1 | !> @file calc_radiation.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: calc_radiation.f90 1818 2016-04-06 15:53:27Z raasch $ |
---|
26 | ! |
---|
27 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
28 | ! Code annotations made doxygen readable |
---|
29 | ! |
---|
30 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
31 | ! REAL constants provided with KIND-attribute |
---|
32 | ! |
---|
33 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
34 | ! exponent 4.0 changed to integer |
---|
35 | ! |
---|
36 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
37 | ! ONLY-attribute added to USE-statements, |
---|
38 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
39 | ! kinds are defined in new module kinds, |
---|
40 | ! revision history before 2012 removed, |
---|
41 | ! comment fields (!:) to be used for variable explanations added to |
---|
42 | ! all variable declaration statements |
---|
43 | ! |
---|
44 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
45 | ! code put under GPL (PALM 3.9) |
---|
46 | ! |
---|
47 | ! Revision 1.1 2000/04/13 14:42:45 schroeter |
---|
48 | ! Initial revision |
---|
49 | ! |
---|
50 | ! |
---|
51 | ! Description: |
---|
52 | ! ------------- |
---|
53 | !> Calculation of the vertical divergences of the long-wave radiation-fluxes |
---|
54 | !> based on the parameterization of the cloud effective emissivity |
---|
55 | !------------------------------------------------------------------------------! |
---|
56 | MODULE calc_radiation_mod |
---|
57 | |
---|
58 | USE kinds |
---|
59 | |
---|
60 | PRIVATE |
---|
61 | PUBLIC calc_radiation |
---|
62 | |
---|
63 | LOGICAL, SAVE :: first_call = .TRUE. !< |
---|
64 | REAL(wp), SAVE :: sigma = 5.67E-08_wp !< |
---|
65 | |
---|
66 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: lwp_ground !< |
---|
67 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: lwp_top !< |
---|
68 | REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: blackbody_emission !< |
---|
69 | |
---|
70 | INTERFACE calc_radiation |
---|
71 | MODULE PROCEDURE calc_radiation |
---|
72 | MODULE PROCEDURE calc_radiation_ij |
---|
73 | END INTERFACE calc_radiation |
---|
74 | |
---|
75 | CONTAINS |
---|
76 | |
---|
77 | |
---|
78 | !------------------------------------------------------------------------------! |
---|
79 | ! Description: |
---|
80 | ! ------------ |
---|
81 | !> Call for all grid points |
---|
82 | !------------------------------------------------------------------------------! |
---|
83 | SUBROUTINE calc_radiation |
---|
84 | |
---|
85 | USE arrays_3d, & |
---|
86 | ONLY: dzw, pt, ql, tend |
---|
87 | |
---|
88 | USE cloud_parameters, & |
---|
89 | ONLY: cp, l_d_cp, pt_d_t, t_d_pt |
---|
90 | |
---|
91 | USE control_parameters, & |
---|
92 | ONLY: rho_surface |
---|
93 | |
---|
94 | USE indices, & |
---|
95 | ONLY: nxl, nxr, nyn, nys, nzb, nzb_2d, nzt |
---|
96 | |
---|
97 | USE kinds |
---|
98 | |
---|
99 | USE pegrid |
---|
100 | |
---|
101 | |
---|
102 | IMPLICIT NONE |
---|
103 | |
---|
104 | INTEGER(iwp) :: i !< |
---|
105 | INTEGER(iwp) :: j !< |
---|
106 | INTEGER(iwp) :: k !< |
---|
107 | INTEGER(iwp) :: k_help !< |
---|
108 | |
---|
109 | REAL(wp) :: df_p !< |
---|
110 | REAL(wp) :: df_m !< |
---|
111 | REAL(wp) :: effective_emission_up_m !< |
---|
112 | REAL(wp) :: effective_emission_up_p !< |
---|
113 | REAL(wp) :: effective_emission_down_m !< |
---|
114 | REAL(wp) :: effective_emission_down_p !< |
---|
115 | REAL(wp) :: f_up_m !< |
---|
116 | REAL(wp) :: f_up_p !< |
---|
117 | REAL(wp) :: f_down_m !< |
---|
118 | REAL(wp) :: f_down_p !< |
---|
119 | REAL(wp) :: impinging_flux_at_top !< |
---|
120 | REAL(wp) :: temperature !< |
---|
121 | |
---|
122 | |
---|
123 | ! |
---|
124 | !-- On first call, allocate temporary arrays |
---|
125 | IF ( first_call ) THEN |
---|
126 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
127 | lwp_top(nzb:nzt+1) ) |
---|
128 | first_call = .FALSE. |
---|
129 | ENDIF |
---|
130 | |
---|
131 | |
---|
132 | DO i = nxl, nxr |
---|
133 | DO j = nys, nyn |
---|
134 | ! |
---|
135 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
