ( netcdf_data_format > 4 ) THEN |
---|
264 | ns = 1 |
---|
265 | DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) |
---|
266 | ns = ns + 1 |
---|
267 | ENDDO |
---|
268 | ns = ns - 1 |
---|
269 | ALLOCATE( local_2d_sections(nxl:nxr,1:ns,nzb:nzt+1) ) |
---|
270 | ALLOCATE( local_2d_sections_l(nxl:nxr,1:ns,nzb:nzt+1) ) |
---|
271 | local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp |
---|
272 | ENDIF |
---|
273 | |
---|
274 | ! |
---|
275 | !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only |
---|
276 | IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN |
---|
277 | CALL check_open( 102+av*10 ) |
---|
278 | ENDIF |
---|
279 | |
---|
280 | IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN |
---|
281 | CALL check_open( 22 ) |
---|
282 | ELSE |
---|
283 | IF ( myid == 0 ) THEN |
---|
284 | #if defined( __parallel ) |
---|
285 | ALLOCATE( total_2d(0:nx,nzb:nzt+1) ) |
---|
286 | #endif |
---|
287 | ENDIF |
---|
288 | ENDIF |
---|
289 | |
---|
290 | CASE ( 'yz' ) |
---|
291 | s_ind = 3 |
---|
292 | ALLOCATE( local_2d(nys:nyn,nzb:nzt+1) ) |
---|
293 | |
---|
294 | IF ( netcdf_data_format > 4 ) THEN |
---|
295 | ns = 1 |
---|
296 | DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) |
---|
297 | ns = ns + 1 |
---|
298 | ENDDO |
---|
299 | ns = ns - 1 |
---|
300 | ALLOCATE( local_2d_sections(1:ns,nys:nyn,nzb:nzt+1) ) |
---|
301 | ALLOCATE( local_2d_sections_l(1:ns,nys:nyn,nzb:nzt+1) ) |
---|
302 | local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp |
---|
303 | ENDIF |
---|
304 | |
---|
305 | ! |
---|
306 | !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only |
---|
307 | IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN |
---|
308 | CALL check_open( 103+av*10 ) |
---|
309 | ENDIF |
---|
310 | |
---|
311 | IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN |
---|
312 | CALL check_open( 23 ) |
---|
313 | ELSE |
---|
314 | IF ( myid == 0 ) THEN |
---|
315 | #if defined( __parallel ) |
---|
316 | ALLOCATE( total_2d(0:ny,nzb:nzt+1) ) |
---|
317 | #endif |
---|
318 | ENDIF |
---|
319 | ENDIF |
---|
320 | |
---|
321 | CASE DEFAULT |
---|
322 | message_string = 'unknown cross-section: ' // TRIM( mode ) |
---|
323 | CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) |
---|
324 | |
---|
325 | END SELECT |
---|
326 | |
---|
327 | ! |
---|
328 | !-- For parallel netcdf output the time axis must be limited. Return, if this |
---|
329 | !-- limit is exceeded. This could be the case, if the simulated time exceeds |
---|
330 | !-- the given end time by the length of the given output interval. |
---|
331 | IF ( netcdf_data_format > 4 ) THEN |
---|
332 | IF ( mode == 'xy' .AND. do2d_xy_time_count(av) + 1 > & |
---|
333 | ntdim_2d_xy(av) ) THEN |
---|
334 | WRITE ( message_string, * ) 'Output of xy cross-sections is not ', & |
---|
335 | 'given at t=', time_since_reference_point, 's because the', & |
---|
336 | ' maximum number of output time levels is exceeded.' |
---|
337 | CALL message( 'data_output_2d', 'PA0384', 0, 1, 0, 6, 0 ) |
---|
338 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
339 | RETURN |
---|
340 | ENDIF |
---|
341 | IF ( mode == 'xz' .AND. do2d_xz_time_count(av) + 1 > & |
---|
342 | ntdim_2d_xz(av) ) THEN |
---|
343 | WRITE ( message_string, * ) 'Output of xz cross-sections is not ', & |
---|
344 | 'given at t=', time_since_reference_point, 's because the', & |
---|
345 | ' maximum number of output time levels is exceeded.' |
---|
346 | CALL message( 'data_output_2d', 'PA0385', 0, 1, 0, 6, 0 ) |
---|
347 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
348 | RETURN |
---|
349 | ENDIF |
---|
350 | IF ( mode == 'yz' .AND. do2d_yz_time_count(av) + 1 > & |
---|
351 | ntdim_2d_yz(av) ) THEN |
---|
352 | WRITE ( message_string, * ) 'Output of yz cross-sections is not ', & |
---|
353 | 'given at t=', time_since_reference_point, 's because the', & |
---|
354 | ' maximum number of output time levels is exceeded.' |
---|
355 | CALL message( 'data_output_2d', 'PA0386', 0, 1, 0, 6, 0 ) |
---|
356 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
357 | RETURN |
---|
358 | ENDIF |
---|
359 | ENDIF |
---|
360 | |
---|
361 | ! |
---|
362 | !-- Allocate a temporary array for resorting (kji -> ijk). |
---|
363 | ALLOCATE( local_pf(nxl:nxr,nys:nyn,nzb:nzt+1) ) |
---|
364 | local_pf = 0.0 |
---|
365 | |
---|
366 | ! |
---|
367 | !-- Loop of all variables to be written. |
---|
368 | !-- Output dimensions chosen |
---|
369 | ivar = 1 |
---|
370 | l = MAX( 2, LEN_TRIM( do2d(av,ivar) ) ) |
---|
371 | do2d_mode = do2d(av,ivar)(l-1:l) |
---|
372 | |
---|
373 | DO WHILE ( do2d(av,ivar)(1:1) /= ' ' ) |
---|
374 | |
---|
375 | IF ( do2d_mode == mode ) THEN |
---|
376 | ! |
---|
377 | !-- Set flag to steer output of radiation, land-surface, or user-defined |
---|
378 | !-- quantities |
---|
379 | found = .FALSE. |
---|
380 | |
---|
381 | nzb_do = nzb |
---|
382 | nzt_do = nzt+1 |
---|
383 | ! |
---|
384 | !-- Before each output, set array local_pf to fill value |
---|
385 | local_pf = fill_value |
---|
386 | ! |
---|
387 | !-- Set masking flag for topography for not resorted arrays |
---|
388 | flag_nr = 0 |
---|
389 | |
---|
390 | ! |
---|
391 | !-- Store the array chosen on the temporary array. |
---|
392 | resorted = .FALSE. |
---|
393 | SELECT CASE ( TRIM( do2d(av,ivar) ) ) |
---|
394 | CASE ( 'e_xy', 'e_xz', 'e_yz' ) |
---|
395 | IF ( av == 0 ) THEN |
---|
396 | to_be_resorted => e |
---|
397 | ELSE |
---|
398 | IF ( .NOT. ALLOCATED( e_av ) ) THEN |
---|
399 | ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
400 | e_av = REAL( fill_value, KIND = wp ) |
---|
401 | ENDIF |
---|
402 | to_be_resorted => e_av |
---|
403 | ENDIF |
---|
404 | IF ( mode == 'xy' ) level_z = zu |
---|
405 | |
---|
406 | CASE ( 'thetal_xy', 'thetal_xz', 'thetal_yz' ) |
---|
407 | IF ( av == 0 ) THEN |
---|
408 | to_be_resorted => pt |
---|
409 | ELSE |
---|
410 | IF ( .NOT. ALLOCATED( lpt_av ) ) THEN |
---|
411 | ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
412 | lpt_av = REAL( fill_value, KIND = wp ) |
---|
413 | ENDIF |
---|
414 | to_be_resorted => lpt_av |
---|
415 | ENDIF |
---|
416 | IF ( mode == 'xy' ) level_z = zu |
---|
417 | |
---|
418 | CASE ( 'lwp*_xy' ) ! 2d-array |
---|
419 | IF ( av == 0 ) THEN |
---|
420 | DO i = nxl, nxr |
---|
421 | DO j = nys, nyn |
---|
422 | local_pf(i,j,nzb+1) = SUM( ql(nzb:nzt,j,i) * & |
---|
423 | dzw(1:nzt+1) ) |
---|
424 | ENDDO |
---|
425 | ENDDO |
---|
426 | ELSE |
---|
427 | IF ( .NOT. ALLOCATED( lwp_av ) ) THEN |
---|
428 | ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) |
---|
429 | lwp_av = REAL( fill_value, KIND = wp ) |
---|
430 | ENDIF |
---|
431 | DO i = nxl, nxr |
---|
432 | DO j = nys, nyn |
---|
433 | local_pf(i,j,nzb+1) = lwp_av(j,i) |
---|
434 | ENDDO |
---|
435 | ENDDO |
---|
436 | ENDIF |
---|
437 | resorted = .TRUE. |
---|
438 | two_d = .TRUE. |
---|
439 | level_z(nzb+1) = zu(nzb+1) |
---|
440 | |
---|
441 | CASE ( 'ghf*_xy' ) ! 2d-array |
---|
442 | IF ( av == 0 ) THEN |
---|
443 | DO m = 1, surf_lsm_h%ns |
---|
444 | i = surf_lsm_h%i(m) |
---|
445 | j = surf_lsm_h%j(m) |
---|
446 | local_pf(i,j,nzb+1) = surf_lsm_h%ghf(m) |
---|
447 | ENDDO |
---|
448 | DO m = 1, surf_usm_h%ns |
---|
449 | i = surf_usm_h%i(m) |
---|
450 | j = surf_usm_h%j(m) |
---|
451 | local_pf(i,j,nzb+1) = surf_usm_h%frac(m,ind_veg_wall) * & |
---|
452 | surf_usm_h%wghf_eb(m) + & |
---|
453 | surf_usm_h%frac(m,ind_pav_green) * & |
---|
454 | surf_usm_h%wghf_eb_green(m) + & |
---|
455 | surf_usm_h%frac(m,ind_wat_win) * & |
---|
456 | surf_usm_h%wghf_eb_window(m) |
---|
457 | ENDDO |
---|
458 | ELSE |
---|
459 | IF ( .NOT. ALLOCATED( ghf_av ) ) THEN |
---|
460 | ALLOCATE( ghf_av(nysg:nyng,nxlg:nxrg) ) |
---|
461 | ghf_av = REAL( fill_value, KIND = wp ) |
---|
462 | ENDIF |
---|
463 | DO i = nxl, nxr |
---|
464 | DO j = nys, nyn |
---|
465 | local_pf(i,j,nzb+1) = ghf_av(j,i) |
---|
466 | ENDDO |
---|
467 | ENDDO |
---|
468 | ENDIF |
---|
469 | |
---|
470 | resorted = .TRUE. |
---|
471 | two_d = .TRUE. |
---|
472 | level_z(nzb+1) = zu(nzb+1) |
---|
473 | |
---|
474 | CASE ( 'ol*_xy' ) ! 2d-array |
---|
475 | IF ( av == 0 ) THEN |
---|
476 | DO m = 1, surf_def_h(0)%ns |
---|
477 | i = surf_def_h(0)%i(m) |
---|
478 | j = surf_def_h(0)%j(m) |
---|
479 | local_pf(i,j,nzb+1) = surf_def_h(0)%ol(m) |
---|
480 | ENDDO |
---|
481 | DO m = 1, surf_lsm_h%ns |
---|
482 | i = surf_lsm_h%i(m) |
---|
483 | j = surf_lsm_h%j(m) |
---|
484 | local_pf(i,j,nzb+1) = surf_lsm_h%ol(m) |
---|
485 | ENDDO |
---|
486 | DO m = 1, surf_usm_h%ns |
---|
487 | i = surf_usm_h%i(m) |
---|
488 | j = surf_usm_h%j(m) |
---|
489 | local_pf(i,j,nzb+1) = surf_usm_h%ol(m) |
---|
490 | ENDDO |
---|
491 | ELSE |
---|
492 | IF ( .NOT. ALLOCATED( ol_av ) ) THEN |
