1 | !> @file data_output_2d.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: data_output_2d.f90 4518 2020-05-04 15:44:28Z suehring $ |
---|
27 | ! remove double index |
---|
28 | ! |
---|
29 | ! 4514 2020-04-30 16:29:59Z suehring |
---|
30 | ! Enable output of qsurf and ssurf |
---|
31 | ! |
---|
32 | ! 4500 2020-04-17 10:12:45Z suehring |
---|
33 | ! Unify output conversion of sensible and latent heat flux |
---|
34 | ! |
---|
35 | ! 4457 2020-03-11 14:20:43Z raasch |
---|
36 | ! use statement for exchange horiz added |
---|
37 | ! |
---|
38 | ! 4444 2020-03-05 15:59:50Z raasch |
---|
39 | ! bugfix: cpp-directives for serial mode added |
---|
40 | ! |
---|
41 | ! 4442 2020-03-04 19:21:13Z suehring |
---|
42 | ! Change order of dimension in surface array %frac to allow for better |
---|
43 | ! vectorization. |
---|
44 | ! |
---|
45 | ! 4441 2020-03-04 19:20:35Z suehring |
---|
46 | ! Introduction of wall_flags_total_0, which currently sets bits based on static |
---|
47 | ! topography information used in wall_flags_static_0 |
---|
48 | ! |
---|
49 | ! 4331 2019-12-10 18:25:02Z suehring |
---|
50 | ! Move 2-m potential temperature output to diagnostic_output_quantities |
---|
51 | ! |
---|
52 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
53 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
54 | ! |
---|
55 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
56 | ! Corrected "Former revisions" section |
---|
57 | ! |
---|
58 | ! 4048 2019-06-21 21:00:21Z knoop |
---|
59 | ! Removed turbulence_closure_mod dependency |
---|
60 | ! |
---|
61 | ! 4039 2019-06-18 10:32:41Z suehring |
---|
62 | ! modularize diagnostic output |
---|
63 | ! |
---|
64 | ! 3994 2019-05-22 18:08:09Z suehring |
---|
65 | ! output of turbulence intensity added |
---|
66 | ! |
---|
67 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
68 | ! Introduce alternative switch for debug output during timestepping |
---|
69 | ! |
---|
70 | ! 3943 2019-05-02 09:50:41Z maronga |
---|
71 | ! Added output of qsws for green roofs. |
---|
72 | ! |
---|
73 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
74 | ! Changes related to global restructuring of location messages and introduction |
---|
75 | ! of additional debug messages |
---|
76 | ! |
---|
77 | ! 3766 2019-02-26 16:23:41Z raasch |
---|
78 | ! unused variables removed |
---|
79 | ! |
---|
80 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
81 | ! Bugfix: use time_since_reference_point instead of simulated_time (relevant |
---|
82 | ! when using wall/soil spinup) |
---|
83 | ! |
---|
84 | ! Revision 1.1 1997/08/11 06:24:09 raasch |
---|
85 | ! Initial revision |
---|
86 | ! |
---|
87 | ! |
---|
88 | ! Description: |
---|
89 | ! ------------ |
---|
90 | !> Data output of cross-sections in netCDF format or binary format |
---|
91 | !> to be later converted to NetCDF by helper routine combine_plot_fields. |
---|
92 | !> Attention: The position of the sectional planes is still not always computed |
---|
93 | !> --------- correctly. (zu is used always)! |
---|
94 | !------------------------------------------------------------------------------! |
---|
95 | SUBROUTINE data_output_2d( mode, av ) |
---|
96 | |
---|
97 | |
---|
98 | USE arrays_3d, & |
---|
99 | ONLY: dzw, d_exner, e, heatflux_output_conversion, p, pt, q, ql, ql_c, ql_v, s, tend, u, & |
---|
100 | v, vpt, w, waterflux_output_conversion, zu, zw |
---|
101 | |
---|
102 | USE averaging |
---|
103 | |
---|
104 | USE basic_constants_and_equations_mod, & |
---|
105 | ONLY: lv_d_cp |
---|
106 | |
---|
107 | USE bulk_cloud_model_mod, & |
---|
108 | ONLY: bulk_cloud_model |
---|
109 | |
---|
110 | USE control_parameters, & |
---|
111 | ONLY: data_output_2d_on_each_pe, & |
---|
112 | data_output_xy, data_output_xz, data_output_yz, & |
---|
113 | debug_output_timestep, & |
---|
114 | do2d, & |
---|
115 | do2d_xy_last_time, do2d_xy_time_count, & |
---|
116 | do2d_xz_last_time, do2d_xz_time_count, & |
---|
117 | do2d_yz_last_time, do2d_yz_time_count, & |
---|
118 | ibc_uv_b, io_blocks, io_group, message_string, & |
---|
119 | ntdim_2d_xy, ntdim_2d_xz, ntdim_2d_yz, & |
---|
120 | psolver, section, & |
---|
121 | time_since_reference_point |
---|
122 | |
---|
123 | USE cpulog, & |
---|
124 | ONLY: cpu_log, log_point |
---|
125 | |
---|
126 | USE exchange_horiz_mod, & |
---|
127 | ONLY: exchange_horiz |
---|
128 | |
---|
129 | USE indices, & |
---|
130 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
131 | nzb, nzt, & |
---|
132 | topo_top_ind, & |
---|
133 | wall_flags_total_0 |
---|
134 | |
---|
135 | USE kinds |
---|
136 | |
---|
137 | USE land_surface_model_mod, & |
---|
138 | ONLY: zs |
---|
139 | |
---|
140 | USE module_interface, & |
---|
141 | ONLY: module_interface_data_output_2d |
---|
142 | |
---|
143 | #if defined( __netcdf ) |
---|
144 | USE NETCDF |
---|
145 | #endif |
---|
146 | |
---|
147 | USE netcdf_interface, & |
---|
148 | ONLY: fill_value, id_set_xy, id_set_xz, id_set_yz, id_var_do2d, & |
---|
149 | id_var_time_xy, id_var_time_xz, id_var_time_yz, nc_stat, & |
---|
150 | netcdf_data_format, netcdf_handle_error |
---|
151 | |
---|
152 | USE particle_attributes, & |
---|
153 | ONLY: grid_particles, number_of_particles, particle_advection_start, & |
---|
154 | particles, prt_count |
---|
155 | |
---|
156 | USE pegrid |
---|
157 | |
---|
158 | USE surface_mod, & |
---|
159 | ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_def_h, & |
---|
160 | surf_lsm_h, surf_usm_h |
---|
161 | |
---|
162 | |
---|
163 | IMPLICIT NONE |
---|
164 | |
---|
165 | CHARACTER (LEN=2) :: do2d_mode !< output mode of variable ('xy', 'xz', 'yz') |
---|
166 | CHARACTER (LEN=2) :: mode !< mode with which the routine is called ('xy', 'xz', 'yz') |
---|
167 | CHARACTER (LEN=4) :: grid !< string defining the vertical grid |
---|
168 | |
---|
169 | INTEGER(iwp) :: av !< flag for (non-)average output |
---|
170 | INTEGER(iwp) :: ngp !< number of grid points of an output slice |
---|
171 | INTEGER(iwp) :: file_id !< id of output files |
---|
172 | INTEGER(iwp) :: flag_nr !< number of masking flag |
---|
173 | INTEGER(iwp) :: i !< loop index |
---|
174 | INTEGER(iwp) :: is !< slice index |
---|
175 | INTEGER(iwp) :: ivar !< variable index |
---|
176 | INTEGER(iwp) :: j !< loop index |
---|
177 | INTEGER(iwp) :: k !< loop index |
---|
178 | INTEGER(iwp) :: l !< loop index |
---|
179 | INTEGER(iwp) :: layer_xy !< vertical index of a xy slice in array 'local_pf' |
---|
180 | INTEGER(iwp) :: m !< loop index |
---|
181 | INTEGER(iwp) :: n !< loop index |
---|
182 | INTEGER(iwp) :: nis !< number of vertical slices to be written via parallel NetCDF output |
---|
183 | INTEGER(iwp) :: ns !< number of output slices |
---|
184 | INTEGER(iwp) :: nzb_do !< lower limit of the data field (usually nzb) |
---|
185 | INTEGER(iwp) :: nzt_do !< upper limit of the data field (usually nzt+1) |
---|
186 | INTEGER(iwp) :: s_ind !< index of slice types (xy=1, xz=2, yz=3) |
---|
187 | #if defined( __parallel ) |
---|
188 | INTEGER(iwp) :: iis !< vertical index of a xy slice in array 'local_2d_sections' |
---|
189 | INTEGER(iwp) :: sender !< PE id of sending PE |
---|
190 | INTEGER(iwp) :: ind(4) !< index limits (lower/upper bounds) of array 'local_2d' |
---|
191 | #endif |
---|
192 | |
---|
193 | LOGICAL :: found !< true if output variable was found |
---|
194 | LOGICAL :: resorted !< true if variable is resorted |
---|
195 | LOGICAL :: two_d !< true if variable is only two dimensional |
---|
196 | |
---|
197 | REAL(wp) :: mean_r !< mean particle radius |
---|
198 | REAL(wp) :: s_r2 !< sum( particle-radius**2 ) |
---|
199 | REAL(wp) :: s_r3 !< sum( particle-radius**3 ) |
---|
200 | |
---|
201 | REAL(wp), DIMENSION(:), ALLOCATABLE :: level_z !< z levels for output array |
---|
202 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d !< local 2-dimensional array containing output values |
---|
203 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: local_2d_l !< local 2-dimensional array containing output values |
---|
204 | |
---|
205 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_pf !< output array |
---|
206 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections !< local array containing values at all slices |
---|
207 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: local_2d_sections_l !< local array containing values at all slices |
---|
208 | |
---|
209 | #if defined( __parallel ) |
---|
210 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: total_2d !< same as local_2d |
---|
211 | #endif |
---|
212 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to array which shall be output |
---|
213 | |
---|
214 | |
---|
215 | IF ( debug_output_timestep ) CALL debug_message( 'data_output_2d', 'start' ) |
---|
216 | ! |
---|
217 | !-- Immediate return, if no output is requested (no respective sections |
---|
218 | !-- found in parameter data_output) |
---|
219 | IF ( mode == 'xy' .AND. .NOT. data_output_xy(av) ) RETURN |
---|
220 | IF ( mode == 'xz' .AND. .NOT. data_output_xz(av) ) RETURN |
---|
221 | IF ( mode == 'yz' .AND. .NOT. data_output_yz(av) ) RETURN |
---|
222 | |
---|
223 | CALL cpu_log (log_point(3),'data_output_2d','start') |
---|
224 | |
---|
225 | two_d = .FALSE. ! local variable to distinguish between output of pure 2D |
---|
226 | ! arrays and cross-sections of 3D arrays. |
---|
227 | |
---|
228 | ! |
---|
229 | !-- Depending on the orientation of the cross-section, the respective output |
---|
230 | !-- files have to be opened. |
---|
231 | SELECT CASE ( mode ) |
---|
232 | |
---|
233 | CASE ( 'xy' ) |
---|
234 | s_ind = 1 |
---|
235 | ALLOCATE( level_z(nzb:nzt+1), local_2d(nxl:nxr,nys:nyn) ) |
---|
236 | |
---|
237 | IF ( netcdf_data_format > 4 ) THEN |
---|
238 | ns = 1 |
---|
239 | DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) |
---|
240 | ns = ns + 1 |
---|
241 | ENDDO |
---|
242 | ns = ns - 1 |
---|
243 | ALLOCATE( local_2d_sections(nxl:nxr,nys:nyn,1:ns) ) |
---|
244 | local_2d_sections = 0.0_wp |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ! |
---|
