1 | MODULE calc_radiation_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Log: calc_radiation.f90,v $ |
---|
11 | ! Revision 1.6 2004/01/30 10:17:03 raasch |
---|
12 | ! Scalar lower k index nzb replaced by 2d-array nzb_2d |
---|
13 | ! |
---|
14 | ! Revision 1.5 2003/03/12 16:21:56 raasch |
---|
15 | ! Full code replaced in the call for all gridpoints instead of calling the |
---|
16 | ! _ij version (required by NEC, because otherwise no vectorization) |
---|
17 | ! |
---|
18 | ! Revision 1.4 2002/06/11 12:40:33 raasch |
---|
19 | ! Former subroutine changed to a module which allows to be called for all grid |
---|
20 | ! points of a single vertical column with index i,j or for all grid points by |
---|
21 | ! using function overloading. |
---|
22 | ! 1D-arrays lwp_groud,... are only allocated once in the first call. |
---|
23 | ! |
---|
24 | ! Revision 1.3 2001/03/30 06:55:27 raasch |
---|
25 | ! Translation of remaining German identifiers (variables, subroutines, etc.) |
---|
26 | ! |
---|
27 | ! Revision 1.2 2001/01/22 05:35:05 raasch |
---|
28 | ! Module test_variables removed |
---|
29 | ! |
---|
30 | ! Revision 1.1 2000/04/13 14:42:45 schroeter |
---|
31 | ! Initial revision |
---|
32 | ! |
---|
33 | ! |
---|
34 | ! Description: |
---|
35 | ! ------------- |
---|
36 | ! Calculation of the vertical divergences of the long-wave radiation-fluxes |
---|
37 | ! based on the parameterization of the cloud effective emissivity |
---|
38 | !------------------------------------------------------------------------------! |
---|
39 | |
---|
40 | PRIVATE |
---|
41 | PUBLIC calc_radiation |
---|
42 | |
---|
43 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
44 | REAL, SAVE :: sigma = 5.67E-08 |
---|
45 | |
---|
46 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: lwp_ground, lwp_top, & |
---|
47 | blackbody_emission |
---|
48 | |
---|
49 | INTERFACE calc_radiation |
---|
50 | MODULE PROCEDURE calc_radiation |
---|
51 | MODULE PROCEDURE calc_radiation_ij |
---|
52 | END INTERFACE calc_radiation |
---|
53 | |
---|
54 | CONTAINS |
---|
55 | |
---|
56 | |
---|
57 | !------------------------------------------------------------------------------! |
---|
58 | ! Call for all grid points |
---|
59 | !------------------------------------------------------------------------------! |
---|
60 | SUBROUTINE calc_radiation |
---|
61 | |
---|
62 | USE arrays_3d |
---|
63 | USE cloud_parameters |
---|
64 | USE control_parameters |
---|
65 | USE indices |
---|
66 | USE pegrid |
---|
67 | |
---|
68 | IMPLICIT NONE |
---|
69 | |
---|
70 | INTEGER :: i, j, k, k_help |
---|
71 | |
---|
72 | REAL :: df_p, df_m , effective_emission_up_m, effective_emission_up_p, & |
---|
73 | effective_emission_down_m, effective_emission_down_p, & |
---|
74 | f_up_m, f_up_p, f_down_m, f_down_p, impinging_flux_at_top, & |
---|
75 | temperature |
---|
76 | |
---|
77 | |
---|
78 | ! |
---|
79 | !-- On first call, allocate temporary arrays |
---|
80 | IF ( first_call ) THEN |
---|
81 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
82 | lwp_top(nzb:nzt+1) ) |
---|
83 | first_call = .FALSE. |
---|
84 | ENDIF |
---|
85 | |
---|
86 | |
---|
87 | DO i = nxl, nxr |
---|
88 | DO j = nys, nyn |
---|
89 | ! |
---|
90 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
91 | !-- at all vertical levels |
---|
92 | lwp_ground(nzb) = 0.0 |
---|
93 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
94 | |
---|
95 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
96 | blackbody_emission(nzb) = sigma * temperature**4.0 |
---|
97 | |
---|
98 | DO k = nzb_2d(j,i)+1, nzt |