---|
493 | ALLOCATE( ol_av(nysg:nyng,nxlg:nxrg) ) |
---|
494 | ol_av = REAL( fill_value, KIND = wp ) |
---|
495 | ENDIF |
---|
496 | DO i = nxl, nxr |
---|
497 | DO j = nys, nyn |
---|
498 | local_pf(i,j,nzb+1) = ol_av(j,i) |
---|
499 | ENDDO |
---|
500 | ENDDO |
---|
501 | ENDIF |
---|
502 | resorted = .TRUE. |
---|
503 | two_d = .TRUE. |
---|
504 | level_z(nzb+1) = zu(nzb+1) |
---|
505 | |
---|
506 | CASE ( 'p_xy', 'p_xz', 'p_yz' ) |
---|
507 | IF ( av == 0 ) THEN |
---|
508 | IF ( psolver /= 'sor' ) CALL exchange_horiz( p, nbgp ) |
---|
509 | to_be_resorted => p |
---|
510 | ELSE |
---|
511 | IF ( .NOT. ALLOCATED( p_av ) ) THEN |
---|
512 | ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
513 | p_av = REAL( fill_value, KIND = wp ) |
---|
514 | ENDIF |
---|
515 | IF ( psolver /= 'sor' ) CALL exchange_horiz( p_av, nbgp ) |
---|
516 | to_be_resorted => p_av |
---|
517 | ENDIF |
---|
518 | IF ( mode == 'xy' ) level_z = zu |
---|
519 | |
---|
520 | CASE ( 'pc_xy', 'pc_xz', 'pc_yz' ) ! particle concentration |
---|
521 | IF ( av == 0 ) THEN |
---|
522 | IF ( time_since_reference_point >= particle_advection_start ) THEN |
---|
523 | tend = prt_count |
---|
524 | ! CALL exchange_horiz( tend, nbgp ) |
---|
525 | ELSE |
---|
526 | tend = 0.0_wp |
---|
527 | ENDIF |
---|
528 | DO i = nxl, nxr |
---|
529 | DO j = nys, nyn |
---|
530 | DO k = nzb, nzt+1 |
---|
531 | local_pf(i,j,k) = tend(k,j,i) |
---|
532 | ENDDO |
---|
533 | ENDDO |
---|
534 | ENDDO |
---|
535 | resorted = .TRUE. |
---|
536 | ELSE |
---|
537 | IF ( .NOT. ALLOCATED( pc_av ) ) THEN |
---|
538 | ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
539 | pc_av = REAL( fill_value, KIND = wp ) |
---|
540 | ENDIF |
---|
541 | ! CALL exchange_horiz( pc_av, nbgp ) |
---|
542 | to_be_resorted => pc_av |
---|
543 | ENDIF |
---|
544 | |
---|
545 | CASE ( 'pr_xy', 'pr_xz', 'pr_yz' ) ! mean particle radius (effective radius) |
---|
546 | IF ( av == 0 ) THEN |
---|
547 | IF ( time_since_reference_point >= particle_advection_start ) THEN |
---|
548 | DO i = nxl, nxr |
---|
549 | DO j = nys, nyn |
---|
550 | DO k = nzb, nzt+1 |
---|
551 | number_of_particles = prt_count(k,j,i) |
---|
552 | IF (number_of_particles <= 0) CYCLE |
---|
553 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
554 | s_r2 = 0.0_wp |
---|
555 | s_r3 = 0.0_wp |
---|
556 | DO n = 1, number_of_particles |
---|
557 | IF ( particles(n)%particle_mask ) THEN |
---|
558 | s_r2 = s_r2 + particles(n)%radius**2 * & |
---|
559 | particles(n)%weight_factor |
---|
560 | s_r3 = s_r3 + particles(n)%radius**3 * & |
---|
561 | particles(n)%weight_factor |
---|
562 | ENDIF |
---|
563 | ENDDO |
---|
564 | IF ( s_r2 > 0.0_wp ) THEN |
---|
565 | mean_r = s_r3 / s_r2 |
---|
566 | ELSE |
---|
567 | mean_r = 0.0_wp |
---|
568 | ENDIF |
---|
569 | tend(k,j,i) = mean_r |
---|
570 | ENDDO |
---|
571 | ENDDO |
---|
572 | ENDDO |
---|
573 | ! CALL exchange_horiz( tend, nbgp ) |
---|
574 | ELSE |
---|
575 | tend = 0.0_wp |
---|
576 | ENDIF |
---|
577 | DO i = nxl, nxr |
---|
578 | DO j = nys, nyn |
---|
579 | DO k = nzb, nzt+1 |
---|
580 | local_pf(i,j,k) = tend(k,j,i) |
---|
581 | ENDDO |
---|
582 | ENDDO |
---|
583 | ENDDO |
---|
584 | resorted = .TRUE. |
---|
585 | ELSE |
---|
586 | IF ( .NOT. ALLOCATED( pr_av ) ) THEN |
---|
587 | ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
588 | pr_av = REAL( fill_value, KIND = wp ) |
---|
589 | ENDIF |
---|
590 | ! CALL exchange_horiz( pr_av, nbgp ) |
---|
591 | to_be_resorted => pr_av |
---|
592 | ENDIF |
---|
593 | |
---|
594 | CASE ( 'theta_xy', 'theta_xz', 'theta_yz' ) |
---|
595 | IF ( av == 0 ) THEN |
---|
596 | IF ( .NOT. bulk_cloud_model ) THEN |
---|
597 | to_be_resorted => pt |
---|
598 | ELSE |
---|
599 | DO i = nxl, nxr |
---|
600 | DO j = nys, nyn |
---|
601 | DO k = nzb, nzt+1 |
---|
602 | local_pf(i,j,k) = pt(k,j,i) + lv_d_cp * & |
---|
603 | d_exner(k) * & |
---|
604 | ql(k,j,i) |
---|
605 | ENDDO |
---|
606 | ENDDO |
---|
607 | ENDDO |
---|
608 | resorted = .TRUE. |
---|
609 | ENDIF |
---|
610 | ELSE |
---|
611 | IF ( .NOT. ALLOCATED( pt_av ) ) THEN |
---|
612 | ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
613 | pt_av = REAL( fill_value, KIND = wp ) |
---|
614 | ENDIF |
---|
615 | to_be_resorted => pt_av |
---|
616 | ENDIF |
---|
617 | IF ( mode == 'xy' ) level_z = zu |
---|
618 | |
---|
619 | CASE ( 'q_xy', 'q_xz', 'q_yz' ) |
---|
620 | IF ( av == 0 ) THEN |
---|
621 | to_be_resorted => q |
---|
622 | ELSE |
---|
623 | IF ( .NOT. ALLOCATED( q_av ) ) THEN |
---|
624 | ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
625 | q_av = REAL( fill_value, KIND = wp ) |
---|
626 | ENDIF |
---|
627 | to_be_resorted => q_av |
---|
628 | ENDIF |
---|
629 | IF ( mode == 'xy' ) level_z = zu |
---|
630 | |
---|
631 | CASE ( 'ql_xy', 'ql_xz', 'ql_yz' ) |
---|
632 | IF ( av == 0 ) THEN |
---|
633 | to_be_resorted => ql |
---|
634 | ELSE |
---|
635 | IF ( .NOT. ALLOCATED( ql_av ) ) THEN |
---|
636 | ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
637 | ql_av = REAL( fill_value, KIND = wp ) |
---|
638 | ENDIF |
---|
639 | to_be_resorted => ql_av |
---|
640 | ENDIF |
---|
641 | IF ( mode == 'xy' ) level_z = zu |
---|
642 | |
---|
643 | CASE ( 'ql_c_xy', 'ql_c_xz', 'ql_c_yz' ) |
---|
644 | IF ( av == 0 ) THEN |
---|
645 | to_be_resorted => ql_c |
---|
646 | ELSE |
---|
647 | IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN |
---|
648 | ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
649 | ql_c_av = REAL( fill_value, KIND = wp ) |
---|
650 | ENDIF |
---|
651 | to_be_resorted => ql_c_av |
---|
652 | ENDIF |
---|
653 | IF ( mode == 'xy' ) level_z = zu |
---|
654 | |
---|
655 | CASE ( 'ql_v_xy', 'ql_v_xz', 'ql_v_yz' ) |
---|
656 | IF ( av == 0 ) THEN |
---|
657 | to_be_resorted => ql_v |
---|
658 | ELSE |
---|
659 | IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN |
---|
660 | ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
661 | ql_v_av = REAL( fill_value, KIND = wp ) |
---|
662 | ENDIF |
---|
663 | to_be_resorted => ql_v_av |
---|
664 | ENDIF |
---|
665 | IF ( mode == 'xy' ) level_z = zu |
---|
666 | |
---|
667 | CASE ( 'ql_vp_xy', 'ql_vp_xz', 'ql_vp_yz' ) |
---|
668 | IF ( av == 0 ) THEN |
---|
669 | IF ( time_since_reference_point >= particle_advection_start ) THEN |
---|
670 | DO i = nxl, nxr |
---|
671 | DO j = nys, nyn |
---|
672 | DO k = nzb, nzt+1 |
---|
673 | number_of_particles = prt_count(k,j,i) |
---|
674 | IF (number_of_particles <= 0) CYCLE |
---|
675 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
676 | DO n = 1, number_of_particles |
---|
677 | IF ( particles(n)%particle_mask ) THEN |
---|
678 | tend(k,j,i) = tend(k,j,i) + & |
---|
679 | particles(n)%weight_factor / & |
---|
680 | prt_count(k,j,i) |
---|
681 | ENDIF |
---|
682 | ENDDO |
---|
683 | ENDDO |
---|
684 | ENDDO |
---|
685 | ENDDO |
---|
686 | ! CALL exchange_horiz( tend, nbgp ) |
---|
687 | ELSE |
---|
688 | tend = 0.0_wp |
---|
689 | ENDIF |
---|
690 | DO i = nxl, nxr |
---|
691 | DO j = nys, nyn |
---|
692 | DO k = nzb, nzt+1 |
---|
693 | local_pf(i,j,k) = tend(k,j,i) |
---|
694 | ENDDO |
---|
695 | ENDDO |
---|
696 | ENDDO |
---|
697 | resorted = .TRUE. |
---|
698 | ELSE |
---|
699 | IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN |
---|
700 | ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
701 | ql_vp_av = REAL( fill_value, KIND = wp ) |
---|
702 | ENDIF |
---|
703 | ! CALL exchange_horiz( ql_vp_av, nbgp ) |
---|
704 | to_be_resorted => ql_vp_av |
---|
705 | ENDIF |
---|
706 | IF ( mode == 'xy' ) level_z = zu |
---|
707 | |
---|
708 | CASE ( 'qsurf*_xy' ) ! 2d-array |
---|
709 | IF ( av == 0 ) THEN |
---|
710 | DO m = 1, surf_def_h(0)%ns |
---|
711 | i = surf_def_h(0)%i(m) |
---|
712 | j = surf_def_h(0)%j(m) |
---|
713 | local_pf(i,j,nzb+1) = surf_def_h(0)%q_surface(m) |
---|
714 | ENDDO |
---|
715 | |
---|
716 | DO m = 1, surf_lsm_h%ns |
---|
717 | i = surf_lsm_h%i(m) |
---|
718 | j = surf_lsm_h%j(m) |
---|
719 | local_pf(i,j,nzb+1) = surf_lsm_h%q_surface(m) |
---|
720 | ENDDO |
---|
721 | |
---|
722 | DO m = 1, surf_usm_h%ns |
---|
723 | i = surf_usm_h%i(m) |
---|
724 | j = surf_usm_h%j(m) |
---|
725 | local_pf(i,j,nzb+1) = surf_usm_h%q_surface(m) |
---|
726 | ENDDO |
---|
727 | |
---|
728 | ELSE |
---|
729 | IF ( .NOT. ALLOCATED( qsurf_av ) ) THEN |
---|
730 | ALLOCATE( qsurf_av(nysg:nyng,nxlg:nxrg) ) |
---|
731 | qsurf_av = REAL( fill_value, KIND = wp ) |
---|
732 | ENDIF |
---|
733 | DO i = nxl, nxr |
---|
734 | DO j = nys, nyn |
---|
735 | local_pf(i,j,nzb+1) = qsurf_av(j,i) |
---|
736 | ENDDO |
---|
737 | ENDDO |
---|
738 | ENDIF |
---|
739 | resorted = .TRUE. |
---|
740 | two_d = .TRUE. |
---|
741 | level_z(nzb+1) = zu(nzb+1) |
---|
742 | |
---|