248 | !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only |
---|
249 | IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN |
---|
250 | CALL check_open( 101+av*10 ) |
---|
251 | ENDIF |
---|
252 | IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN |
---|
253 | CALL check_open( 21 ) |
---|
254 | ELSE |
---|
255 | IF ( myid == 0 ) THEN |
---|
256 | #if defined( __parallel ) |
---|
257 | ALLOCATE( total_2d(0:nx,0:ny) ) |
---|
258 | #endif |
---|
259 | ENDIF |
---|
260 | ENDIF |
---|
261 | |
---|
262 | CASE ( 'xz' ) |
---|
263 | s_ind = 2 |
---|
264 | ALLOCATE( local_2d(nxl:nxr,nzb:nzt+1) ) |
---|
265 | |
---|
266 | IF ( netcdf_data_format > 4 ) THEN |
---|
267 | ns = 1 |
---|
268 | DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) |
---|
269 | ns = ns + 1 |
---|
270 | ENDDO |
---|
271 | ns = ns - 1 |
---|
272 | ALLOCATE( local_2d_sections(nxl:nxr,1:ns,nzb:nzt+1) ) |
---|
273 | ALLOCATE( local_2d_sections_l(nxl:nxr,1:ns,nzb:nzt+1) ) |
---|
274 | local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp |
---|
275 | ENDIF |
---|
276 | |
---|
277 | ! |
---|
278 | !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only |
---|
279 | IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN |
---|
280 | CALL check_open( 102+av*10 ) |
---|
281 | ENDIF |
---|
282 | |
---|
283 | IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN |
---|
284 | CALL check_open( 22 ) |
---|
285 | ELSE |
---|
286 | IF ( myid == 0 ) THEN |
---|
287 | #if defined( __parallel ) |
---|
288 | ALLOCATE( total_2d(0:nx,nzb:nzt+1) ) |
---|
289 | #endif |
---|
290 | ENDIF |
---|
291 | ENDIF |
---|
292 | |
---|
293 | CASE ( 'yz' ) |
---|
294 | s_ind = 3 |
---|
295 | ALLOCATE( local_2d(nys:nyn,nzb:nzt+1) ) |
---|
296 | |
---|
297 | IF ( netcdf_data_format > 4 ) THEN |
---|
298 | ns = 1 |
---|
299 | DO WHILE ( section(ns,s_ind) /= -9999 .AND. ns <= 100 ) |
---|
300 | ns = ns + 1 |
---|
301 | ENDDO |
---|
302 | ns = ns - 1 |
---|
303 | ALLOCATE( local_2d_sections(1:ns,nys:nyn,nzb:nzt+1) ) |
---|
304 | ALLOCATE( local_2d_sections_l(1:ns,nys:nyn,nzb:nzt+1) ) |
---|
305 | local_2d_sections = 0.0_wp; local_2d_sections_l = 0.0_wp |
---|
306 | ENDIF |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Parallel netCDF4/HDF5 output is done on all PEs, all other on PE0 only |
---|
310 | IF ( myid == 0 .OR. netcdf_data_format > 4 ) THEN |
---|
311 | CALL check_open( 103+av*10 ) |
---|
312 | ENDIF |
---|
313 | |
---|
314 | IF ( data_output_2d_on_each_pe .AND. netcdf_data_format < 5 ) THEN |
---|
315 | CALL check_open( 23 ) |
---|
316 | ELSE |
---|
317 | IF ( myid == 0 ) THEN |
---|
318 | #if defined( __parallel ) |
---|
319 | ALLOCATE( total_2d(0:ny,nzb:nzt+1) ) |
---|
320 | #endif |
---|
321 | ENDIF |
---|
322 | ENDIF |
---|
323 | |
---|
324 | CASE DEFAULT |
---|
325 | message_string = 'unknown cross-section: ' // TRIM( mode ) |
---|
326 | CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) |
---|
327 | |
---|
328 | END SELECT |
---|
329 | |
---|
330 | ! |
---|
331 | !-- For parallel netcdf output the time axis must be limited. Return, if this |
---|
332 | !-- limit is exceeded. This could be the case, if the simulated time exceeds |
---|
333 | !-- the given end time by the length of the given output interval. |
---|
334 | IF ( netcdf_data_format > 4 ) THEN |
---|
335 | IF ( mode == 'xy' .AND. do2d_xy_time_count(av) + 1 > & |
---|
336 | ntdim_2d_xy(av) ) THEN |
---|
337 | WRITE ( message_string, * ) 'Output of xy cross-sections is not ', & |
---|
338 | 'given at t=', time_since_reference_point, 's because the', & |
---|
339 | ' maximum number of output time levels is exceeded.' |
---|
340 | CALL message( 'data_output_2d', 'PA0384', 0, 1, 0, 6, 0 ) |
---|
341 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
342 | RETURN |
---|
343 | ENDIF |
---|
344 | IF ( mode == 'xz' .AND. do2d_xz_time_count(av) + 1 > & |
---|
345 | ntdim_2d_xz(av) ) THEN |
---|
346 | WRITE ( message_string, * ) 'Output of xz cross-sections is not ', & |
---|
347 | 'given at t=', time_since_reference_point, 's because the', & |
---|
348 | ' maximum number of output time levels is exceeded.' |
---|
349 | CALL message( 'data_output_2d', 'PA0385', 0, 1, 0, 6, 0 ) |
---|
350 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
351 | RETURN |
---|
352 | ENDIF |
---|
353 | IF ( mode == 'yz' .AND. do2d_yz_time_count(av) + 1 > & |
---|
354 | ntdim_2d_yz(av) ) THEN |
---|
355 | WRITE ( message_string, * ) 'Output of yz cross-sections is not ', & |
---|
356 | 'given at t=', time_since_reference_point, 's because the', & |
---|
357 | ' maximum number of output time levels is exceeded.' |
---|
358 | CALL message( 'data_output_2d', 'PA0386', 0, 1, 0, 6, 0 ) |
---|
359 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
360 | RETURN |
---|
361 | ENDIF |
---|
362 | ENDIF |
---|
363 | |
---|
364 | ! |
---|
365 | !-- Allocate a temporary array for resorting (kji -> ijk). |
---|
366 | ALLOCATE( local_pf(nxl:nxr,nys:nyn,nzb:nzt+1) ) |
---|
367 | local_pf = 0.0 |
---|
368 | |
---|
369 | ! |
---|
370 | !-- Loop of all variables to be written. |
---|
371 | !-- Output dimensions chosen |
---|
372 | ivar = 1 |
---|
373 | l = MAX( 2, LEN_TRIM( do2d(av,ivar) ) ) |
---|
374 | do2d_mode = do2d(av,ivar)(l-1:l) |
---|
375 | |
---|
376 | DO WHILE ( do2d(av,ivar)(1:1) /= ' ' ) |
---|
377 | |
---|
378 | IF ( do2d_mode == mode ) THEN |
---|
379 | ! |
---|
380 | !-- Set flag to steer output of radiation, land-surface, or user-defined |
---|
381 | !-- quantities |
---|
382 | found = .FALSE. |
---|
383 | |
---|
384 | nzb_do = nzb |
---|
385 | nzt_do = nzt+1 |
---|
386 | ! |
---|
387 | !-- Before each output, set array local_pf to fill value |
---|
388 | local_pf = fill_value |
---|
389 | ! |
---|
390 | !-- Set masking flag for topography for not resorted arrays |
---|
391 | flag_nr = 0 |
---|
392 | |
---|
393 | ! |
---|
394 | !-- Store the array chosen on the temporary array. |
---|
395 | resorted = .FALSE. |
---|
396 | SELECT CASE ( TRIM( do2d(av,ivar) ) ) |
---|
397 | CASE ( 'e_xy', 'e_xz', 'e_yz' ) |
---|
398 | IF ( av == 0 ) THEN |
---|
399 | to_be_resorted => e |
---|
400 | ELSE |
---|
401 | IF ( .NOT. ALLOCATED( e_av ) ) THEN |
---|
402 | ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
403 | e_av = REAL( fill_value, KIND = wp ) |
---|
404 | ENDIF |
---|
405 | to_be_resorted => e_av |
---|
406 | ENDIF |
---|
407 | IF ( mode == 'xy' ) level_z = zu |
---|
408 | |
---|
409 | CASE ( 'thetal_xy', 'thetal_xz', 'thetal_yz' ) |
---|
410 | IF ( av == 0 ) THEN |
---|
411 | to_be_resorted => pt |
---|
412 | ELSE |
---|
413 | IF ( .NOT. ALLOCATED( lpt_av ) ) THEN |
---|
414 | ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
415 | lpt_av = REAL( fill_value, KIND = wp ) |
---|
416 | ENDIF |
---|
417 | to_be_resorted => lpt_av |
---|
418 | ENDIF |
---|
419 | IF ( mode == 'xy' ) level_z = zu |
---|
420 | |
---|
421 | CASE ( 'lwp*_xy' ) ! 2d-array |
---|
422 | IF ( av == 0 ) THEN |
---|
423 | DO i = nxl, nxr |
---|
424 | DO j = nys, nyn |
---|
425 | local_pf(i,j,nzb+1) = SUM( ql(nzb:nzt,j,i) * & |
---|
426 | dzw(1:nzt+1) ) |
---|
427 | ENDDO |
---|
428 | ENDDO |
---|
429 | ELSE |
---|
430 | IF ( .NOT. ALLOCATED( lwp_av ) ) THEN |
---|
431 | ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) |
---|
432 | lwp_av = REAL( fill_value, KIND = wp ) |
---|
433 | ENDIF |
---|
434 | DO i = nxl, nxr |
---|
435 | DO j = nys, nyn |
---|
436 | local_pf(i,j,nzb+1) = lwp_av(j,i) |
---|
437 | ENDDO |
---|
438 | ENDDO |
---|
439 | ENDIF |
---|
440 | resorted = .TRUE. |
---|
441 | two_d = .TRUE. |
---|
442 | level_z(nzb+1) = zu(nzb+1) |
---|
443 | |
---|
444 | CASE ( 'ghf*_xy' ) ! 2d-array |
---|
445 | IF ( av == 0 ) THEN |
---|
446 | DO m = 1, surf_lsm_h%ns |
---|
447 | i = surf_lsm_h%i(m) |
---|
448 | j = surf_lsm_h%j(m) |
---|
449 | local_pf(i,j,nzb+1) = surf_lsm_h%ghf(m) |
---|
450 | ENDDO |
---|
451 | DO m = 1, surf_usm_h%ns |
---|
452 | i = surf_usm_h%i(m) |
---|
453 | j = surf_usm_h%j(m) |
---|
454 | local_pf(i,j,nzb+1) = surf_usm_h%frac(m,ind_veg_wall) * & |
---|
455 | surf_usm_h%wghf_eb(m) + & |
---|
456 | surf_usm_h%frac(m,ind_pav_green) * & |
---|
457 | surf_usm_h%wghf_eb_green(m) + & |
---|
458 | surf_usm_h%frac(m,ind_wat_win) * & |
---|
459 | surf_usm_h%wghf_eb_window(m) |
---|
460 | ENDDO |
---|
461 | ELSE |
---|
462 | IF ( .NOT. ALLOCATED( ghf_av ) ) THEN |
---|
463 | ALLOCATE( ghf_av(nysg:nyng,nxlg:nxrg) ) |
---|
464 | ghf_av = REAL( fill_value, KIND = wp ) |
---|
465 | ENDIF |
---|
466 | DO i = nxl, nxr |
---|
467 | DO j = nys, nyn |
---|
468 | local_pf(i,j,nzb+1) = ghf_av(j,i) |
---|
469 | ENDDO |
---|
470 | ENDDO |
---|
471 | ENDIF |
---|
472 | |
---|
473 | resorted = .TRUE. |
---|
474 | two_d = .TRUE. |
---|
475 | level_z(nzb+1) = zu(nzb+1) |
---|
476 | |
---|
477 | CASE ( 'ol*_xy' ) ! 2d-array |
---|
478 | IF ( av == 0 ) THEN |
---|
479 | DO m = 1, surf_def_h(0)%ns |
---|
480 | i = surf_def_h(0)%i(m) |
---|
481 | j = surf_def_h(0)%j(m) |
---|
482 | local_pf(i,j,nzb+1) = surf_def_h(0)%ol(m) |
---|
483 | ENDDO |
---|
484 | DO m = 1, surf_lsm_h%ns |
---|
485 | i = surf_lsm_h%i(m) |
---|
486 | j = surf_lsm_h%j(m) |
---|
487 | local_pf(i,j,nzb+1) = surf_lsm_h%ol(m) |
---|
488 | ENDDO |
---|
489 | DO m = 1, surf_usm_h%ns |
---|
490 | i = surf_usm_h%i(m) |
---|
491 | j = surf_usm_h%j(m) |
---|
492 | local_pf(i,j,nzb+1) = surf_usm_h%ol(m) |
---|
493 | ENDDO |
---|
494 | ELSE |
---|
495 | IF ( .NOT. ALLOCATED( ol_av ) ) THEN |
---|
496 | ALLOCATE( ol_av(nysg:nyng,nxlg:nxrg) ) |
---|
497 | ol_av = REAL( fill_value, KIND = wp ) |
---|
498 | ENDIF |
---|
499 | DO i = nxl, nxr |
---|
500 | DO j = nys, nyn |
---|
501 | local_pf(i,j,nzb+1) = ol_av(j,i) |
---|
502 | ENDDO |
---|
503 | ENDDO |
---|
504 | ENDIF |
---|
505 | resorted = .TRUE. |
---|
506 | two_d = .TRUE. |
---|
507 | level_z(nzb+1) = zu(nzb+1) |
---|
508 | |
---|
509 | CASE ( 'p_xy', 'p_xz', 'p_yz' ) |
---|
510 | IF ( av == 0 ) THEN |
---|
511 | IF ( psolver /= 'sor' ) CALL exchange_horiz( p, nbgp ) |
---|
512 | to_be_resorted => p |
---|
513 | ELSE |
---|
514 | IF ( .NOT. ALLOCATED( p_av ) ) THEN |