136 | !-- at all vertical levels |
---|
137 | lwp_ground(nzb) = 0.0_wp |
---|
138 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
139 | |
---|
140 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
141 | blackbody_emission(nzb) = sigma * temperature**4 |
---|
142 | |
---|
143 | DO k = nzb_2d(j,i)+1, nzt |
---|
144 | |
---|
145 | k_help = ( nzt+nzb+1 ) - k |
---|
146 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * & |
---|
147 | dzw(k) |
---|
148 | |
---|
149 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
150 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
151 | |
---|
152 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
153 | blackbody_emission(k) = sigma * temperature**4 |
---|
154 | |
---|
155 | ENDDO |
---|
156 | |
---|
157 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
158 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
159 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
160 | |
---|
161 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
162 | ql(nzt+1,j,i) |
---|
163 | blackbody_emission(nzt+1) = sigma * temperature**4 |
---|
164 | |
---|
165 | ! |
---|
166 | !-- See Chlond '92, this is just a first guess |
---|
167 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0_wp |
---|
168 | |
---|
169 | DO k = nzb_2d(j,i)+1, nzt |
---|
170 | ! |
---|
171 | !-- Save some computational time, but this may cause load |
---|
172 | !-- imbalances if ql is not distributed uniformly |
---|
173 | IF ( ql(k,j,i) /= 0.0_wp ) THEN |
---|
174 | ! |
---|
175 | !-- Compute effective emissivities |
---|
176 | effective_emission_up_p = 1.0_wp - & |
---|
177 | EXP( -130.0_wp * lwp_ground(k+1) ) |
---|
178 | effective_emission_up_m = 1.0_wp - & |
---|
179 | EXP( -130.0_wp * lwp_ground(k-1) ) |
---|
180 | effective_emission_down_p = 1.0_wp - & |
---|
181 | EXP( -158.0_wp * lwp_top(k+1) ) |
---|
182 | effective_emission_down_m = 1.0_wp - & |
---|
183 | EXP( -158.0_wp * lwp_top(k-1) ) |
---|
184 | |
---|
185 | ! |
---|
186 | !-- Compute vertical long wave radiation fluxes |
---|
187 | f_up_p = blackbody_emission(nzb) + & |
---|
188 | effective_emission_up_p * & |
---|
189 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
190 | |
---|
191 | f_up_m = blackbody_emission(nzb) + & |
---|
192 | effective_emission_up_m * & |
---|
193 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
194 | |
---|
195 | f_down_p = impinging_flux_at_top + & |
---|
196 | effective_emission_down_p * & |
---|
197 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
198 | |
---|
199 | f_down_m = impinging_flux_at_top + & |
---|
200 | effective_emission_down_m * & |
---|
201 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
202 | |
---|
203 | ! |
---|
204 | !-- Divergence of vertical long wave radiation fluxes |
---|
205 | df_p = f_up_p - f_down_p |
---|
206 | df_m = f_up_m - f_down_m |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Compute tendency term |
---|
210 | tend(k,j,i) = tend(k,j,i) - & |
---|
211 | ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
212 | ( df_p - df_m ) / dzw(k) ) |
---|
213 | |
---|
214 | ENDIF |
---|
215 | |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | ENDDO |
---|
219 | |
---|
220 | END SUBROUTINE calc_radiation |
---|
221 | |
---|
222 | |
---|
223 | !------------------------------------------------------------------------------! |
---|
224 | ! Description: |
---|
225 | ! ------------ |
---|
226 | !> Call for grid point i,j |
---|
227 | !------------------------------------------------------------------------------! |
---|
228 | SUBROUTINE calc_radiation_ij( i, j ) |
---|
229 | |
---|
230 | USE arrays_3d, & |
---|
231 | ONLY: dzw, pt, ql, tend |
---|
232 | |
---|
233 | USE cloud_parameters, & |
---|
234 | ONLY: cp, l_d_cp, pt_d_t, t_d_pt |
---|
235 | |
---|
236 | USE control_parameters, & |
---|
237 | ONLY: rho_surface |
---|
238 | |
---|
239 | USE indices, & |
---|
240 | ONLY: nzb, nzb_2d, nzt |
---|
241 | |
---|
242 | USE kinds |
---|
243 | |
---|
244 | USE pegrid |
---|
245 | |
---|
246 | |
---|
247 | IMPLICIT NONE |
---|
248 | |
---|
249 | INTEGER(iwp) :: i !< |
---|