743 | CASE ( 'qsws*_xy' ) ! 2d-array |
---|
744 | IF ( av == 0 ) THEN |
---|
745 | local_pf(:,:,nzb+1) = REAL( fill_value, KIND = wp ) |
---|
746 | ! |
---|
747 | !-- In case of default surfaces, clean-up flux by density. |
---|
748 | !-- In case of land-surfaces, convert fluxes into |
---|
749 | !-- dynamic units |
---|
750 | DO m = 1, surf_def_h(0)%ns |
---|
751 | i = surf_def_h(0)%i(m) |
---|
752 | j = surf_def_h(0)%j(m) |
---|
753 | k = surf_def_h(0)%k(m) |
---|
754 | local_pf(i,j,nzb+1) = surf_def_h(0)%qsws(m) * & |
---|
755 | waterflux_output_conversion(k) |
---|
756 | ENDDO |
---|
757 | DO m = 1, surf_lsm_h%ns |
---|
758 | i = surf_lsm_h%i(m) |
---|
759 | j = surf_lsm_h%j(m) |
---|
760 | k = surf_lsm_h%k(m) |
---|
761 | local_pf(i,j,nzb+1) = surf_lsm_h%qsws(m) * waterflux_output_conversion(k) |
---|
762 | ENDDO |
---|
763 | DO m = 1, surf_usm_h%ns |
---|
764 | i = surf_usm_h%i(m) |
---|
765 | j = surf_usm_h%j(m) |
---|
766 | k = surf_usm_h%k(m) |
---|
767 | local_pf(i,j,nzb+1) = surf_usm_h%qsws(m) * waterflux_output_conversion(k) |
---|
768 | ENDDO |
---|
769 | ELSE |
---|
770 | IF ( .NOT. ALLOCATED( qsws_av ) ) THEN |
---|
771 | ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) |
---|
772 | qsws_av = REAL( fill_value, KIND = wp ) |
---|
773 | ENDIF |
---|
774 | DO i = nxl, nxr |
---|
775 | DO j = nys, nyn |
---|
776 | local_pf(i,j,nzb+1) = qsws_av(j,i) |
---|
777 | ENDDO |
---|
778 | ENDDO |
---|
779 | ENDIF |
---|
780 | resorted = .TRUE. |
---|
781 | two_d = .TRUE. |
---|
782 | level_z(nzb+1) = zu(nzb+1) |
---|
783 | |
---|
784 | CASE ( 'qv_xy', 'qv_xz', 'qv_yz' ) |
---|
785 | IF ( av == 0 ) THEN |
---|
786 | DO i = nxl, nxr |
---|
787 | DO j = nys, nyn |
---|
788 | DO k = nzb, nzt+1 |
---|
789 | local_pf(i,j,k) = q(k,j,i) - ql(k,j,i) |
---|
790 | ENDDO |
---|
791 | ENDDO |
---|
792 | ENDDO |
---|
793 | resorted = .TRUE. |
---|
794 | ELSE |
---|
795 | IF ( .NOT. ALLOCATED( qv_av ) ) THEN |
---|
796 | ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
797 | qv_av = REAL( fill_value, KIND = wp ) |
---|
798 | ENDIF |
---|
799 | to_be_resorted => qv_av |
---|
800 | ENDIF |
---|
801 | IF ( mode == 'xy' ) level_z = zu |
---|
802 | |
---|
803 | CASE ( 'r_a*_xy' ) ! 2d-array |
---|
804 | IF ( av == 0 ) THEN |
---|
805 | DO m = 1, surf_lsm_h%ns |
---|
806 | i = surf_lsm_h%i(m) |
---|
807 | j = surf_lsm_h%j(m) |
---|
808 | local_pf(i,j,nzb+1) = surf_lsm_h%r_a(m) |
---|
809 | ENDDO |
---|
810 | |
---|
811 | DO m = 1, surf_usm_h%ns |
---|
812 | i = surf_usm_h%i(m) |
---|
813 | j = surf_usm_h%j(m) |
---|
814 | local_pf(i,j,nzb+1) = & |
---|
815 | ( surf_usm_h%frac(m,ind_veg_wall) * & |
---|
816 | surf_usm_h%r_a(m) + & |
---|
817 | surf_usm_h%frac(m,ind_pav_green) * & |
---|
818 | surf_usm_h%r_a_green(m) + & |
---|
819 | surf_usm_h%frac(m,ind_wat_win) * & |
---|
820 | surf_usm_h%r_a_window(m) ) |
---|
821 | ENDDO |
---|
822 | ELSE |
---|
823 | IF ( .NOT. ALLOCATED( r_a_av ) ) THEN |
---|
824 | ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) |
---|
825 | r_a_av = REAL( fill_value, KIND = wp ) |
---|
826 | ENDIF |
---|
827 | DO i = nxl, nxr |
---|
828 | DO j = nys, nyn |
---|
829 | local_pf(i,j,nzb+1) = r_a_av(j,i) |
---|
830 | ENDDO |
---|
831 | ENDDO |
---|
832 | ENDIF |
---|
833 | resorted = .TRUE. |
---|
834 | two_d = .TRUE. |
---|
835 | level_z(nzb+1) = zu(nzb+1) |
---|
836 | |
---|
837 | CASE ( 's_xy', 's_xz', 's_yz' ) |
---|
838 | IF ( av == 0 ) THEN |
---|
839 | to_be_resorted => s |
---|
840 | ELSE |
---|
841 | IF ( .NOT. ALLOCATED( s_av ) ) THEN |
---|
842 | ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
843 | s_av = REAL( fill_value, KIND = wp ) |
---|
844 | ENDIF |
---|
845 | to_be_resorted => s_av |
---|
846 | ENDIF |
---|
847 | |
---|
848 | CASE ( 'shf*_xy' ) ! 2d-array |
---|
849 | IF ( av == 0 ) THEN |
---|
850 | ! |
---|
851 | !-- In case of default surfaces, clean-up flux by density. |
---|
852 | !-- In case of land- and urban-surfaces, convert fluxes into |
---|
853 | !-- dynamic units. |
---|
854 | DO m = 1, surf_def_h(0)%ns |
---|
855 | i = surf_def_h(0)%i(m) |
---|
856 | j = surf_def_h(0)%j(m) |
---|
857 | k = surf_def_h(0)%k(m) |
---|
858 | local_pf(i,j,nzb+1) = surf_def_h(0)%shf(m) * & |
---|
859 | heatflux_output_conversion(k) |
---|
860 | ENDDO |
---|
861 | DO m = 1, surf_lsm_h%ns |
---|
862 | i = surf_lsm_h%i(m) |
---|
863 | j = surf_lsm_h%j(m) |
---|
864 | k = surf_lsm_h%k(m) |
---|
865 | local_pf(i,j,nzb+1) = surf_lsm_h%shf(m) * heatflux_output_conversion(k) |
---|
866 | ENDDO |
---|
867 | DO m = 1, surf_usm_h%ns |
---|
868 | i = surf_usm_h%i(m) |
---|
869 | j = surf_usm_h%j(m) |
---|
870 | k = surf_usm_h%k(m) |
---|
871 | local_pf(i,j,nzb+1) = surf_usm_h%shf(m) * heatflux_output_conversion(k) |
---|
872 | ENDDO |
---|
873 | ELSE |
---|
874 | IF ( .NOT. ALLOCATED( shf_av ) ) THEN |
---|
875 | ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) |
---|
876 | shf_av = REAL( fill_value, KIND = wp ) |
---|
877 | ENDIF |
---|
878 | DO i = nxl, nxr |
---|
879 | DO j = nys, nyn |
---|
880 | local_pf(i,j,nzb+1) = shf_av(j,i) |
---|
881 | ENDDO |
---|
882 | ENDDO |
---|
883 | ENDIF |
---|
884 | resorted = .TRUE. |
---|
885 | two_d = .TRUE. |
---|
886 | level_z(nzb+1) = zu(nzb+1) |
---|
887 | |
---|
888 | CASE ( 'ssurf*_xy' ) ! 2d-array |
---|
889 | IF ( av == 0 ) THEN |
---|
890 | DO i = nxl, nxr |
---|
891 | DO j = nys, nyn |
---|
892 | k = topo_top_ind(j,i,0) |
---|
893 | local_pf(i,j,nzb+1) = s(k+k,j,i) |
---|
894 | ENDDO |
---|
895 | ENDDO |
---|
896 | ELSE |
---|
897 | IF ( .NOT. ALLOCATED( ssurf_av ) ) THEN |
---|
898 | ALLOCATE( ssurf_av(nysg:nyng,nxlg:nxrg) ) |
---|
899 | ssurf_av = REAL( fill_value, KIND = wp ) |
---|
900 | ENDIF |
---|
901 | DO i = nxl, nxr |
---|
902 | DO j = nys, nyn |
---|
903 | local_pf(i,j,nzb+1) = ssurf_av(j,i) |
---|
904 | ENDDO |
---|
905 | ENDDO |
---|
906 | ENDIF |
---|
907 | resorted = .TRUE. |
---|
908 | two_d = .TRUE. |
---|
909 | level_z(nzb+1) = zu(nzb+1) |
---|
910 | |
---|
911 | CASE ( 'ssws*_xy' ) ! 2d-array |
---|
912 | IF ( av == 0 ) THEN |
---|
913 | DO m = 1, surf_def_h(0)%ns |
---|
914 | i = surf_def_h(0)%i(m) |
---|
915 | j = surf_def_h(0)%j(m) |
---|
916 | local_pf(i,j,nzb+1) = surf_def_h(0)%ssws(m) |
---|
917 | ENDDO |
---|
918 | DO m = 1, surf_lsm_h%ns |
---|
919 | i = surf_lsm_h%i(m) |
---|
920 | j = surf_lsm_h%j(m) |
---|
921 | local_pf(i,j,nzb+1) = surf_lsm_h%ssws(m) |
---|
922 | ENDDO |
---|
923 | DO m = 1, surf_usm_h%ns |
---|
924 | i = surf_usm_h%i(m) |
---|
925 | j = surf_usm_h%j(m) |
---|
926 | local_pf(i,j,nzb+1) = surf_usm_h%ssws(m) |
---|
927 | ENDDO |
---|
928 | ELSE |
---|
929 | IF ( .NOT. ALLOCATED( ssws_av ) ) THEN |
---|
930 | ALLOCATE( ssws_av(nysg:nyng,nxlg:nxrg) ) |
---|
931 | ssws_av = REAL( fill_value, KIND = wp ) |
---|
932 | ENDIF |
---|
933 | DO i = nxl, nxr |
---|
934 | DO j = nys, nyn |
---|
935 | local_pf(i,j,nzb+1) = ssws_av(j,i) |
---|
936 | ENDDO |
---|
937 | ENDDO |
---|
938 | ENDIF |
---|
939 | resorted = .TRUE. |
---|
940 | two_d = .TRUE. |
---|
941 | level_z(nzb+1) = zu(nzb+1) |
---|
942 | |
---|
943 | CASE ( 't*_xy' ) ! 2d-array |
---|
944 | IF ( av == 0 ) THEN |
---|
945 | DO m = 1, surf_def_h(0)%ns |
---|
946 | i = surf_def_h(0)%i(m) |
---|
947 | j = surf_def_h(0)%j(m) |
---|
948 | local_pf(i,j,nzb+1) = surf_def_h(0)%ts(m) |
---|
949 | ENDDO |
---|
950 | DO m = 1, surf_lsm_h%ns |
---|
951 | i = surf_lsm_h%i(m) |
---|
952 | j = surf_lsm_h%j(m) |
---|
953 | local_pf(i,j,nzb+1) = surf_lsm_h%ts(m) |
---|
954 | ENDDO |
---|
955 | DO m = 1, surf_usm_h%ns |
---|
956 | i = surf_usm_h%i(m) |
---|
957 | j = surf_usm_h%j(m) |
---|
958 | local_pf(i,j,nzb+1) = surf_usm_h%ts(m) |
---|
959 | ENDDO |
---|
960 | ELSE |
---|
961 | IF ( .NOT. ALLOCATED( ts_av ) ) THEN |
---|
962 | ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) |
---|
963 | ts_av = REAL( fill_value, KIND = wp ) |
---|
964 | ENDIF |
---|
965 | DO i = nxl, nxr |
---|
966 | DO j = nys, nyn |
---|
967 | local_pf(i,j,nzb+1) = ts_av(j,i) |
---|
968 | ENDDO |
---|
969 | ENDDO |
---|
970 | ENDIF |
---|
971 | resorted = .TRUE. |
---|
972 | two_d = .TRUE. |
---|
973 | level_z(nzb+1) = zu(nzb+1) |
---|
974 | |
---|
975 | CASE ( 'tsurf*_xy' ) ! 2d-array |
---|
976 | IF ( av == 0 ) THEN |
---|
977 | DO m = 1, surf_def_h(0)%ns |
---|
978 | i = surf_def_h(0)%i(m) |
---|
979 | j = surf_def_h(0)%j(m) |
---|
980 | local_pf(i,j,nzb+1) = surf_def_h(0)%pt_surface(m) |
---|
981 | ENDDO |
---|
982 | |
---|
983 | DO m = 1, surf_lsm_h%ns |
---|
984 | i = surf_lsm_h%i(m) |
---|
985 | j = surf_lsm_h%j(m) |
---|
986 | local_pf(i,j,nzb+1) = surf_lsm_h%pt_surface(m) |
---|
987 | ENDDO |
---|
988 | |
---|
989 | DO m = 1, surf_usm_h%ns |
---|
990 | i = surf_usm_h%i(m) |
---|
991 | j = surf_usm_h%j(m) |
---|
992 | local_pf(i,j,nzb+1) = surf_usm_h%pt_surface(m) |