---|
515 | ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
516 | p_av = REAL( fill_value, KIND = wp ) |
---|
517 | ENDIF |
---|
518 | IF ( psolver /= 'sor' ) CALL exchange_horiz( p_av, nbgp ) |
---|
519 | to_be_resorted => p_av |
---|
520 | ENDIF |
---|
521 | IF ( mode == 'xy' ) level_z = zu |
---|
522 | |
---|
523 | CASE ( 'pc_xy', 'pc_xz', 'pc_yz' ) ! particle concentration |
---|
524 | IF ( av == 0 ) THEN |
---|
525 | IF ( time_since_reference_point >= particle_advection_start ) THEN |
---|
526 | tend = prt_count |
---|
527 | ! CALL exchange_horiz( tend, nbgp ) |
---|
528 | ELSE |
---|
529 | tend = 0.0_wp |
---|
530 | ENDIF |
---|
531 | DO i = nxl, nxr |
---|
532 | DO j = nys, nyn |
---|
533 | DO k = nzb, nzt+1 |
---|
534 | local_pf(i,j,k) = tend(k,j,i) |
---|
535 | ENDDO |
---|
536 | ENDDO |
---|
537 | ENDDO |
---|
538 | resorted = .TRUE. |
---|
539 | ELSE |
---|
540 | IF ( .NOT. ALLOCATED( pc_av ) ) THEN |
---|
541 | ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
542 | pc_av = REAL( fill_value, KIND = wp ) |
---|
543 | ENDIF |
---|
544 | ! CALL exchange_horiz( pc_av, nbgp ) |
---|
545 | to_be_resorted => pc_av |
---|
546 | ENDIF |
---|
547 | |
---|
548 | CASE ( 'pr_xy', 'pr_xz', 'pr_yz' ) ! mean particle radius (effective radius) |
---|
549 | IF ( av == 0 ) THEN |
---|
550 | IF ( time_since_reference_point >= particle_advection_start ) THEN |
---|
551 | DO i = nxl, nxr |
---|
552 | DO j = nys, nyn |
---|
553 | DO k = nzb, nzt+1 |
---|
554 | number_of_particles = prt_count(k,j,i) |
---|
555 | IF (number_of_particles <= 0) CYCLE |
---|
556 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
557 | s_r2 = 0.0_wp |
---|
558 | s_r3 = 0.0_wp |
---|
559 | DO n = 1, number_of_particles |
---|
560 | IF ( particles(n)%particle_mask ) THEN |
---|
561 | s_r2 = s_r2 + particles(n)%radius**2 * & |
---|
562 | particles(n)%weight_factor |
---|
563 | s_r3 = s_r3 + particles(n)%radius**3 * & |
---|
564 | particles(n)%weight_factor |
---|
565 | ENDIF |
---|
566 | ENDDO |
---|
567 | IF ( s_r2 > 0.0_wp ) THEN |
---|
568 | mean_r = s_r3 / s_r2 |
---|
569 | ELSE |
---|
570 | mean_r = 0.0_wp |
---|
571 | ENDIF |
---|
572 | tend(k,j,i) = mean_r |
---|
573 | ENDDO |
---|
574 | ENDDO |
---|
575 | ENDDO |
---|
576 | ! CALL exchange_horiz( tend, nbgp ) |
---|
577 | ELSE |
---|
578 | tend = 0.0_wp |
---|
579 | ENDIF |
---|
580 | DO i = nxl, nxr |
---|
581 | DO j = nys, nyn |
---|
582 | DO k = nzb, nzt+1 |
---|
583 | local_pf(i,j,k) = tend(k,j,i) |
---|
584 | ENDDO |
---|
585 | ENDDO |
---|
586 | ENDDO |
---|
587 | resorted = .TRUE. |
---|
588 | ELSE |
---|
589 | IF ( .NOT. ALLOCATED( pr_av ) ) THEN |
---|
590 | ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
591 | pr_av = REAL( fill_value, KIND = wp ) |
---|
592 | ENDIF |
---|
593 | ! CALL exchange_horiz( pr_av, nbgp ) |
---|
594 | to_be_resorted => pr_av |
---|
595 | ENDIF |
---|
596 | |
---|
597 | CASE ( 'theta_xy', 'theta_xz', 'theta_yz' ) |
---|
598 | IF ( av == 0 ) THEN |
---|
599 | IF ( .NOT. bulk_cloud_model ) THEN |
---|
600 | to_be_resorted => pt |
---|
601 | ELSE |
---|
602 | DO i = nxl, nxr |
---|
603 | DO j = nys, nyn |
---|
604 | DO k = nzb, nzt+1 |
---|
605 | local_pf(i,j,k) = pt(k,j,i) + lv_d_cp * & |
---|
606 | d_exner(k) * & |
---|
607 | ql(k,j,i) |
---|
608 | ENDDO |
---|
609 | ENDDO |
---|
610 | ENDDO |
---|
611 | resorted = .TRUE. |
---|
612 | ENDIF |
---|
613 | ELSE |
---|
614 | IF ( .NOT. ALLOCATED( pt_av ) ) THEN |
---|
615 | ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
616 | pt_av = REAL( fill_value, KIND = wp ) |
---|
617 | ENDIF |
---|
618 | to_be_resorted => pt_av |
---|
619 | ENDIF |
---|
620 | IF ( mode == 'xy' ) level_z = zu |
---|
621 | |
---|
622 | CASE ( 'q_xy', 'q_xz', 'q_yz' ) |
---|
623 | IF ( av == 0 ) THEN |
---|
624 | to_be_resorted => q |
---|
625 | ELSE |
---|
626 | IF ( .NOT. ALLOCATED( q_av ) ) THEN |
---|
627 | ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
628 | q_av = REAL( fill_value, KIND = wp ) |
---|
629 | ENDIF |
---|
630 | to_be_resorted => q_av |
---|
631 | ENDIF |
---|
632 | IF ( mode == 'xy' ) level_z = zu |
---|
633 | |
---|
634 | CASE ( 'ql_xy', 'ql_xz', 'ql_yz' ) |
---|
635 | IF ( av == 0 ) THEN |
---|
636 | to_be_resorted => ql |
---|
637 | ELSE |
---|
638 | IF ( .NOT. ALLOCATED( ql_av ) ) THEN |
---|
639 | ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
640 | ql_av = REAL( fill_value, KIND = wp ) |
---|
641 | ENDIF |
---|
642 | to_be_resorted => ql_av |
---|
643 | ENDIF |
---|
644 | IF ( mode == 'xy' ) level_z = zu |
---|
645 | |
---|
646 | CASE ( 'ql_c_xy', 'ql_c_xz', 'ql_c_yz' ) |
---|
647 | IF ( av == 0 ) THEN |
---|
648 | to_be_resorted => ql_c |
---|
649 | ELSE |
---|
650 | IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN |
---|
651 | ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
652 | ql_c_av = REAL( fill_value, KIND = wp ) |
---|
653 | ENDIF |
---|
654 | to_be_resorted => ql_c_av |
---|
655 | ENDIF |
---|
656 | IF ( mode == 'xy' ) level_z = zu |
---|
657 | |
---|
658 | CASE ( 'ql_v_xy', 'ql_v_xz', 'ql_v_yz' ) |
---|
659 | IF ( av == 0 ) THEN |
---|
660 | to_be_resorted => ql_v |
---|
661 | ELSE |
---|
662 | IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN |
---|
663 | ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
664 | ql_v_av = REAL( fill_value, KIND = wp ) |
---|
665 | ENDIF |
---|
666 | to_be_resorted => ql_v_av |
---|
667 | ENDIF |
---|
668 | IF ( mode == 'xy' ) level_z = zu |
---|
669 | |
---|
670 | CASE ( 'ql_vp_xy', 'ql_vp_xz', 'ql_vp_yz' ) |
---|
671 | IF ( av == 0 ) THEN |
---|
672 | IF ( time_since_reference_point >= particle_advection_start ) THEN |
---|
673 | DO i = nxl, nxr |
---|
674 | DO j = nys, nyn |
---|
675 | DO k = nzb, nzt+1 |
---|
676 | number_of_particles = prt_count(k,j,i) |
---|
677 | IF (number_of_particles <= 0) CYCLE |
---|
678 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
679 | DO n = 1, number_of_particles |
---|
680 | IF ( particles(n)%particle_mask ) THEN |
---|
681 | tend(k,j,i) = tend(k,j,i) + & |
---|
682 | particles(n)%weight_factor / & |
---|
683 | prt_count(k,j,i) |
---|
684 | ENDIF |
---|
685 | ENDDO |
---|
686 | ENDDO |
---|
687 | ENDDO |
---|
688 | ENDDO |
---|
689 | ! CALL exchange_horiz( tend, nbgp ) |
---|
690 | ELSE |
---|
691 | tend = 0.0_wp |
---|
692 | ENDIF |
---|
693 | DO i = nxl, nxr |
---|
694 | DO j = nys, nyn |
---|
695 | DO k = nzb, nzt+1 |
---|
696 | local_pf(i,j,k) = tend(k,j,i) |
---|
697 | ENDDO |
---|
698 | ENDDO |
---|
699 | ENDDO |
---|
700 | resorted = .TRUE. |
---|
701 | ELSE |
---|
702 | IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN |
---|
703 | ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
704 | ql_vp_av = REAL( fill_value, KIND = wp ) |
---|
705 | ENDIF |
---|
706 | ! CALL exchange_horiz( ql_vp_av, nbgp ) |
---|
707 | to_be_resorted => ql_vp_av |
---|
708 | ENDIF |
---|
709 | IF ( mode == 'xy' ) level_z = zu |
---|
710 | |
---|
711 | CASE ( 'qsurf*_xy' ) ! 2d-array |
---|
712 | IF ( av == 0 ) THEN |
---|
713 | DO m = 1, surf_def_h(0)%ns |
---|
714 | i = surf_def_h(0)%i(m) |
---|
715 | j = surf_def_h(0)%j(m) |
---|
716 | local_pf(i,j,nzb+1) = surf_def_h(0)%q_surface(m) |
---|
717 | ENDDO |
---|
718 | |
---|
719 | DO m = 1, surf_lsm_h%ns |
---|
720 | i = surf_lsm_h%i(m) |
---|
721 | j = surf_lsm_h%j(m) |
---|
722 | local_pf(i,j,nzb+1) = surf_lsm_h%q_surface(m) |
---|
723 | ENDDO |
---|
724 | |
---|
725 | DO m = 1, surf_usm_h%ns |
---|
726 | i = surf_usm_h%i(m) |
---|
727 | j = surf_usm_h%j(m) |
---|
728 | local_pf(i,j,nzb+1) = surf_usm_h%q_surface(m) |
---|
729 | ENDDO |
---|
730 | |
---|
731 | ELSE |
---|
732 | IF ( .NOT. ALLOCATED( qsurf_av ) ) THEN |
---|
733 | ALLOCATE( qsurf_av(nysg:nyng,nxlg:nxrg) ) |
---|
734 | qsurf_av = REAL( fill_value, KIND = wp ) |
---|
735 | ENDIF |
---|
736 | DO i = nxl, nxr |
---|
737 | DO j = nys, nyn |
---|
738 | local_pf(i,j,nzb+1) = qsurf_av(j,i) |
---|
739 | ENDDO |
---|
740 | ENDDO |
---|
741 | ENDIF |
---|
742 | resorted = .TRUE. |
---|
743 | two_d = .TRUE. |
---|
744 | level_z(nzb+1) = zu(nzb+1) |
---|
745 | |
---|
746 | CASE ( 'qsws*_xy' ) ! 2d-array |
---|
747 | IF ( av == 0 ) THEN |
---|
748 | local_pf(:,:,nzb+1) = REAL( fill_value, KIND = wp ) |
---|
749 | ! |
---|
750 | !-- In case of default surfaces, clean-up flux by density. |
---|
751 | !-- In case of land-surfaces, convert fluxes into |
---|
752 | !-- dynamic units |
---|
753 | DO m = 1, surf_def_h(0)%ns |
---|
754 | i = surf_def_h(0)%i(m) |
---|
755 | j = surf_def_h(0)%j(m) |
---|
756 | k = surf_def_h(0)%k(m) |
---|
757 | local_pf(i,j,nzb+1) = surf_def_h(0)%qsws(m) * & |
---|
758 | waterflux_output_conversion(k) |
---|
759 | ENDDO |
---|
760 | DO m = 1, surf_lsm_h%ns |
---|
761 | i = surf_lsm_h%i(m) |
---|
762 | j = surf_lsm_h%j(m) |
---|
763 | k = surf_lsm_h%k(m) |
---|
764 | local_pf(i,j,nzb+1) = surf_lsm_h%qsws(m) * waterflux_output_conversion(k) |
---|
765 | ENDDO |
---|
766 | DO m = 1, surf_usm_h%ns |
---|
767 | i = surf_usm_h%i(m) |
---|
768 | j = surf_usm_h%j(m) |
---|
769 | k = surf_usm_h%k(m) |
---|
770 | local_pf(i,j,nzb+1) = surf_usm_h%qsws(m) * waterflux_output_conversion(k) |
---|
771 | ENDDO |
---|
772 | ELSE |
---|
773 | IF ( .NOT. ALLOCATED( qsws_av ) ) THEN |
---|
774 | ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) |
---|
775 | qsws_av = REAL( fill_value, KIND = wp ) |
---|
776 | ENDIF |
---|
777 | DO i = nxl, nxr |
---|
778 | DO j = nys, nyn |
---|
779 | local_pf(i,j,nzb+1) = qsws_av(j,i) |
---|
780 | ENDDO |
---|
781 | ENDDO |
---|
782 | ENDIF |
---|
783 | resorted = .TRUE. |
---|
784 | two_d = .TRUE. |
---|
785 | level_z(nzb+1) = zu(nzb+1) |
---|
786 | |
---|
787 | CASE ( 'qv_xy', 'qv_xz', 'qv_yz' ) |
---|
788 | IF ( av == 0 ) THEN |
---|
789 | DO i = nxl, nxr |
---|
790 | DO j = nys, nyn |
---|
791 | DO k = nzb, nzt+1 |
---|
792 | local_pf(i,j,k) = q(k,j,i) - ql(k,j,i) |
---|
793 | ENDDO |
---|
794 | ENDDO |
---|
795 | ENDDO |
---|
796 | resorted = .TRUE. |
---|
797 | ELSE |
---|
798 | IF ( .NOT. ALLOCATED( qv_av ) ) THEN |
---|
799 | ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