250 | INTEGER(iwp) :: j !< |
---|
251 | INTEGER(iwp) :: k !< |
---|
252 | INTEGER(iwp) :: k_help !< |
---|
253 | |
---|
254 | REAL(wp) :: df_p !< |
---|
255 | REAL(wp) :: df_m !< |
---|
256 | REAL(wp) :: effective_emission_up_m !< |
---|
257 | REAL(wp) :: effective_emission_up_p !< |
---|
258 | REAL(wp) :: effective_emission_down_m !< |
---|
259 | REAL(wp) :: effective_emission_down_p !< |
---|
260 | REAL(wp) :: f_up_m !< |
---|
261 | REAL(wp) :: f_up_p !< |
---|
262 | REAL(wp) :: f_down_m !< |
---|
263 | REAL(wp) :: f_down_p !< |
---|
264 | REAL(wp) :: impinging_flux_at_top !< |
---|
265 | REAL(wp) :: temperature !< |
---|
266 | |
---|
267 | |
---|
268 | ! |
---|
269 | !-- On first call, allocate temporary arrays |
---|
270 | IF ( first_call ) THEN |
---|
271 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
272 | lwp_top(nzb:nzt+1) ) |
---|
273 | first_call = .FALSE. |
---|
274 | ENDIF |
---|
275 | |
---|
276 | ! |
---|
277 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
278 | !-- at all vertical levels |
---|
279 | lwp_ground(nzb) = 0.0_wp |
---|
280 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
281 | |
---|
282 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
283 | blackbody_emission(nzb) = sigma * temperature**4 |
---|
284 | |
---|
285 | DO k = nzb_2d(j,i)+1, nzt |
---|
286 | k_help = ( nzt+nzb+1 ) - k |
---|
287 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * dzw(k) |
---|
288 | |
---|
289 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
290 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
291 | |
---|
292 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
293 | blackbody_emission(k) = sigma * temperature**4 |
---|
294 | |
---|
295 | ENDDO |
---|
296 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
297 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
298 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
299 | |
---|
300 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
301 | ql(nzt+1,j,i) |
---|
302 | blackbody_emission(nzt+1) = sigma * temperature**4 |
---|
303 | |
---|
304 | ! |
---|
305 | !-- See Chlond '92, this is just a first guess |
---|
306 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0_wp |
---|
307 | |
---|
308 | DO k = nzb_2d(j,i)+1, nzt |
---|
309 | ! |
---|
310 | !-- Store some computational time, |
---|
311 | !-- this may cause load imbalances if ql is not distributed uniformly |
---|
312 | IF ( ql(k,j,i) /= 0.0_wp ) THEN |
---|
313 | ! |
---|
314 | !-- Compute effective emissivities |
---|
315 | effective_emission_up_p = 1.0_wp - & |
---|
316 | EXP( -130.0_wp * lwp_ground(k+1) ) |
---|
317 | effective_emission_up_m = 1.0_wp - & |
---|
318 | EXP( -130.0_wp * lwp_ground(k-1) ) |
---|
319 | effective_emission_down_p = 1.0_wp - & |
---|
320 | EXP( -158.0_wp * lwp_top(k+1) ) |
---|
321 | effective_emission_down_m = 1.0_wp - & |
---|
322 | EXP( -158.0_wp * lwp_top(k-1) ) |
---|
323 | |
---|
324 | ! |
---|
325 | !-- Compute vertical long wave radiation fluxes |
---|
326 | f_up_p = blackbody_emission(nzb) + effective_emission_up_p * & |
---|
327 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
328 | |
---|
329 | f_up_m = blackbody_emission(nzb) + effective_emission_up_m * & |
---|
330 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
331 | |
---|
332 | f_down_p = impinging_flux_at_top + effective_emission_down_p * & |
---|
333 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
334 | |
---|
335 | f_down_m = impinging_flux_at_top + effective_emission_down_m * & |
---|
336 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
337 | |
---|
338 | ! |
---|
339 | !- Divergence of vertical long wave radiation fluxes |
---|
340 | df_p = f_up_p - f_down_p |
---|
341 | df_m = f_up_m - f_down_m |
---|
342 | |
---|
343 | ! |
---|
344 | !-- Compute tendency term |
---|
345 | tend(k,j,i) = tend(k,j,i) - ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
346 | ( df_p - df_m ) / dzw(k) ) |
---|
347 | |
---|
348 | ENDIF |
---|
349 | |
---|
350 | ENDDO |
---|
351 | |
---|
352 | END SUBROUTINE calc_radiation_ij |
---|
353 | |
---|
354 | END MODULE calc_radiation_mod |
---|