---|
993 | ENDDO |
---|
994 | |
---|
995 | ELSE |
---|
996 | IF ( .NOT. ALLOCATED( tsurf_av ) ) THEN |
---|
997 | ALLOCATE( tsurf_av(nysg:nyng,nxlg:nxrg) ) |
---|
998 | tsurf_av = REAL( fill_value, KIND = wp ) |
---|
999 | ENDIF |
---|
1000 | DO i = nxl, nxr |
---|
1001 | DO j = nys, nyn |
---|
1002 | local_pf(i,j,nzb+1) = tsurf_av(j,i) |
---|
1003 | ENDDO |
---|
1004 | ENDDO |
---|
1005 | ENDIF |
---|
1006 | resorted = .TRUE. |
---|
1007 | two_d = .TRUE. |
---|
1008 | level_z(nzb+1) = zu(nzb+1) |
---|
1009 | |
---|
1010 | CASE ( 'u_xy', 'u_xz', 'u_yz' ) |
---|
1011 | flag_nr = 1 |
---|
1012 | IF ( av == 0 ) THEN |
---|
1013 | to_be_resorted => u |
---|
1014 | ELSE |
---|
1015 | IF ( .NOT. ALLOCATED( u_av ) ) THEN |
---|
1016 | ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1017 | u_av = REAL( fill_value, KIND = wp ) |
---|
1018 | ENDIF |
---|
1019 | to_be_resorted => u_av |
---|
1020 | ENDIF |
---|
1021 | IF ( mode == 'xy' ) level_z = zu |
---|
1022 | ! |
---|
1023 | !-- Substitute the values generated by "mirror" boundary condition |
---|
1024 | !-- at the bottom boundary by the real surface values. |
---|
1025 | IF ( do2d(av,ivar) == 'u_xz' .OR. do2d(av,ivar) == 'u_yz' ) THEN |
---|
1026 | IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp |
---|
1027 | ENDIF |
---|
1028 | |
---|
1029 | CASE ( 'us*_xy' ) ! 2d-array |
---|
1030 | IF ( av == 0 ) THEN |
---|
1031 | DO m = 1, surf_def_h(0)%ns |
---|
1032 | i = surf_def_h(0)%i(m) |
---|
1033 | j = surf_def_h(0)%j(m) |
---|
1034 | local_pf(i,j,nzb+1) = surf_def_h(0)%us(m) |
---|
1035 | ENDDO |
---|
1036 | DO m = 1, surf_lsm_h%ns |
---|
1037 | i = surf_lsm_h%i(m) |
---|
1038 | j = surf_lsm_h%j(m) |
---|
1039 | local_pf(i,j,nzb+1) = surf_lsm_h%us(m) |
---|
1040 | ENDDO |
---|
1041 | DO m = 1, surf_usm_h%ns |
---|
1042 | i = surf_usm_h%i(m) |
---|
1043 | j = surf_usm_h%j(m) |
---|
1044 | local_pf(i,j,nzb+1) = surf_usm_h%us(m) |
---|
1045 | ENDDO |
---|
1046 | ELSE |
---|
1047 | IF ( .NOT. ALLOCATED( us_av ) ) THEN |
---|
1048 | ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) |
---|
1049 | us_av = REAL( fill_value, KIND = wp ) |
---|
1050 | ENDIF |
---|
1051 | DO i = nxl, nxr |
---|
1052 | DO j = nys, nyn |
---|
1053 | local_pf(i,j,nzb+1) = us_av(j,i) |
---|
1054 | ENDDO |
---|
1055 | ENDDO |
---|
1056 | ENDIF |
---|
1057 | resorted = .TRUE. |
---|
1058 | two_d = .TRUE. |
---|
1059 | level_z(nzb+1) = zu(nzb+1) |
---|
1060 | |
---|
1061 | CASE ( 'v_xy', 'v_xz', 'v_yz' ) |
---|
1062 | flag_nr = 2 |
---|
1063 | IF ( av == 0 ) THEN |
---|
1064 | to_be_resorted => v |
---|
1065 | ELSE |
---|
1066 | IF ( .NOT. ALLOCATED( v_av ) ) THEN |
---|
1067 | ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1068 | v_av = REAL( fill_value, KIND = wp ) |
---|
1069 | ENDIF |
---|
1070 | to_be_resorted => v_av |
---|
1071 | ENDIF |
---|
1072 | IF ( mode == 'xy' ) level_z = zu |
---|
1073 | ! |
---|
1074 | !-- Substitute the values generated by "mirror" boundary condition |
---|
1075 | !-- at the bottom boundary by the real surface values. |
---|
1076 | IF ( do2d(av,ivar) == 'v_xz' .OR. do2d(av,ivar) == 'v_yz' ) THEN |
---|
1077 | IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp |
---|
1078 | ENDIF |
---|
1079 | |
---|
1080 | CASE ( 'thetav_xy', 'thetav_xz', 'thetav_yz' ) |
---|
1081 | IF ( av == 0 ) THEN |
---|
1082 | to_be_resorted => vpt |
---|
1083 | ELSE |
---|
1084 | IF ( .NOT. ALLOCATED( vpt_av ) ) THEN |
---|
1085 | ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1086 | vpt_av = REAL( fill_value, KIND = wp ) |
---|
1087 | ENDIF |
---|
1088 | to_be_resorted => vpt_av |
---|
1089 | ENDIF |
---|
1090 | IF ( mode == 'xy' ) level_z = zu |
---|
1091 | |
---|
1092 | CASE ( 'w_xy', 'w_xz', 'w_yz' ) |
---|
1093 | flag_nr = 3 |
---|
1094 | IF ( av == 0 ) THEN |
---|
1095 | to_be_resorted => w |
---|
1096 | ELSE |
---|
1097 | IF ( .NOT. ALLOCATED( w_av ) ) THEN |
---|
1098 | ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1099 | w_av = REAL( fill_value, KIND = wp ) |
---|
1100 | ENDIF |
---|
1101 | to_be_resorted => w_av |
---|
1102 | ENDIF |
---|
1103 | IF ( mode == 'xy' ) level_z = zw |
---|
1104 | |
---|
1105 | CASE ( 'z0*_xy' ) ! 2d-array |
---|
1106 | IF ( av == 0 ) THEN |
---|
1107 | DO m = 1, surf_def_h(0)%ns |
---|
1108 | i = surf_def_h(0)%i(m) |
---|
1109 | j = surf_def_h(0)%j(m) |
---|
1110 | local_pf(i,j,nzb+1) = surf_def_h(0)%z0(m) |
---|
1111 | ENDDO |
---|
1112 | DO m = 1, surf_lsm_h%ns |
---|
1113 | i = surf_lsm_h%i(m) |
---|
1114 | j = surf_lsm_h%j(m) |
---|
1115 | local_pf(i,j,nzb+1) = surf_lsm_h%z0(m) |
---|
1116 | ENDDO |
---|
1117 | DO m = 1, surf_usm_h%ns |
---|
1118 | i = surf_usm_h%i(m) |
---|
1119 | j = surf_usm_h%j(m) |
---|
1120 | local_pf(i,j,nzb+1) = surf_usm_h%z0(m) |
---|
1121 | ENDDO |
---|
1122 | ELSE |
---|
1123 | IF ( .NOT. ALLOCATED( z0_av ) ) THEN |
---|
1124 | ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) |
---|
1125 | z0_av = REAL( fill_value, KIND = wp ) |
---|
1126 | ENDIF |
---|
1127 | DO i = nxl, nxr |
---|
1128 | DO j = nys, nyn |
---|
1129 | local_pf(i,j,nzb+1) = z0_av(j,i) |
---|
1130 | ENDDO |
---|
1131 | ENDDO |
---|
1132 | ENDIF |
---|
1133 | resorted = .TRUE. |
---|
1134 | two_d = .TRUE. |
---|
1135 | level_z(nzb+1) = zu(nzb+1) |
---|
1136 | |
---|
1137 | CASE ( 'z0h*_xy' ) ! 2d-array |
---|
1138 | IF ( av == 0 ) THEN |
---|
1139 | DO m = 1, surf_def_h(0)%ns |
---|
1140 | i = surf_def_h(0)%i(m) |
---|
1141 | j = surf_def_h(0)%j(m) |
---|
1142 | local_pf(i,j,nzb+1) = surf_def_h(0)%z0h(m) |
---|
1143 | ENDDO |
---|
1144 | DO m = 1, surf_lsm_h%ns |
---|
1145 | i = surf_lsm_h%i(m) |
---|
1146 | j = surf_lsm_h%j(m) |
---|
1147 | local_pf(i,j,nzb+1) = surf_lsm_h%z0h(m) |
---|
1148 | ENDDO |
---|
1149 | DO m = 1, surf_usm_h%ns |
---|
1150 | i = surf_usm_h%i(m) |
---|
1151 | j = surf_usm_h%j(m) |
---|
1152 | local_pf(i,j,nzb+1) = surf_usm_h%z0h(m) |
---|
1153 | ENDDO |
---|
1154 | ELSE |
---|
1155 | IF ( .NOT. ALLOCATED( z0h_av ) ) THEN |
---|
1156 | ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) |
---|
1157 | z0h_av = REAL( fill_value, KIND = wp ) |
---|
1158 | ENDIF |
---|
1159 | DO i = nxl, nxr |
---|
1160 | DO j = nys, nyn |
---|
1161 | local_pf(i,j,nzb+1) = z0h_av(j,i) |
---|
1162 | ENDDO |
---|
1163 | ENDDO |
---|
1164 | ENDIF |
---|
1165 | resorted = .TRUE. |
---|
1166 | two_d = .TRUE. |
---|
1167 | level_z(nzb+1) = zu(nzb+1) |
---|
1168 | |
---|
1169 | CASE ( 'z0q*_xy' ) ! 2d-array |
---|
1170 | IF ( av == 0 ) THEN |
---|
1171 | DO m = 1, surf_def_h(0)%ns |
---|
1172 | i = surf_def_h(0)%i(m) |
---|
1173 | j = surf_def_h(0)%j(m) |
---|
1174 | local_pf(i,j,nzb+1) = surf_def_h(0)%z0q(m) |
---|
1175 | ENDDO |
---|
1176 | DO m = 1, surf_lsm_h%ns |
---|
1177 | i = surf_lsm_h%i(m) |
---|
1178 | j = surf_lsm_h%j(m) |
---|
1179 | local_pf(i,j,nzb+1) = surf_lsm_h%z0q(m) |
---|
1180 | ENDDO |
---|
1181 | DO m = 1, surf_usm_h%ns |
---|
1182 | i = surf_usm_h%i(m) |
---|
1183 | j = surf_usm_h%j(m) |
---|
1184 | local_pf(i,j,nzb+1) = surf_usm_h%z0q(m) |
---|
1185 | ENDDO |
---|
1186 | ELSE |
---|
1187 | IF ( .NOT. ALLOCATED( z0q_av ) ) THEN |
---|
1188 | ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) |
---|
1189 | z0q_av = REAL( fill_value, KIND = wp ) |
---|
1190 | ENDIF |
---|
1191 | DO i = nxl, nxr |
---|
1192 | DO j = nys, nyn |
---|
1193 | local_pf(i,j,nzb+1) = z0q_av(j,i) |
---|
1194 | ENDDO |
---|
1195 | ENDDO |
---|
1196 | ENDIF |
---|
1197 | resorted = .TRUE. |
---|
1198 | two_d = .TRUE. |
---|
1199 | level_z(nzb+1) = zu(nzb+1) |
---|
1200 | |
---|
1201 | CASE DEFAULT |
---|
1202 | |
---|
1203 | ! |
---|
1204 | !-- Quantities of other modules |
---|
1205 | IF ( .NOT. found ) THEN |
---|
1206 | CALL module_interface_data_output_2d( & |
---|
1207 | av, do2d(av,ivar), found, grid, mode, & |
---|
1208 | local_pf, two_d, nzb_do, nzt_do, & |
---|
1209 | fill_value & |
---|
1210 | ) |
---|
1211 | ENDIF |
---|
1212 | |
---|
1213 | resorted = .TRUE. |
---|
1214 | |
---|
1215 | IF ( grid == 'zu' ) THEN |
---|
1216 | IF ( mode == 'xy' ) level_z = zu |
---|
1217 | ELSEIF ( grid == 'zw' ) THEN |
---|
1218 | IF ( mode == 'xy' ) level_z = zw |
---|
1219 | ELSEIF ( grid == 'zu1' ) THEN |
---|
1220 | IF ( mode == 'xy' ) level_z(nzb+1) = zu(nzb+1) |
---|
1221 | ELSEIF ( grid == 'zs' ) THEN |
---|
1222 | IF ( mode == 'xy' ) level_z = zs |
---|
1223 | ENDIF |
---|
1224 | |
---|
1225 | IF ( .NOT. found ) THEN |
---|
1226 | message_string = 'no output provided for: ' // & |
---|
1227 | TRIM( do2d(av,ivar) ) |
---|
1228 | CALL message( 'data_output_2d', 'PA0181', 0, 0, 0, 6, 0 ) |
---|
1229 | ENDIF |
---|
1230 | |
---|
1231 | END SELECT |
---|
1232 | |
---|
1233 | ! |
---|
1234 | !-- Resort the array to be output, if not done above. Flag topography |