800 | qv_av = REAL( fill_value, KIND = wp ) |
---|
801 | ENDIF |
---|
802 | to_be_resorted => qv_av |
---|
803 | ENDIF |
---|
804 | IF ( mode == 'xy' ) level_z = zu |
---|
805 | |
---|
806 | CASE ( 'r_a*_xy' ) ! 2d-array |
---|
807 | IF ( av == 0 ) THEN |
---|
808 | DO m = 1, surf_lsm_h%ns |
---|
809 | i = surf_lsm_h%i(m) |
---|
810 | j = surf_lsm_h%j(m) |
---|
811 | local_pf(i,j,nzb+1) = surf_lsm_h%r_a(m) |
---|
812 | ENDDO |
---|
813 | |
---|
814 | DO m = 1, surf_usm_h%ns |
---|
815 | i = surf_usm_h%i(m) |
---|
816 | j = surf_usm_h%j(m) |
---|
817 | local_pf(i,j,nzb+1) = & |
---|
818 | ( surf_usm_h%frac(m,ind_veg_wall) * & |
---|
819 | surf_usm_h%r_a(m) + & |
---|
820 | surf_usm_h%frac(m,ind_pav_green) * & |
---|
821 | surf_usm_h%r_a_green(m) + & |
---|
822 | surf_usm_h%frac(m,ind_wat_win) * & |
---|
823 | surf_usm_h%r_a_window(m) ) |
---|
824 | ENDDO |
---|
825 | ELSE |
---|
826 | IF ( .NOT. ALLOCATED( r_a_av ) ) THEN |
---|
827 | ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) |
---|
828 | r_a_av = REAL( fill_value, KIND = wp ) |
---|
829 | ENDIF |
---|
830 | DO i = nxl, nxr |
---|
831 | DO j = nys, nyn |
---|
832 | local_pf(i,j,nzb+1) = r_a_av(j,i) |
---|
833 | ENDDO |
---|
834 | ENDDO |
---|
835 | ENDIF |
---|
836 | resorted = .TRUE. |
---|
837 | two_d = .TRUE. |
---|
838 | level_z(nzb+1) = zu(nzb+1) |
---|
839 | |
---|
840 | CASE ( 's_xy', 's_xz', 's_yz' ) |
---|
841 | IF ( av == 0 ) THEN |
---|
842 | to_be_resorted => s |
---|
843 | ELSE |
---|
844 | IF ( .NOT. ALLOCATED( s_av ) ) THEN |
---|
845 | ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
846 | s_av = REAL( fill_value, KIND = wp ) |
---|
847 | ENDIF |
---|
848 | to_be_resorted => s_av |
---|
849 | ENDIF |
---|
850 | |
---|
851 | CASE ( 'shf*_xy' ) ! 2d-array |
---|
852 | IF ( av == 0 ) THEN |
---|
853 | ! |
---|
854 | !-- In case of default surfaces, clean-up flux by density. |
---|
855 | !-- In case of land- and urban-surfaces, convert fluxes into |
---|
856 | !-- dynamic units. |
---|
857 | DO m = 1, surf_def_h(0)%ns |
---|
858 | i = surf_def_h(0)%i(m) |
---|
859 | j = surf_def_h(0)%j(m) |
---|
860 | k = surf_def_h(0)%k(m) |
---|
861 | local_pf(i,j,nzb+1) = surf_def_h(0)%shf(m) * & |
---|
862 | heatflux_output_conversion(k) |
---|
863 | ENDDO |
---|
864 | DO m = 1, surf_lsm_h%ns |
---|
865 | i = surf_lsm_h%i(m) |
---|
866 | j = surf_lsm_h%j(m) |
---|
867 | k = surf_lsm_h%k(m) |
---|
868 | local_pf(i,j,nzb+1) = surf_lsm_h%shf(m) * heatflux_output_conversion(k) |
---|
869 | ENDDO |
---|
870 | DO m = 1, surf_usm_h%ns |
---|
871 | i = surf_usm_h%i(m) |
---|
872 | j = surf_usm_h%j(m) |
---|
873 | k = surf_usm_h%k(m) |
---|
874 | local_pf(i,j,nzb+1) = surf_usm_h%shf(m) * heatflux_output_conversion(k) |
---|
875 | ENDDO |
---|
876 | ELSE |
---|
877 | IF ( .NOT. ALLOCATED( shf_av ) ) THEN |
---|
878 | ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) |
---|
879 | shf_av = REAL( fill_value, KIND = wp ) |
---|
880 | ENDIF |
---|
881 | DO i = nxl, nxr |
---|
882 | DO j = nys, nyn |
---|
883 | local_pf(i,j,nzb+1) = shf_av(j,i) |
---|
884 | ENDDO |
---|
885 | ENDDO |
---|
886 | ENDIF |
---|
887 | resorted = .TRUE. |
---|
888 | two_d = .TRUE. |
---|
889 | level_z(nzb+1) = zu(nzb+1) |
---|
890 | |
---|
891 | CASE ( 'ssurf*_xy' ) ! 2d-array |
---|
892 | IF ( av == 0 ) THEN |
---|
893 | DO i = nxl, nxr |
---|
894 | DO j = nys, nyn |
---|
895 | k = topo_top_ind(j,i,0) |
---|
896 | local_pf(i,j,nzb+1) = s(k,j,i) |
---|
897 | ENDDO |
---|
898 | ENDDO |
---|
899 | ELSE |
---|
900 | IF ( .NOT. ALLOCATED( ssurf_av ) ) THEN |
---|
901 | ALLOCATE( ssurf_av(nysg:nyng,nxlg:nxrg) ) |
---|
902 | ssurf_av = REAL( fill_value, KIND = wp ) |
---|
903 | ENDIF |
---|
904 | DO i = nxl, nxr |
---|
905 | DO j = nys, nyn |
---|
906 | local_pf(i,j,nzb+1) = ssurf_av(j,i) |
---|
907 | ENDDO |
---|
908 | ENDDO |
---|
909 | ENDIF |
---|
910 | resorted = .TRUE. |
---|
911 | two_d = .TRUE. |
---|
912 | level_z(nzb+1) = zu(nzb+1) |
---|
913 | |
---|
914 | CASE ( 'ssws*_xy' ) ! 2d-array |
---|
915 | IF ( av == 0 ) THEN |
---|
916 | DO m = 1, surf_def_h(0)%ns |
---|
917 | i = surf_def_h(0)%i(m) |
---|
918 | j = surf_def_h(0)%j(m) |
---|
919 | local_pf(i,j,nzb+1) = surf_def_h(0)%ssws(m) |
---|
920 | ENDDO |
---|
921 | DO m = 1, surf_lsm_h%ns |
---|
922 | i = surf_lsm_h%i(m) |
---|
923 | j = surf_lsm_h%j(m) |
---|
924 | local_pf(i,j,nzb+1) = surf_lsm_h%ssws(m) |
---|
925 | ENDDO |
---|
926 | DO m = 1, surf_usm_h%ns |
---|
927 | i = surf_usm_h%i(m) |
---|
928 | j = surf_usm_h%j(m) |
---|
929 | local_pf(i,j,nzb+1) = surf_usm_h%ssws(m) |
---|
930 | ENDDO |
---|
931 | ELSE |
---|
932 | IF ( .NOT. ALLOCATED( ssws_av ) ) THEN |
---|
933 | ALLOCATE( ssws_av(nysg:nyng,nxlg:nxrg) ) |
---|
934 | ssws_av = REAL( fill_value, KIND = wp ) |
---|
935 | ENDIF |
---|
936 | DO i = nxl, nxr |
---|
937 | DO j = nys, nyn |
---|
938 | local_pf(i,j,nzb+1) = ssws_av(j,i) |
---|
939 | ENDDO |
---|
940 | ENDDO |
---|
941 | ENDIF |
---|
942 | resorted = .TRUE. |
---|
943 | two_d = .TRUE. |
---|
944 | level_z(nzb+1) = zu(nzb+1) |
---|
945 | |
---|
946 | CASE ( 't*_xy' ) ! 2d-array |
---|
947 | IF ( av == 0 ) THEN |
---|
948 | DO m = 1, surf_def_h(0)%ns |
---|
949 | i = surf_def_h(0)%i(m) |
---|
950 | j = surf_def_h(0)%j(m) |
---|
951 | local_pf(i,j,nzb+1) = surf_def_h(0)%ts(m) |
---|
952 | ENDDO |
---|
953 | DO m = 1, surf_lsm_h%ns |
---|
954 | i = surf_lsm_h%i(m) |
---|
955 | j = surf_lsm_h%j(m) |
---|
956 | local_pf(i,j,nzb+1) = surf_lsm_h%ts(m) |
---|
957 | ENDDO |
---|
958 | DO m = 1, surf_usm_h%ns |
---|
959 | i = surf_usm_h%i(m) |
---|
960 | j = surf_usm_h%j(m) |
---|
961 | local_pf(i,j,nzb+1) = surf_usm_h%ts(m) |
---|
962 | ENDDO |
---|
963 | ELSE |
---|
964 | IF ( .NOT. ALLOCATED( ts_av ) ) THEN |
---|
965 | ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) |
---|
966 | ts_av = REAL( fill_value, KIND = wp ) |
---|
967 | ENDIF |
---|
968 | DO i = nxl, nxr |
---|
969 | DO j = nys, nyn |
---|
970 | local_pf(i,j,nzb+1) = ts_av(j,i) |
---|
971 | ENDDO |
---|
972 | ENDDO |
---|
973 | ENDIF |
---|
974 | resorted = .TRUE. |
---|
975 | two_d = .TRUE. |
---|
976 | level_z(nzb+1) = zu(nzb+1) |
---|
977 | |
---|
978 | CASE ( 'tsurf*_xy' ) ! 2d-array |
---|
979 | IF ( av == 0 ) THEN |
---|
980 | DO m = 1, surf_def_h(0)%ns |
---|
981 | i = surf_def_h(0)%i(m) |
---|
982 | j = surf_def_h(0)%j(m) |
---|
983 | local_pf(i,j,nzb+1) = surf_def_h(0)%pt_surface(m) |
---|
984 | ENDDO |
---|
985 | |
---|
986 | DO m = 1, surf_lsm_h%ns |
---|
987 | i = surf_lsm_h%i(m) |
---|
988 | j = surf_lsm_h%j(m) |
---|
989 | local_pf(i,j,nzb+1) = surf_lsm_h%pt_surface(m) |
---|
990 | ENDDO |
---|
991 | |
---|
992 | DO m = 1, surf_usm_h%ns |
---|
993 | i = surf_usm_h%i(m) |
---|
994 | j = surf_usm_h%j(m) |
---|
995 | local_pf(i,j,nzb+1) = surf_usm_h%pt_surface(m) |
---|
996 | ENDDO |
---|
997 | |
---|
998 | ELSE |
---|
999 | IF ( .NOT. ALLOCATED( tsurf_av ) ) THEN |
---|
1000 | ALLOCATE( tsurf_av(nysg:nyng,nxlg:nxrg) ) |
---|
1001 | tsurf_av = REAL( fill_value, KIND = wp ) |
---|
1002 | ENDIF |
---|
1003 | DO i = nxl, nxr |
---|
1004 | DO j = nys, nyn |
---|
1005 | local_pf(i,j,nzb+1) = tsurf_av(j,i) |
---|
1006 | ENDDO |
---|
1007 | ENDDO |
---|
1008 | ENDIF |
---|
1009 | resorted = .TRUE. |
---|
1010 | two_d = .TRUE. |
---|
1011 | level_z(nzb+1) = zu(nzb+1) |
---|
1012 | |
---|
1013 | CASE ( 'u_xy', 'u_xz', 'u_yz' ) |
---|
1014 | flag_nr = 1 |
---|
1015 | IF ( av == 0 ) THEN |
---|
1016 | to_be_resorted => u |
---|
1017 | ELSE |
---|
1018 | IF ( .NOT. ALLOCATED( u_av ) ) THEN |
---|
1019 | ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1020 | u_av = REAL( fill_value, KIND = wp ) |
---|
1021 | ENDIF |
---|
1022 | to_be_resorted => u_av |
---|
1023 | ENDIF |
---|
1024 | IF ( mode == 'xy' ) level_z = zu |
---|
1025 | ! |
---|
1026 | !-- Substitute the values generated by "mirror" boundary condition |
---|
1027 | !-- at the bottom boundary by the real surface values. |
---|
1028 | IF ( do2d(av,ivar) == 'u_xz' .OR. do2d(av,ivar) == 'u_yz' ) THEN |
---|
1029 | IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp |
---|
1030 | ENDIF |
---|
1031 | |
---|
1032 | CASE ( 'us*_xy' ) ! 2d-array |
---|
1033 | IF ( av == 0 ) THEN |
---|
1034 | DO m = 1, surf_def_h(0)%ns |
---|
1035 | i = surf_def_h(0)%i(m) |
---|
1036 | j = surf_def_h(0)%j(m) |
---|
1037 | local_pf(i,j,nzb+1) = surf_def_h(0)%us(m) |
---|
1038 | ENDDO |
---|
1039 | DO m = 1, surf_lsm_h%ns |
---|
1040 | i = surf_lsm_h%i(m) |
---|
1041 | j = surf_lsm_h%j(m) |
---|
1042 | local_pf(i,j,nzb+1) = surf_lsm_h%us(m) |
---|
1043 | ENDDO |
---|
1044 | DO m = 1, surf_usm_h%ns |
---|
1045 | i = surf_usm_h%i(m) |
---|
1046 | j = surf_usm_h%j(m) |
---|
1047 | local_pf(i,j,nzb+1) = surf_usm_h%us(m) |
---|
1048 | ENDDO |
---|
1049 | ELSE |
---|
1050 | IF ( .NOT. ALLOCATED( us_av ) ) THEN |
---|
1051 | ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) |
---|
1052 | us_av = REAL( fill_value, KIND = wp ) |
---|
1053 | ENDIF |
---|
1054 | DO i = nxl, nxr |
---|
1055 | DO j = nys, nyn |
---|
1056 | local_pf(i,j,nzb+1) = us_av(j,i) |
---|
1057 | ENDDO |
---|
1058 | ENDDO |
---|
1059 | ENDIF |
---|
1060 | resorted = .TRUE. |
---|
1061 | two_d = .TRUE. |
---|
1062 | level_z(nzb+1) = zu(nzb+1) |
---|
1063 | |
---|
1064 | CASE ( 'v_xy', 'v_xz', 'v_yz' ) |
---|
1065 | flag_nr = 2 |
---|
1066 | IF ( av == 0 ) THEN |
---|
1067 | to_be_resorted => v |
---|
1068 | ELSE |
---|
1069 | IF ( .NOT. ALLOCATED( v_av ) ) THEN |
---|
1070 | ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1071 | v_av = REAL( fill_value, KIND = wp ) |
---|
1072 | ENDIF |
---|
1073 | to_be_resorted => v_av |
---|
1074 | ENDIF |
---|
1075 | IF ( mode == 'xy' ) level_z = zu |
---|
1076 | ! |
---|
1077 | !-- Substitute the values generated by "mirror" boundary condition |
---|
1078 | !-- at the bottom boundary by the real surface values. |
---|
1079 | IF ( do2d(av,ivar) == 'v_xz' .OR. do2d(av,ivar) == 'v_yz' ) THEN |
---|
1080 | IF ( ibc_uv_b == 0 ) local_pf(:,:,nzb) = 0.0_wp |
---|
1081 | ENDIF |
---|
1082 | |
---|
1083 | CASE ( 'thetav_xy', 'thetav_xz', 'thetav_yz' ) |
---|