---|
99 | |
---|
100 | k_help = ( nzt+nzb+1 ) - k |
---|
101 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * & |
---|
102 | dzw(k) |
---|
103 | |
---|
104 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
105 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
106 | |
---|
107 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
108 | blackbody_emission(k) = sigma * temperature**4.0 |
---|
109 | |
---|
110 | ENDDO |
---|
111 | |
---|
112 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
113 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
114 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
115 | |
---|
116 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
117 | ql(nzt+1,j,i) |
---|
118 | blackbody_emission(nzt+1) = sigma * temperature**4.0 |
---|
119 | |
---|
120 | ! |
---|
121 | !-- See Chlond '92, this is just a first guess |
---|
122 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0 |
---|
123 | |
---|
124 | DO k = nzb_2d(j,i)+1, nzt |
---|
125 | ! |
---|
126 | !-- Save some computational time, but this may cause load |
---|
127 | !-- imbalances if ql is not distributed uniformly |
---|
128 | IF ( ql(k,j,i) /= 0.0 ) THEN |
---|
129 | ! |
---|
130 | !-- Compute effective emissivities |
---|
131 | effective_emission_up_p = 1.0 - & |
---|
132 | EXP( -130.0 * lwp_ground(k+1) ) |
---|
133 | effective_emission_up_m = 1.0 - & |
---|
134 | EXP( -130.0 * lwp_ground(k-1) ) |
---|
135 | effective_emission_down_p = 1.0 - & |
---|
136 | EXP( -158.0 * lwp_top(k+1) ) |
---|
137 | effective_emission_down_m = 1.0 - & |
---|
138 | EXP( -158.0 * lwp_top(k-1) ) |
---|
139 | |
---|
140 | ! |
---|
141 | !-- Compute vertical long wave radiation fluxes |
---|
142 | f_up_p = blackbody_emission(nzb) + & |
---|
143 | effective_emission_up_p * & |
---|
144 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
145 | |
---|
146 | f_up_m = blackbody_emission(nzb) + & |
---|
147 | effective_emission_up_m * & |
---|
148 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
149 | |
---|
150 | f_down_p = impinging_flux_at_top + & |
---|
151 | effective_emission_down_p * & |
---|
152 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
153 | |
---|
154 | f_down_m = impinging_flux_at_top + & |
---|
155 | effective_emission_down_m * & |
---|
156 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
157 | |
---|
158 | ! |
---|
159 | !-- Divergence of vertical long wave radiation fluxes |
---|
160 | df_p = f_up_p - f_down_p |
---|
161 | df_m = f_up_m - f_down_m |
---|
162 | |
---|
163 | ! |
---|
164 | !-- Compute tendency term |
---|
165 | tend(k,j,i) = tend(k,j,i) - & |
---|
166 | ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
167 | ( df_p - df_m ) / dzw(k) ) |
---|
168 | |
---|
169 | ENDIF |
---|
170 | |
---|
171 | ENDDO |
---|
172 | ENDDO |
---|
173 | ENDDO |
---|
174 | |
---|
175 | END SUBROUTINE calc_radiation |
---|
176 | |
---|
177 | |
---|
178 | !------------------------------------------------------------------------------! |
---|
179 | ! Call for grid point i,j |
---|
180 | !------------------------------------------------------------------------------! |
---|
181 | SUBROUTINE calc_radiation_ij( i, j ) |
---|
182 | |
---|
183 | USE arrays_3d |
---|
184 | USE cloud_parameters |
---|
185 | USE control_parameters |
---|
186 | USE indices |
---|
187 | USE pegrid |
---|
188 | |
---|
189 | IMPLICIT NONE |
---|
190 | |
---|
191 | INTEGER :: i, j, k, k_help |
---|
192 | |
---|
193 | REAL :: df_p, df_m , effective_emission_up_m, effective_emission_up_p, & |
---|
194 | effective_emission_down_m, effective_emission_down_p, & |