---|
1235 | !-- grid points with fill values, using the corresponding maksing flag. |
---|
1236 | IF ( .NOT. resorted ) THEN |
---|
1237 | DO i = nxl, nxr |
---|
1238 | DO j = nys, nyn |
---|
1239 | DO k = nzb_do, nzt_do |
---|
1240 | local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & |
---|
1241 | REAL( fill_value, KIND = wp ), & |
---|
1242 | BTEST( wall_flags_total_0(k,j,i), & |
---|
1243 | flag_nr ) ) |
---|
1244 | ENDDO |
---|
1245 | ENDDO |
---|
1246 | ENDDO |
---|
1247 | ENDIF |
---|
1248 | |
---|
1249 | ! |
---|
1250 | !-- Output of the individual cross-sections, depending on the cross- |
---|
1251 | !-- section mode chosen. |
---|
1252 | is = 1 |
---|
1253 | loop1: DO WHILE ( section(is,s_ind) /= -9999 .OR. two_d ) |
---|
1254 | |
---|
1255 | SELECT CASE ( mode ) |
---|
1256 | |
---|
1257 | CASE ( 'xy' ) |
---|
1258 | ! |
---|
1259 | !-- Determine the cross section index |
---|
1260 | IF ( two_d ) THEN |
---|
1261 | layer_xy = nzb+1 |
---|
1262 | ELSE |
---|
1263 | layer_xy = section(is,s_ind) |
---|
1264 | ENDIF |
---|
1265 | |
---|
1266 | ! |
---|
1267 | !-- Exit the loop for layers beyond the data output domain |
---|
1268 | !-- (used for soil model) |
---|
1269 | IF ( layer_xy > nzt_do ) THEN |
---|
1270 | EXIT loop1 |
---|
1271 | ENDIF |
---|
1272 | |
---|
1273 | ! |
---|
1274 | !-- Update the netCDF xy cross section time axis. |
---|
1275 | !-- In case of parallel output, this is only done by PE0 |
---|
1276 | !-- to increase the performance. |
---|
1277 | IF ( time_since_reference_point /= do2d_xy_last_time(av) ) THEN |
---|
1278 | do2d_xy_time_count(av) = do2d_xy_time_count(av) + 1 |
---|
1279 | do2d_xy_last_time(av) = time_since_reference_point |
---|
1280 | IF ( myid == 0 ) THEN |
---|
1281 | IF ( .NOT. data_output_2d_on_each_pe & |
---|
1282 | .OR. netcdf_data_format > 4 ) & |
---|
1283 | THEN |
---|
1284 | #if defined( __netcdf ) |
---|
1285 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1286 | id_var_time_xy(av), & |
---|
1287 | (/ time_since_reference_point /), & |
---|
1288 | start = (/ do2d_xy_time_count(av) /), & |
---|
1289 | count = (/ 1 /) ) |
---|
1290 | CALL netcdf_handle_error( 'data_output_2d', 53 ) |
---|
1291 | #endif |
---|
1292 | ENDIF |
---|
1293 | ENDIF |
---|
1294 | ENDIF |
---|
1295 | ! |
---|
1296 | !-- If required, carry out averaging along z |
---|
1297 | IF ( section(is,s_ind) == -1 .AND. .NOT. two_d ) THEN |
---|
1298 | |
---|
1299 | local_2d = 0.0_wp |
---|
1300 | ! |
---|
1301 | !-- Carry out the averaging (all data are on the PE) |
---|
1302 | DO k = nzb_do, nzt_do |
---|
1303 | DO j = nys, nyn |
---|
1304 | DO i = nxl, nxr |
---|
1305 | local_2d(i,j) = local_2d(i,j) + local_pf(i,j,k) |
---|
1306 | ENDDO |
---|
1307 | ENDDO |
---|
1308 | ENDDO |
---|
1309 | |
---|
1310 | local_2d = local_2d / ( nzt_do - nzb_do + 1.0_wp) |
---|
1311 | |
---|
1312 | ELSE |
---|
1313 | ! |
---|
1314 | !-- Just store the respective section on the local array |
---|
1315 | local_2d = local_pf(:,:,layer_xy) |
---|
1316 | |
---|
1317 | ENDIF |
---|
1318 | |
---|
1319 | #if defined( __parallel ) |
---|
1320 | IF ( netcdf_data_format > 4 ) THEN |
---|
1321 | ! |
---|
1322 | !-- Parallel output in netCDF4/HDF5 format. |
---|
1323 | IF ( two_d ) THEN |
---|
1324 | iis = 1 |
---|
1325 | ELSE |
---|
1326 | iis = is |
---|
1327 | ENDIF |
---|
1328 | |
---|
1329 | #if defined( __netcdf ) |
---|
1330 | ! |
---|
1331 | !-- For parallel output, all cross sections are first stored |
---|
1332 | !-- here on a local array and will be written to the output |
---|
1333 | !-- file afterwards to increase the performance. |
---|
1334 | DO i = nxl, nxr |
---|
1335 | DO j = nys, nyn |
---|
1336 | local_2d_sections(i,j,iis) = local_2d(i,j) |
---|
1337 | ENDDO |
---|
1338 | ENDDO |
---|
1339 | #endif |
---|
1340 | ELSE |
---|
1341 | |
---|
1342 | IF ( data_output_2d_on_each_pe ) THEN |
---|
1343 | ! |
---|
1344 | !-- Output of partial arrays on each PE |
---|
1345 | #if defined( __netcdf ) |
---|
1346 | IF ( myid == 0 ) THEN |
---|
1347 | WRITE ( 21 ) time_since_reference_point, & |
---|
1348 | do2d_xy_time_count(av), av |
---|
1349 | ENDIF |
---|
1350 | #endif |
---|
1351 | DO i = 0, io_blocks-1 |
---|
1352 | IF ( i == io_group ) THEN |
---|
1353 | WRITE ( 21 ) nxl, nxr, nys, nyn, nys, nyn |
---|
1354 | WRITE ( 21 ) local_2d |
---|
1355 | ENDIF |
---|
1356 | #if defined( __parallel ) |
---|
1357 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1358 | #endif |
---|
1359 | ENDDO |
---|
1360 | |
---|
1361 | ELSE |
---|
1362 | ! |
---|
1363 | !-- PE0 receives partial arrays from all processors and |
---|
1364 | !-- then outputs them. Here a barrier has to be set, |
---|
1365 | !-- because otherwise "-MPI- FATAL: Remote protocol queue |
---|
1366 | !-- full" may occur. |
---|
1367 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1368 | |
---|
1369 | ngp = ( nxr-nxl+1 ) * ( nyn-nys+1 ) |
---|
1370 | IF ( myid == 0 ) THEN |
---|
1371 | ! |
---|
1372 | !-- Local array can be relocated directly. |
---|
1373 | total_2d(nxl:nxr,nys:nyn) = local_2d |
---|
1374 | ! |
---|
1375 | !-- Receive data from all other PEs. |
---|
1376 | DO n = 1, numprocs-1 |
---|
1377 | ! |
---|
1378 | !-- Receive index limits first, then array. |
---|
1379 | !-- Index limits are received in arbitrary order from |
---|
1380 | !-- the PEs. |
---|
1381 | CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & |
---|
1382 | MPI_ANY_SOURCE, 0, comm2d, & |
---|
1383 | status, ierr ) |
---|
1384 | sender = status(MPI_SOURCE) |
---|
1385 | DEALLOCATE( local_2d ) |
---|
1386 | ALLOCATE( local_2d(ind(1):ind(2),ind(3):ind(4)) ) |
---|
1387 | CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & |
---|
1388 | MPI_REAL, sender, 1, comm2d, & |
---|
1389 | status, ierr ) |
---|
1390 | total_2d(ind(1):ind(2),ind(3):ind(4)) = local_2d |
---|
1391 | ENDDO |
---|
1392 | ! |
---|
1393 | !-- Relocate the local array for the next loop increment |
---|
1394 | DEALLOCATE( local_2d ) |
---|
1395 | ALLOCATE( local_2d(nxl:nxr,nys:nyn) ) |
---|
1396 | |
---|
1397 | #if defined( __netcdf ) |
---|
1398 | IF ( two_d ) THEN |
---|
1399 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1400 | id_var_do2d(av,ivar), & |
---|
1401 | total_2d(0:nx,0:ny), & |
---|
1402 | start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & |
---|
1403 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1404 | ELSE |
---|
1405 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1406 | id_var_do2d(av,ivar), & |
---|
1407 | total_2d(0:nx,0:ny), & |
---|
1408 | start = (/ 1, 1, is, do2d_xy_time_count(av) /), & |
---|
1409 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1410 | ENDIF |
---|
1411 | CALL netcdf_handle_error( 'data_output_2d', 54 ) |
---|
1412 | #endif |
---|
1413 | |
---|
1414 | ELSE |
---|
1415 | ! |
---|
1416 | !-- First send the local index limits to PE0 |
---|
1417 | ind(1) = nxl; ind(2) = nxr |
---|
1418 | ind(3) = nys; ind(4) = nyn |
---|
1419 | CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & |
---|
1420 | comm2d, ierr ) |
---|
1421 | ! |
---|
1422 | !-- Send data to PE0 |
---|
1423 | CALL MPI_SEND( local_2d(nxl,nys), ngp, & |
---|
1424 | MPI_REAL, 0, 1, comm2d, ierr ) |
---|
1425 | ENDIF |
---|
1426 | ! |
---|
1427 | !-- A barrier has to be set, because otherwise some PEs may |
---|
1428 | !-- proceed too fast so that PE0 may receive wrong data on |
---|
1429 | !-- tag 0 |
---|
1430 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1431 | ENDIF |
---|
1432 | |
---|
1433 | ENDIF |
---|
1434 | #else |
---|
1435 | #if defined( __netcdf ) |
---|
1436 | IF ( two_d ) THEN |
---|
1437 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1438 | id_var_do2d(av,ivar), & |
---|
1439 | local_2d(nxl:nxr,nys:nyn), & |
---|
1440 | start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & |
---|
1441 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1442 | ELSE |
---|
1443 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1444 | id_var_do2d(av,ivar), & |
---|
1445 | local_2d(nxl:nxr,nys:nyn), & |
---|
1446 | start = (/ 1, 1, is, do2d_xy_time_count(av) /), & |
---|
1447 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1448 | ENDIF |
---|
1449 | CALL netcdf_handle_error( 'data_output_2d', 447 ) |
---|
1450 | #endif |
---|
1451 | #endif |
---|
1452 | |
---|
1453 | ! |
---|
1454 | !-- For 2D-arrays (e.g. u*) only one cross-section is available. |
---|
1455 | !-- Hence exit loop of output levels. |
---|
1456 | IF ( two_d ) THEN |
---|
1457 | IF ( netcdf_data_format < 5 ) two_d = .FALSE. |
---|
1458 | EXIT loop1 |
---|
1459 | ENDIF |
---|
1460 | |
---|
1461 | CASE ( 'xz' ) |
---|
1462 | ! |
---|
1463 | !-- Update the netCDF xz cross section time axis. |
---|
1464 | !-- In case of parallel output, this is only done by PE0 |