1084 | IF ( av == 0 ) THEN |
---|
1085 | to_be_resorted => vpt |
---|
1086 | ELSE |
---|
1087 | IF ( .NOT. ALLOCATED( vpt_av ) ) THEN |
---|
1088 | ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1089 | vpt_av = REAL( fill_value, KIND = wp ) |
---|
1090 | ENDIF |
---|
1091 | to_be_resorted => vpt_av |
---|
1092 | ENDIF |
---|
1093 | IF ( mode == 'xy' ) level_z = zu |
---|
1094 | |
---|
1095 | CASE ( 'w_xy', 'w_xz', 'w_yz' ) |
---|
1096 | flag_nr = 3 |
---|
1097 | IF ( av == 0 ) THEN |
---|
1098 | to_be_resorted => w |
---|
1099 | ELSE |
---|
1100 | IF ( .NOT. ALLOCATED( w_av ) ) THEN |
---|
1101 | ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1102 | w_av = REAL( fill_value, KIND = wp ) |
---|
1103 | ENDIF |
---|
1104 | to_be_resorted => w_av |
---|
1105 | ENDIF |
---|
1106 | IF ( mode == 'xy' ) level_z = zw |
---|
1107 | |
---|
1108 | CASE ( 'z0*_xy' ) ! 2d-array |
---|
1109 | IF ( av == 0 ) THEN |
---|
1110 | DO m = 1, surf_def_h(0)%ns |
---|
1111 | i = surf_def_h(0)%i(m) |
---|
1112 | j = surf_def_h(0)%j(m) |
---|
1113 | local_pf(i,j,nzb+1) = surf_def_h(0)%z0(m) |
---|
1114 | ENDDO |
---|
1115 | DO m = 1, surf_lsm_h%ns |
---|
1116 | i = surf_lsm_h%i(m) |
---|
1117 | j = surf_lsm_h%j(m) |
---|
1118 | local_pf(i,j,nzb+1) = surf_lsm_h%z0(m) |
---|
1119 | ENDDO |
---|
1120 | DO m = 1, surf_usm_h%ns |
---|
1121 | i = surf_usm_h%i(m) |
---|
1122 | j = surf_usm_h%j(m) |
---|
1123 | local_pf(i,j,nzb+1) = surf_usm_h%z0(m) |
---|
1124 | ENDDO |
---|
1125 | ELSE |
---|
1126 | IF ( .NOT. ALLOCATED( z0_av ) ) THEN |
---|
1127 | ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) |
---|
1128 | z0_av = REAL( fill_value, KIND = wp ) |
---|
1129 | ENDIF |
---|
1130 | DO i = nxl, nxr |
---|
1131 | DO j = nys, nyn |
---|
1132 | local_pf(i,j,nzb+1) = z0_av(j,i) |
---|
1133 | ENDDO |
---|
1134 | ENDDO |
---|
1135 | ENDIF |
---|
1136 | resorted = .TRUE. |
---|
1137 | two_d = .TRUE. |
---|
1138 | level_z(nzb+1) = zu(nzb+1) |
---|
1139 | |
---|
1140 | CASE ( 'z0h*_xy' ) ! 2d-array |
---|
1141 | IF ( av == 0 ) THEN |
---|
1142 | DO m = 1, surf_def_h(0)%ns |
---|
1143 | i = surf_def_h(0)%i(m) |
---|
1144 | j = surf_def_h(0)%j(m) |
---|
1145 | local_pf(i,j,nzb+1) = surf_def_h(0)%z0h(m) |
---|
1146 | ENDDO |
---|
1147 | DO m = 1, surf_lsm_h%ns |
---|
1148 | i = surf_lsm_h%i(m) |
---|
1149 | j = surf_lsm_h%j(m) |
---|
1150 | local_pf(i,j,nzb+1) = surf_lsm_h%z0h(m) |
---|
1151 | ENDDO |
---|
1152 | DO m = 1, surf_usm_h%ns |
---|
1153 | i = surf_usm_h%i(m) |
---|
1154 | j = surf_usm_h%j(m) |
---|
1155 | local_pf(i,j,nzb+1) = surf_usm_h%z0h(m) |
---|
1156 | ENDDO |
---|
1157 | ELSE |
---|
1158 | IF ( .NOT. ALLOCATED( z0h_av ) ) THEN |
---|
1159 | ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) |
---|
1160 | z0h_av = REAL( fill_value, KIND = wp ) |
---|
1161 | ENDIF |
---|
1162 | DO i = nxl, nxr |
---|
1163 | DO j = nys, nyn |
---|
1164 | local_pf(i,j,nzb+1) = z0h_av(j,i) |
---|
1165 | ENDDO |
---|
1166 | ENDDO |
---|
1167 | ENDIF |
---|
1168 | resorted = .TRUE. |
---|
1169 | two_d = .TRUE. |
---|
1170 | level_z(nzb+1) = zu(nzb+1) |
---|
1171 | |
---|
1172 | CASE ( 'z0q*_xy' ) ! 2d-array |
---|
1173 | IF ( av == 0 ) THEN |
---|
1174 | DO m = 1, surf_def_h(0)%ns |
---|
1175 | i = surf_def_h(0)%i(m) |
---|
1176 | j = surf_def_h(0)%j(m) |
---|
1177 | local_pf(i,j,nzb+1) = surf_def_h(0)%z0q(m) |
---|
1178 | ENDDO |
---|
1179 | DO m = 1, surf_lsm_h%ns |
---|
1180 | i = surf_lsm_h%i(m) |
---|
1181 | j = surf_lsm_h%j(m) |
---|
1182 | local_pf(i,j,nzb+1) = surf_lsm_h%z0q(m) |
---|
1183 | ENDDO |
---|
1184 | DO m = 1, surf_usm_h%ns |
---|
1185 | i = surf_usm_h%i(m) |
---|
1186 | j = surf_usm_h%j(m) |
---|
1187 | local_pf(i,j,nzb+1) = surf_usm_h%z0q(m) |
---|
1188 | ENDDO |
---|
1189 | ELSE |
---|
1190 | IF ( .NOT. ALLOCATED( z0q_av ) ) THEN |
---|
1191 | ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) |
---|
1192 | z0q_av = REAL( fill_value, KIND = wp ) |
---|
1193 | ENDIF |
---|
1194 | DO i = nxl, nxr |
---|
1195 | DO j = nys, nyn |
---|
1196 | local_pf(i,j,nzb+1) = z0q_av(j,i) |
---|
1197 | ENDDO |
---|
1198 | ENDDO |
---|
1199 | ENDIF |
---|
1200 | resorted = .TRUE. |
---|
1201 | two_d = .TRUE. |
---|
1202 | level_z(nzb+1) = zu(nzb+1) |
---|
1203 | |
---|
1204 | CASE DEFAULT |
---|
1205 | |
---|
1206 | ! |
---|
1207 | !-- Quantities of other modules |
---|
1208 | IF ( .NOT. found ) THEN |
---|
1209 | CALL module_interface_data_output_2d( & |
---|
1210 | av, do2d(av,ivar), found, grid, mode, & |
---|
1211 | local_pf, two_d, nzb_do, nzt_do, & |
---|
1212 | fill_value & |
---|
1213 | ) |
---|
1214 | ENDIF |
---|
1215 | |
---|
1216 | resorted = .TRUE. |
---|
1217 | |
---|
1218 | IF ( grid == 'zu' ) THEN |
---|
1219 | IF ( mode == 'xy' ) level_z = zu |
---|
1220 | ELSEIF ( grid == 'zw' ) THEN |
---|
1221 | IF ( mode == 'xy' ) level_z = zw |
---|
1222 | ELSEIF ( grid == 'zu1' ) THEN |
---|
1223 | IF ( mode == 'xy' ) level_z(nzb+1) = zu(nzb+1) |
---|
1224 | ELSEIF ( grid == 'zs' ) THEN |
---|
1225 | IF ( mode == 'xy' ) level_z = zs |
---|
1226 | ENDIF |
---|
1227 | |
---|
1228 | IF ( .NOT. found ) THEN |
---|
1229 | message_string = 'no output provided for: ' // & |
---|
1230 | TRIM( do2d(av,ivar) ) |
---|
1231 | CALL message( 'data_output_2d', 'PA0181', 0, 0, 0, 6, 0 ) |
---|
1232 | ENDIF |
---|
1233 | |
---|
1234 | END SELECT |
---|
1235 | |
---|
1236 | ! |
---|
1237 | !-- Resort the array to be output, if not done above. Flag topography |
---|
1238 | !-- grid points with fill values, using the corresponding maksing flag. |
---|
1239 | IF ( .NOT. resorted ) THEN |
---|
1240 | DO i = nxl, nxr |
---|
1241 | DO j = nys, nyn |
---|
1242 | DO k = nzb_do, nzt_do |
---|
1243 | local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & |
---|
1244 | REAL( fill_value, KIND = wp ), & |
---|
1245 | BTEST( wall_flags_total_0(k,j,i), & |
---|
1246 | flag_nr ) ) |
---|
1247 | ENDDO |
---|
1248 | ENDDO |
---|
1249 | ENDDO |
---|
1250 | ENDIF |
---|
1251 | |
---|
1252 | ! |
---|
1253 | !-- Output of the individual cross-sections, depending on the cross- |
---|
1254 | !-- section mode chosen. |
---|
1255 | is = 1 |
---|
1256 | loop1: DO WHILE ( section(is,s_ind) /= -9999 .OR. two_d ) |
---|
1257 | |
---|
1258 | SELECT CASE ( mode ) |
---|
1259 | |
---|
1260 | CASE ( 'xy' ) |
---|
1261 | ! |
---|
1262 | !-- Determine the cross section index |
---|
1263 | IF ( two_d ) THEN |
---|
1264 | layer_xy = nzb+1 |
---|
1265 | ELSE |
---|
1266 | layer_xy = section(is,s_ind) |
---|
1267 | ENDIF |
---|
1268 | |
---|
1269 | ! |
---|
1270 | !-- Exit the loop for layers beyond the data output domain |
---|
1271 | !-- (used for soil model) |
---|
1272 | IF ( layer_xy > nzt_do ) THEN |
---|
1273 | EXIT loop1 |
---|
1274 | ENDIF |
---|
1275 | |
---|
1276 | ! |
---|
1277 | !-- Update the netCDF xy cross section time axis. |
---|
1278 | !-- In case of parallel output, this is only done by PE0 |
---|
1279 | !-- to increase the performance. |
---|
1280 | IF ( time_since_reference_point /= do2d_xy_last_time(av) ) THEN |
---|
1281 | do2d_xy_time_count(av) = do2d_xy_time_count(av) + 1 |
---|
1282 | do2d_xy_last_time(av) = time_since_reference_point |
---|
1283 | IF ( myid == 0 ) THEN |
---|
1284 | IF ( .NOT. data_output_2d_on_each_pe & |
---|
1285 | .OR. netcdf_data_format > 4 ) & |
---|
1286 | THEN |
---|
1287 | #if defined( __netcdf ) |
---|
1288 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1289 | id_var_time_xy(av), & |
---|
1290 | (/ time_since_reference_point /), & |
---|
1291 | start = (/ do2d_xy_time_count(av) /), & |
---|
1292 | count = (/ 1 /) ) |
---|
1293 | CALL netcdf_handle_error( 'data_output_2d', 53 ) |
---|
1294 | #endif |
---|
1295 | ENDIF |
---|
1296 | ENDIF |
---|
1297 | ENDIF |
---|
1298 | ! |
---|
1299 | !-- If required, carry out averaging along z |
---|
1300 | IF ( section(is,s_ind) == -1 .AND. .NOT. two_d ) THEN |
---|
1301 | |
---|
1302 | local_2d = 0.0_wp |
---|
1303 | ! |
---|
1304 | !-- Carry out the averaging (all data are on the PE) |
---|
1305 | DO k = nzb_do, nzt_do |
---|
1306 | DO j = nys, nyn |
---|
1307 | DO i = nxl, nxr |
---|
1308 | local_2d(i,j) = local_2d(i,j) + local_pf(i,j,k) |
---|
1309 | ENDDO |
---|
1310 | ENDDO |
---|
1311 | ENDDO |
---|
1312 | |
---|
1313 | local_2d = local_2d / ( nzt_do - nzb_do + 1.0_wp) |
---|
1314 | |
---|
1315 | ELSE |
---|
1316 | ! |
---|
1317 | !-- Just store the respective section on the local array |
---|
1318 | local_2d = local_pf(:,:,layer_xy) |
---|
1319 | |
---|
1320 | ENDIF |
---|
1321 | |
---|
1322 | #if defined( __parallel ) |
---|
1323 | IF ( netcdf_data_format > 4 ) THEN |
---|
1324 | ! |
---|
1325 | !-- Parallel output in netCDF4/HDF5 format. |
---|
1326 | IF ( two_d ) THEN |
---|
1327 | iis = 1 |
---|
1328 | ELSE |
---|
1329 | iis = is |
---|
1330 | ENDIF |
---|
1331 | |
---|
1332 | #if defined( __netcdf ) |
---|
1333 | ! |
---|
1334 | !-- For parallel output, all cross sections are first stored |
---|
1335 | !-- here on a local array and will be written to the output |
---|
1336 | !-- file afterwards to increase the performance. |
---|
1337 | DO i = nxl, nxr |
---|
1338 | DO j = nys, nyn |
---|
1339 | local_2d_sections(i,j,iis) = local_2d(i,j) |
---|
1340 | ENDDO |
---|
1341 | ENDDO |
---|
1342 | #endif |
---|
1343 | ELSE |
---|
1344 | |
---|
1345 | IF ( data_output_2d_on_each_pe ) THEN |
---|
1346 | ! |
---|
1347 | !-- Output of partial arrays on each PE |
---|
1348 | #if defined( __netcdf ) |
---|
1349 | IF ( myid == 0 ) THEN |
---|
1350 | WRITE ( 21 ) time_since_reference_point, & |
---|
1351 | do2d_xy_time_count(av), av |
---|
1352 | ENDIF |
---|
1353 | #endif |
---|
1354 | DO i = 0, io_blocks-1 |
---|
1355 | IF ( i == io_group ) THEN |
---|
1356 | WRITE ( 21 ) nxl, nxr, nys, nyn, nys, nyn |
---|
1357 | WRITE ( 21 ) local_2d |
---|
1358 | ENDIF |
---|
1359 | #if defined( __parallel ) |
---|
1360 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1361 | #endif |
---|
1362 | ENDDO |
---|
1363 | |
---|
1364 | ELSE |
---|
1365 | ! |
---|
1366 | !-- PE0 receives partial arrays from all processors and |
---|