---|
195 | f_up_m, f_up_p, f_down_m, f_down_p, impinging_flux_at_top, & |
---|
196 | temperature |
---|
197 | |
---|
198 | ! |
---|
199 | !-- On first call, allocate temporary arrays |
---|
200 | IF ( first_call ) THEN |
---|
201 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
202 | lwp_top(nzb:nzt+1) ) |
---|
203 | first_call = .FALSE. |
---|
204 | ENDIF |
---|
205 | |
---|
206 | ! |
---|
207 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
208 | !-- at all vertical levels |
---|
209 | lwp_ground(nzb) = 0.0 |
---|
210 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
211 | |
---|
212 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
213 | blackbody_emission(nzb) = sigma * temperature**4.0 |
---|
214 | |
---|
215 | DO k = nzb_2d(j,i)+1, nzt |
---|
216 | k_help = ( nzt+nzb+1 ) - k |
---|
217 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * dzw(k) |
---|
218 | |
---|
219 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
220 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
221 | |
---|
222 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
223 | blackbody_emission(k) = sigma * temperature**4.0 |
---|
224 | |
---|
225 | ENDDO |
---|
226 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
227 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
228 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
229 | |
---|
230 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
231 | ql(nzt+1,j,i) |
---|
232 | blackbody_emission(nzt+1) = sigma * temperature**4.0 |
---|
233 | |
---|
234 | ! |
---|
235 | !-- See Chlond '92, this is just a first guess |
---|
236 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0 |
---|
237 | |
---|
238 | DO k = nzb_2d(j,i)+1, nzt |
---|
239 | ! |
---|
240 | !-- Store some computational time, |
---|
241 | !-- this may cause load imbalances if ql is not distributed uniformly |
---|
242 | IF ( ql(k,j,i) /= 0.0 ) THEN |
---|
243 | ! |
---|
244 | !-- Compute effective emissivities |
---|
245 | effective_emission_up_p = 1.0 - & |
---|
246 | EXP( -130.0 * lwp_ground(k+1) ) |
---|
247 | effective_emission_up_m = 1.0 - & |
---|
248 | EXP( -130.0 * lwp_ground(k-1) ) |
---|
249 | effective_emission_down_p = 1.0 - & |
---|
250 | EXP( -158.0 * lwp_top(k+1) ) |
---|
251 | effective_emission_down_m = 1.0 - & |
---|
252 | EXP( -158.0 * lwp_top(k-1) ) |
---|
253 | |
---|
254 | ! |
---|
255 | !-- Compute vertical long wave radiation fluxes |
---|
256 | f_up_p = blackbody_emission(nzb) + effective_emission_up_p * & |
---|
257 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
258 | |
---|
259 | f_up_m = blackbody_emission(nzb) + effective_emission_up_m * & |
---|
260 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
261 | |
---|
262 | f_down_p = impinging_flux_at_top + effective_emission_down_p * & |
---|
263 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
264 | |
---|
265 | f_down_m = impinging_flux_at_top + effective_emission_down_m * & |
---|
266 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
267 | |
---|
268 | ! |
---|
269 | !- Divergence of vertical long wave radiation fluxes |
---|
270 | df_p = f_up_p - f_down_p |
---|
271 | df_m = f_up_m - f_down_m |
---|
272 | |
---|
273 | ! |
---|
274 | !-- Compute tendency term |
---|
275 | tend(k,j,i) = tend(k,j,i) - ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
276 | ( df_p - df_m ) / dzw(k) ) |
---|
277 | |
---|
278 | ENDIF |
---|
279 | |
---|
280 | ENDDO |
---|
281 | |
---|
282 | END SUBROUTINE calc_radiation_ij |
---|
283 | |
---|
284 | END MODULE calc_radiation_mod |
---|