---|
1465 | !-- to increase the performance. |
---|
1466 | IF ( time_since_reference_point /= do2d_xz_last_time(av) ) THEN |
---|
1467 | do2d_xz_time_count(av) = do2d_xz_time_count(av) + 1 |
---|
1468 | do2d_xz_last_time(av) = time_since_reference_point |
---|
1469 | IF ( myid == 0 ) THEN |
---|
1470 | IF ( .NOT. data_output_2d_on_each_pe & |
---|
1471 | .OR. netcdf_data_format > 4 ) & |
---|
1472 | THEN |
---|
1473 | #if defined( __netcdf ) |
---|
1474 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1475 | id_var_time_xz(av), & |
---|
1476 | (/ time_since_reference_point /), & |
---|
1477 | start = (/ do2d_xz_time_count(av) /), & |
---|
1478 | count = (/ 1 /) ) |
---|
1479 | CALL netcdf_handle_error( 'data_output_2d', 56 ) |
---|
1480 | #endif |
---|
1481 | ENDIF |
---|
1482 | ENDIF |
---|
1483 | ENDIF |
---|
1484 | |
---|
1485 | ! |
---|
1486 | !-- If required, carry out averaging along y |
---|
1487 | IF ( section(is,s_ind) == -1 ) THEN |
---|
1488 | |
---|
1489 | ALLOCATE( local_2d_l(nxl:nxr,nzb_do:nzt_do) ) |
---|
1490 | local_2d_l = 0.0_wp |
---|
1491 | ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) |
---|
1492 | ! |
---|
1493 | !-- First local averaging on the PE |
---|
1494 | DO k = nzb_do, nzt_do |
---|
1495 | DO j = nys, nyn |
---|
1496 | DO i = nxl, nxr |
---|
1497 | local_2d_l(i,k) = local_2d_l(i,k) + & |
---|
1498 | local_pf(i,j,k) |
---|
1499 | ENDDO |
---|
1500 | ENDDO |
---|
1501 | ENDDO |
---|
1502 | #if defined( __parallel ) |
---|
1503 | ! |
---|
1504 | !-- Now do the averaging over all PEs along y |
---|
1505 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1506 | CALL MPI_ALLREDUCE( local_2d_l(nxl,nzb_do), & |
---|
1507 | local_2d(nxl,nzb_do), ngp, MPI_REAL, & |
---|
1508 | MPI_SUM, comm1dy, ierr ) |
---|
1509 | #else |
---|
1510 | local_2d = local_2d_l |
---|
1511 | #endif |
---|
1512 | local_2d = local_2d / ( ny + 1.0_wp ) |
---|
1513 | |
---|
1514 | DEALLOCATE( local_2d_l ) |
---|
1515 | |
---|
1516 | ELSE |
---|
1517 | ! |
---|
1518 | !-- Just store the respective section on the local array |
---|
1519 | !-- (but only if it is available on this PE!) |
---|
1520 | IF ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) & |
---|
1521 | THEN |
---|
1522 | local_2d = local_pf(:,section(is,s_ind),nzb_do:nzt_do) |
---|
1523 | ENDIF |
---|
1524 | |
---|
1525 | ENDIF |
---|
1526 | |
---|
1527 | #if defined( __parallel ) |
---|
1528 | IF ( netcdf_data_format > 4 ) THEN |
---|
1529 | ! |
---|
1530 | !-- Output in netCDF4/HDF5 format. |
---|
1531 | !-- Output only on those PEs where the respective cross |
---|
1532 | !-- sections reside. Cross sections averaged along y are |
---|
1533 | !-- output on the respective first PE along y (myidy=0). |
---|
1534 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1535 | section(is,s_ind) <= nyn ) .OR. & |
---|
1536 | ( section(is,s_ind) == -1 .AND. myidy == 0 ) ) THEN |
---|
1537 | #if defined( __netcdf ) |
---|
1538 | ! |
---|
1539 | !-- For parallel output, all cross sections are first |
---|
1540 | !-- stored here on a local array and will be written to the |
---|
1541 | !-- output file afterwards to increase the performance. |
---|
1542 | DO i = nxl, nxr |
---|
1543 | DO k = nzb_do, nzt_do |
---|
1544 | local_2d_sections_l(i,is,k) = local_2d(i,k) |
---|
1545 | ENDDO |
---|
1546 | ENDDO |
---|
1547 | #endif |
---|
1548 | ENDIF |
---|
1549 | |
---|
1550 | ELSE |
---|
1551 | |
---|
1552 | IF ( data_output_2d_on_each_pe ) THEN |
---|
1553 | ! |
---|
1554 | !-- Output of partial arrays on each PE. If the cross |
---|
1555 | !-- section does not reside on the PE, output special |
---|
1556 | !-- index values. |
---|
1557 | #if defined( __netcdf ) |
---|
1558 | IF ( myid == 0 ) THEN |
---|
1559 | WRITE ( 22 ) time_since_reference_point, & |
---|
1560 | do2d_xz_time_count(av), av |
---|
1561 | ENDIF |
---|
1562 | #endif |
---|
1563 | DO i = 0, io_blocks-1 |
---|
1564 | IF ( i == io_group ) THEN |
---|
1565 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1566 | section(is,s_ind) <= nyn ) .OR. & |
---|
1567 | ( section(is,s_ind) == -1 .AND. & |
---|
1568 | nys-1 == -1 ) ) & |
---|
1569 | THEN |
---|
1570 | WRITE (22) nxl, nxr, nzb_do, nzt_do, nzb, nzt+1 |
---|
1571 | WRITE (22) local_2d |
---|
1572 | ELSE |
---|
1573 | WRITE (22) -1, -1, -1, -1, -1, -1 |
---|
1574 | ENDIF |
---|
1575 | ENDIF |
---|
1576 | #if defined( __parallel ) |
---|
1577 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1578 | #endif |
---|
1579 | ENDDO |
---|
1580 | |
---|
1581 | ELSE |
---|
1582 | ! |
---|
1583 | !-- PE0 receives partial arrays from all processors of the |
---|
1584 | !-- respective cross section and outputs them. Here a |
---|
1585 | !-- barrier has to be set, because otherwise |
---|
1586 | !-- "-MPI- FATAL: Remote protocol queue full" may occur. |
---|
1587 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1588 | |
---|
1589 | ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) |
---|
1590 | IF ( myid == 0 ) THEN |
---|
1591 | ! |
---|
1592 | !-- Local array can be relocated directly. |
---|
1593 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1594 | section(is,s_ind) <= nyn ) .OR. & |
---|
1595 | ( section(is,s_ind) == -1 .AND. & |
---|
1596 | nys-1 == -1 ) ) THEN |
---|
1597 | total_2d(nxl:nxr,nzb_do:nzt_do) = local_2d |
---|
1598 | ENDIF |
---|
1599 | ! |
---|
1600 | !-- Receive data from all other PEs. |
---|
1601 | DO n = 1, numprocs-1 |
---|
1602 | ! |
---|
1603 | !-- Receive index limits first, then array. |
---|
1604 | !-- Index limits are received in arbitrary order from |
---|
1605 | !-- the PEs. |
---|
1606 | CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & |
---|
1607 | MPI_ANY_SOURCE, 0, comm2d, & |
---|
1608 | status, ierr ) |
---|
1609 | ! |
---|
1610 | !-- Not all PEs have data for XZ-cross-section. |
---|
1611 | IF ( ind(1) /= -9999 ) THEN |
---|
1612 | sender = status(MPI_SOURCE) |
---|
1613 | DEALLOCATE( local_2d ) |
---|
1614 | ALLOCATE( local_2d(ind(1):ind(2), & |
---|
1615 | ind(3):ind(4)) ) |
---|
1616 | CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & |
---|
1617 | MPI_REAL, sender, 1, comm2d, & |
---|
1618 | status, ierr ) |
---|
1619 | total_2d(ind(1):ind(2),ind(3):ind(4)) = & |
---|
1620 | local_2d |
---|
1621 | ENDIF |
---|
1622 | ENDDO |
---|
1623 | ! |
---|
1624 | !-- Relocate the local array for the next loop increment |
---|
1625 | DEALLOCATE( local_2d ) |
---|
1626 | ALLOCATE( local_2d(nxl:nxr,nzb_do:nzt_do) ) |
---|
1627 | |
---|
1628 | #if defined( __netcdf ) |
---|
1629 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1630 | id_var_do2d(av,ivar), & |
---|
1631 | total_2d(0:nx,nzb_do:nzt_do), & |
---|
1632 | start = (/ 1, is, 1, do2d_xz_time_count(av) /), & |
---|
1633 | count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) |
---|
1634 | CALL netcdf_handle_error( 'data_output_2d', 58 ) |
---|
1635 | #endif |
---|
1636 | |
---|
1637 | ELSE |
---|
1638 | ! |
---|
1639 | !-- If the cross section resides on the PE, send the |
---|
1640 | !-- local index limits, otherwise send -9999 to PE0. |
---|
1641 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1642 | section(is,s_ind) <= nyn ) .OR. & |
---|
1643 | ( section(is,s_ind) == -1 .AND. nys-1 == -1 ) ) & |
---|
1644 | THEN |
---|
1645 | ind(1) = nxl; ind(2) = nxr |
---|
1646 | ind(3) = nzb_do; ind(4) = nzt_do |
---|
1647 | ELSE |
---|
1648 | ind(1) = -9999; ind(2) = -9999 |
---|
1649 | ind(3) = -9999; ind(4) = -9999 |
---|
1650 | ENDIF |
---|
1651 | CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & |
---|
1652 | comm2d, ierr ) |
---|
1653 | ! |
---|
1654 | !-- If applicable, send data to PE0. |
---|
1655 | IF ( ind(1) /= -9999 ) THEN |
---|
1656 | CALL MPI_SEND( local_2d(nxl,nzb_do), ngp, & |
---|
1657 | MPI_REAL, 0, 1, comm2d, ierr ) |
---|
1658 | ENDIF |
---|
1659 | ENDIF |
---|
1660 | ! |
---|
1661 | !-- A barrier has to be set, because otherwise some PEs may |
---|
1662 | !-- proceed too fast so that PE0 may receive wrong data on |
---|
1663 | !-- tag 0 |
---|
1664 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1665 | ENDIF |
---|
1666 | |
---|
1667 | ENDIF |
---|
1668 | #else |
---|
1669 | #if defined( __netcdf ) |
---|
1670 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1671 | id_var_do2d(av,ivar), & |
---|
1672 | local_2d(nxl:nxr,nzb_do:nzt_do), & |
---|
1673 | start = (/ 1, is, 1, do2d_xz_time_count(av) /), & |
---|
1674 | count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) |
---|
1675 | CALL netcdf_handle_error( 'data_output_2d', 451 ) |
---|
1676 | #endif |
---|
1677 | #endif |
---|
1678 | |
---|
1679 | CASE ( 'yz' ) |
---|
1680 | ! |
---|
1681 | !-- Update the netCDF yz cross section time axis. |
---|