1367 | !-- then outputs them. Here a barrier has to be set, |
---|
1368 | !-- because otherwise "-MPI- FATAL: Remote protocol queue |
---|
1369 | !-- full" may occur. |
---|
1370 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1371 | |
---|
1372 | ngp = ( nxr-nxl+1 ) * ( nyn-nys+1 ) |
---|
1373 | IF ( myid == 0 ) THEN |
---|
1374 | ! |
---|
1375 | !-- Local array can be relocated directly. |
---|
1376 | total_2d(nxl:nxr,nys:nyn) = local_2d |
---|
1377 | ! |
---|
1378 | !-- Receive data from all other PEs. |
---|
1379 | DO n = 1, numprocs-1 |
---|
1380 | ! |
---|
1381 | !-- Receive index limits first, then array. |
---|
1382 | !-- Index limits are received in arbitrary order from |
---|
1383 | !-- the PEs. |
---|
1384 | CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & |
---|
1385 | MPI_ANY_SOURCE, 0, comm2d, & |
---|
1386 | status, ierr ) |
---|
1387 | sender = status(MPI_SOURCE) |
---|
1388 | DEALLOCATE( local_2d ) |
---|
1389 | ALLOCATE( local_2d(ind(1):ind(2),ind(3):ind(4)) ) |
---|
1390 | CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & |
---|
1391 | MPI_REAL, sender, 1, comm2d, & |
---|
1392 | status, ierr ) |
---|
1393 | total_2d(ind(1):ind(2),ind(3):ind(4)) = local_2d |
---|
1394 | ENDDO |
---|
1395 | ! |
---|
1396 | !-- Relocate the local array for the next loop increment |
---|
1397 | DEALLOCATE( local_2d ) |
---|
1398 | ALLOCATE( local_2d(nxl:nxr,nys:nyn) ) |
---|
1399 | |
---|
1400 | #if defined( __netcdf ) |
---|
1401 | IF ( two_d ) THEN |
---|
1402 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1403 | id_var_do2d(av,ivar), & |
---|
1404 | total_2d(0:nx,0:ny), & |
---|
1405 | start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & |
---|
1406 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1407 | ELSE |
---|
1408 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1409 | id_var_do2d(av,ivar), & |
---|
1410 | total_2d(0:nx,0:ny), & |
---|
1411 | start = (/ 1, 1, is, do2d_xy_time_count(av) /), & |
---|
1412 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1413 | ENDIF |
---|
1414 | CALL netcdf_handle_error( 'data_output_2d', 54 ) |
---|
1415 | #endif |
---|
1416 | |
---|
1417 | ELSE |
---|
1418 | ! |
---|
1419 | !-- First send the local index limits to PE0 |
---|
1420 | ind(1) = nxl; ind(2) = nxr |
---|
1421 | ind(3) = nys; ind(4) = nyn |
---|
1422 | CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & |
---|
1423 | comm2d, ierr ) |
---|
1424 | ! |
---|
1425 | !-- Send data to PE0 |
---|
1426 | CALL MPI_SEND( local_2d(nxl,nys), ngp, & |
---|
1427 | MPI_REAL, 0, 1, comm2d, ierr ) |
---|
1428 | ENDIF |
---|
1429 | ! |
---|
1430 | !-- A barrier has to be set, because otherwise some PEs may |
---|
1431 | !-- proceed too fast so that PE0 may receive wrong data on |
---|
1432 | !-- tag 0 |
---|
1433 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1434 | ENDIF |
---|
1435 | |
---|
1436 | ENDIF |
---|
1437 | #else |
---|
1438 | #if defined( __netcdf ) |
---|
1439 | IF ( two_d ) THEN |
---|
1440 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1441 | id_var_do2d(av,ivar), & |
---|
1442 | local_2d(nxl:nxr,nys:nyn), & |
---|
1443 | start = (/ 1, 1, 1, do2d_xy_time_count(av) /), & |
---|
1444 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1445 | ELSE |
---|
1446 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1447 | id_var_do2d(av,ivar), & |
---|
1448 | local_2d(nxl:nxr,nys:nyn), & |
---|
1449 | start = (/ 1, 1, is, do2d_xy_time_count(av) /), & |
---|
1450 | count = (/ nx+1, ny+1, 1, 1 /) ) |
---|
1451 | ENDIF |
---|
1452 | CALL netcdf_handle_error( 'data_output_2d', 447 ) |
---|
1453 | #endif |
---|
1454 | #endif |
---|
1455 | |
---|
1456 | ! |
---|
1457 | !-- For 2D-arrays (e.g. u*) only one cross-section is available. |
---|
1458 | !-- Hence exit loop of output levels. |
---|
1459 | IF ( two_d ) THEN |
---|
1460 | IF ( netcdf_data_format < 5 ) two_d = .FALSE. |
---|
1461 | EXIT loop1 |
---|
1462 | ENDIF |
---|
1463 | |
---|
1464 | CASE ( 'xz' ) |
---|
1465 | ! |
---|
1466 | !-- Update the netCDF xz cross section time axis. |
---|
1467 | !-- In case of parallel output, this is only done by PE0 |
---|
1468 | !-- to increase the performance. |
---|
1469 | IF ( time_since_reference_point /= do2d_xz_last_time(av) ) THEN |
---|
1470 | do2d_xz_time_count(av) = do2d_xz_time_count(av) + 1 |
---|
1471 | do2d_xz_last_time(av) = time_since_reference_point |
---|
1472 | IF ( myid == 0 ) THEN |
---|
1473 | IF ( .NOT. data_output_2d_on_each_pe & |
---|
1474 | .OR. netcdf_data_format > 4 ) & |
---|
1475 | THEN |
---|
1476 | #if defined( __netcdf ) |
---|
1477 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1478 | id_var_time_xz(av), & |
---|
1479 | (/ time_since_reference_point /), & |
---|
1480 | start = (/ do2d_xz_time_count(av) /), & |
---|
1481 | count = (/ 1 /) ) |
---|
1482 | CALL netcdf_handle_error( 'data_output_2d', 56 ) |
---|
1483 | #endif |
---|
1484 | ENDIF |
---|
1485 | ENDIF |
---|
1486 | ENDIF |
---|
1487 | |
---|
1488 | ! |
---|
1489 | !-- If required, carry out averaging along y |
---|
1490 | IF ( section(is,s_ind) == -1 ) THEN |
---|
1491 | |
---|
1492 | ALLOCATE( local_2d_l(nxl:nxr,nzb_do:nzt_do) ) |
---|
1493 | local_2d_l = 0.0_wp |
---|
1494 | ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) |
---|
1495 | ! |
---|
1496 | !-- First local averaging on the PE |
---|
1497 | DO k = nzb_do, nzt_do |
---|
1498 | DO j = nys, nyn |
---|
1499 | DO i = nxl, nxr |
---|
1500 | local_2d_l(i,k) = local_2d_l(i,k) + & |
---|
1501 | local_pf(i,j,k) |
---|
1502 | ENDDO |
---|
1503 | ENDDO |
---|
1504 | ENDDO |
---|
1505 | #if defined( __parallel ) |
---|
1506 | ! |
---|
1507 | !-- Now do the averaging over all PEs along y |
---|
1508 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1509 | CALL MPI_ALLREDUCE( local_2d_l(nxl,nzb_do), & |
---|
1510 | local_2d(nxl,nzb_do), ngp, MPI_REAL, & |
---|
1511 | MPI_SUM, comm1dy, ierr ) |
---|
1512 | #else |
---|
1513 | local_2d = local_2d_l |
---|
1514 | #endif |
---|
1515 | local_2d = local_2d / ( ny + 1.0_wp ) |
---|
1516 | |
---|
1517 | DEALLOCATE( local_2d_l ) |
---|
1518 | |
---|
1519 | ELSE |
---|
1520 | ! |
---|
1521 | !-- Just store the respective section on the local array |
---|
1522 | !-- (but only if it is available on this PE!) |
---|
1523 | IF ( section(is,s_ind) >= nys .AND. section(is,s_ind) <= nyn ) & |
---|
1524 | THEN |
---|
1525 | local_2d = local_pf(:,section(is,s_ind),nzb_do:nzt_do) |
---|
1526 | ENDIF |
---|
1527 | |
---|
1528 | ENDIF |
---|
1529 | |
---|
1530 | #if defined( __parallel ) |
---|
1531 | IF ( netcdf_data_format > 4 ) THEN |
---|
1532 | ! |
---|
1533 | !-- Output in netCDF4/HDF5 format. |
---|
1534 | !-- Output only on those PEs where the respective cross |
---|
1535 | !-- sections reside. Cross sections averaged along y are |
---|
1536 | !-- output on the respective first PE along y (myidy=0). |
---|
1537 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1538 | section(is,s_ind) <= nyn ) .OR. & |
---|
1539 | ( section(is,s_ind) == -1 .AND. myidy == 0 ) ) THEN |
---|
1540 | #if defined( __netcdf ) |
---|
1541 | ! |
---|
1542 | !-- For parallel output, all cross sections are first |
---|
1543 | !-- stored here on a local array and will be written to the |
---|
1544 | !-- output file afterwards to increase the performance. |
---|
1545 | DO i = nxl, nxr |
---|
1546 | DO k = nzb_do, nzt_do |
---|
1547 | local_2d_sections_l(i,is,k) = local_2d(i,k) |
---|
1548 | ENDDO |
---|
1549 | ENDDO |
---|
1550 | #endif |
---|
1551 | ENDIF |
---|
1552 | |
---|
1553 | ELSE |
---|
1554 | |
---|
1555 | IF ( data_output_2d_on_each_pe ) THEN |
---|
1556 | ! |
---|
1557 | !-- Output of partial arrays on each PE. If the cross |
---|
1558 | !-- section does not reside on the PE, output special |
---|
1559 | !-- index values. |
---|
1560 | #if defined( __netcdf ) |
---|
1561 | IF ( myid == 0 ) THEN |
---|
1562 | WRITE ( 22 ) time_since_reference_point, & |
---|
1563 | do2d_xz_time_count(av), av |
---|
1564 | ENDIF |
---|
1565 | #endif |
---|
1566 | DO i = 0, io_blocks-1 |
---|
1567 | IF ( i == io_group ) THEN |
---|
1568 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1569 | section(is,s_ind) <= nyn ) .OR. & |
---|
1570 | ( section(is,s_ind) == -1 .AND. & |
---|
1571 | nys-1 == -1 ) ) & |
---|
1572 | THEN |
---|
1573 | WRITE (22) nxl, nxr, nzb_do, nzt_do, nzb, nzt+1 |
---|
1574 | WRITE (22) local_2d |
---|
1575 | ELSE |
---|
1576 | WRITE (22) -1, -1, -1, -1, -1, -1 |
---|
1577 | ENDIF |
---|
1578 | ENDIF |
---|
1579 | #if defined( __parallel ) |
---|
1580 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1581 | #endif |
---|
1582 | ENDDO |
---|
1583 | |
---|
1584 | ELSE |
---|
1585 | ! |
---|
1586 | !-- PE0 receives partial arrays from all processors of the |
---|
1587 | !-- respective cross section and outputs them. Here a |
---|
1588 | !-- barrier has to be set, because otherwise |
---|
1589 | !-- "-MPI- FATAL: Remote protocol queue full" may occur. |
---|
1590 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1591 | |
---|
1592 | ngp = ( nxr-nxl + 1 ) * ( nzt_do-nzb_do + 1 ) |
---|
1593 | IF ( myid == 0 ) THEN |
---|
1594 | ! |
---|
1595 | !-- Local array can be relocated directly. |
---|
1596 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1597 | section(is,s_ind) <= nyn ) .OR. & |
---|
1598 | ( section(is,s_ind) == -1 .AND. & |
---|
1599 | nys-1 == -1 ) ) THEN |
---|
1600 | total_2d(nxl:nxr,nzb_do:nzt_do) = local_2d |
---|
1601 | ENDIF |
---|
1602 | ! |
---|
1603 | !-- Receive data from all other PEs. |
---|
1604 | DO n = 1, numprocs-1 |
---|
1605 | ! |
---|
1606 | !-- Receive index limits first, then array. |
---|
1607 | !-- Index limits are received in arbitrary order from |
---|
1608 | !-- the PEs. |
---|
1609 | CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & |
---|
1610 | MPI_ANY_SOURCE, 0, comm2d, & |
---|
1611 | status, ierr ) |
---|
1612 | ! |
---|
1613 | !-- Not all PEs have data for XZ-cross-section. |
---|
1614 | IF ( ind(1) /= -9999 ) THEN |
---|
1615 | sender = status(MPI_SOURCE) |
---|
1616 | DEALLOCATE( local_2d ) |
---|
1617 | ALLOCATE( local_2d(ind(1):ind(2), & |
---|
1618 | ind(3):ind(4)) ) |
---|
1619 | CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & |
---|
1620 | MPI_REAL, sender, 1, comm2d, & |
---|
1621 | status, ierr ) |
---|
1622 | total_2d(ind(1):ind(2),ind(3):ind(4)) = & |
---|
1623 | local_2d |
---|
1624 | ENDIF |
---|
1625 | ENDDO |
---|
1626 | ! |
---|
1627 | !-- Relocate the local array for the next loop increment |
---|
1628 | DEALLOCATE( local_2d ) |
---|
1629 | ALLOCATE( local_2d(nxl:nxr,nzb_do:nzt_do) ) |
---|
1630 | |
---|
1631 | #if defined( __netcdf ) |
---|
1632 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1633 | id_var_do2d(av,ivar), & |
---|
1634 | total_2d(0:nx,nzb_do:nzt_do), & |
---|
1635 | start = (/ 1, is, 1, do2d_xz_time_count(av) /), & |
---|
1636 | count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) |
---|
1637 | CALL netcdf_handle_error( 'data_output_2d', 58 ) |
---|
1638 | #endif |
---|
1639 | |
---|
1640 | ELSE |
---|
1641 | ! |
---|
1642 | !-- If the cross section resides on the PE, send the |
---|
1643 | !-- local index limits, otherwise send -9999 to PE0. |
---|
1644 | IF ( ( section(is,s_ind) >= nys .AND. & |
---|
1645 | section(is,s_ind) <= nyn ) .OR. & |
---|
1646 | ( section(is,s_ind) == -1 .AND. nys-1 == -1 ) ) & |
---|
1647 | THEN |
---|
1648 | ind(1) = nxl; ind(2) = nxr |
---|
1649 | ind(3) = nzb_do; ind(4) = nzt_do |
---|
1650 | ELSE |
---|
1651 | ind(1) = -9999; ind(2) = -9999 |
---|
1652 | ind(3) = -9999; ind(4) = -9999 |
---|
1653 | ENDIF |
---|
1654 | CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & |
---|
1655 | comm2d, ierr ) |
---|
1656 | ! |
---|
1657 | !-- If applicable, send data to PE0. |
---|
1658 | IF ( ind(1) /= -9999 ) THEN |
---|
1659 | CALL MPI_SEND( local_2d(nxl,nzb_do), ngp, & |
---|
1660 | MPI_REAL, 0, 1, comm2d, ierr ) |
---|
1661 | ENDIF |
---|
1662 | ENDIF |
---|
1663 | ! |
---|
1664 | !-- A barrier has to be set, because otherwise some PEs may |
---|
1665 | !-- proceed too fast so that PE0 may receive wrong data on |
---|
1666 | !-- tag 0 |
---|
1667 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1668 | ENDIF |
---|
1669 | |
---|
1670 | ENDIF |
---|
1671 | #else |
---|
1672 | #if defined( __netcdf ) |
---|
1673 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1674 | id_var_do2d(av,ivar), & |
---|
1675 | local_2d(nxl:nxr,nzb_do:nzt_do), & |
---|
1676 | start = (/ 1, is, 1, do2d_xz_time_count(av) /), & |
---|
1677 | count = (/ nx+1, 1, nzt_do-nzb_do+1, 1 /) ) |
---|
1678 | CALL netcdf_handle_error( 'data_output_2d', 451 ) |
---|
1679 | #endif |
---|
1680 | #endif |
---|
1681 | |
---|
1682 | CASE ( 'yz' ) |
---|
1683 | ! |
---|
1684 | !-- Update the netCDF yz cross section time axis. |
---|
1685 | !-- In case of parallel output, this is only done by PE0 |
---|
1686 | !-- to increase the performance. |
---|
1687 | IF ( time_since_reference_point /= do2d_yz_last_time(av) ) THEN |
---|
1688 | do2d_yz_time_count(av) = do2d_yz_time_count(av) + 1 |
---|
1689 | do2d_yz_last_time(av) = time_since_reference_point |
---|
1690 | IF ( myid == 0 ) THEN |
---|
1691 | IF ( .NOT. data_output_2d_on_each_pe & |
---|
1692 | .OR. netcdf_data_format > 4 ) & |
---|
1693 | THEN |
---|
1694 | #if defined( __netcdf ) |
---|
1695 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
1696 | id_var_time_yz(av), & |
---|
1697 | (/ time_since_reference_point /), & |
---|
1698 | start = (/ do2d_yz_time_count(av) /), & |
---|
1699 | count = (/ 1 /) ) |
---|
1700 | CALL netcdf_handle_error( 'data_output_2d', 59 ) |
---|
1701 | #endif |
---|
1702 | ENDIF |
---|
1703 | ENDIF |
---|
1704 | ENDIF |
---|
1705 | |
---|
1706 | ! |
---|
1707 | !-- If required, carry out averaging along x |
---|
1708 | IF ( section(is,s_ind) == -1 ) THEN |
---|
1709 | |
---|
1710 | ALLOCATE( local_2d_l(nys:nyn,nzb_do:nzt_do) ) |
---|
1711 | local_2d_l = 0.0_wp |
---|
1712 | ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) |
---|
1713 | ! |
---|
1714 | !-- First local averaging on the PE |
---|
1715 | DO k = nzb_do, nzt_do |
---|
1716 | DO j = nys, nyn |
---|
1717 | DO i = nxl, nxr |
---|
1718 | local_2d_l(j,k) = local_2d_l(j,k) + & |
---|
1719 | local_pf(i,j,k) |
---|
1720 | ENDDO |
---|
1721 | ENDDO |
---|
1722 | ENDDO |
---|
1723 | #if defined( __parallel ) |
---|
1724 | ! |
---|
1725 | !-- Now do the averaging over all PEs along x |
---|
1726 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1727 | CALL MPI_ALLREDUCE( local_2d_l(nys,nzb_do), & |
---|
1728 | local_2d(nys,nzb_do), ngp, MPI_REAL, & |
---|
1729 | MPI_SUM, comm1dx, ierr ) |
---|
1730 | #else |
---|
1731 | local_2d = local_2d_l |
---|
1732 | #endif |
---|
1733 | local_2d = local_2d / ( nx + 1.0_wp ) |
---|
1734 | |
---|
1735 | DEALLOCATE( local_2d_l ) |
---|
1736 | |
---|
1737 | ELSE |
---|
1738 | ! |
---|
1739 | !-- Just store the respective section on the local array |
---|
1740 | !-- (but only if it is available on this PE!) |
---|
1741 | IF ( section(is,s_ind) >= nxl .AND. section(is,s_ind) <= nxr ) & |
---|
1742 | THEN |
---|
1743 | local_2d = local_pf(section(is,s_ind),:,nzb_do:nzt_do) |
---|
1744 | ENDIF |
---|
1745 | |
---|
1746 | ENDIF |
---|
1747 | |
---|
1748 | #if defined( __parallel ) |
---|
1749 | IF ( netcdf_data_format > 4 ) THEN |
---|
1750 | ! |
---|
1751 | !-- Output in netCDF4/HDF5 format. |
---|
1752 | !-- Output only on those PEs where the respective cross |
---|
1753 | !-- sections reside. Cross sections averaged along x are |
---|
1754 | !-- output on the respective first PE along x (myidx=0). |
---|
1755 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1756 | section(is,s_ind) <= nxr ) .OR. & |
---|
1757 | ( section(is,s_ind) == -1 .AND. myidx == 0 ) ) THEN |
---|
1758 | #if defined( __netcdf ) |
---|
1759 | ! |
---|
1760 | !-- For parallel output, all cross sections are first |
---|
1761 | !-- stored here on a local array and will be written to the |
---|
1762 | !-- output file afterwards to increase the performance. |
---|
1763 | DO j = nys, nyn |
---|
1764 | DO k = nzb_do, nzt_do |
---|
1765 | local_2d_sections_l(is,j,k) = local_2d(j,k) |
---|
1766 | ENDDO |
---|
1767 | ENDDO |
---|
1768 | #endif |
---|
1769 | ENDIF |
---|
1770 | |
---|
1771 | ELSE |
---|
1772 | |
---|
1773 | IF ( data_output_2d_on_each_pe ) THEN |
---|
1774 | ! |
---|
1775 | !-- Output of partial arrays on each PE. If the cross |
---|
1776 | !-- section does not reside on the PE, output special |
---|
1777 | !-- index values. |
---|
1778 | #if defined( __netcdf ) |
---|
1779 | IF ( myid == 0 ) THEN |
---|
1780 | WRITE ( 23 ) time_since_reference_point, & |
---|
1781 | do2d_yz_time_count(av), av |
---|
1782 | ENDIF |
---|
1783 | #endif |
---|
1784 | DO i = 0, io_blocks-1 |
---|
1785 | IF ( i == io_group ) THEN |
---|
1786 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1787 | section(is,s_ind) <= nxr ) .OR. & |
---|
1788 | ( section(is,s_ind) == -1 .AND. & |
---|
1789 | nxl-1 == -1 ) ) & |
---|
1790 | THEN |
---|
1791 | WRITE (23) nys, nyn, nzb_do, nzt_do, nzb, nzt+1 |
---|
1792 | WRITE (23) local_2d |
---|
1793 | ELSE |
---|
1794 | WRITE (23) -1, -1, -1, -1, -1, -1 |
---|
1795 | ENDIF |
---|
1796 | ENDIF |
---|
1797 | #if defined( __parallel ) |
---|
1798 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1799 | #endif |
---|
1800 | ENDDO |
---|
1801 | |
---|
1802 | ELSE |
---|
1803 | ! |
---|
1804 | !-- PE0 receives partial arrays from all processors of the |
---|
1805 | !-- respective cross section and outputs them. Here a |
---|
1806 | !-- barrier has to be set, because otherwise |
---|
1807 | !-- "-MPI- FATAL: Remote protocol queue full" may occur. |
---|
1808 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1809 | |
---|
1810 | ngp = ( nyn-nys+1 ) * ( nzt_do-nzb_do+1 ) |
---|
1811 | IF ( myid == 0 ) THEN |
---|
1812 | ! |
---|
1813 | !-- Local array can be relocated directly. |
---|
1814 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1815 | section(is,s_ind) <= nxr ) .OR. & |
---|
1816 | ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) & |
---|
1817 | THEN |
---|
1818 | total_2d(nys:nyn,nzb_do:nzt_do) = local_2d |
---|
1819 | ENDIF |
---|
1820 | ! |
---|
1821 | !-- Receive data from all other PEs. |
---|
1822 | DO n = 1, numprocs-1 |
---|
1823 | ! |
---|
1824 | !-- Receive index limits first, then array. |
---|
1825 | !-- Index limits are received in arbitrary order from |
---|
1826 | !-- the PEs. |
---|
1827 | CALL MPI_RECV( ind(1), 4, MPI_INTEGER, & |
---|
1828 | MPI_ANY_SOURCE, 0, comm2d, & |
---|
1829 | status, ierr ) |
---|
1830 | ! |
---|
1831 | !-- Not all PEs have data for YZ-cross-section. |
---|
1832 | IF ( ind(1) /= -9999 ) THEN |
---|
1833 | sender = status(MPI_SOURCE) |
---|
1834 | DEALLOCATE( local_2d ) |
---|
1835 | ALLOCATE( local_2d(ind(1):ind(2), & |
---|
1836 | ind(3):ind(4)) ) |
---|
1837 | CALL MPI_RECV( local_2d(ind(1),ind(3)), ngp, & |
---|
1838 | MPI_REAL, sender, 1, comm2d, & |
---|
1839 | status, ierr ) |
---|
1840 | total_2d(ind(1):ind(2),ind(3):ind(4)) = & |
---|
1841 | local_2d |
---|
1842 | ENDIF |
---|
1843 | ENDDO |
---|
1844 | ! |
---|
1845 | !-- Relocate the local array for the next loop increment |
---|
1846 | DEALLOCATE( local_2d ) |
---|
1847 | ALLOCATE( local_2d(nys:nyn,nzb_do:nzt_do) ) |
---|
1848 | |
---|
1849 | #if defined( __netcdf ) |
---|
1850 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
1851 | id_var_do2d(av,ivar), & |
---|
1852 | total_2d(0:ny,nzb_do:nzt_do), & |
---|
1853 | start = (/ is, 1, 1, do2d_yz_time_count(av) /), & |
---|
1854 | count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) |
---|
1855 | CALL netcdf_handle_error( 'data_output_2d', 61 ) |
---|
1856 | #endif |
---|
1857 | |
---|
1858 | ELSE |
---|
1859 | ! |
---|
1860 | !-- If the cross section resides on the PE, send the |
---|
1861 | !-- local index limits, otherwise send -9999 to PE0. |
---|
1862 | IF ( ( section(is,s_ind) >= nxl .AND. & |
---|
1863 | section(is,s_ind) <= nxr ) .OR. & |
---|
1864 | ( section(is,s_ind) == -1 .AND. nxl-1 == -1 ) ) & |
---|
1865 | THEN |
---|
1866 | ind(1) = nys; ind(2) = nyn |
---|