1682 | !-- In case of parallel output, this is only done by PE0 |
---|
1683 | !-- to increase the performance. |
---|
1684 | IF ( time_since_reference_point /= do2d_yz_last_time(av) ) THEN |
---|
1685 | do2d_yz_time_count(av) = do2d_yz_time_count(av) + 1 |
---|
1686 | do2d_yz_last_time(av) = time_since_reference_point |
---|
1687 | IF ( myid == 0 ) THEN |
---|
1688 | IF ( .NOT. data_output_2d_on_each_pe & |
---|
1689 | .OR. netcdf_data_format > 4 ) & |
---|
1690 | THEN |
---|
1691 | #if defined( __netcdf ) |
---|
1692 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
1693 | id_var_time_yz(av), & |
---|
1694 | (/ time_since_reference_point /), & |
---|
1695 | start = (/ do2d_yz_time_count(av) /), & |
---|
1696 | count = (/ 1 /) ) |
---|
1697 | CALL netcdf_handle_error( 'data_output_2d', 59 ) |
---|
1698 | #endif |
---|
1699 | ENDIF |
---|
1700 | ENDIF |
---|
1701 | ENDIF |
---|
1702 | |
---|
1703 | ! |
---|
1704 | !-- If required, carry out averaging along x |
---|
1705 | IF ( section(is,s_ind) == -1 ) THEN |
---|
1706 | |
---|
1707 | ALLOCATE( local_2d_l(nys:nyn,nzb_do:nzt_do) ) |
---|
1708 | local_2d_l = 0.0_wp |
---|
1709 | ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) |
---|
1710 | ! |
---|
1711 | !-- First local averaging on the PE |
---|
1712 | DO k = nzb_do, nzt_do |
---|
1713 | DO j = nys, nyn |
---|
1714 | DO i = nxl, nxr |
---|
1715 | local_2d_l(j,k) = local_2d_l(j,k) + & |
---|
1716 | local_pf(i,j,k) |
---|
1717 | ENDDO |
---|
1718 | ENDDO |
---|
1719 | ENDDO |
---|
1720 | #if defined( __parallel ) |
---|
1721 | ! |
---|
1722 | !-- Now do the averaging over all PEs along x |
---|
1723 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1724 | CALL MPI_ALLREDUCE( local_2d_l(nys,nzb_do), & |
---|
1725 | local_2d(nys,nzb_do), ngp, MPI_REAL, & |
---|
1726 | MPI_SUM, comm1dx, ierr ) |
---|
1727 | #else |
---|
1728 | local_2d = local_2d_l |
---|
1729 | #endif |
---|
1730 | local_2d = local_2d / ( nx + 1.0_wp ) |
---|
1731 | |
---|
1732 | DEALLOCATE( local_2d_l ) |
---|
1733 | |
---|
1734 | ELSE |
---|
1735 | ! |
---|
1736 | !-- Just store the respective section on the local array |
---|
1737 | !-- (but only if it is available on this PE!) |
---|
1738 | IF ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) & |
---|
1739 | THEN |
---|
1740 | local_2d = local_pf(section(is,s_ind),:,nzb_do:nzt_do) |
---|
1741 | ENDIF |
---|
1742 | |
---|
1743 | ENDIF |
---|
1744 | |
---|
1745 | #if defined( __parallel ) |
---|
1746 | IF ( netcdf_data_format > 4 ) THEN |
---|
1747 | ! |
---|
1748 | !-- Output in netCDF4/HDF5 format. |
---|
1749 | !-- Output only on those PEs where the respective cross |
---|
1750 | !-- sections reside. Cross sections averaged along x are |
---|
1751 | !-- output on the respective first PE along x (myidx=0). |
---|
1752 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1753 | section(is,s_ind) <= nxr ) .OR. & |
---|
1754 | ( section(is,s_ind) == -1 .AND. myidx == 0 ) ) THEN |
---|
1755 | #if defined( __netcdf ) |
---|
1756 | ! |
---|
1757 | !-- For parallel output, all cross sections are first |
---|
1758 | !-- stored here on a local array and will be written to the |
---|
1759 | !-- output file afterwards to increase the performance. |
---|
1760 | DO j = nys, nyn |
---|
1761 | DO k = nzb_do, nzt_do |
---|
1762 | local_2d_sections_l(is,j,k) = local_2d(j,k) |
---|
1763 | ENDDO |
---|
1764 | ENDDO |
---|
1765 | #endif |
---|
1766 | ENDIF |
---|
1767 | |
---|
1768 | ELSE |
---|
1769 | |
---|
1770 | IF ( data_output_2d_on_each_pe ) THEN |
---|
1771 | ! |
---|
1772 | !-- Output of partial arrays on each PE. If the cross |
---|
1773 | !-- section does not reside on the PE, output special |
---|
1774 | !-- index values. |
---|
1775 | #if defined( __netcdf ) |
---|
1776 | IF ( myid == 0 ) THEN |
---|
1777 | WRITE ( 23 ) time_since_reference_point, & |
---|
1778 | do2d_yz_time_count(av), av |
---|
1779 | ENDIF |
---|
1780 | #endif |
---|
1781 | DO i = 0, io_blocks-1 |
---|
1782 | IF ( i == io_group ) THEN |
---|
1783 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1784 | section(is,s_ind) <= nxr ) .OR. & |
---|
1785 | ( section(is,s_ind) == -1 .AND. & |
---|
1786 | nxl-1 == -1 ) ) & |
---|
1787 | THEN |
---|
1788 | WRITE (23) nys, nyn, nzb_do, nzt_do, nzb, nzt+1 |
---|
1789 | WRITE (23) local_2d |
---|
1790 | ELSE |
---|
1791 | WRITE (23) -1, -1, -1, -1, -1, -1 |
---|
1792 | ENDIF |
---|
1793 | ENDIF |
---|
1794 | #if defined( __parallel ) |
---|
1795 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1796 | #endif |
---|
1797 | ENDDO |
---|
1798 | |
---|
1799 | ELSE |
---|
1800 | ! |
---|
1801 | !-- PE0 receives partial arrays from all processors of the |
---|
1802 | !-- respective cross section and outputs them. Here a |
---|
1803 | !-- barrier has to be set, because otherwise |
---|
1804 | !-- "-MPI- FATAL: Remote protocol queue full" may occur. |
---|
1805 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1806 | |
---|
1807 | ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) |
---|
1808 | IF ( myid == 0 ) THEN |
---|
1809 | ! |
---|
1810 | !-- Local array can be relocated directly. |
---|
1811 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1812 | section(is,s_ind) <= nxr ) .OR. & |
---|
1813 | ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) & |
---|
1814 | THEN |
---|
1815 | total_2d(nys:nyn,nzb_do:nzt_do) = local_2d |
---|
1816 | ENDIF |
---|
1817 | ! |
---|
1818 | !-- Receive data from all other PEs. |
---|
1819 | DO n = 1, numprocs-1 |
---|
1820 | ! |
---|
1821 | !-- Receive index limits first, then array. |
---|
1822 | !-- Index limits are received in arbitrary order from |
---|
1823 | !-- the PEs. |
---|
1824 | CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & |
---|
1825 | MPI_ANY_SOURCE, 0, comm2d, & |
---|
1826 | status, ierr ) |
---|
1827 | ! |
---|
1828 | !-- Not all PEs have data for YZ-cross-section. |
---|
1829 | IF ( ind(1) /= -9999 ) THEN |
---|
1830 | sender = status(MPI_SOURCE) |
---|
1831 | DEALLOCATE( local_2d ) |
---|
1832 | ALLOCATE( local_2d(ind(1):ind(2), & |
---|
1833 | ind(3):ind(4)) ) |
---|
1834 | CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & |
---|
1835 | MPI_REAL, sender, 1, comm2d, & |
---|
1836 | status, ierr ) |
---|
1837 | total_2d(ind(1):ind(2),ind(3):ind(4)) = & |
---|
1838 | local_2d |
---|
1839 | ENDIF |
---|
1840 | ENDDO |
---|
1841 | ! |
---|
1842 | !-- Relocate the local array for the next loop increment |
---|
1843 | DEALLOCATE( local_2d ) |
---|
1844 | ALLOCATE( local_2d(nys:nyn,nzb_do:nzt_do) ) |
---|
1845 | |
---|
1846 | #if defined( __netcdf ) |
---|
1847 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
1848 | id_var_do2d(av,ivar), & |
---|
1849 | total_2d(0:ny,nzb_do:nzt_do), & |
---|
1850 | start = (/ is, 1, 1, do2d_yz_time_count(av) /), & |
---|
1851 | count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) |
---|
1852 | CALL netcdf_handle_error( 'data_output_2d', 61 ) |
---|
1853 | #endif |
---|
1854 | |
---|
1855 | ELSE |
---|
1856 | ! |
---|
1857 | !-- If the cross section resides on the PE, send the |
---|
1858 | !-- local index limits, otherwise send -9999 to PE0. |
---|
1859 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1860 | section(is,s_ind) <= nxr ) .OR. & |
---|
1861 | ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) & |
---|
1862 | THEN |
---|
1863 | ind(1) = nys; ind(2) = nyn |
---|
1864 | ind(3) = nzb_do; ind(4) = nzt_do |
---|
1865 | ELSE |
---|
1866 | ind(1) = -9999; ind(2) = -9999 |
---|
1867 | ind(3) = -9999; ind(4) = -9999 |
---|
1868 | ENDIF |
---|
1869 | CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & |
---|
1870 | comm2d, ierr ) |
---|
1871 | ! |
---|
1872 | !-- If applicable, send data to PE0. |
---|
1873 | IF ( ind(1) /= -9999 ) THEN |
---|
1874 | CALL MPI_SEND( local_2d(nys,nzb_do), ngp, & |
---|
1875 | MPI_REAL, 0, 1, comm2d, ierr ) |
---|
1876 | ENDIF |
---|
1877 | ENDIF |
---|
1878 | ! |
---|
1879 | !-- A barrier has to be set, because otherwise some PEs may |
---|
1880 | !-- proceed too fast so that PE0 may receive wrong data on |
---|
1881 | !-- tag 0 |
---|
1882 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1883 | ENDIF |
---|
1884 | |
---|
1885 | ENDIF |
---|
1886 | #else |
---|
1887 | #if defined( __netcdf ) |
---|
1888 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
1889 | id_var_do2d(av,ivar), & |
---|
1890 | local_2d(nys:nyn,nzb_do:nzt_do), & |
---|
1891 | start = (/ is, 1, 1, do2d_xz_time_count(av) /), & |
---|
1892 | count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) |
---|
1893 | CALL netcdf_handle_error( 'data_output_2d', 452 ) |
---|
1894 | #endif |
---|
1895 | #endif |
---|
1896 | |
---|
1897 | END SELECT |
---|
1898 | |
---|
1899 | is = is + 1 |
---|
1900 | ENDDO loop1 |