1867 | ind(3) = nzb_do; ind(4) = nzt_do |
---|
1868 | ELSE |
---|
1869 | ind(1) = -9999; ind(2) = -9999 |
---|
1870 | ind(3) = -9999; ind(4) = -9999 |
---|
1871 | ENDIF |
---|
1872 | CALL MPI_SEND( ind(1), 4, MPI_INTEGER, 0, 0, & |
---|
1873 | comm2d, ierr ) |
---|
1874 | ! |
---|
1875 | !-- If applicable, send data to PE0. |
---|
1876 | IF ( ind(1) /= -9999 ) THEN |
---|
1877 | CALL MPI_SEND( local_2d(nys,nzb_do), ngp, & |
---|
1878 | MPI_REAL, 0, 1, comm2d, ierr ) |
---|
1879 | ENDIF |
---|
1880 | ENDIF |
---|
1881 | ! |
---|
1882 | !-- A barrier has to be set, because otherwise some PEs may |
---|
1883 | !-- proceed too fast so that PE0 may receive wrong data on |
---|
1884 | !-- tag 0 |
---|
1885 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1886 | ENDIF |
---|
1887 | |
---|
1888 | ENDIF |
---|
1889 | #else |
---|
1890 | #if defined( __netcdf ) |
---|
1891 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
1892 | id_var_do2d(av,ivar), & |
---|
1893 | local_2d(nys:nyn,nzb_do:nzt_do), & |
---|
1894 | start = (/ is, 1, 1, do2d_xz_time_count(av) /), & |
---|
1895 | count = (/ 1, ny+1, nzt_do-nzb_do+1, 1 /) ) |
---|
1896 | CALL netcdf_handle_error( 'data_output_2d', 452 ) |
---|
1897 | #endif |
---|
1898 | #endif |
---|
1899 | |
---|
1900 | END SELECT |
---|
1901 | |
---|
1902 | is = is + 1 |
---|
1903 | ENDDO loop1 |
---|
1904 | |
---|
1905 | ! |
---|
1906 | !-- For parallel output, all data were collected before on a local array |
---|
1907 | !-- and are written now to the netcdf file. This must be done to increase |
---|
1908 | !-- the performance of the parallel output. |
---|
1909 | #if defined( __netcdf ) |
---|
1910 | IF ( netcdf_data_format > 4 ) THEN |
---|
1911 | |
---|
1912 | SELECT CASE ( mode ) |
---|
1913 | |
---|
1914 | CASE ( 'xy' ) |
---|
1915 | IF ( two_d ) THEN |
---|
1916 | nis = 1 |
---|
1917 | two_d = .FALSE. |
---|
1918 | ELSE |
---|
1919 | nis = ns |
---|
1920 | ENDIF |
---|
1921 | ! |
---|
1922 | !-- Do not output redundant ghost point data except for the |
---|
1923 | !-- boundaries of the total domain. |
---|
1924 | ! IF ( nxr == nx .AND. nyn /= ny ) THEN |
---|
1925 | ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1926 | ! id_var_do2d(av,ivar), & |
---|
1927 | ! local_2d_sections(nxl:nxr+1, & |
---|
1928 | ! nys:nyn,1:nis), & |
---|
1929 | ! start = (/ nxl+1, nys+1, 1, & |
---|
1930 | ! do2d_xy_time_count(av) /), & |
---|
1931 | ! count = (/ nxr-nxl+2, & |
---|
1932 | ! nyn-nys+1, nis, 1 & |
---|
1933 | ! /) ) |
---|
1934 | ! ELSEIF ( nxr /= nx .AND. nyn == ny ) THEN |
---|
1935 | ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1936 | ! id_var_do2d(av,ivar), & |
---|
1937 | ! local_2d_sections(nxl:nxr, & |
---|
1938 | ! nys:nyn+1,1:nis), & |
---|
1939 | ! start = (/ nxl+1, nys+1, 1, & |
---|
1940 | ! do2d_xy_time_count(av) /), & |
---|
1941 | ! count = (/ nxr-nxl+1, & |
---|
1942 | ! nyn-nys+2, nis, 1 & |
---|
1943 | ! /) ) |
---|
1944 | ! ELSEIF ( nxr == nx .AND. nyn == ny ) THEN |
---|
1945 | ! nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1946 | ! id_var_do2d(av,ivar), & |
---|
1947 | ! local_2d_sections(nxl:nxr+1, & |
---|
1948 | ! nys:nyn+1,1:nis), & |
---|
1949 | ! start = (/ nxl+1, nys+1, 1, & |
---|
1950 | ! do2d_xy_time_count(av) /), & |
---|
1951 | ! count = (/ nxr-nxl+2, & |
---|
1952 | ! nyn-nys+2, nis, 1 & |
---|
1953 | ! /) ) |
---|
1954 | ! ELSE |
---|
1955 | nc_stat = NF90_PUT_VAR( id_set_xy(av), & |
---|
1956 | id_var_do2d(av,ivar), & |
---|
1957 | local_2d_sections(nxl:nxr, & |
---|
1958 | nys:nyn,1:nis), & |
---|
1959 | start = (/ nxl+1, nys+1, 1, & |
---|
1960 | do2d_xy_time_count(av) /), & |
---|
1961 | count = (/ nxr-nxl+1, & |
---|
1962 | nyn-nys+1, nis, 1 & |
---|
1963 | /) ) |
---|
1964 | ! ENDIF |
---|
1965 | |
---|
1966 | CALL netcdf_handle_error( 'data_output_2d', 55 ) |
---|
1967 | |
---|
1968 | CASE ( 'xz' ) |
---|
1969 | ! |
---|
1970 | !-- First, all PEs get the information of all cross-sections. |
---|
1971 | !-- Then the data are written to the output file by all PEs |
---|
1972 | !-- while NF90_COLLECTIVE is set in subroutine |
---|
1973 | !-- define_netcdf_header. Although redundant information are |
---|
1974 | !-- written to the output file in that case, the performance |
---|
1975 | !-- is significantly better compared to the case where only |
---|
1976 | !-- the first row of PEs in x-direction (myidx = 0) is given |
---|
1977 | !-- the output while NF90_INDEPENDENT is set. |
---|
1978 | IF ( npey /= 1 ) THEN |
---|
1979 | |
---|
1980 | #if defined( __parallel ) |
---|
1981 | ! |
---|
1982 | !-- Distribute data over all PEs along y |
---|
1983 | ngp = ( nxr-nxl+1 ) * ( nzt_do-nzb_do+1 ) * ns |
---|
1984 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1985 | CALL MPI_ALLREDUCE( local_2d_sections_l(nxl,1,nzb_do), & |
---|
1986 | local_2d_sections(nxl,1,nzb_do), & |
---|
1987 | ngp, MPI_REAL, MPI_SUM, comm1dy, & |
---|
1988 | ierr ) |
---|
1989 | #else |
---|
1990 | local_2d_sections = local_2d_sections_l |
---|
1991 | #endif |
---|
1992 | ENDIF |
---|
1993 | ! |
---|
1994 | !-- Do not output redundant ghost point data except for the |
---|
1995 | !-- boundaries of the total domain. |
---|
1996 | ! IF ( nxr == nx ) THEN |
---|
1997 | ! nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
1998 | ! id_var_do2d(av,ivar), & |
---|
1999 | ! local_2d_sections(nxl:nxr+1,1:ns, & |
---|
2000 | ! nzb_do:nzt_do), & |
---|
2001 | ! start = (/ nxl+1, 1, 1, & |
---|
2002 | ! do2d_xz_time_count(av) /), & |
---|
2003 | ! count = (/ nxr-nxl+2, ns, nzt_do-nzb_do+1, & |
---|
2004 | ! 1 /) ) |
---|
2005 | ! ELSE |
---|
2006 | nc_stat = NF90_PUT_VAR( id_set_xz(av), & |
---|
2007 | id_var_do2d(av,ivar), & |
---|
2008 | local_2d_sections(nxl:nxr,1:ns, & |
---|
2009 | nzb_do:nzt_do), & |
---|
2010 | start = (/ nxl+1, 1, 1, & |
---|
2011 | do2d_xz_time_count(av) /), & |
---|
2012 | count = (/ nxr-nxl+1, ns, nzt_do-nzb_do+1, & |
---|
2013 | 1 /) ) |
---|
2014 | ! ENDIF |
---|
2015 | |
---|
2016 | CALL netcdf_handle_error( 'data_output_2d', 57 ) |
---|
2017 | |
---|
2018 | CASE ( 'yz' ) |
---|
2019 | ! |
---|
2020 | !-- First, all PEs get the information of all cross-sections. |
---|
2021 | !-- Then the data are written to the output file by all PEs |
---|
2022 | !-- while NF90_COLLECTIVE is set in subroutine |
---|
2023 | !-- define_netcdf_header. Although redundant information are |
---|
2024 | !-- written to the output file in that case, the performance |
---|
2025 | !-- is significantly better compared to the case where only |
---|
2026 | !-- the first row of PEs in y-direction (myidy = 0) is given |
---|
2027 | !-- the output while NF90_INDEPENDENT is set. |
---|
2028 | IF ( npex /= 1 ) THEN |
---|
2029 | |
---|
2030 | #if defined( __parallel ) |
---|
2031 | ! |
---|
2032 | !-- Distribute data over all PEs along x |
---|
2033 | ngp = ( nyn-nys+1 ) * ( nzt-nzb + 2 ) * ns |
---|
2034 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2035 | CALL MPI_ALLREDUCE( local_2d_sections_l(1,nys,nzb_do), & |
---|
2036 | local_2d_sections(1,nys,nzb_do), & |
---|
2037 | ngp, MPI_REAL, MPI_SUM, comm1dx, & |
---|
2038 | ierr ) |
---|
2039 | #else |
---|
2040 | local_2d_sections = local_2d_sections_l |
---|
2041 | #endif |
---|
2042 | ENDIF |
---|
2043 | ! |
---|
2044 | !-- Do not output redundant ghost point data except for the |
---|
2045 | !-- boundaries of the total domain. |
---|
2046 | ! IF ( nyn == ny ) THEN |
---|
2047 | ! nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
2048 | ! id_var_do2d(av,ivar), & |
---|
2049 | ! local_2d_sections(1:ns, & |
---|
2050 | ! nys:nyn+1,nzb_do:nzt_do), & |
---|
2051 | ! start = (/ 1, nys+1, 1, & |
---|
2052 | ! do2d_yz_time_count(av) /), & |
---|
2053 | ! count = (/ ns, nyn-nys+2, & |
---|
2054 | ! nzt_do-nzb_do+1, 1 /) ) |
---|
2055 | ! ELSE |
---|
2056 | nc_stat = NF90_PUT_VAR( id_set_yz(av), & |
---|
2057 | id_var_do2d(av,ivar), & |
---|
2058 | local_2d_sections(1:ns,nys:nyn, & |
---|
2059 | nzb_do:nzt_do), & |
---|
2060 | start = (/ 1, nys+1, 1, & |
---|
2061 | do2d_yz_time_count(av) /), & |
---|
2062 | count = (/ ns, nyn-nys+1, & |
---|
2063 | nzt_do-nzb_do+1, 1 /) ) |
---|
2064 | ! ENDIF |
---|
2065 | |
---|
2066 | CALL netcdf_handle_error( 'data_output_2d', 60 ) |
---|
2067 | |
---|
2068 | CASE DEFAULT |
---|
2069 | message_string = 'unknown cross-section: ' // TRIM( mode ) |
---|
2070 | CALL message( 'data_output_2d', 'PA0180', 1, 2, 0, 6, 0 ) |
---|
2071 | |
---|
2072 | END SELECT |
---|
2073 | |
---|
2074 | ENDIF |
---|
2075 | #endif |
---|
2076 | ENDIF |
---|
2077 | |
---|
2078 | ivar = ivar + 1 |
---|
2079 | l = MAX( 2, LEN_TRIM( do2d(av,ivar) ) ) |
---|
2080 | do2d_mode = do2d(av,ivar)(l-1:l) |
---|
2081 | |
---|
2082 | ENDDO |
---|
2083 | |
---|
2084 | ! |
---|
2085 | !-- Deallocate temporary arrays. |
---|
2086 | IF ( ALLOCATED( level_z ) ) DEALLOCATE( level_z ) |
---|
2087 | IF ( netcdf_data_format > 4 ) THEN |
---|
2088 | DEALLOCATE( local_pf, local_2d, local_2d_sections ) |
---|
2089 | IF( mode == 'xz' .OR. mode == 'yz' ) DEALLOCATE( local_2d_sections_l ) |
---|
2090 | ENDIF |
---|
2091 | #if defined( __parallel ) |
---|
2092 | IF ( .NOT. data_output_2d_on_each_pe .AND. myid == 0 ) THEN |
---|
2093 | DEALLOCATE( total_2d ) |
---|
2094 | ENDIF |
---|
2095 | #endif |
---|
2096 | |
---|
2097 | ! |
---|
2098 | !-- Close plot output file. |
---|
2099 | file_id = 20 + s_ind |
---|
2100 | |
---|
2101 | IF ( data_output_2d_on_each_pe ) THEN |
---|
2102 | DO i = 0, io_blocks-1 |
---|
2103 | IF ( i == io_group ) THEN |
---|
2104 | CALL close_file( file_id ) |
---|
2105 | ENDIF |
---|
2106 | #if defined( __parallel ) |
---|
2107 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
2108 | #endif |
---|
2109 | ENDDO |
---|
2110 | ELSE |
---|
2111 | IF ( myid == 0 ) CALL close_file( file_id ) |
---|
2112 | ENDIF |
---|
2113 | |
---|
2114 | CALL cpu_log( log_point(3), 'data_output_2d', 'stop' ) |
---|
2115 | |
---|
2116 | IF ( debug_output_timestep ) CALL debug_message( 'data_output_2d', 'end' ) |
---|
2117 | |
---|
2118 | |
---|
2119 | END SUBROUTINE data_output_2d |
---|