---|
1901 | |
---|
1902 | ! |
---|
1903 | !-- For parallel output, all data were collected before on a local array |
---|
1904 | !-- and are written now to the netcdf file. This must be done to increase |
---|
1905 | !-- the performance of the parallel output. |
---|
1906 | #if defined( __netcdf ) |
---|
1907 | IF ( netcdf_data_format > 4 ) THEN |
---|
1908 | |
---|
1909 | SELECT CASE ( mode ) |
---|
1910 | |
---|
1911 | CASE ( 'xy' ) |
---|
1912 | IF ( two_d ) THEN |
---|
1913 | nis = 1 |
---|
1914 | two_d = .FALSE. |
---|
1915 | ELSE |
---|
1916 | nis = ns |
---|
1917 | ENDIF |
---|
1918 | ! |
---|
1919 | !-- Do not output redundant ghost point data except for the |
---|
1920 | !-- boundaries of the total domain. |
---|
1921 | ! IF ( nxr == nx .AND. nyn /= ny ) THEN |
---|
1922 | ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1923 | ! id_var_do2d(av,ivar), & |
---|
1924 | ! local_2d_sections(nxl:nxr+1, & |
---|
1925 | ! nys:nyn,1:nis), & |
---|
1926 | ! start = (/ nxl+1, nys+1, 1, & |
---|
1927 | ! do2d_xy_time_count(av) /), & |
---|
1928 | ! count = (/ nxr-nxl+2, & |
---|
1929 | ! nyn-nys+1, nis, 1 & |
---|
1930 | ! /) ) |
---|
1931 | ! ELSEIF ( nxr /= nx .AND. nyn == ny ) THEN |
---|
1932 | ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1933 | ! id_var_do2d(av,ivar), & |
---|
1934 | ! local_2d_sections(nxl:nxr, & |
---|
1935 | ! nys:nyn+1,1:nis), & |
---|
1936 | ! start = (/ nxl+1, nys+1, 1, & |
---|
1937 | ! do2d_xy_time_count(av) /), & |
---|
1938 | ! count = (/ nxr-nxl+1, & |
---|
1939 | ! nyn-nys+2, nis, 1 & |
---|
1940 | ! /) ) |
---|
1941 | ! ELSEIF ( nxr == nx .AND. nyn == ny ) THEN |
---|
1942 | ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1943 | ! id_var_do2d(av,ivar), & |
---|
1944 | ! local_2d_sections(nxl:nxr+1, & |
---|
1945 | ! nys:nyn+1,1:nis), & |
---|
1946 | ! start = (/ nxl+1, nys+1, 1, & |
---|
1947 | ! do2d_xy_time_count(av) /), & |
---|
1948 | ! count = (/ nxr-nxl+2, & |
---|
1949 | ! nyn-nys+2, nis, 1 & |
---|
1950 | ! /) ) |
---|
1951 | ! ELSE |
---|
1952 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1953 | id_var_do2d(av,ivar), & |
---|
1954 | local_2d_sections(nxl:nxr, & |
---|
1955 | nys:nyn,1:nis), & |
---|
1956 | start = (/ nxl+1, nys+1, 1, & |
---|
1957 | do2d_xy_time_count(av) /), & |
---|
1958 | count = (/ nxr-nxl+1, & |
---|
1959 | nyn-nys+1, nis, 1 & |
---|
1960 | /) ) |
---|
1961 | ! ENDIF |
---|
1962 | |
---|
1963 | CALL netcdf_handle_error( 'data_output_2d', 55 ) |
---|
1964 | |
---|
1965 | CASE ( 'xz' ) |
---|
1966 | ! |
---|
1967 | !-- First, all PEs get the information of all cross-sections. |
---|
1968 | !-- Then the data are written to the output file by all PEs |
---|
1969 | !-- while NF90_COLLECTIVE is set in subroutine |
---|
1970 | !-- define_netcdf_header. Although redundant information are |
---|
1971 | !-- written to the output file in that case, the performance |
---|
1972 | !-- is significantly better compared to the case where only |
---|
1973 | !-- the first row of PEs in x-direction (myidx = 0) is given |
---|
1974 | !-- the output while NF90_INDEPENDENT is set. |
---|
1975 | IF ( npey /= 1 ) THEN |
---|
1976 | |
---|
1977 | #if defined( __parallel ) |
---|
1978 | ! |
---|
1979 | !-- Distribute data over all PEs along y |
---|
1980 | ngp = ( nxr-nxl+1 ) * ( nzt_do-nzb_do+1 ) * ns |
---|
1981 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1982 | CALL MPI_ALLREDUCE( local_2d_sections_l(nxl,1,nzb_do), & |
---|
1983 | local_2d_sections(nxl,1,nzb_do), & |
---|
1984 | ngp, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1985 | ierr ) |
---|
1986 | #else |
---|
1987 | local_2d_sections = local_2d_sections_l |
---|
1988 | #endif |
---|
1989 | ENDIF |
---|
1990 | ! |
---|
1991 | !-- Do not output redundant ghost point data except for the |
---|
1992 | !-- boundaries of the total domain. |
---|
1993 | ! IF ( nxr == nx ) THEN |
---|
1994 | ! nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1995 | ! id_var_do2d(av,ivar), & |
---|
1996 | ! local_2d_sections(nxl:nxr+1,1:ns, & |
---|
1997 | ! nzb_do:nzt_do), & |
---|
1998 | ! start = (/ nxl+1, 1, 1, & |
---|
1999 | ! do2d_xz_time_count(av) /), & |
---|
2000 | ! count = (/ nxr-nxl+2, ns, nzt_do-nzb_do+1, & |
---|
2001 | ! 1 /) ) |
---|
2002 | ! ELSE |
---|
2003 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
2004 | id_var_do2d(av,ivar), & |
---|
2005 | local_2d_sections(nxl:nxr,1:ns, & |
---|
2006 | nzb_do:nzt_do), & |
---|
2007 | start = (/ nxl+1, 1, 1, & |
---|
2008 | do2d_xz_time_count(av) /), & |
---|
2009 | count = (/ nxr-nxl+1, ns, nzt_do-nzb_do+1, & |
---|
2010 | 1 /) ) |
---|
2011 | ! ENDIF |
---|
2012 | |
---|
2013 | CALL netcdf_handle_error( 'data_output_2d', 57 ) |
---|
2014 | |
---|
2015 | CASE ( 'yz' ) |
---|
2016 | ! |
---|
2017 | !-- First, all PEs get the information of all cross-sections. |
---|
2018 | !-- Then the data are written to the output file by all PEs |
---|
2019 | !-- while NF90_COLLECTIVE is set in subroutine |
---|
2020 | !-- define_netcdf_header. Although redundant information are |
---|
2021 | !-- written to the output file in that case, the performance |
---|
2022 | !-- is significantly better compared to the case where only |
---|
2023 | !-- the first row of PEs in y-direction (myidy = 0) is given |
---|
2024 | !-- the output while NF90_INDEPENDENT is set. |
---|
2025 | IF ( npex /= 1 ) THEN |
---|
2026 | |
---|
2027 | #if defined( __parallel ) |
---|
2028 | ! |
---|
2029 | !-- Distribute data over all PEs along x |
---|
2030 | ngp = ( nyn-nys+1 ) * ( nzt-nzb + 2 ) * ns |
---|
2031 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2032 | CALL MPI_ALLREDUCE( local_2d_sections_l(1,nys,nzb_do), & |
---|
2033 | local_2d_sections(1,nys,nzb_do), & |
---|
2034 | ngp, MPI_REAL, MPI_SUM, comm1dx, & |
---|
2035 | ierr ) |
---|
2036 | #else |
---|
2037 | local_2d_sections = local_2d_sections_l |
---|
2038 | #endif |
---|
2039 | ENDIF |
---|
2040 | ! |
---|
2041 | !-- Do not output redundant ghost point data except for the |
---|
2042 | !-- boundaries of the total domain. |
---|
2043 | ! IF ( nyn == ny ) THEN |
---|
2044 | ! nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
2045 | ! id_var_do2d(av,ivar), & |
---|
2046 | ! local_2d_sections(1:ns, & |
---|
2047 | ! nys:nyn+1,nzb_do:nzt_do), & |
---|
2048 | ! start = (/ 1, nys+1, 1, & |
---|
2049 | ! do2d_yz_time_count(av) /), & |
---|
2050 | ! count = (/ ns, nyn-nys+2, & |
---|
2051 | ! nzt_do-nzb_do+1, 1 /) ) |
---|
2052 | ! ELSE |
---|
2053 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
2054 | id_var_do2d(av,ivar), & |
---|
2055 | local_2d_sections(1:ns,nys:nyn, & |
---|
2056 | nzb_do:nzt_do), & |
---|
2057 | start = (/ 1, nys+1, 1, & |
---|
2058 | do2d_yz_time_count(av) /), & |
---|
2059 | count = (/ ns, nyn-nys+1, & |
---|
2060 | nzt_do-nzb_do+1, 1 /) ) |
---|
2061 | ! ENDIF |
---|
2062 | |
---|
2063 | CALL netcdf_handle_error( 'data_output_2d', 60 ) |
---|
2064 | |
---|
2065 | CASE DEFAULT |
---|
2066 | message_string = 'unknown cross-section: ' // TRIM( mode ) |
---|
2067 | CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) |
---|
2068 | |
---|
2069 | END SELECT |
---|
2070 | |
---|
2071 | ENDIF |
---|
2072 | #endif |
---|
2073 | ENDIF |
---|
2074 | |
---|
2075 | ivar = ivar + 1 |
---|
2076 | l = MAX( 2, LEN_TRIM( do2d(av,ivar) ) ) |
---|
2077 | do2d_mode = do2d(av,ivar)(l-1:l) |
---|
2078 | |
---|
2079 | ENDDO |
---|
2080 | |
---|
2081 | ! |
---|
2082 | !-- Deallocate temporary arrays. |
---|
2083 | IF ( ALLOCATED( level_z ) ) DEALLOCATE( level_z ) |
---|
2084 | IF ( netcdf_data_format > 4 ) THEN |
---|
2085 | DEALLOCATE( local_pf, local_2d, local_2d_sections ) |
---|
2086 | IF( mode == 'xz' .OR. mode == 'yz' ) DEALLOCATE( local_2d_sections_l ) |
---|
2087 | ENDIF |
---|
2088 | #if defined( __parallel ) |
---|
2089 | IF ( .NOT. data_output_2d_on_each_pe .AND. myid == 0 ) THEN |
---|
2090 | DEALLOCATE( total_2d ) |
---|
2091 | ENDIF |
---|
2092 | #endif |
---|
2093 | |
---|
2094 | ! |
---|
2095 | !-- Close plot output file. |
---|
2096 | file_id = 20 + s_ind |
---|
2097 | |
---|
2098 | IF ( data_output_2d_on_each_pe ) THEN |
---|
2099 | DO i = 0, io_blocks-1 |
---|
2100 | IF ( i == io_group ) THEN |
---|
2101 | CALL close_file( file_id ) |
---|
2102 | ENDIF |
---|
2103 | #if defined( __parallel ) |
---|
2104 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
2105 | #endif |
---|
2106 | ENDDO |
---|
2107 | ELSE |
---|
2108 | IF ( myid == 0 ) CALL close_file( file_id ) |
---|
2109 | ENDIF |
---|
2110 | |
---|
2111 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
2112 | |
---|
2113 | IF ( debug_output_timestep ) CALL debug_message( 'data_output_2d', 'end' ) |
---|
2114 | |
---|
2115 | |
---|
2116 | END SUBROUTINE data_output_2d |
---|